1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ratelimit.h" 39 #include "opt_ipsec.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_route.h" 43 #include "opt_sctp.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/protosw.h> 55 #include <sys/rmlock.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/netisr.h> 66 #include <net/pfil.h> 67 #include <net/route.h> 68 #ifdef RADIX_MPATH 69 #include <net/radix_mpath.h> 70 #endif 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_rss.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/ip_options.h> 83 84 #include <netinet/udp.h> 85 #include <netinet/udp_var.h> 86 87 #ifdef SCTP 88 #include <netinet/sctp.h> 89 #include <netinet/sctp_crc32.h> 90 #endif 91 92 #include <netipsec/ipsec_support.h> 93 94 #include <machine/in_cksum.h> 95 96 #include <security/mac/mac_framework.h> 97 98 #ifdef MBUF_STRESS_TEST 99 static int mbuf_frag_size = 0; 100 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 101 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 102 #endif 103 104 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 105 106 107 extern int in_mcast_loop; 108 extern struct protosw inetsw[]; 109 110 static inline int 111 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 112 struct sockaddr_in *dst, int *fibnum, int *error) 113 { 114 struct m_tag *fwd_tag = NULL; 115 struct mbuf *m; 116 struct in_addr odst; 117 struct ip *ip; 118 119 m = *mp; 120 ip = mtod(m, struct ip *); 121 122 /* Run through list of hooks for output packets. */ 123 odst.s_addr = ip->ip_dst.s_addr; 124 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, PFIL_OUT, inp)) { 125 case PFIL_DROPPED: 126 *error = EPERM; 127 /* FALLTHROUGH */ 128 case PFIL_CONSUMED: 129 return 1; /* Finished */ 130 case PFIL_PASS: 131 *error = 0; 132 } 133 m = *mp; 134 ip = mtod(m, struct ip *); 135 136 /* See if destination IP address was changed by packet filter. */ 137 if (odst.s_addr != ip->ip_dst.s_addr) { 138 m->m_flags |= M_SKIP_FIREWALL; 139 /* If destination is now ourself drop to ip_input(). */ 140 if (in_localip(ip->ip_dst)) { 141 m->m_flags |= M_FASTFWD_OURS; 142 if (m->m_pkthdr.rcvif == NULL) 143 m->m_pkthdr.rcvif = V_loif; 144 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 145 m->m_pkthdr.csum_flags |= 146 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 147 m->m_pkthdr.csum_data = 0xffff; 148 } 149 m->m_pkthdr.csum_flags |= 150 CSUM_IP_CHECKED | CSUM_IP_VALID; 151 #ifdef SCTP 152 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 153 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 154 #endif 155 *error = netisr_queue(NETISR_IP, m); 156 return 1; /* Finished */ 157 } 158 159 bzero(dst, sizeof(*dst)); 160 dst->sin_family = AF_INET; 161 dst->sin_len = sizeof(*dst); 162 dst->sin_addr = ip->ip_dst; 163 164 return -1; /* Reloop */ 165 } 166 /* See if fib was changed by packet filter. */ 167 if ((*fibnum) != M_GETFIB(m)) { 168 m->m_flags |= M_SKIP_FIREWALL; 169 *fibnum = M_GETFIB(m); 170 return -1; /* Reloop for FIB change */ 171 } 172 173 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 174 if (m->m_flags & M_FASTFWD_OURS) { 175 if (m->m_pkthdr.rcvif == NULL) 176 m->m_pkthdr.rcvif = V_loif; 177 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 178 m->m_pkthdr.csum_flags |= 179 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 180 m->m_pkthdr.csum_data = 0xffff; 181 } 182 #ifdef SCTP 183 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 184 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 185 #endif 186 m->m_pkthdr.csum_flags |= 187 CSUM_IP_CHECKED | CSUM_IP_VALID; 188 189 *error = netisr_queue(NETISR_IP, m); 190 return 1; /* Finished */ 191 } 192 /* Or forward to some other address? */ 193 if ((m->m_flags & M_IP_NEXTHOP) && 194 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 195 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 196 m->m_flags |= M_SKIP_FIREWALL; 197 m->m_flags &= ~M_IP_NEXTHOP; 198 m_tag_delete(m, fwd_tag); 199 200 return -1; /* Reloop for CHANGE of dst */ 201 } 202 203 return 0; 204 } 205 206 /* 207 * IP output. The packet in mbuf chain m contains a skeletal IP 208 * header (with len, off, ttl, proto, tos, src, dst). 209 * The mbuf chain containing the packet will be freed. 210 * The mbuf opt, if present, will not be freed. 211 * If route ro is present and has ro_rt initialized, route lookup would be 212 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 213 * then result of route lookup is stored in ro->ro_rt. 214 * 215 * In the IP forwarding case, the packet will arrive with options already 216 * inserted, so must have a NULL opt pointer. 217 */ 218 int 219 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 220 struct ip_moptions *imo, struct inpcb *inp) 221 { 222 struct rm_priotracker in_ifa_tracker; 223 struct epoch_tracker et; 224 struct ip *ip; 225 struct ifnet *ifp = NULL; /* keep compiler happy */ 226 struct mbuf *m0; 227 int hlen = sizeof (struct ip); 228 int mtu; 229 int error = 0; 230 struct sockaddr_in *dst; 231 const struct sockaddr_in *gw; 232 struct in_ifaddr *ia; 233 int isbroadcast; 234 uint16_t ip_len, ip_off; 235 struct route iproute; 236 struct rtentry *rte; /* cache for ro->ro_rt */ 237 uint32_t fibnum; 238 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 239 int no_route_but_check_spd = 0; 240 #endif 241 M_ASSERTPKTHDR(m); 242 243 if (inp != NULL) { 244 INP_LOCK_ASSERT(inp); 245 M_SETFIB(m, inp->inp_inc.inc_fibnum); 246 if ((flags & IP_NODEFAULTFLOWID) == 0) { 247 m->m_pkthdr.flowid = inp->inp_flowid; 248 M_HASHTYPE_SET(m, inp->inp_flowtype); 249 } 250 #ifdef NUMA 251 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 252 #endif 253 } 254 255 if (ro == NULL) { 256 ro = &iproute; 257 bzero(ro, sizeof (*ro)); 258 } 259 260 if (opt) { 261 int len = 0; 262 m = ip_insertoptions(m, opt, &len); 263 if (len != 0) 264 hlen = len; /* ip->ip_hl is updated above */ 265 } 266 ip = mtod(m, struct ip *); 267 ip_len = ntohs(ip->ip_len); 268 ip_off = ntohs(ip->ip_off); 269 270 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 271 ip->ip_v = IPVERSION; 272 ip->ip_hl = hlen >> 2; 273 ip_fillid(ip); 274 } else { 275 /* Header already set, fetch hlen from there */ 276 hlen = ip->ip_hl << 2; 277 } 278 if ((flags & IP_FORWARDING) == 0) 279 IPSTAT_INC(ips_localout); 280 281 /* 282 * dst/gw handling: 283 * 284 * dst can be rewritten but always points to &ro->ro_dst. 285 * gw is readonly but can point either to dst OR rt_gateway, 286 * therefore we need restore gw if we're redoing lookup. 287 */ 288 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 289 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 290 rte = ro->ro_rt; 291 if (rte == NULL) { 292 bzero(dst, sizeof(*dst)); 293 dst->sin_family = AF_INET; 294 dst->sin_len = sizeof(*dst); 295 dst->sin_addr = ip->ip_dst; 296 } 297 NET_EPOCH_ENTER(et); 298 again: 299 /* 300 * Validate route against routing table additions; 301 * a better/more specific route might have been added. 302 */ 303 if (inp) 304 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 305 /* 306 * If there is a cached route, 307 * check that it is to the same destination 308 * and is still up. If not, free it and try again. 309 * The address family should also be checked in case of sharing the 310 * cache with IPv6. 311 * Also check whether routing cache needs invalidation. 312 */ 313 rte = ro->ro_rt; 314 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 315 rte->rt_ifp == NULL || 316 !RT_LINK_IS_UP(rte->rt_ifp) || 317 dst->sin_family != AF_INET || 318 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 319 RO_INVALIDATE_CACHE(ro); 320 rte = NULL; 321 } 322 ia = NULL; 323 /* 324 * If routing to interface only, short circuit routing lookup. 325 * The use of an all-ones broadcast address implies this; an 326 * interface is specified by the broadcast address of an interface, 327 * or the destination address of a ptp interface. 328 */ 329 if (flags & IP_SENDONES) { 330 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 331 M_GETFIB(m)))) == NULL && 332 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 333 M_GETFIB(m)))) == NULL) { 334 IPSTAT_INC(ips_noroute); 335 error = ENETUNREACH; 336 goto bad; 337 } 338 ip->ip_dst.s_addr = INADDR_BROADCAST; 339 dst->sin_addr = ip->ip_dst; 340 ifp = ia->ia_ifp; 341 ip->ip_ttl = 1; 342 isbroadcast = 1; 343 } else if (flags & IP_ROUTETOIF) { 344 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 345 M_GETFIB(m)))) == NULL && 346 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 347 M_GETFIB(m)))) == NULL) { 348 IPSTAT_INC(ips_noroute); 349 error = ENETUNREACH; 350 goto bad; 351 } 352 ifp = ia->ia_ifp; 353 ip->ip_ttl = 1; 354 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 355 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 356 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 357 imo != NULL && imo->imo_multicast_ifp != NULL) { 358 /* 359 * Bypass the normal routing lookup for multicast 360 * packets if the interface is specified. 361 */ 362 ifp = imo->imo_multicast_ifp; 363 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 364 isbroadcast = 0; /* fool gcc */ 365 } else { 366 /* 367 * We want to do any cloning requested by the link layer, 368 * as this is probably required in all cases for correct 369 * operation (as it is for ARP). 370 */ 371 if (rte == NULL) { 372 #ifdef RADIX_MPATH 373 rtalloc_mpath_fib(ro, 374 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 375 fibnum); 376 #else 377 in_rtalloc_ign(ro, 0, fibnum); 378 #endif 379 rte = ro->ro_rt; 380 } 381 if (rte == NULL || 382 (rte->rt_flags & RTF_UP) == 0 || 383 rte->rt_ifp == NULL || 384 !RT_LINK_IS_UP(rte->rt_ifp)) { 385 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 386 /* 387 * There is no route for this packet, but it is 388 * possible that a matching SPD entry exists. 389 */ 390 no_route_but_check_spd = 1; 391 mtu = 0; /* Silence GCC warning. */ 392 goto sendit; 393 #endif 394 IPSTAT_INC(ips_noroute); 395 error = EHOSTUNREACH; 396 goto bad; 397 } 398 ia = ifatoia(rte->rt_ifa); 399 ifp = rte->rt_ifp; 400 counter_u64_add(rte->rt_pksent, 1); 401 rt_update_ro_flags(ro); 402 if (rte->rt_flags & RTF_GATEWAY) 403 gw = (struct sockaddr_in *)rte->rt_gateway; 404 if (rte->rt_flags & RTF_HOST) 405 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 406 else if (ifp->if_flags & IFF_BROADCAST) 407 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 408 else 409 isbroadcast = 0; 410 } 411 412 /* 413 * Calculate MTU. If we have a route that is up, use that, 414 * otherwise use the interface's MTU. 415 */ 416 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 417 mtu = rte->rt_mtu; 418 else 419 mtu = ifp->if_mtu; 420 /* Catch a possible divide by zero later. */ 421 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 422 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 423 424 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 425 m->m_flags |= M_MCAST; 426 /* 427 * IP destination address is multicast. Make sure "gw" 428 * still points to the address in "ro". (It may have been 429 * changed to point to a gateway address, above.) 430 */ 431 gw = dst; 432 /* 433 * See if the caller provided any multicast options 434 */ 435 if (imo != NULL) { 436 ip->ip_ttl = imo->imo_multicast_ttl; 437 if (imo->imo_multicast_vif != -1) 438 ip->ip_src.s_addr = 439 ip_mcast_src ? 440 ip_mcast_src(imo->imo_multicast_vif) : 441 INADDR_ANY; 442 } else 443 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 444 /* 445 * Confirm that the outgoing interface supports multicast. 446 */ 447 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 448 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 449 IPSTAT_INC(ips_noroute); 450 error = ENETUNREACH; 451 goto bad; 452 } 453 } 454 /* 455 * If source address not specified yet, use address 456 * of outgoing interface. 457 */ 458 if (ip->ip_src.s_addr == INADDR_ANY) { 459 /* Interface may have no addresses. */ 460 if (ia != NULL) 461 ip->ip_src = IA_SIN(ia)->sin_addr; 462 } 463 464 if ((imo == NULL && in_mcast_loop) || 465 (imo && imo->imo_multicast_loop)) { 466 /* 467 * Loop back multicast datagram if not expressly 468 * forbidden to do so, even if we are not a member 469 * of the group; ip_input() will filter it later, 470 * thus deferring a hash lookup and mutex acquisition 471 * at the expense of a cheap copy using m_copym(). 472 */ 473 ip_mloopback(ifp, m, hlen); 474 } else { 475 /* 476 * If we are acting as a multicast router, perform 477 * multicast forwarding as if the packet had just 478 * arrived on the interface to which we are about 479 * to send. The multicast forwarding function 480 * recursively calls this function, using the 481 * IP_FORWARDING flag to prevent infinite recursion. 482 * 483 * Multicasts that are looped back by ip_mloopback(), 484 * above, will be forwarded by the ip_input() routine, 485 * if necessary. 486 */ 487 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 488 /* 489 * If rsvp daemon is not running, do not 490 * set ip_moptions. This ensures that the packet 491 * is multicast and not just sent down one link 492 * as prescribed by rsvpd. 493 */ 494 if (!V_rsvp_on) 495 imo = NULL; 496 if (ip_mforward && 497 ip_mforward(ip, ifp, m, imo) != 0) { 498 m_freem(m); 499 goto done; 500 } 501 } 502 } 503 504 /* 505 * Multicasts with a time-to-live of zero may be looped- 506 * back, above, but must not be transmitted on a network. 507 * Also, multicasts addressed to the loopback interface 508 * are not sent -- the above call to ip_mloopback() will 509 * loop back a copy. ip_input() will drop the copy if 510 * this host does not belong to the destination group on 511 * the loopback interface. 512 */ 513 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 514 m_freem(m); 515 goto done; 516 } 517 518 goto sendit; 519 } 520 521 /* 522 * If the source address is not specified yet, use the address 523 * of the outoing interface. 524 */ 525 if (ip->ip_src.s_addr == INADDR_ANY) { 526 /* Interface may have no addresses. */ 527 if (ia != NULL) { 528 ip->ip_src = IA_SIN(ia)->sin_addr; 529 } 530 } 531 532 /* 533 * Look for broadcast address and 534 * verify user is allowed to send 535 * such a packet. 536 */ 537 if (isbroadcast) { 538 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 539 error = EADDRNOTAVAIL; 540 goto bad; 541 } 542 if ((flags & IP_ALLOWBROADCAST) == 0) { 543 error = EACCES; 544 goto bad; 545 } 546 /* don't allow broadcast messages to be fragmented */ 547 if (ip_len > mtu) { 548 error = EMSGSIZE; 549 goto bad; 550 } 551 m->m_flags |= M_BCAST; 552 } else { 553 m->m_flags &= ~M_BCAST; 554 } 555 556 sendit: 557 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 558 if (IPSEC_ENABLED(ipv4)) { 559 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 560 if (error == EINPROGRESS) 561 error = 0; 562 goto done; 563 } 564 } 565 /* 566 * Check if there was a route for this packet; return error if not. 567 */ 568 if (no_route_but_check_spd) { 569 IPSTAT_INC(ips_noroute); 570 error = EHOSTUNREACH; 571 goto bad; 572 } 573 /* Update variables that are affected by ipsec4_output(). */ 574 ip = mtod(m, struct ip *); 575 hlen = ip->ip_hl << 2; 576 #endif /* IPSEC */ 577 578 /* Jump over all PFIL processing if hooks are not active. */ 579 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 580 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 581 case 1: /* Finished */ 582 goto done; 583 584 case 0: /* Continue normally */ 585 ip = mtod(m, struct ip *); 586 break; 587 588 case -1: /* Need to try again */ 589 /* Reset everything for a new round */ 590 RO_RTFREE(ro); 591 ro->ro_prepend = NULL; 592 rte = NULL; 593 gw = dst; 594 ip = mtod(m, struct ip *); 595 goto again; 596 597 } 598 } 599 600 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 601 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 602 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 603 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 604 IPSTAT_INC(ips_badaddr); 605 error = EADDRNOTAVAIL; 606 goto bad; 607 } 608 } 609 610 m->m_pkthdr.csum_flags |= CSUM_IP; 611 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 612 in_delayed_cksum(m); 613 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 614 } 615 #ifdef SCTP 616 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 617 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 618 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 619 } 620 #endif 621 622 /* 623 * If small enough for interface, or the interface will take 624 * care of the fragmentation for us, we can just send directly. 625 */ 626 if (ip_len <= mtu || 627 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 628 ip->ip_sum = 0; 629 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 630 ip->ip_sum = in_cksum(m, hlen); 631 m->m_pkthdr.csum_flags &= ~CSUM_IP; 632 } 633 634 /* 635 * Record statistics for this interface address. 636 * With CSUM_TSO the byte/packet count will be slightly 637 * incorrect because we count the IP+TCP headers only 638 * once instead of for every generated packet. 639 */ 640 if (!(flags & IP_FORWARDING) && ia) { 641 if (m->m_pkthdr.csum_flags & CSUM_TSO) 642 counter_u64_add(ia->ia_ifa.ifa_opackets, 643 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 644 else 645 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 646 647 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 648 } 649 #ifdef MBUF_STRESS_TEST 650 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 651 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 652 #endif 653 /* 654 * Reset layer specific mbuf flags 655 * to avoid confusing lower layers. 656 */ 657 m_clrprotoflags(m); 658 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 659 #ifdef RATELIMIT 660 if (inp != NULL) { 661 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 662 in_pcboutput_txrtlmt(inp, ifp, m); 663 /* stamp send tag on mbuf */ 664 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 665 } else { 666 m->m_pkthdr.snd_tag = NULL; 667 } 668 #endif 669 error = (*ifp->if_output)(ifp, m, 670 (const struct sockaddr *)gw, ro); 671 #ifdef RATELIMIT 672 /* check for route change */ 673 if (error == EAGAIN) 674 in_pcboutput_eagain(inp); 675 #endif 676 goto done; 677 } 678 679 /* Balk when DF bit is set or the interface didn't support TSO. */ 680 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 681 error = EMSGSIZE; 682 IPSTAT_INC(ips_cantfrag); 683 goto bad; 684 } 685 686 /* 687 * Too large for interface; fragment if possible. If successful, 688 * on return, m will point to a list of packets to be sent. 689 */ 690 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 691 if (error) 692 goto bad; 693 for (; m; m = m0) { 694 m0 = m->m_nextpkt; 695 m->m_nextpkt = 0; 696 if (error == 0) { 697 /* Record statistics for this interface address. */ 698 if (ia != NULL) { 699 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 700 counter_u64_add(ia->ia_ifa.ifa_obytes, 701 m->m_pkthdr.len); 702 } 703 /* 704 * Reset layer specific mbuf flags 705 * to avoid confusing upper layers. 706 */ 707 m_clrprotoflags(m); 708 709 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 710 mtod(m, struct ip *), NULL); 711 #ifdef RATELIMIT 712 if (inp != NULL) { 713 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 714 in_pcboutput_txrtlmt(inp, ifp, m); 715 /* stamp send tag on mbuf */ 716 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 717 } else { 718 m->m_pkthdr.snd_tag = NULL; 719 } 720 #endif 721 error = (*ifp->if_output)(ifp, m, 722 (const struct sockaddr *)gw, ro); 723 #ifdef RATELIMIT 724 /* check for route change */ 725 if (error == EAGAIN) 726 in_pcboutput_eagain(inp); 727 #endif 728 } else 729 m_freem(m); 730 } 731 732 if (error == 0) 733 IPSTAT_INC(ips_fragmented); 734 735 done: 736 if (ro == &iproute) 737 RO_RTFREE(ro); 738 else if (rte == NULL) 739 /* 740 * If the caller supplied a route but somehow the reference 741 * to it has been released need to prevent the caller 742 * calling RTFREE on it again. 743 */ 744 ro->ro_rt = NULL; 745 NET_EPOCH_EXIT(et); 746 return (error); 747 bad: 748 m_freem(m); 749 goto done; 750 } 751 752 /* 753 * Create a chain of fragments which fit the given mtu. m_frag points to the 754 * mbuf to be fragmented; on return it points to the chain with the fragments. 755 * Return 0 if no error. If error, m_frag may contain a partially built 756 * chain of fragments that should be freed by the caller. 757 * 758 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 759 */ 760 int 761 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 762 u_long if_hwassist_flags) 763 { 764 int error = 0; 765 int hlen = ip->ip_hl << 2; 766 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 767 int off; 768 struct mbuf *m0 = *m_frag; /* the original packet */ 769 int firstlen; 770 struct mbuf **mnext; 771 int nfrags; 772 uint16_t ip_len, ip_off; 773 774 ip_len = ntohs(ip->ip_len); 775 ip_off = ntohs(ip->ip_off); 776 777 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 778 IPSTAT_INC(ips_cantfrag); 779 return EMSGSIZE; 780 } 781 782 /* 783 * Must be able to put at least 8 bytes per fragment. 784 */ 785 if (len < 8) 786 return EMSGSIZE; 787 788 /* 789 * If the interface will not calculate checksums on 790 * fragmented packets, then do it here. 791 */ 792 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 793 in_delayed_cksum(m0); 794 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 795 } 796 #ifdef SCTP 797 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 798 sctp_delayed_cksum(m0, hlen); 799 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 800 } 801 #endif 802 if (len > PAGE_SIZE) { 803 /* 804 * Fragment large datagrams such that each segment 805 * contains a multiple of PAGE_SIZE amount of data, 806 * plus headers. This enables a receiver to perform 807 * page-flipping zero-copy optimizations. 808 * 809 * XXX When does this help given that sender and receiver 810 * could have different page sizes, and also mtu could 811 * be less than the receiver's page size ? 812 */ 813 int newlen; 814 815 off = MIN(mtu, m0->m_pkthdr.len); 816 817 /* 818 * firstlen (off - hlen) must be aligned on an 819 * 8-byte boundary 820 */ 821 if (off < hlen) 822 goto smart_frag_failure; 823 off = ((off - hlen) & ~7) + hlen; 824 newlen = (~PAGE_MASK) & mtu; 825 if ((newlen + sizeof (struct ip)) > mtu) { 826 /* we failed, go back the default */ 827 smart_frag_failure: 828 newlen = len; 829 off = hlen + len; 830 } 831 len = newlen; 832 833 } else { 834 off = hlen + len; 835 } 836 837 firstlen = off - hlen; 838 mnext = &m0->m_nextpkt; /* pointer to next packet */ 839 840 /* 841 * Loop through length of segment after first fragment, 842 * make new header and copy data of each part and link onto chain. 843 * Here, m0 is the original packet, m is the fragment being created. 844 * The fragments are linked off the m_nextpkt of the original 845 * packet, which after processing serves as the first fragment. 846 */ 847 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 848 struct ip *mhip; /* ip header on the fragment */ 849 struct mbuf *m; 850 int mhlen = sizeof (struct ip); 851 852 m = m_gethdr(M_NOWAIT, MT_DATA); 853 if (m == NULL) { 854 error = ENOBUFS; 855 IPSTAT_INC(ips_odropped); 856 goto done; 857 } 858 /* 859 * Make sure the complete packet header gets copied 860 * from the originating mbuf to the newly created 861 * mbuf. This also ensures that existing firewall 862 * classification(s), VLAN tags and so on get copied 863 * to the resulting fragmented packet(s): 864 */ 865 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 866 m_free(m); 867 error = ENOBUFS; 868 IPSTAT_INC(ips_odropped); 869 goto done; 870 } 871 /* 872 * In the first mbuf, leave room for the link header, then 873 * copy the original IP header including options. The payload 874 * goes into an additional mbuf chain returned by m_copym(). 875 */ 876 m->m_data += max_linkhdr; 877 mhip = mtod(m, struct ip *); 878 *mhip = *ip; 879 if (hlen > sizeof (struct ip)) { 880 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 881 mhip->ip_v = IPVERSION; 882 mhip->ip_hl = mhlen >> 2; 883 } 884 m->m_len = mhlen; 885 /* XXX do we need to add ip_off below ? */ 886 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 887 if (off + len >= ip_len) 888 len = ip_len - off; 889 else 890 mhip->ip_off |= IP_MF; 891 mhip->ip_len = htons((u_short)(len + mhlen)); 892 m->m_next = m_copym(m0, off, len, M_NOWAIT); 893 if (m->m_next == NULL) { /* copy failed */ 894 m_free(m); 895 error = ENOBUFS; /* ??? */ 896 IPSTAT_INC(ips_odropped); 897 goto done; 898 } 899 m->m_pkthdr.len = mhlen + len; 900 #ifdef MAC 901 mac_netinet_fragment(m0, m); 902 #endif 903 mhip->ip_off = htons(mhip->ip_off); 904 mhip->ip_sum = 0; 905 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 906 mhip->ip_sum = in_cksum(m, mhlen); 907 m->m_pkthdr.csum_flags &= ~CSUM_IP; 908 } 909 *mnext = m; 910 mnext = &m->m_nextpkt; 911 } 912 IPSTAT_ADD(ips_ofragments, nfrags); 913 914 /* 915 * Update first fragment by trimming what's been copied out 916 * and updating header. 917 */ 918 m_adj(m0, hlen + firstlen - ip_len); 919 m0->m_pkthdr.len = hlen + firstlen; 920 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 921 ip->ip_off = htons(ip_off | IP_MF); 922 ip->ip_sum = 0; 923 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 924 ip->ip_sum = in_cksum(m0, hlen); 925 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 926 } 927 928 done: 929 *m_frag = m0; 930 return error; 931 } 932 933 void 934 in_delayed_cksum(struct mbuf *m) 935 { 936 struct ip *ip; 937 struct udphdr *uh; 938 uint16_t cklen, csum, offset; 939 940 ip = mtod(m, struct ip *); 941 offset = ip->ip_hl << 2 ; 942 943 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 944 /* if udp header is not in the first mbuf copy udplen */ 945 if (offset + sizeof(struct udphdr) > m->m_len) { 946 m_copydata(m, offset + offsetof(struct udphdr, 947 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 948 cklen = ntohs(cklen); 949 } else { 950 uh = (struct udphdr *)mtodo(m, offset); 951 cklen = ntohs(uh->uh_ulen); 952 } 953 csum = in_cksum_skip(m, cklen + offset, offset); 954 if (csum == 0) 955 csum = 0xffff; 956 } else { 957 cklen = ntohs(ip->ip_len); 958 csum = in_cksum_skip(m, cklen, offset); 959 } 960 offset += m->m_pkthdr.csum_data; /* checksum offset */ 961 962 if (offset + sizeof(csum) > m->m_len) 963 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 964 else 965 *(u_short *)mtodo(m, offset) = csum; 966 } 967 968 /* 969 * IP socket option processing. 970 */ 971 int 972 ip_ctloutput(struct socket *so, struct sockopt *sopt) 973 { 974 struct inpcb *inp = sotoinpcb(so); 975 int error, optval; 976 #ifdef RSS 977 uint32_t rss_bucket; 978 int retval; 979 #endif 980 981 error = optval = 0; 982 if (sopt->sopt_level != IPPROTO_IP) { 983 error = EINVAL; 984 985 if (sopt->sopt_level == SOL_SOCKET && 986 sopt->sopt_dir == SOPT_SET) { 987 switch (sopt->sopt_name) { 988 case SO_REUSEADDR: 989 INP_WLOCK(inp); 990 if ((so->so_options & SO_REUSEADDR) != 0) 991 inp->inp_flags2 |= INP_REUSEADDR; 992 else 993 inp->inp_flags2 &= ~INP_REUSEADDR; 994 INP_WUNLOCK(inp); 995 error = 0; 996 break; 997 case SO_REUSEPORT: 998 INP_WLOCK(inp); 999 if ((so->so_options & SO_REUSEPORT) != 0) 1000 inp->inp_flags2 |= INP_REUSEPORT; 1001 else 1002 inp->inp_flags2 &= ~INP_REUSEPORT; 1003 INP_WUNLOCK(inp); 1004 error = 0; 1005 break; 1006 case SO_REUSEPORT_LB: 1007 INP_WLOCK(inp); 1008 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1009 inp->inp_flags2 |= INP_REUSEPORT_LB; 1010 else 1011 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1012 INP_WUNLOCK(inp); 1013 error = 0; 1014 break; 1015 case SO_SETFIB: 1016 INP_WLOCK(inp); 1017 inp->inp_inc.inc_fibnum = so->so_fibnum; 1018 INP_WUNLOCK(inp); 1019 error = 0; 1020 break; 1021 case SO_MAX_PACING_RATE: 1022 #ifdef RATELIMIT 1023 INP_WLOCK(inp); 1024 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1025 INP_WUNLOCK(inp); 1026 error = 0; 1027 #else 1028 error = EOPNOTSUPP; 1029 #endif 1030 break; 1031 default: 1032 break; 1033 } 1034 } 1035 return (error); 1036 } 1037 1038 switch (sopt->sopt_dir) { 1039 case SOPT_SET: 1040 switch (sopt->sopt_name) { 1041 case IP_OPTIONS: 1042 #ifdef notyet 1043 case IP_RETOPTS: 1044 #endif 1045 { 1046 struct mbuf *m; 1047 if (sopt->sopt_valsize > MLEN) { 1048 error = EMSGSIZE; 1049 break; 1050 } 1051 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1052 if (m == NULL) { 1053 error = ENOBUFS; 1054 break; 1055 } 1056 m->m_len = sopt->sopt_valsize; 1057 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1058 m->m_len); 1059 if (error) { 1060 m_free(m); 1061 break; 1062 } 1063 INP_WLOCK(inp); 1064 error = ip_pcbopts(inp, sopt->sopt_name, m); 1065 INP_WUNLOCK(inp); 1066 return (error); 1067 } 1068 1069 case IP_BINDANY: 1070 if (sopt->sopt_td != NULL) { 1071 error = priv_check(sopt->sopt_td, 1072 PRIV_NETINET_BINDANY); 1073 if (error) 1074 break; 1075 } 1076 /* FALLTHROUGH */ 1077 case IP_BINDMULTI: 1078 #ifdef RSS 1079 case IP_RSS_LISTEN_BUCKET: 1080 #endif 1081 case IP_TOS: 1082 case IP_TTL: 1083 case IP_MINTTL: 1084 case IP_RECVOPTS: 1085 case IP_RECVRETOPTS: 1086 case IP_ORIGDSTADDR: 1087 case IP_RECVDSTADDR: 1088 case IP_RECVTTL: 1089 case IP_RECVIF: 1090 case IP_ONESBCAST: 1091 case IP_DONTFRAG: 1092 case IP_RECVTOS: 1093 case IP_RECVFLOWID: 1094 #ifdef RSS 1095 case IP_RECVRSSBUCKETID: 1096 #endif 1097 error = sooptcopyin(sopt, &optval, sizeof optval, 1098 sizeof optval); 1099 if (error) 1100 break; 1101 1102 switch (sopt->sopt_name) { 1103 case IP_TOS: 1104 inp->inp_ip_tos = optval; 1105 break; 1106 1107 case IP_TTL: 1108 inp->inp_ip_ttl = optval; 1109 break; 1110 1111 case IP_MINTTL: 1112 if (optval >= 0 && optval <= MAXTTL) 1113 inp->inp_ip_minttl = optval; 1114 else 1115 error = EINVAL; 1116 break; 1117 1118 #define OPTSET(bit) do { \ 1119 INP_WLOCK(inp); \ 1120 if (optval) \ 1121 inp->inp_flags |= bit; \ 1122 else \ 1123 inp->inp_flags &= ~bit; \ 1124 INP_WUNLOCK(inp); \ 1125 } while (0) 1126 1127 #define OPTSET2(bit, val) do { \ 1128 INP_WLOCK(inp); \ 1129 if (val) \ 1130 inp->inp_flags2 |= bit; \ 1131 else \ 1132 inp->inp_flags2 &= ~bit; \ 1133 INP_WUNLOCK(inp); \ 1134 } while (0) 1135 1136 case IP_RECVOPTS: 1137 OPTSET(INP_RECVOPTS); 1138 break; 1139 1140 case IP_RECVRETOPTS: 1141 OPTSET(INP_RECVRETOPTS); 1142 break; 1143 1144 case IP_RECVDSTADDR: 1145 OPTSET(INP_RECVDSTADDR); 1146 break; 1147 1148 case IP_ORIGDSTADDR: 1149 OPTSET2(INP_ORIGDSTADDR, optval); 1150 break; 1151 1152 case IP_RECVTTL: 1153 OPTSET(INP_RECVTTL); 1154 break; 1155 1156 case IP_RECVIF: 1157 OPTSET(INP_RECVIF); 1158 break; 1159 1160 case IP_ONESBCAST: 1161 OPTSET(INP_ONESBCAST); 1162 break; 1163 case IP_DONTFRAG: 1164 OPTSET(INP_DONTFRAG); 1165 break; 1166 case IP_BINDANY: 1167 OPTSET(INP_BINDANY); 1168 break; 1169 case IP_RECVTOS: 1170 OPTSET(INP_RECVTOS); 1171 break; 1172 case IP_BINDMULTI: 1173 OPTSET2(INP_BINDMULTI, optval); 1174 break; 1175 case IP_RECVFLOWID: 1176 OPTSET2(INP_RECVFLOWID, optval); 1177 break; 1178 #ifdef RSS 1179 case IP_RSS_LISTEN_BUCKET: 1180 if ((optval >= 0) && 1181 (optval < rss_getnumbuckets())) { 1182 inp->inp_rss_listen_bucket = optval; 1183 OPTSET2(INP_RSS_BUCKET_SET, 1); 1184 } else { 1185 error = EINVAL; 1186 } 1187 break; 1188 case IP_RECVRSSBUCKETID: 1189 OPTSET2(INP_RECVRSSBUCKETID, optval); 1190 break; 1191 #endif 1192 } 1193 break; 1194 #undef OPTSET 1195 #undef OPTSET2 1196 1197 /* 1198 * Multicast socket options are processed by the in_mcast 1199 * module. 1200 */ 1201 case IP_MULTICAST_IF: 1202 case IP_MULTICAST_VIF: 1203 case IP_MULTICAST_TTL: 1204 case IP_MULTICAST_LOOP: 1205 case IP_ADD_MEMBERSHIP: 1206 case IP_DROP_MEMBERSHIP: 1207 case IP_ADD_SOURCE_MEMBERSHIP: 1208 case IP_DROP_SOURCE_MEMBERSHIP: 1209 case IP_BLOCK_SOURCE: 1210 case IP_UNBLOCK_SOURCE: 1211 case IP_MSFILTER: 1212 case MCAST_JOIN_GROUP: 1213 case MCAST_LEAVE_GROUP: 1214 case MCAST_JOIN_SOURCE_GROUP: 1215 case MCAST_LEAVE_SOURCE_GROUP: 1216 case MCAST_BLOCK_SOURCE: 1217 case MCAST_UNBLOCK_SOURCE: 1218 error = inp_setmoptions(inp, sopt); 1219 break; 1220 1221 case IP_PORTRANGE: 1222 error = sooptcopyin(sopt, &optval, sizeof optval, 1223 sizeof optval); 1224 if (error) 1225 break; 1226 1227 INP_WLOCK(inp); 1228 switch (optval) { 1229 case IP_PORTRANGE_DEFAULT: 1230 inp->inp_flags &= ~(INP_LOWPORT); 1231 inp->inp_flags &= ~(INP_HIGHPORT); 1232 break; 1233 1234 case IP_PORTRANGE_HIGH: 1235 inp->inp_flags &= ~(INP_LOWPORT); 1236 inp->inp_flags |= INP_HIGHPORT; 1237 break; 1238 1239 case IP_PORTRANGE_LOW: 1240 inp->inp_flags &= ~(INP_HIGHPORT); 1241 inp->inp_flags |= INP_LOWPORT; 1242 break; 1243 1244 default: 1245 error = EINVAL; 1246 break; 1247 } 1248 INP_WUNLOCK(inp); 1249 break; 1250 1251 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1252 case IP_IPSEC_POLICY: 1253 if (IPSEC_ENABLED(ipv4)) { 1254 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1255 break; 1256 } 1257 /* FALLTHROUGH */ 1258 #endif /* IPSEC */ 1259 1260 default: 1261 error = ENOPROTOOPT; 1262 break; 1263 } 1264 break; 1265 1266 case SOPT_GET: 1267 switch (sopt->sopt_name) { 1268 case IP_OPTIONS: 1269 case IP_RETOPTS: 1270 INP_RLOCK(inp); 1271 if (inp->inp_options) { 1272 struct mbuf *options; 1273 1274 options = m_copym(inp->inp_options, 0, 1275 M_COPYALL, M_NOWAIT); 1276 INP_RUNLOCK(inp); 1277 if (options != NULL) { 1278 error = sooptcopyout(sopt, 1279 mtod(options, char *), 1280 options->m_len); 1281 m_freem(options); 1282 } else 1283 error = ENOMEM; 1284 } else { 1285 INP_RUNLOCK(inp); 1286 sopt->sopt_valsize = 0; 1287 } 1288 break; 1289 1290 case IP_TOS: 1291 case IP_TTL: 1292 case IP_MINTTL: 1293 case IP_RECVOPTS: 1294 case IP_RECVRETOPTS: 1295 case IP_ORIGDSTADDR: 1296 case IP_RECVDSTADDR: 1297 case IP_RECVTTL: 1298 case IP_RECVIF: 1299 case IP_PORTRANGE: 1300 case IP_ONESBCAST: 1301 case IP_DONTFRAG: 1302 case IP_BINDANY: 1303 case IP_RECVTOS: 1304 case IP_BINDMULTI: 1305 case IP_FLOWID: 1306 case IP_FLOWTYPE: 1307 case IP_RECVFLOWID: 1308 #ifdef RSS 1309 case IP_RSSBUCKETID: 1310 case IP_RECVRSSBUCKETID: 1311 #endif 1312 switch (sopt->sopt_name) { 1313 1314 case IP_TOS: 1315 optval = inp->inp_ip_tos; 1316 break; 1317 1318 case IP_TTL: 1319 optval = inp->inp_ip_ttl; 1320 break; 1321 1322 case IP_MINTTL: 1323 optval = inp->inp_ip_minttl; 1324 break; 1325 1326 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1327 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1328 1329 case IP_RECVOPTS: 1330 optval = OPTBIT(INP_RECVOPTS); 1331 break; 1332 1333 case IP_RECVRETOPTS: 1334 optval = OPTBIT(INP_RECVRETOPTS); 1335 break; 1336 1337 case IP_RECVDSTADDR: 1338 optval = OPTBIT(INP_RECVDSTADDR); 1339 break; 1340 1341 case IP_ORIGDSTADDR: 1342 optval = OPTBIT2(INP_ORIGDSTADDR); 1343 break; 1344 1345 case IP_RECVTTL: 1346 optval = OPTBIT(INP_RECVTTL); 1347 break; 1348 1349 case IP_RECVIF: 1350 optval = OPTBIT(INP_RECVIF); 1351 break; 1352 1353 case IP_PORTRANGE: 1354 if (inp->inp_flags & INP_HIGHPORT) 1355 optval = IP_PORTRANGE_HIGH; 1356 else if (inp->inp_flags & INP_LOWPORT) 1357 optval = IP_PORTRANGE_LOW; 1358 else 1359 optval = 0; 1360 break; 1361 1362 case IP_ONESBCAST: 1363 optval = OPTBIT(INP_ONESBCAST); 1364 break; 1365 case IP_DONTFRAG: 1366 optval = OPTBIT(INP_DONTFRAG); 1367 break; 1368 case IP_BINDANY: 1369 optval = OPTBIT(INP_BINDANY); 1370 break; 1371 case IP_RECVTOS: 1372 optval = OPTBIT(INP_RECVTOS); 1373 break; 1374 case IP_FLOWID: 1375 optval = inp->inp_flowid; 1376 break; 1377 case IP_FLOWTYPE: 1378 optval = inp->inp_flowtype; 1379 break; 1380 case IP_RECVFLOWID: 1381 optval = OPTBIT2(INP_RECVFLOWID); 1382 break; 1383 #ifdef RSS 1384 case IP_RSSBUCKETID: 1385 retval = rss_hash2bucket(inp->inp_flowid, 1386 inp->inp_flowtype, 1387 &rss_bucket); 1388 if (retval == 0) 1389 optval = rss_bucket; 1390 else 1391 error = EINVAL; 1392 break; 1393 case IP_RECVRSSBUCKETID: 1394 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1395 break; 1396 #endif 1397 case IP_BINDMULTI: 1398 optval = OPTBIT2(INP_BINDMULTI); 1399 break; 1400 } 1401 error = sooptcopyout(sopt, &optval, sizeof optval); 1402 break; 1403 1404 /* 1405 * Multicast socket options are processed by the in_mcast 1406 * module. 1407 */ 1408 case IP_MULTICAST_IF: 1409 case IP_MULTICAST_VIF: 1410 case IP_MULTICAST_TTL: 1411 case IP_MULTICAST_LOOP: 1412 case IP_MSFILTER: 1413 error = inp_getmoptions(inp, sopt); 1414 break; 1415 1416 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1417 case IP_IPSEC_POLICY: 1418 if (IPSEC_ENABLED(ipv4)) { 1419 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1420 break; 1421 } 1422 /* FALLTHROUGH */ 1423 #endif /* IPSEC */ 1424 1425 default: 1426 error = ENOPROTOOPT; 1427 break; 1428 } 1429 break; 1430 } 1431 return (error); 1432 } 1433 1434 /* 1435 * Routine called from ip_output() to loop back a copy of an IP multicast 1436 * packet to the input queue of a specified interface. Note that this 1437 * calls the output routine of the loopback "driver", but with an interface 1438 * pointer that might NOT be a loopback interface -- evil, but easier than 1439 * replicating that code here. 1440 */ 1441 static void 1442 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1443 { 1444 struct ip *ip; 1445 struct mbuf *copym; 1446 1447 /* 1448 * Make a deep copy of the packet because we're going to 1449 * modify the pack in order to generate checksums. 1450 */ 1451 copym = m_dup(m, M_NOWAIT); 1452 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1453 copym = m_pullup(copym, hlen); 1454 if (copym != NULL) { 1455 /* If needed, compute the checksum and mark it as valid. */ 1456 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1457 in_delayed_cksum(copym); 1458 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1459 copym->m_pkthdr.csum_flags |= 1460 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1461 copym->m_pkthdr.csum_data = 0xffff; 1462 } 1463 /* 1464 * We don't bother to fragment if the IP length is greater 1465 * than the interface's MTU. Can this possibly matter? 1466 */ 1467 ip = mtod(copym, struct ip *); 1468 ip->ip_sum = 0; 1469 ip->ip_sum = in_cksum(copym, hlen); 1470 if_simloop(ifp, copym, AF_INET, 0); 1471 } 1472 } 1473