xref: /freebsd/sys/netinet/ip_output.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipsec.h"
35 #include "opt_mac.h"
36 #include "opt_mbuf_stress_test.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/mac.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/netisr.h>
51 #include <net/pfil.h>
52 #include <net/route.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/ip.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip_var.h>
60 
61 #include <machine/in_cksum.h>
62 
63 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
64 
65 #ifdef IPSEC
66 #include <netinet6/ipsec.h>
67 #include <netkey/key.h>
68 #ifdef IPSEC_DEBUG
69 #include <netkey/key_debug.h>
70 #else
71 #define	KEYDEBUG(lev,arg)
72 #endif
73 #endif /*IPSEC*/
74 
75 #ifdef FAST_IPSEC
76 #include <netipsec/ipsec.h>
77 #include <netipsec/xform.h>
78 #include <netipsec/key.h>
79 #endif /*FAST_IPSEC*/
80 
81 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
82 				x, (ntohl(a.s_addr)>>24)&0xFF,\
83 				  (ntohl(a.s_addr)>>16)&0xFF,\
84 				  (ntohl(a.s_addr)>>8)&0xFF,\
85 				  (ntohl(a.s_addr))&0xFF, y);
86 
87 u_short ip_id;
88 
89 #ifdef MBUF_STRESS_TEST
90 int mbuf_frag_size = 0;
91 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93 #endif
94 
95 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
96 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97 static void	ip_mloopback
98 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99 static int	ip_getmoptions(struct inpcb *, struct sockopt *);
100 static int	ip_pcbopts(struct inpcb *, int, struct mbuf *);
101 static int	ip_setmoptions(struct inpcb *, struct sockopt *);
102 static struct ip_moptions	*ip_findmoptions(struct inpcb *inp);
103 
104 int	ip_optcopy(struct ip *, struct ip *);
105 
106 
107 extern	struct protosw inetsw[];
108 
109 /*
110  * IP output.  The packet in mbuf chain m contains a skeletal IP
111  * header (with len, off, ttl, proto, tos, src, dst).
112  * The mbuf chain containing the packet will be freed.
113  * The mbuf opt, if present, will not be freed.
114  * In the IP forwarding case, the packet will arrive with options already
115  * inserted, so must have a NULL opt pointer.
116  */
117 int
118 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
119 	int flags, struct ip_moptions *imo, struct inpcb *inp)
120 {
121 	struct ip *ip;
122 	struct ifnet *ifp = NULL;	/* keep compiler happy */
123 	struct mbuf *m0;
124 	int hlen = sizeof (struct ip);
125 	int len, error = 0;
126 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
127 	struct in_ifaddr *ia = NULL;
128 	int isbroadcast, sw_csum;
129 	struct route iproute;
130 	struct in_addr odst;
131 #ifdef IPFIREWALL_FORWARD
132 	struct m_tag *fwd_tag = NULL;
133 #endif
134 #ifdef IPSEC
135 	struct secpolicy *sp = NULL;
136 #endif
137 #ifdef FAST_IPSEC
138 	struct secpolicy *sp = NULL;
139 	struct tdb_ident *tdbi;
140 	struct m_tag *mtag;
141 	int s;
142 #endif /* FAST_IPSEC */
143 
144 	M_ASSERTPKTHDR(m);
145 
146 	if (ro == NULL) {
147 		ro = &iproute;
148 		bzero(ro, sizeof (*ro));
149 	}
150 
151 	if (inp != NULL)
152 		INP_LOCK_ASSERT(inp);
153 
154 	if (opt) {
155 		len = 0;
156 		m = ip_insertoptions(m, opt, &len);
157 		if (len != 0)
158 			hlen = len;
159 	}
160 	ip = mtod(m, struct ip *);
161 
162 	/*
163 	 * Fill in IP header.  If we are not allowing fragmentation,
164 	 * then the ip_id field is meaningless, but we don't set it
165 	 * to zero.  Doing so causes various problems when devices along
166 	 * the path (routers, load balancers, firewalls, etc.) illegally
167 	 * disable DF on our packet.  Note that a 16-bit counter
168 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
169 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
170 	 * for Counting NATted Hosts", Proc. IMW'02, available at
171 	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
172 	 */
173 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
174 		ip->ip_v = IPVERSION;
175 		ip->ip_hl = hlen >> 2;
176 		ip->ip_id = ip_newid();
177 		ipstat.ips_localout++;
178 	} else {
179 		hlen = ip->ip_hl << 2;
180 	}
181 
182 	dst = (struct sockaddr_in *)&ro->ro_dst;
183 again:
184 	/*
185 	 * If there is a cached route,
186 	 * check that it is to the same destination
187 	 * and is still up.  If not, free it and try again.
188 	 * The address family should also be checked in case of sharing the
189 	 * cache with IPv6.
190 	 */
191 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
192 			  dst->sin_family != AF_INET ||
193 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
194 		RTFREE(ro->ro_rt);
195 		ro->ro_rt = (struct rtentry *)0;
196 	}
197 #ifdef IPFIREWALL_FORWARD
198 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
199 #else
200 	if (ro->ro_rt == NULL) {
201 #endif
202 		bzero(dst, sizeof(*dst));
203 		dst->sin_family = AF_INET;
204 		dst->sin_len = sizeof(*dst);
205 		dst->sin_addr = ip->ip_dst;
206 	}
207 	/*
208 	 * If routing to interface only,
209 	 * short circuit routing lookup.
210 	 */
211 	if (flags & IP_ROUTETOIF) {
212 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
213 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
214 			ipstat.ips_noroute++;
215 			error = ENETUNREACH;
216 			goto bad;
217 		}
218 		ifp = ia->ia_ifp;
219 		ip->ip_ttl = 1;
220 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
221 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
222 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
223 		/*
224 		 * Bypass the normal routing lookup for multicast
225 		 * packets if the interface is specified.
226 		 */
227 		ifp = imo->imo_multicast_ifp;
228 		IFP_TO_IA(ifp, ia);
229 		isbroadcast = 0;	/* fool gcc */
230 	} else {
231 		/*
232 		 * We want to do any cloning requested by the link layer,
233 		 * as this is probably required in all cases for correct
234 		 * operation (as it is for ARP).
235 		 */
236 		if (ro->ro_rt == NULL)
237 			rtalloc_ign(ro, 0);
238 		if (ro->ro_rt == NULL) {
239 			ipstat.ips_noroute++;
240 			error = EHOSTUNREACH;
241 			goto bad;
242 		}
243 		ia = ifatoia(ro->ro_rt->rt_ifa);
244 		ifp = ro->ro_rt->rt_ifp;
245 		ro->ro_rt->rt_rmx.rmx_pksent++;
246 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
247 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
248 		if (ro->ro_rt->rt_flags & RTF_HOST)
249 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
250 		else
251 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
252 	}
253 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
254 		struct in_multi *inm;
255 
256 		m->m_flags |= M_MCAST;
257 		/*
258 		 * IP destination address is multicast.  Make sure "dst"
259 		 * still points to the address in "ro".  (It may have been
260 		 * changed to point to a gateway address, above.)
261 		 */
262 		dst = (struct sockaddr_in *)&ro->ro_dst;
263 		/*
264 		 * See if the caller provided any multicast options
265 		 */
266 		if (imo != NULL) {
267 			ip->ip_ttl = imo->imo_multicast_ttl;
268 			if (imo->imo_multicast_vif != -1)
269 				ip->ip_src.s_addr =
270 				    ip_mcast_src ?
271 				    ip_mcast_src(imo->imo_multicast_vif) :
272 				    INADDR_ANY;
273 		} else
274 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
275 		/*
276 		 * Confirm that the outgoing interface supports multicast.
277 		 */
278 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
279 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
280 				ipstat.ips_noroute++;
281 				error = ENETUNREACH;
282 				goto bad;
283 			}
284 		}
285 		/*
286 		 * If source address not specified yet, use address
287 		 * of outgoing interface.
288 		 */
289 		if (ip->ip_src.s_addr == INADDR_ANY) {
290 			/* Interface may have no addresses. */
291 			if (ia != NULL)
292 				ip->ip_src = IA_SIN(ia)->sin_addr;
293 		}
294 
295 		IN_MULTI_LOCK();
296 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
297 		if (inm != NULL &&
298 		   (imo == NULL || imo->imo_multicast_loop)) {
299 			IN_MULTI_UNLOCK();
300 			/*
301 			 * If we belong to the destination multicast group
302 			 * on the outgoing interface, and the caller did not
303 			 * forbid loopback, loop back a copy.
304 			 */
305 			ip_mloopback(ifp, m, dst, hlen);
306 		}
307 		else {
308 			IN_MULTI_UNLOCK();
309 			/*
310 			 * If we are acting as a multicast router, perform
311 			 * multicast forwarding as if the packet had just
312 			 * arrived on the interface to which we are about
313 			 * to send.  The multicast forwarding function
314 			 * recursively calls this function, using the
315 			 * IP_FORWARDING flag to prevent infinite recursion.
316 			 *
317 			 * Multicasts that are looped back by ip_mloopback(),
318 			 * above, will be forwarded by the ip_input() routine,
319 			 * if necessary.
320 			 */
321 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
322 				/*
323 				 * If rsvp daemon is not running, do not
324 				 * set ip_moptions. This ensures that the packet
325 				 * is multicast and not just sent down one link
326 				 * as prescribed by rsvpd.
327 				 */
328 				if (!rsvp_on)
329 					imo = NULL;
330 				if (ip_mforward &&
331 				    ip_mforward(ip, ifp, m, imo) != 0) {
332 					m_freem(m);
333 					goto done;
334 				}
335 			}
336 		}
337 
338 		/*
339 		 * Multicasts with a time-to-live of zero may be looped-
340 		 * back, above, but must not be transmitted on a network.
341 		 * Also, multicasts addressed to the loopback interface
342 		 * are not sent -- the above call to ip_mloopback() will
343 		 * loop back a copy if this host actually belongs to the
344 		 * destination group on the loopback interface.
345 		 */
346 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
347 			m_freem(m);
348 			goto done;
349 		}
350 
351 		goto sendit;
352 	}
353 #ifndef notdef
354 	/*
355 	 * If the source address is not specified yet, use the address
356 	 * of the outoing interface.
357 	 */
358 	if (ip->ip_src.s_addr == INADDR_ANY) {
359 		/* Interface may have no addresses. */
360 		if (ia != NULL) {
361 			ip->ip_src = IA_SIN(ia)->sin_addr;
362 		}
363 	}
364 #endif /* notdef */
365 	/*
366 	 * Verify that we have any chance at all of being able to queue the
367 	 * packet or packet fragments, unless ALTQ is enabled on the given
368 	 * interface in which case packetdrop should be done by queueing.
369 	 */
370 #ifdef ALTQ
371 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
372 	    ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
373 	    ifp->if_snd.ifq_maxlen))
374 #else
375 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
376 	    ifp->if_snd.ifq_maxlen)
377 #endif /* ALTQ */
378 	{
379 		error = ENOBUFS;
380 		ipstat.ips_odropped++;
381 		goto bad;
382 	}
383 
384 	/*
385 	 * Look for broadcast address and
386 	 * verify user is allowed to send
387 	 * such a packet.
388 	 */
389 	if (isbroadcast) {
390 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
391 			error = EADDRNOTAVAIL;
392 			goto bad;
393 		}
394 		if ((flags & IP_ALLOWBROADCAST) == 0) {
395 			error = EACCES;
396 			goto bad;
397 		}
398 		/* don't allow broadcast messages to be fragmented */
399 		if (ip->ip_len > ifp->if_mtu) {
400 			error = EMSGSIZE;
401 			goto bad;
402 		}
403 		if (flags & IP_SENDONES)
404 			ip->ip_dst.s_addr = INADDR_BROADCAST;
405 		m->m_flags |= M_BCAST;
406 	} else {
407 		m->m_flags &= ~M_BCAST;
408 	}
409 
410 sendit:
411 #ifdef IPSEC
412 	/* get SP for this packet */
413 	if (inp == NULL)
414 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
415 		    flags, &error);
416 	else
417 		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
418 
419 	if (sp == NULL) {
420 		ipsecstat.out_inval++;
421 		goto bad;
422 	}
423 
424 	error = 0;
425 
426 	/* check policy */
427 	switch (sp->policy) {
428 	case IPSEC_POLICY_DISCARD:
429 		/*
430 		 * This packet is just discarded.
431 		 */
432 		ipsecstat.out_polvio++;
433 		goto bad;
434 
435 	case IPSEC_POLICY_BYPASS:
436 	case IPSEC_POLICY_NONE:
437 	case IPSEC_POLICY_TCP:
438 		/* no need to do IPsec. */
439 		goto skip_ipsec;
440 
441 	case IPSEC_POLICY_IPSEC:
442 		if (sp->req == NULL) {
443 			/* acquire a policy */
444 			error = key_spdacquire(sp);
445 			goto bad;
446 		}
447 		break;
448 
449 	case IPSEC_POLICY_ENTRUST:
450 	default:
451 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
452 	}
453     {
454 	struct ipsec_output_state state;
455 	bzero(&state, sizeof(state));
456 	state.m = m;
457 	if (flags & IP_ROUTETOIF) {
458 		state.ro = &iproute;
459 		bzero(&iproute, sizeof(iproute));
460 	} else
461 		state.ro = ro;
462 	state.dst = (struct sockaddr *)dst;
463 
464 	ip->ip_sum = 0;
465 
466 	/*
467 	 * XXX
468 	 * delayed checksums are not currently compatible with IPsec
469 	 */
470 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
471 		in_delayed_cksum(m);
472 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
473 	}
474 
475 	ip->ip_len = htons(ip->ip_len);
476 	ip->ip_off = htons(ip->ip_off);
477 
478 	error = ipsec4_output(&state, sp, flags);
479 
480 	m = state.m;
481 	if (flags & IP_ROUTETOIF) {
482 		/*
483 		 * if we have tunnel mode SA, we may need to ignore
484 		 * IP_ROUTETOIF.
485 		 */
486 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
487 			flags &= ~IP_ROUTETOIF;
488 			ro = state.ro;
489 		}
490 	} else
491 		ro = state.ro;
492 	dst = (struct sockaddr_in *)state.dst;
493 	if (error) {
494 		/* mbuf is already reclaimed in ipsec4_output. */
495 		m = NULL;
496 		switch (error) {
497 		case EHOSTUNREACH:
498 		case ENETUNREACH:
499 		case EMSGSIZE:
500 		case ENOBUFS:
501 		case ENOMEM:
502 			break;
503 		default:
504 			printf("ip4_output (ipsec): error code %d\n", error);
505 			/*fall through*/
506 		case ENOENT:
507 			/* don't show these error codes to the user */
508 			error = 0;
509 			break;
510 		}
511 		goto bad;
512 	}
513 
514 	/* be sure to update variables that are affected by ipsec4_output() */
515 	ip = mtod(m, struct ip *);
516 	hlen = ip->ip_hl << 2;
517 	if (ro->ro_rt == NULL) {
518 		if ((flags & IP_ROUTETOIF) == 0) {
519 			printf("ip_output: "
520 				"can't update route after IPsec processing\n");
521 			error = EHOSTUNREACH;	/*XXX*/
522 			goto bad;
523 		}
524 	} else {
525 		if (state.encap) {
526 			ia = ifatoia(ro->ro_rt->rt_ifa);
527 			ifp = ro->ro_rt->rt_ifp;
528 		}
529 	}
530     }
531 
532 	/* make it flipped, again. */
533 	ip->ip_len = ntohs(ip->ip_len);
534 	ip->ip_off = ntohs(ip->ip_off);
535 skip_ipsec:
536 #endif /*IPSEC*/
537 #ifdef FAST_IPSEC
538 	/*
539 	 * Check the security policy (SP) for the packet and, if
540 	 * required, do IPsec-related processing.  There are two
541 	 * cases here; the first time a packet is sent through
542 	 * it will be untagged and handled by ipsec4_checkpolicy.
543 	 * If the packet is resubmitted to ip_output (e.g. after
544 	 * AH, ESP, etc. processing), there will be a tag to bypass
545 	 * the lookup and related policy checking.
546 	 */
547 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
548 	s = splnet();
549 	if (mtag != NULL) {
550 		tdbi = (struct tdb_ident *)(mtag + 1);
551 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
552 		if (sp == NULL)
553 			error = -EINVAL;	/* force silent drop */
554 		m_tag_delete(m, mtag);
555 	} else {
556 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
557 					&error, inp);
558 	}
559 	/*
560 	 * There are four return cases:
561 	 *    sp != NULL	 	    apply IPsec policy
562 	 *    sp == NULL, error == 0	    no IPsec handling needed
563 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
564 	 *    sp == NULL, error != 0	    discard packet, report error
565 	 */
566 	if (sp != NULL) {
567 		/* Loop detection, check if ipsec processing already done */
568 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
569 		for (mtag = m_tag_first(m); mtag != NULL;
570 		     mtag = m_tag_next(m, mtag)) {
571 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
572 				continue;
573 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
574 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
575 				continue;
576 			/*
577 			 * Check if policy has an SA associated with it.
578 			 * This can happen when an SP has yet to acquire
579 			 * an SA; e.g. on first reference.  If it occurs,
580 			 * then we let ipsec4_process_packet do its thing.
581 			 */
582 			if (sp->req->sav == NULL)
583 				break;
584 			tdbi = (struct tdb_ident *)(mtag + 1);
585 			if (tdbi->spi == sp->req->sav->spi &&
586 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
587 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
588 				 sizeof (union sockaddr_union)) == 0) {
589 				/*
590 				 * No IPsec processing is needed, free
591 				 * reference to SP.
592 				 *
593 				 * NB: null pointer to avoid free at
594 				 *     done: below.
595 				 */
596 				KEY_FREESP(&sp), sp = NULL;
597 				splx(s);
598 				goto spd_done;
599 			}
600 		}
601 
602 		/*
603 		 * Do delayed checksums now because we send before
604 		 * this is done in the normal processing path.
605 		 */
606 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
607 			in_delayed_cksum(m);
608 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
609 		}
610 
611 		ip->ip_len = htons(ip->ip_len);
612 		ip->ip_off = htons(ip->ip_off);
613 
614 		/* NB: callee frees mbuf */
615 		error = ipsec4_process_packet(m, sp->req, flags, 0);
616 		/*
617 		 * Preserve KAME behaviour: ENOENT can be returned
618 		 * when an SA acquire is in progress.  Don't propagate
619 		 * this to user-level; it confuses applications.
620 		 *
621 		 * XXX this will go away when the SADB is redone.
622 		 */
623 		if (error == ENOENT)
624 			error = 0;
625 		splx(s);
626 		goto done;
627 	} else {
628 		splx(s);
629 
630 		if (error != 0) {
631 			/*
632 			 * Hack: -EINVAL is used to signal that a packet
633 			 * should be silently discarded.  This is typically
634 			 * because we asked key management for an SA and
635 			 * it was delayed (e.g. kicked up to IKE).
636 			 */
637 			if (error == -EINVAL)
638 				error = 0;
639 			goto bad;
640 		} else {
641 			/* No IPsec processing for this packet. */
642 		}
643 #ifdef notyet
644 		/*
645 		 * If deferred crypto processing is needed, check that
646 		 * the interface supports it.
647 		 */
648 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
649 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
650 			/* notify IPsec to do its own crypto */
651 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
652 			error = EHOSTUNREACH;
653 			goto bad;
654 		}
655 #endif
656 	}
657 spd_done:
658 #endif /* FAST_IPSEC */
659 
660 	/* Jump over all PFIL processing if hooks are not active. */
661 	if (inet_pfil_hook.ph_busy_count == -1)
662 		goto passout;
663 
664 	/* Run through list of hooks for output packets. */
665 	odst.s_addr = ip->ip_dst.s_addr;
666 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
667 	if (error != 0 || m == NULL)
668 		goto done;
669 
670 	ip = mtod(m, struct ip *);
671 
672 	/* See if destination IP address was changed by packet filter. */
673 	if (odst.s_addr != ip->ip_dst.s_addr) {
674 		m->m_flags |= M_SKIP_FIREWALL;
675 		/* If destination is now ourself drop to ip_input(). */
676 		if (in_localip(ip->ip_dst)) {
677 			m->m_flags |= M_FASTFWD_OURS;
678 			if (m->m_pkthdr.rcvif == NULL)
679 				m->m_pkthdr.rcvif = loif;
680 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
681 				m->m_pkthdr.csum_flags |=
682 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
683 				m->m_pkthdr.csum_data = 0xffff;
684 			}
685 			m->m_pkthdr.csum_flags |=
686 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
687 
688 			error = netisr_queue(NETISR_IP, m);
689 			goto done;
690 		} else
691 			goto again;	/* Redo the routing table lookup. */
692 	}
693 
694 #ifdef IPFIREWALL_FORWARD
695 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
696 	if (m->m_flags & M_FASTFWD_OURS) {
697 		if (m->m_pkthdr.rcvif == NULL)
698 			m->m_pkthdr.rcvif = loif;
699 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
700 			m->m_pkthdr.csum_flags |=
701 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
702 			m->m_pkthdr.csum_data = 0xffff;
703 		}
704 		m->m_pkthdr.csum_flags |=
705 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
706 
707 		error = netisr_queue(NETISR_IP, m);
708 		goto done;
709 	}
710 	/* Or forward to some other address? */
711 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
712 	if (fwd_tag) {
713 #ifndef IPFIREWALL_FORWARD_EXTENDED
714 		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
715 #endif
716 			dst = (struct sockaddr_in *)&ro->ro_dst;
717 			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
718 			m->m_flags |= M_SKIP_FIREWALL;
719 			m_tag_delete(m, fwd_tag);
720 			goto again;
721 #ifndef IPFIREWALL_FORWARD_EXTENDED
722 		} else {
723 			m_tag_delete(m, fwd_tag);
724 			/* Continue. */
725 		}
726 #endif
727 	}
728 #endif /* IPFIREWALL_FORWARD */
729 
730 passout:
731 	/* 127/8 must not appear on wire - RFC1122. */
732 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
733 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
734 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
735 			ipstat.ips_badaddr++;
736 			error = EADDRNOTAVAIL;
737 			goto bad;
738 		}
739 	}
740 
741 	m->m_pkthdr.csum_flags |= CSUM_IP;
742 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
743 	if (sw_csum & CSUM_DELAY_DATA) {
744 		in_delayed_cksum(m);
745 		sw_csum &= ~CSUM_DELAY_DATA;
746 	}
747 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
748 
749 	/*
750 	 * If small enough for interface, or the interface will take
751 	 * care of the fragmentation for us, can just send directly.
752 	 */
753 	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
754 	    ((ip->ip_off & IP_DF) == 0))) {
755 		ip->ip_len = htons(ip->ip_len);
756 		ip->ip_off = htons(ip->ip_off);
757 		ip->ip_sum = 0;
758 		if (sw_csum & CSUM_DELAY_IP)
759 			ip->ip_sum = in_cksum(m, hlen);
760 
761 		/* Record statistics for this interface address. */
762 		if (!(flags & IP_FORWARDING) && ia) {
763 			ia->ia_ifa.if_opackets++;
764 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
765 		}
766 
767 #ifdef IPSEC
768 		/* clean ipsec history once it goes out of the node */
769 		ipsec_delaux(m);
770 #endif
771 
772 #ifdef MBUF_STRESS_TEST
773 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
774 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
775 #endif
776 		error = (*ifp->if_output)(ifp, m,
777 				(struct sockaddr *)dst, ro->ro_rt);
778 		goto done;
779 	}
780 
781 	if (ip->ip_off & IP_DF) {
782 		error = EMSGSIZE;
783 		/*
784 		 * This case can happen if the user changed the MTU
785 		 * of an interface after enabling IP on it.  Because
786 		 * most netifs don't keep track of routes pointing to
787 		 * them, there is no way for one to update all its
788 		 * routes when the MTU is changed.
789 		 */
790 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
791 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
792 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
793 		}
794 		ipstat.ips_cantfrag++;
795 		goto bad;
796 	}
797 
798 	/*
799 	 * Too large for interface; fragment if possible. If successful,
800 	 * on return, m will point to a list of packets to be sent.
801 	 */
802 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
803 	if (error)
804 		goto bad;
805 	for (; m; m = m0) {
806 		m0 = m->m_nextpkt;
807 		m->m_nextpkt = 0;
808 #ifdef IPSEC
809 		/* clean ipsec history once it goes out of the node */
810 		ipsec_delaux(m);
811 #endif
812 		if (error == 0) {
813 			/* Record statistics for this interface address. */
814 			if (ia != NULL) {
815 				ia->ia_ifa.if_opackets++;
816 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
817 			}
818 
819 			error = (*ifp->if_output)(ifp, m,
820 			    (struct sockaddr *)dst, ro->ro_rt);
821 		} else
822 			m_freem(m);
823 	}
824 
825 	if (error == 0)
826 		ipstat.ips_fragmented++;
827 
828 done:
829 	if (ro == &iproute && ro->ro_rt) {
830 		RTFREE(ro->ro_rt);
831 	}
832 #ifdef IPSEC
833 	if (sp != NULL) {
834 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
835 			printf("DP ip_output call free SP:%p\n", sp));
836 		key_freesp(sp);
837 	}
838 #endif
839 #ifdef FAST_IPSEC
840 	if (sp != NULL)
841 		KEY_FREESP(&sp);
842 #endif
843 	return (error);
844 bad:
845 	m_freem(m);
846 	goto done;
847 }
848 
849 /*
850  * Create a chain of fragments which fit the given mtu. m_frag points to the
851  * mbuf to be fragmented; on return it points to the chain with the fragments.
852  * Return 0 if no error. If error, m_frag may contain a partially built
853  * chain of fragments that should be freed by the caller.
854  *
855  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
856  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
857  */
858 int
859 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
860 	    u_long if_hwassist_flags, int sw_csum)
861 {
862 	int error = 0;
863 	int hlen = ip->ip_hl << 2;
864 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
865 	int off;
866 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
867 	int firstlen;
868 	struct mbuf **mnext;
869 	int nfrags;
870 
871 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
872 		ipstat.ips_cantfrag++;
873 		return EMSGSIZE;
874 	}
875 
876 	/*
877 	 * Must be able to put at least 8 bytes per fragment.
878 	 */
879 	if (len < 8)
880 		return EMSGSIZE;
881 
882 	/*
883 	 * If the interface will not calculate checksums on
884 	 * fragmented packets, then do it here.
885 	 */
886 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
887 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
888 		in_delayed_cksum(m0);
889 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
890 	}
891 
892 	if (len > PAGE_SIZE) {
893 		/*
894 		 * Fragment large datagrams such that each segment
895 		 * contains a multiple of PAGE_SIZE amount of data,
896 		 * plus headers. This enables a receiver to perform
897 		 * page-flipping zero-copy optimizations.
898 		 *
899 		 * XXX When does this help given that sender and receiver
900 		 * could have different page sizes, and also mtu could
901 		 * be less than the receiver's page size ?
902 		 */
903 		int newlen;
904 		struct mbuf *m;
905 
906 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
907 			off += m->m_len;
908 
909 		/*
910 		 * firstlen (off - hlen) must be aligned on an
911 		 * 8-byte boundary
912 		 */
913 		if (off < hlen)
914 			goto smart_frag_failure;
915 		off = ((off - hlen) & ~7) + hlen;
916 		newlen = (~PAGE_MASK) & mtu;
917 		if ((newlen + sizeof (struct ip)) > mtu) {
918 			/* we failed, go back the default */
919 smart_frag_failure:
920 			newlen = len;
921 			off = hlen + len;
922 		}
923 		len = newlen;
924 
925 	} else {
926 		off = hlen + len;
927 	}
928 
929 	firstlen = off - hlen;
930 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
931 
932 	/*
933 	 * Loop through length of segment after first fragment,
934 	 * make new header and copy data of each part and link onto chain.
935 	 * Here, m0 is the original packet, m is the fragment being created.
936 	 * The fragments are linked off the m_nextpkt of the original
937 	 * packet, which after processing serves as the first fragment.
938 	 */
939 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
940 		struct ip *mhip;	/* ip header on the fragment */
941 		struct mbuf *m;
942 		int mhlen = sizeof (struct ip);
943 
944 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
945 		if (m == NULL) {
946 			error = ENOBUFS;
947 			ipstat.ips_odropped++;
948 			goto done;
949 		}
950 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
951 		/*
952 		 * In the first mbuf, leave room for the link header, then
953 		 * copy the original IP header including options. The payload
954 		 * goes into an additional mbuf chain returned by m_copy().
955 		 */
956 		m->m_data += max_linkhdr;
957 		mhip = mtod(m, struct ip *);
958 		*mhip = *ip;
959 		if (hlen > sizeof (struct ip)) {
960 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
961 			mhip->ip_v = IPVERSION;
962 			mhip->ip_hl = mhlen >> 2;
963 		}
964 		m->m_len = mhlen;
965 		/* XXX do we need to add ip->ip_off below ? */
966 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
967 		if (off + len >= ip->ip_len) {	/* last fragment */
968 			len = ip->ip_len - off;
969 			m->m_flags |= M_LASTFRAG;
970 		} else
971 			mhip->ip_off |= IP_MF;
972 		mhip->ip_len = htons((u_short)(len + mhlen));
973 		m->m_next = m_copy(m0, off, len);
974 		if (m->m_next == NULL) {	/* copy failed */
975 			m_free(m);
976 			error = ENOBUFS;	/* ??? */
977 			ipstat.ips_odropped++;
978 			goto done;
979 		}
980 		m->m_pkthdr.len = mhlen + len;
981 		m->m_pkthdr.rcvif = NULL;
982 #ifdef MAC
983 		mac_create_fragment(m0, m);
984 #endif
985 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
986 		mhip->ip_off = htons(mhip->ip_off);
987 		mhip->ip_sum = 0;
988 		if (sw_csum & CSUM_DELAY_IP)
989 			mhip->ip_sum = in_cksum(m, mhlen);
990 		*mnext = m;
991 		mnext = &m->m_nextpkt;
992 	}
993 	ipstat.ips_ofragments += nfrags;
994 
995 	/* set first marker for fragment chain */
996 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
997 	m0->m_pkthdr.csum_data = nfrags;
998 
999 	/*
1000 	 * Update first fragment by trimming what's been copied out
1001 	 * and updating header.
1002 	 */
1003 	m_adj(m0, hlen + firstlen - ip->ip_len);
1004 	m0->m_pkthdr.len = hlen + firstlen;
1005 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1006 	ip->ip_off |= IP_MF;
1007 	ip->ip_off = htons(ip->ip_off);
1008 	ip->ip_sum = 0;
1009 	if (sw_csum & CSUM_DELAY_IP)
1010 		ip->ip_sum = in_cksum(m0, hlen);
1011 
1012 done:
1013 	*m_frag = m0;
1014 	return error;
1015 }
1016 
1017 void
1018 in_delayed_cksum(struct mbuf *m)
1019 {
1020 	struct ip *ip;
1021 	u_short csum, offset;
1022 
1023 	ip = mtod(m, struct ip *);
1024 	offset = ip->ip_hl << 2 ;
1025 	csum = in_cksum_skip(m, ip->ip_len, offset);
1026 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1027 		csum = 0xffff;
1028 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1029 
1030 	if (offset + sizeof(u_short) > m->m_len) {
1031 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1032 		    m->m_len, offset, ip->ip_p);
1033 		/*
1034 		 * XXX
1035 		 * this shouldn't happen, but if it does, the
1036 		 * correct behavior may be to insert the checksum
1037 		 * in the existing chain instead of rearranging it.
1038 		 */
1039 		m = m_pullup(m, offset + sizeof(u_short));
1040 	}
1041 	*(u_short *)(m->m_data + offset) = csum;
1042 }
1043 
1044 /*
1045  * Insert IP options into preformed packet.
1046  * Adjust IP destination as required for IP source routing,
1047  * as indicated by a non-zero in_addr at the start of the options.
1048  *
1049  * XXX This routine assumes that the packet has no options in place.
1050  */
1051 static struct mbuf *
1052 ip_insertoptions(m, opt, phlen)
1053 	register struct mbuf *m;
1054 	struct mbuf *opt;
1055 	int *phlen;
1056 {
1057 	register struct ipoption *p = mtod(opt, struct ipoption *);
1058 	struct mbuf *n;
1059 	register struct ip *ip = mtod(m, struct ip *);
1060 	unsigned optlen;
1061 
1062 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1063 	if (optlen + ip->ip_len > IP_MAXPACKET) {
1064 		*phlen = 0;
1065 		return (m);		/* XXX should fail */
1066 	}
1067 	if (p->ipopt_dst.s_addr)
1068 		ip->ip_dst = p->ipopt_dst;
1069 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1070 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1071 		if (n == NULL) {
1072 			*phlen = 0;
1073 			return (m);
1074 		}
1075 		M_MOVE_PKTHDR(n, m);
1076 		n->m_pkthdr.rcvif = NULL;
1077 #ifdef MAC
1078 		mac_copy_mbuf(m, n);
1079 #endif
1080 		n->m_pkthdr.len += optlen;
1081 		m->m_len -= sizeof(struct ip);
1082 		m->m_data += sizeof(struct ip);
1083 		n->m_next = m;
1084 		m = n;
1085 		m->m_len = optlen + sizeof(struct ip);
1086 		m->m_data += max_linkhdr;
1087 		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1088 	} else {
1089 		m->m_data -= optlen;
1090 		m->m_len += optlen;
1091 		m->m_pkthdr.len += optlen;
1092 		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1093 	}
1094 	ip = mtod(m, struct ip *);
1095 	bcopy(p->ipopt_list, ip + 1, optlen);
1096 	*phlen = sizeof(struct ip) + optlen;
1097 	ip->ip_v = IPVERSION;
1098 	ip->ip_hl = *phlen >> 2;
1099 	ip->ip_len += optlen;
1100 	return (m);
1101 }
1102 
1103 /*
1104  * Copy options from ip to jp,
1105  * omitting those not copied during fragmentation.
1106  */
1107 int
1108 ip_optcopy(ip, jp)
1109 	struct ip *ip, *jp;
1110 {
1111 	register u_char *cp, *dp;
1112 	int opt, optlen, cnt;
1113 
1114 	cp = (u_char *)(ip + 1);
1115 	dp = (u_char *)(jp + 1);
1116 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1117 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1118 		opt = cp[0];
1119 		if (opt == IPOPT_EOL)
1120 			break;
1121 		if (opt == IPOPT_NOP) {
1122 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1123 			*dp++ = IPOPT_NOP;
1124 			optlen = 1;
1125 			continue;
1126 		}
1127 
1128 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1129 		    ("ip_optcopy: malformed ipv4 option"));
1130 		optlen = cp[IPOPT_OLEN];
1131 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1132 		    ("ip_optcopy: malformed ipv4 option"));
1133 
1134 		/* bogus lengths should have been caught by ip_dooptions */
1135 		if (optlen > cnt)
1136 			optlen = cnt;
1137 		if (IPOPT_COPIED(opt)) {
1138 			bcopy(cp, dp, optlen);
1139 			dp += optlen;
1140 		}
1141 	}
1142 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1143 		*dp++ = IPOPT_EOL;
1144 	return (optlen);
1145 }
1146 
1147 /*
1148  * IP socket option processing.
1149  */
1150 int
1151 ip_ctloutput(so, sopt)
1152 	struct socket *so;
1153 	struct sockopt *sopt;
1154 {
1155 	struct	inpcb *inp = sotoinpcb(so);
1156 	int	error, optval;
1157 
1158 	error = optval = 0;
1159 	if (sopt->sopt_level != IPPROTO_IP) {
1160 		return (EINVAL);
1161 	}
1162 
1163 	switch (sopt->sopt_dir) {
1164 	case SOPT_SET:
1165 		switch (sopt->sopt_name) {
1166 		case IP_OPTIONS:
1167 #ifdef notyet
1168 		case IP_RETOPTS:
1169 #endif
1170 		{
1171 			struct mbuf *m;
1172 			if (sopt->sopt_valsize > MLEN) {
1173 				error = EMSGSIZE;
1174 				break;
1175 			}
1176 			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1177 			if (m == NULL) {
1178 				error = ENOBUFS;
1179 				break;
1180 			}
1181 			m->m_len = sopt->sopt_valsize;
1182 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1183 					    m->m_len);
1184 			INP_LOCK(inp);
1185 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1186 			INP_UNLOCK(inp);
1187 			return (error);
1188 		}
1189 
1190 		case IP_TOS:
1191 		case IP_TTL:
1192 		case IP_MINTTL:
1193 		case IP_RECVOPTS:
1194 		case IP_RECVRETOPTS:
1195 		case IP_RECVDSTADDR:
1196 		case IP_RECVTTL:
1197 		case IP_RECVIF:
1198 		case IP_FAITH:
1199 		case IP_ONESBCAST:
1200 			error = sooptcopyin(sopt, &optval, sizeof optval,
1201 					    sizeof optval);
1202 			if (error)
1203 				break;
1204 
1205 			switch (sopt->sopt_name) {
1206 			case IP_TOS:
1207 				inp->inp_ip_tos = optval;
1208 				break;
1209 
1210 			case IP_TTL:
1211 				inp->inp_ip_ttl = optval;
1212 				break;
1213 
1214 			case IP_MINTTL:
1215 				if (optval > 0 && optval <= MAXTTL)
1216 					inp->inp_ip_minttl = optval;
1217 				else
1218 					error = EINVAL;
1219 				break;
1220 
1221 #define	OPTSET(bit) do {						\
1222 	INP_LOCK(inp);							\
1223 	if (optval)							\
1224 		inp->inp_flags |= bit;					\
1225 	else								\
1226 		inp->inp_flags &= ~bit;					\
1227 	INP_UNLOCK(inp);						\
1228 } while (0)
1229 
1230 			case IP_RECVOPTS:
1231 				OPTSET(INP_RECVOPTS);
1232 				break;
1233 
1234 			case IP_RECVRETOPTS:
1235 				OPTSET(INP_RECVRETOPTS);
1236 				break;
1237 
1238 			case IP_RECVDSTADDR:
1239 				OPTSET(INP_RECVDSTADDR);
1240 				break;
1241 
1242 			case IP_RECVTTL:
1243 				OPTSET(INP_RECVTTL);
1244 				break;
1245 
1246 			case IP_RECVIF:
1247 				OPTSET(INP_RECVIF);
1248 				break;
1249 
1250 			case IP_FAITH:
1251 				OPTSET(INP_FAITH);
1252 				break;
1253 
1254 			case IP_ONESBCAST:
1255 				OPTSET(INP_ONESBCAST);
1256 				break;
1257 			}
1258 			break;
1259 #undef OPTSET
1260 
1261 		case IP_MULTICAST_IF:
1262 		case IP_MULTICAST_VIF:
1263 		case IP_MULTICAST_TTL:
1264 		case IP_MULTICAST_LOOP:
1265 		case IP_ADD_MEMBERSHIP:
1266 		case IP_DROP_MEMBERSHIP:
1267 			error = ip_setmoptions(inp, sopt);
1268 			break;
1269 
1270 		case IP_PORTRANGE:
1271 			error = sooptcopyin(sopt, &optval, sizeof optval,
1272 					    sizeof optval);
1273 			if (error)
1274 				break;
1275 
1276 			INP_LOCK(inp);
1277 			switch (optval) {
1278 			case IP_PORTRANGE_DEFAULT:
1279 				inp->inp_flags &= ~(INP_LOWPORT);
1280 				inp->inp_flags &= ~(INP_HIGHPORT);
1281 				break;
1282 
1283 			case IP_PORTRANGE_HIGH:
1284 				inp->inp_flags &= ~(INP_LOWPORT);
1285 				inp->inp_flags |= INP_HIGHPORT;
1286 				break;
1287 
1288 			case IP_PORTRANGE_LOW:
1289 				inp->inp_flags &= ~(INP_HIGHPORT);
1290 				inp->inp_flags |= INP_LOWPORT;
1291 				break;
1292 
1293 			default:
1294 				error = EINVAL;
1295 				break;
1296 			}
1297 			INP_UNLOCK(inp);
1298 			break;
1299 
1300 #if defined(IPSEC) || defined(FAST_IPSEC)
1301 		case IP_IPSEC_POLICY:
1302 		{
1303 			caddr_t req;
1304 			size_t len = 0;
1305 			int priv;
1306 			struct mbuf *m;
1307 			int optname;
1308 
1309 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1310 				break;
1311 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1312 				break;
1313 			priv = (sopt->sopt_td != NULL &&
1314 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1315 			req = mtod(m, caddr_t);
1316 			len = m->m_len;
1317 			optname = sopt->sopt_name;
1318 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1319 			m_freem(m);
1320 			break;
1321 		}
1322 #endif /*IPSEC*/
1323 
1324 		default:
1325 			error = ENOPROTOOPT;
1326 			break;
1327 		}
1328 		break;
1329 
1330 	case SOPT_GET:
1331 		switch (sopt->sopt_name) {
1332 		case IP_OPTIONS:
1333 		case IP_RETOPTS:
1334 			if (inp->inp_options)
1335 				error = sooptcopyout(sopt,
1336 						     mtod(inp->inp_options,
1337 							  char *),
1338 						     inp->inp_options->m_len);
1339 			else
1340 				sopt->sopt_valsize = 0;
1341 			break;
1342 
1343 		case IP_TOS:
1344 		case IP_TTL:
1345 		case IP_MINTTL:
1346 		case IP_RECVOPTS:
1347 		case IP_RECVRETOPTS:
1348 		case IP_RECVDSTADDR:
1349 		case IP_RECVTTL:
1350 		case IP_RECVIF:
1351 		case IP_PORTRANGE:
1352 		case IP_FAITH:
1353 		case IP_ONESBCAST:
1354 			switch (sopt->sopt_name) {
1355 
1356 			case IP_TOS:
1357 				optval = inp->inp_ip_tos;
1358 				break;
1359 
1360 			case IP_TTL:
1361 				optval = inp->inp_ip_ttl;
1362 				break;
1363 
1364 			case IP_MINTTL:
1365 				optval = inp->inp_ip_minttl;
1366 				break;
1367 
1368 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1369 
1370 			case IP_RECVOPTS:
1371 				optval = OPTBIT(INP_RECVOPTS);
1372 				break;
1373 
1374 			case IP_RECVRETOPTS:
1375 				optval = OPTBIT(INP_RECVRETOPTS);
1376 				break;
1377 
1378 			case IP_RECVDSTADDR:
1379 				optval = OPTBIT(INP_RECVDSTADDR);
1380 				break;
1381 
1382 			case IP_RECVTTL:
1383 				optval = OPTBIT(INP_RECVTTL);
1384 				break;
1385 
1386 			case IP_RECVIF:
1387 				optval = OPTBIT(INP_RECVIF);
1388 				break;
1389 
1390 			case IP_PORTRANGE:
1391 				if (inp->inp_flags & INP_HIGHPORT)
1392 					optval = IP_PORTRANGE_HIGH;
1393 				else if (inp->inp_flags & INP_LOWPORT)
1394 					optval = IP_PORTRANGE_LOW;
1395 				else
1396 					optval = 0;
1397 				break;
1398 
1399 			case IP_FAITH:
1400 				optval = OPTBIT(INP_FAITH);
1401 				break;
1402 
1403 			case IP_ONESBCAST:
1404 				optval = OPTBIT(INP_ONESBCAST);
1405 				break;
1406 			}
1407 			error = sooptcopyout(sopt, &optval, sizeof optval);
1408 			break;
1409 
1410 		case IP_MULTICAST_IF:
1411 		case IP_MULTICAST_VIF:
1412 		case IP_MULTICAST_TTL:
1413 		case IP_MULTICAST_LOOP:
1414 		case IP_ADD_MEMBERSHIP:
1415 		case IP_DROP_MEMBERSHIP:
1416 			error = ip_getmoptions(inp, sopt);
1417 			break;
1418 
1419 #if defined(IPSEC) || defined(FAST_IPSEC)
1420 		case IP_IPSEC_POLICY:
1421 		{
1422 			struct mbuf *m = NULL;
1423 			caddr_t req = NULL;
1424 			size_t len = 0;
1425 
1426 			if (m != 0) {
1427 				req = mtod(m, caddr_t);
1428 				len = m->m_len;
1429 			}
1430 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1431 			if (error == 0)
1432 				error = soopt_mcopyout(sopt, m); /* XXX */
1433 			if (error == 0)
1434 				m_freem(m);
1435 			break;
1436 		}
1437 #endif /*IPSEC*/
1438 
1439 		default:
1440 			error = ENOPROTOOPT;
1441 			break;
1442 		}
1443 		break;
1444 	}
1445 	return (error);
1446 }
1447 
1448 /*
1449  * Set up IP options in pcb for insertion in output packets.
1450  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1451  * with destination address if source routed.
1452  */
1453 static int
1454 ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
1455 {
1456 	register int cnt, optlen;
1457 	register u_char *cp;
1458 	struct mbuf **pcbopt;
1459 	u_char opt;
1460 
1461 	INP_LOCK_ASSERT(inp);
1462 
1463 	pcbopt = &inp->inp_options;
1464 
1465 	/* turn off any old options */
1466 	if (*pcbopt)
1467 		(void)m_free(*pcbopt);
1468 	*pcbopt = 0;
1469 	if (m == NULL || m->m_len == 0) {
1470 		/*
1471 		 * Only turning off any previous options.
1472 		 */
1473 		if (m != NULL)
1474 			(void)m_free(m);
1475 		return (0);
1476 	}
1477 
1478 	if (m->m_len % sizeof(int32_t))
1479 		goto bad;
1480 	/*
1481 	 * IP first-hop destination address will be stored before
1482 	 * actual options; move other options back
1483 	 * and clear it when none present.
1484 	 */
1485 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1486 		goto bad;
1487 	cnt = m->m_len;
1488 	m->m_len += sizeof(struct in_addr);
1489 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1490 	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1491 	bzero(mtod(m, void *), sizeof(struct in_addr));
1492 
1493 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1494 		opt = cp[IPOPT_OPTVAL];
1495 		if (opt == IPOPT_EOL)
1496 			break;
1497 		if (opt == IPOPT_NOP)
1498 			optlen = 1;
1499 		else {
1500 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1501 				goto bad;
1502 			optlen = cp[IPOPT_OLEN];
1503 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1504 				goto bad;
1505 		}
1506 		switch (opt) {
1507 
1508 		default:
1509 			break;
1510 
1511 		case IPOPT_LSRR:
1512 		case IPOPT_SSRR:
1513 			/*
1514 			 * user process specifies route as:
1515 			 *	->A->B->C->D
1516 			 * D must be our final destination (but we can't
1517 			 * check that since we may not have connected yet).
1518 			 * A is first hop destination, which doesn't appear in
1519 			 * actual IP option, but is stored before the options.
1520 			 */
1521 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1522 				goto bad;
1523 			m->m_len -= sizeof(struct in_addr);
1524 			cnt -= sizeof(struct in_addr);
1525 			optlen -= sizeof(struct in_addr);
1526 			cp[IPOPT_OLEN] = optlen;
1527 			/*
1528 			 * Move first hop before start of options.
1529 			 */
1530 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1531 			    sizeof(struct in_addr));
1532 			/*
1533 			 * Then copy rest of options back
1534 			 * to close up the deleted entry.
1535 			 */
1536 			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1537 			    &cp[IPOPT_OFFSET+1],
1538 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1539 			break;
1540 		}
1541 	}
1542 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1543 		goto bad;
1544 	*pcbopt = m;
1545 	return (0);
1546 
1547 bad:
1548 	(void)m_free(m);
1549 	return (EINVAL);
1550 }
1551 
1552 /*
1553  * XXX
1554  * The whole multicast option thing needs to be re-thought.
1555  * Several of these options are equally applicable to non-multicast
1556  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1557  * standard option (IP_TTL).
1558  */
1559 
1560 /*
1561  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1562  */
1563 static struct ifnet *
1564 ip_multicast_if(a, ifindexp)
1565 	struct in_addr *a;
1566 	int *ifindexp;
1567 {
1568 	int ifindex;
1569 	struct ifnet *ifp;
1570 
1571 	if (ifindexp)
1572 		*ifindexp = 0;
1573 	if (ntohl(a->s_addr) >> 24 == 0) {
1574 		ifindex = ntohl(a->s_addr) & 0xffffff;
1575 		if (ifindex < 0 || if_index < ifindex)
1576 			return NULL;
1577 		ifp = ifnet_byindex(ifindex);
1578 		if (ifindexp)
1579 			*ifindexp = ifindex;
1580 	} else {
1581 		INADDR_TO_IFP(*a, ifp);
1582 	}
1583 	return ifp;
1584 }
1585 
1586 /*
1587  * Given an inpcb, return its multicast options structure pointer.  Accepts
1588  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1589  */
1590 static struct ip_moptions *
1591 ip_findmoptions(struct inpcb *inp)
1592 {
1593 	struct ip_moptions *imo;
1594 
1595 	INP_LOCK(inp);
1596 	if (inp->inp_moptions != NULL)
1597 		return (inp->inp_moptions);
1598 
1599 	INP_UNLOCK(inp);
1600 
1601 	imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1602 
1603 	imo->imo_multicast_ifp = NULL;
1604 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1605 	imo->imo_multicast_vif = -1;
1606 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1607 	imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1608 	imo->imo_num_memberships = 0;
1609 
1610 	INP_LOCK(inp);
1611 	if (inp->inp_moptions != NULL) {
1612 		free(imo, M_IPMOPTS);
1613 		return (inp->inp_moptions);
1614 	}
1615 	inp->inp_moptions = imo;
1616 	return (imo);
1617 }
1618 
1619 /*
1620  * Set the IP multicast options in response to user setsockopt().
1621  */
1622 static int
1623 ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1624 {
1625 	int error = 0;
1626 	int i;
1627 	struct in_addr addr;
1628 	struct ip_mreq mreq;
1629 	struct ifnet *ifp;
1630 	struct ip_moptions *imo;
1631 	struct route ro;
1632 	struct sockaddr_in *dst;
1633 	int ifindex;
1634 	int s;
1635 
1636 	switch (sopt->sopt_name) {
1637 	/* store an index number for the vif you wanna use in the send */
1638 	case IP_MULTICAST_VIF:
1639 		if (legal_vif_num == 0) {
1640 			error = EOPNOTSUPP;
1641 			break;
1642 		}
1643 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1644 		if (error)
1645 			break;
1646 		if (!legal_vif_num(i) && (i != -1)) {
1647 			error = EINVAL;
1648 			break;
1649 		}
1650 		imo = ip_findmoptions(inp);
1651 		imo->imo_multicast_vif = i;
1652 		INP_UNLOCK(inp);
1653 		break;
1654 
1655 	case IP_MULTICAST_IF:
1656 		/*
1657 		 * Select the interface for outgoing multicast packets.
1658 		 */
1659 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1660 		if (error)
1661 			break;
1662 		/*
1663 		 * INADDR_ANY is used to remove a previous selection.
1664 		 * When no interface is selected, a default one is
1665 		 * chosen every time a multicast packet is sent.
1666 		 */
1667 		imo = ip_findmoptions(inp);
1668 		if (addr.s_addr == INADDR_ANY) {
1669 			imo->imo_multicast_ifp = NULL;
1670 			INP_UNLOCK(inp);
1671 			break;
1672 		}
1673 		/*
1674 		 * The selected interface is identified by its local
1675 		 * IP address.  Find the interface and confirm that
1676 		 * it supports multicasting.
1677 		 */
1678 		s = splimp();
1679 		ifp = ip_multicast_if(&addr, &ifindex);
1680 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1681 			INP_UNLOCK(inp);
1682 			splx(s);
1683 			error = EADDRNOTAVAIL;
1684 			break;
1685 		}
1686 		imo->imo_multicast_ifp = ifp;
1687 		if (ifindex)
1688 			imo->imo_multicast_addr = addr;
1689 		else
1690 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1691 		INP_UNLOCK(inp);
1692 		splx(s);
1693 		break;
1694 
1695 	case IP_MULTICAST_TTL:
1696 		/*
1697 		 * Set the IP time-to-live for outgoing multicast packets.
1698 		 * The original multicast API required a char argument,
1699 		 * which is inconsistent with the rest of the socket API.
1700 		 * We allow either a char or an int.
1701 		 */
1702 		if (sopt->sopt_valsize == 1) {
1703 			u_char ttl;
1704 			error = sooptcopyin(sopt, &ttl, 1, 1);
1705 			if (error)
1706 				break;
1707 			imo = ip_findmoptions(inp);
1708 			imo->imo_multicast_ttl = ttl;
1709 			INP_UNLOCK(inp);
1710 		} else {
1711 			u_int ttl;
1712 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1713 					    sizeof ttl);
1714 			if (error)
1715 				break;
1716 			if (ttl > 255)
1717 				error = EINVAL;
1718 			else {
1719 				imo = ip_findmoptions(inp);
1720 				imo->imo_multicast_ttl = ttl;
1721 				INP_UNLOCK(inp);
1722 			}
1723 		}
1724 		break;
1725 
1726 	case IP_MULTICAST_LOOP:
1727 		/*
1728 		 * Set the loopback flag for outgoing multicast packets.
1729 		 * Must be zero or one.  The original multicast API required a
1730 		 * char argument, which is inconsistent with the rest
1731 		 * of the socket API.  We allow either a char or an int.
1732 		 */
1733 		if (sopt->sopt_valsize == 1) {
1734 			u_char loop;
1735 			error = sooptcopyin(sopt, &loop, 1, 1);
1736 			if (error)
1737 				break;
1738 			imo = ip_findmoptions(inp);
1739 			imo->imo_multicast_loop = !!loop;
1740 			INP_UNLOCK(inp);
1741 		} else {
1742 			u_int loop;
1743 			error = sooptcopyin(sopt, &loop, sizeof loop,
1744 					    sizeof loop);
1745 			if (error)
1746 				break;
1747 			imo = ip_findmoptions(inp);
1748 			imo->imo_multicast_loop = !!loop;
1749 			INP_UNLOCK(inp);
1750 		}
1751 		break;
1752 
1753 	case IP_ADD_MEMBERSHIP:
1754 		/*
1755 		 * Add a multicast group membership.
1756 		 * Group must be a valid IP multicast address.
1757 		 */
1758 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1759 		if (error)
1760 			break;
1761 
1762 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1763 			error = EINVAL;
1764 			break;
1765 		}
1766 		s = splimp();
1767 		/*
1768 		 * If no interface address was provided, use the interface of
1769 		 * the route to the given multicast address.
1770 		 */
1771 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1772 			bzero((caddr_t)&ro, sizeof(ro));
1773 			dst = (struct sockaddr_in *)&ro.ro_dst;
1774 			dst->sin_len = sizeof(*dst);
1775 			dst->sin_family = AF_INET;
1776 			dst->sin_addr = mreq.imr_multiaddr;
1777 			rtalloc_ign(&ro, RTF_CLONING);
1778 			if (ro.ro_rt == NULL) {
1779 				error = EADDRNOTAVAIL;
1780 				splx(s);
1781 				break;
1782 			}
1783 			ifp = ro.ro_rt->rt_ifp;
1784 			RTFREE(ro.ro_rt);
1785 		}
1786 		else {
1787 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1788 		}
1789 
1790 		/*
1791 		 * See if we found an interface, and confirm that it
1792 		 * supports multicast.
1793 		 */
1794 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1795 			error = EADDRNOTAVAIL;
1796 			splx(s);
1797 			break;
1798 		}
1799 		/*
1800 		 * See if the membership already exists or if all the
1801 		 * membership slots are full.
1802 		 */
1803 		imo = ip_findmoptions(inp);
1804 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1805 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1806 			    imo->imo_membership[i]->inm_addr.s_addr
1807 						== mreq.imr_multiaddr.s_addr)
1808 				break;
1809 		}
1810 		if (i < imo->imo_num_memberships) {
1811 			INP_UNLOCK(inp);
1812 			error = EADDRINUSE;
1813 			splx(s);
1814 			break;
1815 		}
1816 		if (i == IP_MAX_MEMBERSHIPS) {
1817 			INP_UNLOCK(inp);
1818 			error = ETOOMANYREFS;
1819 			splx(s);
1820 			break;
1821 		}
1822 		/*
1823 		 * Everything looks good; add a new record to the multicast
1824 		 * address list for the given interface.
1825 		 */
1826 		if ((imo->imo_membership[i] =
1827 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1828 			INP_UNLOCK(inp);
1829 			error = ENOBUFS;
1830 			splx(s);
1831 			break;
1832 		}
1833 		++imo->imo_num_memberships;
1834 		INP_UNLOCK(inp);
1835 		splx(s);
1836 		break;
1837 
1838 	case IP_DROP_MEMBERSHIP:
1839 		/*
1840 		 * Drop a multicast group membership.
1841 		 * Group must be a valid IP multicast address.
1842 		 */
1843 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1844 		if (error)
1845 			break;
1846 
1847 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1848 			error = EINVAL;
1849 			break;
1850 		}
1851 
1852 		s = splimp();
1853 		/*
1854 		 * If an interface address was specified, get a pointer
1855 		 * to its ifnet structure.
1856 		 */
1857 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1858 			ifp = NULL;
1859 		else {
1860 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1861 			if (ifp == NULL) {
1862 				error = EADDRNOTAVAIL;
1863 				splx(s);
1864 				break;
1865 			}
1866 		}
1867 		/*
1868 		 * Find the membership in the membership array.
1869 		 */
1870 		imo = ip_findmoptions(inp);
1871 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1872 			if ((ifp == NULL ||
1873 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1874 			     imo->imo_membership[i]->inm_addr.s_addr ==
1875 			     mreq.imr_multiaddr.s_addr)
1876 				break;
1877 		}
1878 		if (i == imo->imo_num_memberships) {
1879 			INP_UNLOCK(inp);
1880 			error = EADDRNOTAVAIL;
1881 			splx(s);
1882 			break;
1883 		}
1884 		/*
1885 		 * Give up the multicast address record to which the
1886 		 * membership points.
1887 		 */
1888 		in_delmulti(imo->imo_membership[i]);
1889 		/*
1890 		 * Remove the gap in the membership array.
1891 		 */
1892 		for (++i; i < imo->imo_num_memberships; ++i)
1893 			imo->imo_membership[i-1] = imo->imo_membership[i];
1894 		--imo->imo_num_memberships;
1895 		INP_UNLOCK(inp);
1896 		splx(s);
1897 		break;
1898 
1899 	default:
1900 		error = EOPNOTSUPP;
1901 		break;
1902 	}
1903 
1904 	return (error);
1905 }
1906 
1907 /*
1908  * Return the IP multicast options in response to user getsockopt().
1909  */
1910 static int
1911 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1912 {
1913 	struct ip_moptions *imo;
1914 	struct in_addr addr;
1915 	struct in_ifaddr *ia;
1916 	int error, optval;
1917 	u_char coptval;
1918 
1919 	INP_LOCK(inp);
1920 	imo = inp->inp_moptions;
1921 
1922 	error = 0;
1923 	switch (sopt->sopt_name) {
1924 	case IP_MULTICAST_VIF:
1925 		if (imo != NULL)
1926 			optval = imo->imo_multicast_vif;
1927 		else
1928 			optval = -1;
1929 		INP_UNLOCK(inp);
1930 		error = sooptcopyout(sopt, &optval, sizeof optval);
1931 		break;
1932 
1933 	case IP_MULTICAST_IF:
1934 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1935 			addr.s_addr = INADDR_ANY;
1936 		else if (imo->imo_multicast_addr.s_addr) {
1937 			/* return the value user has set */
1938 			addr = imo->imo_multicast_addr;
1939 		} else {
1940 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1941 			addr.s_addr = (ia == NULL) ? INADDR_ANY
1942 				: IA_SIN(ia)->sin_addr.s_addr;
1943 		}
1944 		INP_UNLOCK(inp);
1945 		error = sooptcopyout(sopt, &addr, sizeof addr);
1946 		break;
1947 
1948 	case IP_MULTICAST_TTL:
1949 		if (imo == 0)
1950 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1951 		else
1952 			optval = coptval = imo->imo_multicast_ttl;
1953 		INP_UNLOCK(inp);
1954 		if (sopt->sopt_valsize == 1)
1955 			error = sooptcopyout(sopt, &coptval, 1);
1956 		else
1957 			error = sooptcopyout(sopt, &optval, sizeof optval);
1958 		break;
1959 
1960 	case IP_MULTICAST_LOOP:
1961 		if (imo == 0)
1962 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1963 		else
1964 			optval = coptval = imo->imo_multicast_loop;
1965 		INP_UNLOCK(inp);
1966 		if (sopt->sopt_valsize == 1)
1967 			error = sooptcopyout(sopt, &coptval, 1);
1968 		else
1969 			error = sooptcopyout(sopt, &optval, sizeof optval);
1970 		break;
1971 
1972 	default:
1973 		INP_UNLOCK(inp);
1974 		error = ENOPROTOOPT;
1975 		break;
1976 	}
1977 	INP_UNLOCK_ASSERT(inp);
1978 
1979 	return (error);
1980 }
1981 
1982 /*
1983  * Discard the IP multicast options.
1984  */
1985 void
1986 ip_freemoptions(imo)
1987 	register struct ip_moptions *imo;
1988 {
1989 	register int i;
1990 
1991 	if (imo != NULL) {
1992 		for (i = 0; i < imo->imo_num_memberships; ++i)
1993 			in_delmulti(imo->imo_membership[i]);
1994 		free(imo, M_IPMOPTS);
1995 	}
1996 }
1997 
1998 /*
1999  * Routine called from ip_output() to loop back a copy of an IP multicast
2000  * packet to the input queue of a specified interface.  Note that this
2001  * calls the output routine of the loopback "driver", but with an interface
2002  * pointer that might NOT be a loopback interface -- evil, but easier than
2003  * replicating that code here.
2004  */
2005 static void
2006 ip_mloopback(ifp, m, dst, hlen)
2007 	struct ifnet *ifp;
2008 	register struct mbuf *m;
2009 	register struct sockaddr_in *dst;
2010 	int hlen;
2011 {
2012 	register struct ip *ip;
2013 	struct mbuf *copym;
2014 
2015 	copym = m_copy(m, 0, M_COPYALL);
2016 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2017 		copym = m_pullup(copym, hlen);
2018 	if (copym != NULL) {
2019 		/* If needed, compute the checksum and mark it as valid. */
2020 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2021 			in_delayed_cksum(copym);
2022 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2023 			copym->m_pkthdr.csum_flags |=
2024 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2025 			copym->m_pkthdr.csum_data = 0xffff;
2026 		}
2027 		/*
2028 		 * We don't bother to fragment if the IP length is greater
2029 		 * than the interface's MTU.  Can this possibly matter?
2030 		 */
2031 		ip = mtod(copym, struct ip *);
2032 		ip->ip_len = htons(ip->ip_len);
2033 		ip->ip_off = htons(ip->ip_off);
2034 		ip->ip_sum = 0;
2035 		ip->ip_sum = in_cksum(copym, hlen);
2036 		/*
2037 		 * NB:
2038 		 * It's not clear whether there are any lingering
2039 		 * reentrancy problems in other areas which might
2040 		 * be exposed by using ip_input directly (in
2041 		 * particular, everything which modifies the packet
2042 		 * in-place).  Yet another option is using the
2043 		 * protosw directly to deliver the looped back
2044 		 * packet.  For the moment, we'll err on the side
2045 		 * of safety by using if_simloop().
2046 		 */
2047 #if 1 /* XXX */
2048 		if (dst->sin_family != AF_INET) {
2049 			printf("ip_mloopback: bad address family %d\n",
2050 						dst->sin_family);
2051 			dst->sin_family = AF_INET;
2052 		}
2053 #endif
2054 
2055 #ifdef notdef
2056 		copym->m_pkthdr.rcvif = ifp;
2057 		ip_input(copym);
2058 #else
2059 		if_simloop(ifp, copym, dst->sin_family, 0);
2060 #endif
2061 	}
2062 }
2063