1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_private.h> 65 #include <net/if_vlan_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/ethernet.h> 68 #include <net/netisr.h> 69 #include <net/pfil.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 #include <net/vnet.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/ip.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #if defined(SCTP) || defined(SCTP_SUPPORT) 91 #include <netinet/sctp.h> 92 #include <netinet/sctp_crc32.h> 93 #endif 94 95 #include <netipsec/ipsec_support.h> 96 97 #include <machine/in_cksum.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifdef MBUF_STRESS_TEST 102 static int mbuf_frag_size = 0; 103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 105 #endif 106 107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 108 109 extern int in_mcast_loop; 110 111 static inline int 112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 113 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 114 { 115 struct m_tag *fwd_tag = NULL; 116 struct mbuf *m; 117 struct in_addr odst; 118 struct ip *ip; 119 120 m = *mp; 121 ip = mtod(m, struct ip *); 122 123 /* Run through list of hooks for output packets. */ 124 odst.s_addr = ip->ip_dst.s_addr; 125 switch (pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp)) { 126 case PFIL_DROPPED: 127 *error = EACCES; 128 /* FALLTHROUGH */ 129 case PFIL_CONSUMED: 130 return 1; /* Finished */ 131 case PFIL_PASS: 132 *error = 0; 133 } 134 m = *mp; 135 ip = mtod(m, struct ip *); 136 137 /* See if destination IP address was changed by packet filter. */ 138 if (odst.s_addr != ip->ip_dst.s_addr) { 139 m->m_flags |= M_SKIP_FIREWALL; 140 /* If destination is now ourself drop to ip_input(). */ 141 if (in_localip(ip->ip_dst)) { 142 m->m_flags |= M_FASTFWD_OURS; 143 if (m->m_pkthdr.rcvif == NULL) 144 m->m_pkthdr.rcvif = V_loif; 145 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 146 m->m_pkthdr.csum_flags |= 147 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 148 m->m_pkthdr.csum_data = 0xffff; 149 } 150 m->m_pkthdr.csum_flags |= 151 CSUM_IP_CHECKED | CSUM_IP_VALID; 152 #if defined(SCTP) || defined(SCTP_SUPPORT) 153 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 154 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 155 #endif 156 *error = netisr_queue(NETISR_IP, m); 157 return 1; /* Finished */ 158 } 159 160 bzero(dst, sizeof(*dst)); 161 dst->sin_family = AF_INET; 162 dst->sin_len = sizeof(*dst); 163 dst->sin_addr = ip->ip_dst; 164 165 return -1; /* Reloop */ 166 } 167 /* See if fib was changed by packet filter. */ 168 if ((*fibnum) != M_GETFIB(m)) { 169 m->m_flags |= M_SKIP_FIREWALL; 170 *fibnum = M_GETFIB(m); 171 return -1; /* Reloop for FIB change */ 172 } 173 174 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 175 if (m->m_flags & M_FASTFWD_OURS) { 176 if (m->m_pkthdr.rcvif == NULL) 177 m->m_pkthdr.rcvif = V_loif; 178 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 179 m->m_pkthdr.csum_flags |= 180 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 181 m->m_pkthdr.csum_data = 0xffff; 182 } 183 #if defined(SCTP) || defined(SCTP_SUPPORT) 184 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 185 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 186 #endif 187 m->m_pkthdr.csum_flags |= 188 CSUM_IP_CHECKED | CSUM_IP_VALID; 189 190 *error = netisr_queue(NETISR_IP, m); 191 return 1; /* Finished */ 192 } 193 /* Or forward to some other address? */ 194 if ((m->m_flags & M_IP_NEXTHOP) && 195 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 196 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 197 m->m_flags |= M_SKIP_FIREWALL; 198 m->m_flags &= ~M_IP_NEXTHOP; 199 m_tag_delete(m, fwd_tag); 200 201 return -1; /* Reloop for CHANGE of dst */ 202 } 203 204 return 0; 205 } 206 207 static int 208 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 209 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 210 { 211 #ifdef KERN_TLS 212 struct ktls_session *tls = NULL; 213 #endif 214 struct m_snd_tag *mst; 215 int error; 216 217 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 218 mst = NULL; 219 220 #ifdef KERN_TLS 221 /* 222 * If this is an unencrypted TLS record, save a reference to 223 * the record. This local reference is used to call 224 * ktls_output_eagain after the mbuf has been freed (thus 225 * dropping the mbuf's reference) in if_output. 226 */ 227 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 228 tls = ktls_hold(m->m_next->m_epg_tls); 229 mst = tls->snd_tag; 230 231 /* 232 * If a TLS session doesn't have a valid tag, it must 233 * have had an earlier ifp mismatch, so drop this 234 * packet. 235 */ 236 if (mst == NULL) { 237 m_freem(m); 238 error = EAGAIN; 239 goto done; 240 } 241 /* 242 * Always stamp tags that include NIC ktls. 243 */ 244 stamp_tag = true; 245 } 246 #endif 247 #ifdef RATELIMIT 248 if (inp != NULL && mst == NULL) { 249 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 250 (inp->inp_snd_tag != NULL && 251 inp->inp_snd_tag->ifp != ifp)) 252 in_pcboutput_txrtlmt(inp, ifp, m); 253 254 if (inp->inp_snd_tag != NULL) 255 mst = inp->inp_snd_tag; 256 } 257 #endif 258 if (stamp_tag && mst != NULL) { 259 KASSERT(m->m_pkthdr.rcvif == NULL, 260 ("trying to add a send tag to a forwarded packet")); 261 if (mst->ifp != ifp) { 262 m_freem(m); 263 error = EAGAIN; 264 goto done; 265 } 266 267 /* stamp send tag on mbuf */ 268 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 269 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 270 } 271 272 error = (*ifp->if_output)(ifp, m, gw, ro); 273 274 done: 275 /* Check for route change invalidating send tags. */ 276 #ifdef KERN_TLS 277 if (tls != NULL) { 278 if (error == EAGAIN) 279 error = ktls_output_eagain(inp, tls); 280 ktls_free(tls); 281 } 282 #endif 283 #ifdef RATELIMIT 284 if (error == EAGAIN) 285 in_pcboutput_eagain(inp); 286 #endif 287 return (error); 288 } 289 290 /* rte<>ro_flags translation */ 291 static inline void 292 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 293 { 294 int nh_flags = nh->nh_flags; 295 296 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 297 298 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 299 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 300 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 301 } 302 303 /* 304 * IP output. The packet in mbuf chain m contains a skeletal IP 305 * header (with len, off, ttl, proto, tos, src, dst). 306 * The mbuf chain containing the packet will be freed. 307 * The mbuf opt, if present, will not be freed. 308 * If route ro is present and has ro_rt initialized, route lookup would be 309 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 310 * then result of route lookup is stored in ro->ro_rt. 311 * 312 * In the IP forwarding case, the packet will arrive with options already 313 * inserted, so must have a NULL opt pointer. 314 */ 315 int 316 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 317 struct ip_moptions *imo, struct inpcb *inp) 318 { 319 struct ip *ip; 320 struct ifnet *ifp = NULL; /* keep compiler happy */ 321 struct mbuf *m0; 322 int hlen = sizeof (struct ip); 323 int mtu = 0; 324 int error = 0; 325 int vlan_pcp = -1; 326 struct sockaddr_in *dst; 327 const struct sockaddr *gw; 328 struct in_ifaddr *ia = NULL; 329 struct in_addr src; 330 int isbroadcast; 331 uint16_t ip_len, ip_off; 332 struct route iproute; 333 uint32_t fibnum; 334 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 335 int no_route_but_check_spd = 0; 336 #endif 337 338 M_ASSERTPKTHDR(m); 339 NET_EPOCH_ASSERT(); 340 341 if (inp != NULL) { 342 INP_LOCK_ASSERT(inp); 343 M_SETFIB(m, inp->inp_inc.inc_fibnum); 344 if ((flags & IP_NODEFAULTFLOWID) == 0) { 345 m->m_pkthdr.flowid = inp->inp_flowid; 346 M_HASHTYPE_SET(m, inp->inp_flowtype); 347 } 348 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 349 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 350 INP_2PCP_SHIFT; 351 #ifdef NUMA 352 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 353 #endif 354 } 355 356 if (opt) { 357 int len = 0; 358 m = ip_insertoptions(m, opt, &len); 359 if (len != 0) 360 hlen = len; /* ip->ip_hl is updated above */ 361 } 362 ip = mtod(m, struct ip *); 363 ip_len = ntohs(ip->ip_len); 364 ip_off = ntohs(ip->ip_off); 365 366 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 367 ip->ip_v = IPVERSION; 368 ip->ip_hl = hlen >> 2; 369 ip_fillid(ip); 370 } else { 371 /* Header already set, fetch hlen from there */ 372 hlen = ip->ip_hl << 2; 373 } 374 if ((flags & IP_FORWARDING) == 0) 375 IPSTAT_INC(ips_localout); 376 377 /* 378 * dst/gw handling: 379 * 380 * gw is readonly but can point either to dst OR rt_gateway, 381 * therefore we need restore gw if we're redoing lookup. 382 */ 383 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 384 if (ro == NULL) { 385 ro = &iproute; 386 bzero(ro, sizeof (*ro)); 387 } 388 dst = (struct sockaddr_in *)&ro->ro_dst; 389 if (ro->ro_nh == NULL) { 390 dst->sin_family = AF_INET; 391 dst->sin_len = sizeof(*dst); 392 dst->sin_addr = ip->ip_dst; 393 } 394 gw = (const struct sockaddr *)dst; 395 again: 396 /* 397 * Validate route against routing table additions; 398 * a better/more specific route might have been added. 399 */ 400 if (inp != NULL && ro->ro_nh != NULL) 401 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 402 /* 403 * If there is a cached route, 404 * check that it is to the same destination 405 * and is still up. If not, free it and try again. 406 * The address family should also be checked in case of sharing the 407 * cache with IPv6. 408 * Also check whether routing cache needs invalidation. 409 */ 410 if (ro->ro_nh != NULL && 411 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 412 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 413 RO_INVALIDATE_CACHE(ro); 414 ia = NULL; 415 /* 416 * If routing to interface only, short circuit routing lookup. 417 * The use of an all-ones broadcast address implies this; an 418 * interface is specified by the broadcast address of an interface, 419 * or the destination address of a ptp interface. 420 */ 421 if (flags & IP_SENDONES) { 422 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 423 M_GETFIB(m)))) == NULL && 424 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 425 M_GETFIB(m)))) == NULL) { 426 IPSTAT_INC(ips_noroute); 427 error = ENETUNREACH; 428 goto bad; 429 } 430 ip->ip_dst.s_addr = INADDR_BROADCAST; 431 dst->sin_addr = ip->ip_dst; 432 ifp = ia->ia_ifp; 433 mtu = ifp->if_mtu; 434 ip->ip_ttl = 1; 435 isbroadcast = 1; 436 src = IA_SIN(ia)->sin_addr; 437 } else if (flags & IP_ROUTETOIF) { 438 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 439 M_GETFIB(m)))) == NULL && 440 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 441 M_GETFIB(m)))) == NULL) { 442 IPSTAT_INC(ips_noroute); 443 error = ENETUNREACH; 444 goto bad; 445 } 446 ifp = ia->ia_ifp; 447 mtu = ifp->if_mtu; 448 ip->ip_ttl = 1; 449 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 450 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 451 src = IA_SIN(ia)->sin_addr; 452 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 453 imo != NULL && imo->imo_multicast_ifp != NULL) { 454 /* 455 * Bypass the normal routing lookup for multicast 456 * packets if the interface is specified. 457 */ 458 ifp = imo->imo_multicast_ifp; 459 mtu = ifp->if_mtu; 460 IFP_TO_IA(ifp, ia); 461 isbroadcast = 0; /* fool gcc */ 462 /* Interface may have no addresses. */ 463 if (ia != NULL) 464 src = IA_SIN(ia)->sin_addr; 465 else 466 src.s_addr = INADDR_ANY; 467 } else if (ro != &iproute) { 468 if (ro->ro_nh == NULL) { 469 /* 470 * We want to do any cloning requested by the link 471 * layer, as this is probably required in all cases 472 * for correct operation (as it is for ARP). 473 */ 474 uint32_t flowid; 475 flowid = m->m_pkthdr.flowid; 476 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 477 NHR_REF, flowid); 478 479 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 480 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 481 /* 482 * There is no route for this packet, but it is 483 * possible that a matching SPD entry exists. 484 */ 485 no_route_but_check_spd = 1; 486 goto sendit; 487 #endif 488 IPSTAT_INC(ips_noroute); 489 error = EHOSTUNREACH; 490 goto bad; 491 } 492 } 493 struct nhop_object *nh = ro->ro_nh; 494 495 ia = ifatoia(nh->nh_ifa); 496 ifp = nh->nh_ifp; 497 counter_u64_add(nh->nh_pksent, 1); 498 rt_update_ro_flags(ro, nh); 499 if (nh->nh_flags & NHF_GATEWAY) 500 gw = &nh->gw_sa; 501 if (nh->nh_flags & NHF_HOST) 502 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 503 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 504 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 505 else 506 isbroadcast = 0; 507 mtu = nh->nh_mtu; 508 src = IA_SIN(ia)->sin_addr; 509 } else { 510 struct nhop_object *nh; 511 512 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 513 m->m_pkthdr.flowid); 514 if (nh == NULL) { 515 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 516 /* 517 * There is no route for this packet, but it is 518 * possible that a matching SPD entry exists. 519 */ 520 no_route_but_check_spd = 1; 521 goto sendit; 522 #endif 523 IPSTAT_INC(ips_noroute); 524 error = EHOSTUNREACH; 525 goto bad; 526 } 527 ifp = nh->nh_ifp; 528 mtu = nh->nh_mtu; 529 rt_update_ro_flags(ro, nh); 530 if (nh->nh_flags & NHF_GATEWAY) 531 gw = &nh->gw_sa; 532 ia = ifatoia(nh->nh_ifa); 533 src = IA_SIN(ia)->sin_addr; 534 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 535 (NHF_HOST | NHF_BROADCAST)) || 536 ((ifp->if_flags & IFF_BROADCAST) && 537 (gw->sa_family == AF_INET) && 538 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 539 } 540 541 /* Catch a possible divide by zero later. */ 542 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 543 __func__, mtu, ro, 544 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 545 546 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 547 m->m_flags |= M_MCAST; 548 /* 549 * IP destination address is multicast. Make sure "gw" 550 * still points to the address in "ro". (It may have been 551 * changed to point to a gateway address, above.) 552 */ 553 gw = (const struct sockaddr *)dst; 554 /* 555 * See if the caller provided any multicast options 556 */ 557 if (imo != NULL) { 558 ip->ip_ttl = imo->imo_multicast_ttl; 559 if (imo->imo_multicast_vif != -1) 560 ip->ip_src.s_addr = 561 ip_mcast_src ? 562 ip_mcast_src(imo->imo_multicast_vif) : 563 INADDR_ANY; 564 } else 565 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 566 /* 567 * Confirm that the outgoing interface supports multicast. 568 */ 569 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 570 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 571 IPSTAT_INC(ips_noroute); 572 error = ENETUNREACH; 573 goto bad; 574 } 575 } 576 /* 577 * If source address not specified yet, use address 578 * of outgoing interface. 579 */ 580 if (ip->ip_src.s_addr == INADDR_ANY) 581 ip->ip_src = src; 582 583 if ((imo == NULL && in_mcast_loop) || 584 (imo && imo->imo_multicast_loop)) { 585 /* 586 * Loop back multicast datagram if not expressly 587 * forbidden to do so, even if we are not a member 588 * of the group; ip_input() will filter it later, 589 * thus deferring a hash lookup and mutex acquisition 590 * at the expense of a cheap copy using m_copym(). 591 */ 592 ip_mloopback(ifp, m, hlen); 593 } else { 594 /* 595 * If we are acting as a multicast router, perform 596 * multicast forwarding as if the packet had just 597 * arrived on the interface to which we are about 598 * to send. The multicast forwarding function 599 * recursively calls this function, using the 600 * IP_FORWARDING flag to prevent infinite recursion. 601 * 602 * Multicasts that are looped back by ip_mloopback(), 603 * above, will be forwarded by the ip_input() routine, 604 * if necessary. 605 */ 606 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 607 /* 608 * If rsvp daemon is not running, do not 609 * set ip_moptions. This ensures that the packet 610 * is multicast and not just sent down one link 611 * as prescribed by rsvpd. 612 */ 613 if (!V_rsvp_on) 614 imo = NULL; 615 if (ip_mforward && 616 ip_mforward(ip, ifp, m, imo) != 0) { 617 m_freem(m); 618 goto done; 619 } 620 } 621 } 622 623 /* 624 * Multicasts with a time-to-live of zero may be looped- 625 * back, above, but must not be transmitted on a network. 626 * Also, multicasts addressed to the loopback interface 627 * are not sent -- the above call to ip_mloopback() will 628 * loop back a copy. ip_input() will drop the copy if 629 * this host does not belong to the destination group on 630 * the loopback interface. 631 */ 632 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 633 m_freem(m); 634 goto done; 635 } 636 637 goto sendit; 638 } 639 640 /* 641 * If the source address is not specified yet, use the address 642 * of the outoing interface. 643 */ 644 if (ip->ip_src.s_addr == INADDR_ANY) 645 ip->ip_src = src; 646 647 /* 648 * Look for broadcast address and 649 * verify user is allowed to send 650 * such a packet. 651 */ 652 if (isbroadcast) { 653 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 654 error = EADDRNOTAVAIL; 655 goto bad; 656 } 657 if ((flags & IP_ALLOWBROADCAST) == 0) { 658 error = EACCES; 659 goto bad; 660 } 661 /* don't allow broadcast messages to be fragmented */ 662 if (ip_len > mtu) { 663 error = EMSGSIZE; 664 goto bad; 665 } 666 m->m_flags |= M_BCAST; 667 } else { 668 m->m_flags &= ~M_BCAST; 669 } 670 671 sendit: 672 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 673 if (IPSEC_ENABLED(ipv4)) { 674 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 675 if (error == EINPROGRESS) 676 error = 0; 677 goto done; 678 } 679 } 680 /* 681 * Check if there was a route for this packet; return error if not. 682 */ 683 if (no_route_but_check_spd) { 684 IPSTAT_INC(ips_noroute); 685 error = EHOSTUNREACH; 686 goto bad; 687 } 688 /* Update variables that are affected by ipsec4_output(). */ 689 ip = mtod(m, struct ip *); 690 hlen = ip->ip_hl << 2; 691 #endif /* IPSEC */ 692 693 /* Jump over all PFIL processing if hooks are not active. */ 694 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 695 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 696 &error)) { 697 case 1: /* Finished */ 698 goto done; 699 700 case 0: /* Continue normally */ 701 ip = mtod(m, struct ip *); 702 break; 703 704 case -1: /* Need to try again */ 705 /* Reset everything for a new round */ 706 if (ro != NULL) { 707 RO_NHFREE(ro); 708 ro->ro_prepend = NULL; 709 } 710 gw = (const struct sockaddr *)dst; 711 ip = mtod(m, struct ip *); 712 goto again; 713 } 714 } 715 716 if (vlan_pcp > -1) 717 EVL_APPLY_PRI(m, vlan_pcp); 718 719 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 720 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 721 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 722 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 723 IPSTAT_INC(ips_badaddr); 724 error = EADDRNOTAVAIL; 725 goto bad; 726 } 727 } 728 729 /* Ensure the packet data is mapped if the interface requires it. */ 730 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 731 m = mb_unmapped_to_ext(m); 732 if (m == NULL) { 733 IPSTAT_INC(ips_odropped); 734 error = ENOBUFS; 735 goto bad; 736 } 737 } 738 739 m->m_pkthdr.csum_flags |= CSUM_IP; 740 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 741 in_delayed_cksum(m); 742 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 743 } 744 #if defined(SCTP) || defined(SCTP_SUPPORT) 745 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 746 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 747 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 748 } 749 #endif 750 751 /* 752 * If small enough for interface, or the interface will take 753 * care of the fragmentation for us, we can just send directly. 754 * Note that if_vxlan could have requested TSO even though the outer 755 * frame is UDP. It is correct to not fragment such datagrams and 756 * instead just pass them on to the driver. 757 */ 758 if (ip_len <= mtu || 759 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 760 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 761 ip->ip_sum = 0; 762 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 763 ip->ip_sum = in_cksum(m, hlen); 764 m->m_pkthdr.csum_flags &= ~CSUM_IP; 765 } 766 767 /* 768 * Record statistics for this interface address. 769 * With CSUM_TSO the byte/packet count will be slightly 770 * incorrect because we count the IP+TCP headers only 771 * once instead of for every generated packet. 772 */ 773 if (!(flags & IP_FORWARDING) && ia) { 774 if (m->m_pkthdr.csum_flags & 775 (CSUM_TSO | CSUM_INNER_TSO)) 776 counter_u64_add(ia->ia_ifa.ifa_opackets, 777 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 778 else 779 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 780 781 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 782 } 783 #ifdef MBUF_STRESS_TEST 784 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 785 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 786 #endif 787 /* 788 * Reset layer specific mbuf flags 789 * to avoid confusing lower layers. 790 */ 791 m_clrprotoflags(m); 792 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 793 error = ip_output_send(inp, ifp, m, gw, ro, 794 (flags & IP_NO_SND_TAG_RL) ? false : true); 795 goto done; 796 } 797 798 /* Balk when DF bit is set or the interface didn't support TSO. */ 799 if ((ip_off & IP_DF) || 800 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 801 error = EMSGSIZE; 802 IPSTAT_INC(ips_cantfrag); 803 goto bad; 804 } 805 806 /* 807 * Too large for interface; fragment if possible. If successful, 808 * on return, m will point to a list of packets to be sent. 809 */ 810 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 811 if (error) 812 goto bad; 813 for (; m; m = m0) { 814 m0 = m->m_nextpkt; 815 m->m_nextpkt = 0; 816 if (error == 0) { 817 /* Record statistics for this interface address. */ 818 if (ia != NULL) { 819 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 820 counter_u64_add(ia->ia_ifa.ifa_obytes, 821 m->m_pkthdr.len); 822 } 823 /* 824 * Reset layer specific mbuf flags 825 * to avoid confusing upper layers. 826 */ 827 m_clrprotoflags(m); 828 829 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 830 mtod(m, struct ip *), NULL); 831 error = ip_output_send(inp, ifp, m, gw, ro, true); 832 } else 833 m_freem(m); 834 } 835 836 if (error == 0) 837 IPSTAT_INC(ips_fragmented); 838 839 done: 840 return (error); 841 bad: 842 m_freem(m); 843 goto done; 844 } 845 846 /* 847 * Create a chain of fragments which fit the given mtu. m_frag points to the 848 * mbuf to be fragmented; on return it points to the chain with the fragments. 849 * Return 0 if no error. If error, m_frag may contain a partially built 850 * chain of fragments that should be freed by the caller. 851 * 852 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 853 */ 854 int 855 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 856 u_long if_hwassist_flags) 857 { 858 int error = 0; 859 int hlen = ip->ip_hl << 2; 860 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 861 int off; 862 struct mbuf *m0 = *m_frag; /* the original packet */ 863 int firstlen; 864 struct mbuf **mnext; 865 int nfrags; 866 uint16_t ip_len, ip_off; 867 868 ip_len = ntohs(ip->ip_len); 869 ip_off = ntohs(ip->ip_off); 870 871 /* 872 * Packet shall not have "Don't Fragment" flag and have at least 8 873 * bytes of payload. 874 */ 875 if (__predict_false((ip_off & IP_DF) || len < 8)) { 876 IPSTAT_INC(ips_cantfrag); 877 return (EMSGSIZE); 878 } 879 880 /* 881 * If the interface will not calculate checksums on 882 * fragmented packets, then do it here. 883 */ 884 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 885 in_delayed_cksum(m0); 886 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 887 } 888 #if defined(SCTP) || defined(SCTP_SUPPORT) 889 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 890 sctp_delayed_cksum(m0, hlen); 891 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 892 } 893 #endif 894 if (len > PAGE_SIZE) { 895 /* 896 * Fragment large datagrams such that each segment 897 * contains a multiple of PAGE_SIZE amount of data, 898 * plus headers. This enables a receiver to perform 899 * page-flipping zero-copy optimizations. 900 * 901 * XXX When does this help given that sender and receiver 902 * could have different page sizes, and also mtu could 903 * be less than the receiver's page size ? 904 */ 905 int newlen; 906 907 off = MIN(mtu, m0->m_pkthdr.len); 908 909 /* 910 * firstlen (off - hlen) must be aligned on an 911 * 8-byte boundary 912 */ 913 if (off < hlen) 914 goto smart_frag_failure; 915 off = ((off - hlen) & ~7) + hlen; 916 newlen = (~PAGE_MASK) & mtu; 917 if ((newlen + sizeof (struct ip)) > mtu) { 918 /* we failed, go back the default */ 919 smart_frag_failure: 920 newlen = len; 921 off = hlen + len; 922 } 923 len = newlen; 924 925 } else { 926 off = hlen + len; 927 } 928 929 firstlen = off - hlen; 930 mnext = &m0->m_nextpkt; /* pointer to next packet */ 931 932 /* 933 * Loop through length of segment after first fragment, 934 * make new header and copy data of each part and link onto chain. 935 * Here, m0 is the original packet, m is the fragment being created. 936 * The fragments are linked off the m_nextpkt of the original 937 * packet, which after processing serves as the first fragment. 938 */ 939 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 940 struct ip *mhip; /* ip header on the fragment */ 941 struct mbuf *m; 942 int mhlen = sizeof (struct ip); 943 944 m = m_gethdr(M_NOWAIT, MT_DATA); 945 if (m == NULL) { 946 error = ENOBUFS; 947 IPSTAT_INC(ips_odropped); 948 goto done; 949 } 950 /* 951 * Make sure the complete packet header gets copied 952 * from the originating mbuf to the newly created 953 * mbuf. This also ensures that existing firewall 954 * classification(s), VLAN tags and so on get copied 955 * to the resulting fragmented packet(s): 956 */ 957 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 958 m_free(m); 959 error = ENOBUFS; 960 IPSTAT_INC(ips_odropped); 961 goto done; 962 } 963 /* 964 * In the first mbuf, leave room for the link header, then 965 * copy the original IP header including options. The payload 966 * goes into an additional mbuf chain returned by m_copym(). 967 */ 968 m->m_data += max_linkhdr; 969 mhip = mtod(m, struct ip *); 970 *mhip = *ip; 971 if (hlen > sizeof (struct ip)) { 972 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 973 mhip->ip_v = IPVERSION; 974 mhip->ip_hl = mhlen >> 2; 975 } 976 m->m_len = mhlen; 977 /* XXX do we need to add ip_off below ? */ 978 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 979 if (off + len >= ip_len) 980 len = ip_len - off; 981 else 982 mhip->ip_off |= IP_MF; 983 mhip->ip_len = htons((u_short)(len + mhlen)); 984 m->m_next = m_copym(m0, off, len, M_NOWAIT); 985 if (m->m_next == NULL) { /* copy failed */ 986 m_free(m); 987 error = ENOBUFS; /* ??? */ 988 IPSTAT_INC(ips_odropped); 989 goto done; 990 } 991 m->m_pkthdr.len = mhlen + len; 992 #ifdef MAC 993 mac_netinet_fragment(m0, m); 994 #endif 995 mhip->ip_off = htons(mhip->ip_off); 996 mhip->ip_sum = 0; 997 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 998 mhip->ip_sum = in_cksum(m, mhlen); 999 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1000 } 1001 *mnext = m; 1002 mnext = &m->m_nextpkt; 1003 } 1004 IPSTAT_ADD(ips_ofragments, nfrags); 1005 1006 /* 1007 * Update first fragment by trimming what's been copied out 1008 * and updating header. 1009 */ 1010 m_adj(m0, hlen + firstlen - ip_len); 1011 m0->m_pkthdr.len = hlen + firstlen; 1012 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1013 ip->ip_off = htons(ip_off | IP_MF); 1014 ip->ip_sum = 0; 1015 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1016 ip->ip_sum = in_cksum(m0, hlen); 1017 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1018 } 1019 1020 done: 1021 *m_frag = m0; 1022 return error; 1023 } 1024 1025 void 1026 in_delayed_cksum(struct mbuf *m) 1027 { 1028 struct ip *ip; 1029 struct udphdr *uh; 1030 uint16_t cklen, csum, offset; 1031 1032 ip = mtod(m, struct ip *); 1033 offset = ip->ip_hl << 2 ; 1034 1035 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1036 /* if udp header is not in the first mbuf copy udplen */ 1037 if (offset + sizeof(struct udphdr) > m->m_len) { 1038 m_copydata(m, offset + offsetof(struct udphdr, 1039 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1040 cklen = ntohs(cklen); 1041 } else { 1042 uh = (struct udphdr *)mtodo(m, offset); 1043 cklen = ntohs(uh->uh_ulen); 1044 } 1045 csum = in_cksum_skip(m, cklen + offset, offset); 1046 if (csum == 0) 1047 csum = 0xffff; 1048 } else { 1049 cklen = ntohs(ip->ip_len); 1050 csum = in_cksum_skip(m, cklen, offset); 1051 } 1052 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1053 1054 if (offset + sizeof(csum) > m->m_len) 1055 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1056 else 1057 *(u_short *)mtodo(m, offset) = csum; 1058 } 1059 1060 /* 1061 * IP socket option processing. 1062 */ 1063 int 1064 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1065 { 1066 struct inpcb *inp = sotoinpcb(so); 1067 int error, optval; 1068 #ifdef RSS 1069 uint32_t rss_bucket; 1070 int retval; 1071 #endif 1072 1073 error = optval = 0; 1074 if (sopt->sopt_level != IPPROTO_IP) { 1075 error = EINVAL; 1076 1077 if (sopt->sopt_level == SOL_SOCKET && 1078 sopt->sopt_dir == SOPT_SET) { 1079 switch (sopt->sopt_name) { 1080 case SO_REUSEADDR: 1081 INP_WLOCK(inp); 1082 if ((so->so_options & SO_REUSEADDR) != 0) 1083 inp->inp_flags2 |= INP_REUSEADDR; 1084 else 1085 inp->inp_flags2 &= ~INP_REUSEADDR; 1086 INP_WUNLOCK(inp); 1087 error = 0; 1088 break; 1089 case SO_REUSEPORT: 1090 INP_WLOCK(inp); 1091 if ((so->so_options & SO_REUSEPORT) != 0) 1092 inp->inp_flags2 |= INP_REUSEPORT; 1093 else 1094 inp->inp_flags2 &= ~INP_REUSEPORT; 1095 INP_WUNLOCK(inp); 1096 error = 0; 1097 break; 1098 case SO_REUSEPORT_LB: 1099 INP_WLOCK(inp); 1100 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1101 inp->inp_flags2 |= INP_REUSEPORT_LB; 1102 else 1103 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1104 INP_WUNLOCK(inp); 1105 error = 0; 1106 break; 1107 case SO_SETFIB: 1108 INP_WLOCK(inp); 1109 inp->inp_inc.inc_fibnum = so->so_fibnum; 1110 INP_WUNLOCK(inp); 1111 error = 0; 1112 break; 1113 case SO_MAX_PACING_RATE: 1114 #ifdef RATELIMIT 1115 INP_WLOCK(inp); 1116 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1117 INP_WUNLOCK(inp); 1118 error = 0; 1119 #else 1120 error = EOPNOTSUPP; 1121 #endif 1122 break; 1123 default: 1124 break; 1125 } 1126 } 1127 return (error); 1128 } 1129 1130 switch (sopt->sopt_dir) { 1131 case SOPT_SET: 1132 switch (sopt->sopt_name) { 1133 case IP_OPTIONS: 1134 #ifdef notyet 1135 case IP_RETOPTS: 1136 #endif 1137 { 1138 struct mbuf *m; 1139 if (sopt->sopt_valsize > MLEN) { 1140 error = EMSGSIZE; 1141 break; 1142 } 1143 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1144 if (m == NULL) { 1145 error = ENOBUFS; 1146 break; 1147 } 1148 m->m_len = sopt->sopt_valsize; 1149 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1150 m->m_len); 1151 if (error) { 1152 m_free(m); 1153 break; 1154 } 1155 INP_WLOCK(inp); 1156 error = ip_pcbopts(inp, sopt->sopt_name, m); 1157 INP_WUNLOCK(inp); 1158 return (error); 1159 } 1160 1161 case IP_BINDANY: 1162 if (sopt->sopt_td != NULL) { 1163 error = priv_check(sopt->sopt_td, 1164 PRIV_NETINET_BINDANY); 1165 if (error) 1166 break; 1167 } 1168 /* FALLTHROUGH */ 1169 case IP_TOS: 1170 case IP_TTL: 1171 case IP_MINTTL: 1172 case IP_RECVOPTS: 1173 case IP_RECVRETOPTS: 1174 case IP_ORIGDSTADDR: 1175 case IP_RECVDSTADDR: 1176 case IP_RECVTTL: 1177 case IP_RECVIF: 1178 case IP_ONESBCAST: 1179 case IP_DONTFRAG: 1180 case IP_RECVTOS: 1181 case IP_RECVFLOWID: 1182 #ifdef RSS 1183 case IP_RECVRSSBUCKETID: 1184 #endif 1185 case IP_VLAN_PCP: 1186 error = sooptcopyin(sopt, &optval, sizeof optval, 1187 sizeof optval); 1188 if (error) 1189 break; 1190 1191 switch (sopt->sopt_name) { 1192 case IP_TOS: 1193 inp->inp_ip_tos = optval; 1194 break; 1195 1196 case IP_TTL: 1197 inp->inp_ip_ttl = optval; 1198 break; 1199 1200 case IP_MINTTL: 1201 if (optval >= 0 && optval <= MAXTTL) 1202 inp->inp_ip_minttl = optval; 1203 else 1204 error = EINVAL; 1205 break; 1206 1207 #define OPTSET(bit) do { \ 1208 INP_WLOCK(inp); \ 1209 if (optval) \ 1210 inp->inp_flags |= bit; \ 1211 else \ 1212 inp->inp_flags &= ~bit; \ 1213 INP_WUNLOCK(inp); \ 1214 } while (0) 1215 1216 #define OPTSET2(bit, val) do { \ 1217 INP_WLOCK(inp); \ 1218 if (val) \ 1219 inp->inp_flags2 |= bit; \ 1220 else \ 1221 inp->inp_flags2 &= ~bit; \ 1222 INP_WUNLOCK(inp); \ 1223 } while (0) 1224 1225 case IP_RECVOPTS: 1226 OPTSET(INP_RECVOPTS); 1227 break; 1228 1229 case IP_RECVRETOPTS: 1230 OPTSET(INP_RECVRETOPTS); 1231 break; 1232 1233 case IP_RECVDSTADDR: 1234 OPTSET(INP_RECVDSTADDR); 1235 break; 1236 1237 case IP_ORIGDSTADDR: 1238 OPTSET2(INP_ORIGDSTADDR, optval); 1239 break; 1240 1241 case IP_RECVTTL: 1242 OPTSET(INP_RECVTTL); 1243 break; 1244 1245 case IP_RECVIF: 1246 OPTSET(INP_RECVIF); 1247 break; 1248 1249 case IP_ONESBCAST: 1250 OPTSET(INP_ONESBCAST); 1251 break; 1252 case IP_DONTFRAG: 1253 OPTSET(INP_DONTFRAG); 1254 break; 1255 case IP_BINDANY: 1256 OPTSET(INP_BINDANY); 1257 break; 1258 case IP_RECVTOS: 1259 OPTSET(INP_RECVTOS); 1260 break; 1261 case IP_RECVFLOWID: 1262 OPTSET2(INP_RECVFLOWID, optval); 1263 break; 1264 #ifdef RSS 1265 case IP_RECVRSSBUCKETID: 1266 OPTSET2(INP_RECVRSSBUCKETID, optval); 1267 break; 1268 #endif 1269 case IP_VLAN_PCP: 1270 if ((optval >= -1) && (optval <= 1271 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1272 if (optval == -1) { 1273 INP_WLOCK(inp); 1274 inp->inp_flags2 &= 1275 ~(INP_2PCP_SET | 1276 INP_2PCP_MASK); 1277 INP_WUNLOCK(inp); 1278 } else { 1279 INP_WLOCK(inp); 1280 inp->inp_flags2 |= 1281 INP_2PCP_SET; 1282 inp->inp_flags2 &= 1283 ~INP_2PCP_MASK; 1284 inp->inp_flags2 |= 1285 optval << INP_2PCP_SHIFT; 1286 INP_WUNLOCK(inp); 1287 } 1288 } else 1289 error = EINVAL; 1290 break; 1291 } 1292 break; 1293 #undef OPTSET 1294 #undef OPTSET2 1295 1296 /* 1297 * Multicast socket options are processed by the in_mcast 1298 * module. 1299 */ 1300 case IP_MULTICAST_IF: 1301 case IP_MULTICAST_VIF: 1302 case IP_MULTICAST_TTL: 1303 case IP_MULTICAST_LOOP: 1304 case IP_ADD_MEMBERSHIP: 1305 case IP_DROP_MEMBERSHIP: 1306 case IP_ADD_SOURCE_MEMBERSHIP: 1307 case IP_DROP_SOURCE_MEMBERSHIP: 1308 case IP_BLOCK_SOURCE: 1309 case IP_UNBLOCK_SOURCE: 1310 case IP_MSFILTER: 1311 case MCAST_JOIN_GROUP: 1312 case MCAST_LEAVE_GROUP: 1313 case MCAST_JOIN_SOURCE_GROUP: 1314 case MCAST_LEAVE_SOURCE_GROUP: 1315 case MCAST_BLOCK_SOURCE: 1316 case MCAST_UNBLOCK_SOURCE: 1317 error = inp_setmoptions(inp, sopt); 1318 break; 1319 1320 case IP_PORTRANGE: 1321 error = sooptcopyin(sopt, &optval, sizeof optval, 1322 sizeof optval); 1323 if (error) 1324 break; 1325 1326 INP_WLOCK(inp); 1327 switch (optval) { 1328 case IP_PORTRANGE_DEFAULT: 1329 inp->inp_flags &= ~(INP_LOWPORT); 1330 inp->inp_flags &= ~(INP_HIGHPORT); 1331 break; 1332 1333 case IP_PORTRANGE_HIGH: 1334 inp->inp_flags &= ~(INP_LOWPORT); 1335 inp->inp_flags |= INP_HIGHPORT; 1336 break; 1337 1338 case IP_PORTRANGE_LOW: 1339 inp->inp_flags &= ~(INP_HIGHPORT); 1340 inp->inp_flags |= INP_LOWPORT; 1341 break; 1342 1343 default: 1344 error = EINVAL; 1345 break; 1346 } 1347 INP_WUNLOCK(inp); 1348 break; 1349 1350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1351 case IP_IPSEC_POLICY: 1352 if (IPSEC_ENABLED(ipv4)) { 1353 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1354 break; 1355 } 1356 /* FALLTHROUGH */ 1357 #endif /* IPSEC */ 1358 1359 default: 1360 error = ENOPROTOOPT; 1361 break; 1362 } 1363 break; 1364 1365 case SOPT_GET: 1366 switch (sopt->sopt_name) { 1367 case IP_OPTIONS: 1368 case IP_RETOPTS: 1369 INP_RLOCK(inp); 1370 if (inp->inp_options) { 1371 struct mbuf *options; 1372 1373 options = m_copym(inp->inp_options, 0, 1374 M_COPYALL, M_NOWAIT); 1375 INP_RUNLOCK(inp); 1376 if (options != NULL) { 1377 error = sooptcopyout(sopt, 1378 mtod(options, char *), 1379 options->m_len); 1380 m_freem(options); 1381 } else 1382 error = ENOMEM; 1383 } else { 1384 INP_RUNLOCK(inp); 1385 sopt->sopt_valsize = 0; 1386 } 1387 break; 1388 1389 case IP_TOS: 1390 case IP_TTL: 1391 case IP_MINTTL: 1392 case IP_RECVOPTS: 1393 case IP_RECVRETOPTS: 1394 case IP_ORIGDSTADDR: 1395 case IP_RECVDSTADDR: 1396 case IP_RECVTTL: 1397 case IP_RECVIF: 1398 case IP_PORTRANGE: 1399 case IP_ONESBCAST: 1400 case IP_DONTFRAG: 1401 case IP_BINDANY: 1402 case IP_RECVTOS: 1403 case IP_FLOWID: 1404 case IP_FLOWTYPE: 1405 case IP_RECVFLOWID: 1406 #ifdef RSS 1407 case IP_RSSBUCKETID: 1408 case IP_RECVRSSBUCKETID: 1409 #endif 1410 case IP_VLAN_PCP: 1411 switch (sopt->sopt_name) { 1412 case IP_TOS: 1413 optval = inp->inp_ip_tos; 1414 break; 1415 1416 case IP_TTL: 1417 optval = inp->inp_ip_ttl; 1418 break; 1419 1420 case IP_MINTTL: 1421 optval = inp->inp_ip_minttl; 1422 break; 1423 1424 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1425 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1426 1427 case IP_RECVOPTS: 1428 optval = OPTBIT(INP_RECVOPTS); 1429 break; 1430 1431 case IP_RECVRETOPTS: 1432 optval = OPTBIT(INP_RECVRETOPTS); 1433 break; 1434 1435 case IP_RECVDSTADDR: 1436 optval = OPTBIT(INP_RECVDSTADDR); 1437 break; 1438 1439 case IP_ORIGDSTADDR: 1440 optval = OPTBIT2(INP_ORIGDSTADDR); 1441 break; 1442 1443 case IP_RECVTTL: 1444 optval = OPTBIT(INP_RECVTTL); 1445 break; 1446 1447 case IP_RECVIF: 1448 optval = OPTBIT(INP_RECVIF); 1449 break; 1450 1451 case IP_PORTRANGE: 1452 if (inp->inp_flags & INP_HIGHPORT) 1453 optval = IP_PORTRANGE_HIGH; 1454 else if (inp->inp_flags & INP_LOWPORT) 1455 optval = IP_PORTRANGE_LOW; 1456 else 1457 optval = 0; 1458 break; 1459 1460 case IP_ONESBCAST: 1461 optval = OPTBIT(INP_ONESBCAST); 1462 break; 1463 case IP_DONTFRAG: 1464 optval = OPTBIT(INP_DONTFRAG); 1465 break; 1466 case IP_BINDANY: 1467 optval = OPTBIT(INP_BINDANY); 1468 break; 1469 case IP_RECVTOS: 1470 optval = OPTBIT(INP_RECVTOS); 1471 break; 1472 case IP_FLOWID: 1473 optval = inp->inp_flowid; 1474 break; 1475 case IP_FLOWTYPE: 1476 optval = inp->inp_flowtype; 1477 break; 1478 case IP_RECVFLOWID: 1479 optval = OPTBIT2(INP_RECVFLOWID); 1480 break; 1481 #ifdef RSS 1482 case IP_RSSBUCKETID: 1483 retval = rss_hash2bucket(inp->inp_flowid, 1484 inp->inp_flowtype, 1485 &rss_bucket); 1486 if (retval == 0) 1487 optval = rss_bucket; 1488 else 1489 error = EINVAL; 1490 break; 1491 case IP_RECVRSSBUCKETID: 1492 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1493 break; 1494 #endif 1495 case IP_VLAN_PCP: 1496 if (OPTBIT2(INP_2PCP_SET)) { 1497 optval = (inp->inp_flags2 & 1498 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1499 } else { 1500 optval = -1; 1501 } 1502 break; 1503 } 1504 error = sooptcopyout(sopt, &optval, sizeof optval); 1505 break; 1506 1507 /* 1508 * Multicast socket options are processed by the in_mcast 1509 * module. 1510 */ 1511 case IP_MULTICAST_IF: 1512 case IP_MULTICAST_VIF: 1513 case IP_MULTICAST_TTL: 1514 case IP_MULTICAST_LOOP: 1515 case IP_MSFILTER: 1516 error = inp_getmoptions(inp, sopt); 1517 break; 1518 1519 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1520 case IP_IPSEC_POLICY: 1521 if (IPSEC_ENABLED(ipv4)) { 1522 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1523 break; 1524 } 1525 /* FALLTHROUGH */ 1526 #endif /* IPSEC */ 1527 1528 default: 1529 error = ENOPROTOOPT; 1530 break; 1531 } 1532 break; 1533 } 1534 return (error); 1535 } 1536 1537 /* 1538 * Routine called from ip_output() to loop back a copy of an IP multicast 1539 * packet to the input queue of a specified interface. Note that this 1540 * calls the output routine of the loopback "driver", but with an interface 1541 * pointer that might NOT be a loopback interface -- evil, but easier than 1542 * replicating that code here. 1543 */ 1544 static void 1545 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1546 { 1547 struct ip *ip; 1548 struct mbuf *copym; 1549 1550 /* 1551 * Make a deep copy of the packet because we're going to 1552 * modify the pack in order to generate checksums. 1553 */ 1554 copym = m_dup(m, M_NOWAIT); 1555 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1556 copym = m_pullup(copym, hlen); 1557 if (copym != NULL) { 1558 /* If needed, compute the checksum and mark it as valid. */ 1559 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1560 in_delayed_cksum(copym); 1561 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1562 copym->m_pkthdr.csum_flags |= 1563 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1564 copym->m_pkthdr.csum_data = 0xffff; 1565 } 1566 /* 1567 * We don't bother to fragment if the IP length is greater 1568 * than the interface's MTU. Can this possibly matter? 1569 */ 1570 ip = mtod(copym, struct ip *); 1571 ip->ip_sum = 0; 1572 ip->ip_sum = in_cksum(copym, hlen); 1573 if_simloop(ifp, copym, AF_INET, 0); 1574 } 1575 } 1576