1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_ipsec.h" 35 #include "opt_kern_tls.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_ratelimit.h" 38 #include "opt_route.h" 39 #include "opt_rss.h" 40 #include "opt_sctp.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/ktls.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/sdt.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/ucred.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_private.h> 61 #include <net/if_vlan_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/ethernet.h> 64 #include <net/netisr.h> 65 #include <net/pfil.h> 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_fib.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 83 #include <netinet/udp.h> 84 #include <netinet/udp_var.h> 85 86 #if defined(SCTP) || defined(SCTP_SUPPORT) 87 #include <netinet/sctp.h> 88 #include <netinet/sctp_crc32.h> 89 #endif 90 91 #include <netipsec/ipsec_support.h> 92 93 #include <machine/in_cksum.h> 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef MBUF_STRESS_TEST 98 static int mbuf_frag_size = 0; 99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 100 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 101 #endif 102 103 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 104 105 extern int in_mcast_loop; 106 107 static inline int 108 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 109 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 110 { 111 struct m_tag *fwd_tag = NULL; 112 struct mbuf *m; 113 struct in_addr odst; 114 struct ip *ip; 115 int ret; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 if (flags & IP_FORWARDING) 123 ret = pfil_mbuf_fwd(V_inet_pfil_head, mp, ifp, inp); 124 else 125 ret = pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp); 126 127 switch (ret) { 128 case PFIL_DROPPED: 129 *error = EACCES; 130 /* FALLTHROUGH */ 131 case PFIL_CONSUMED: 132 return 1; /* Finished */ 133 case PFIL_PASS: 134 *error = 0; 135 } 136 m = *mp; 137 ip = mtod(m, struct ip *); 138 139 /* See if destination IP address was changed by packet filter. */ 140 if (odst.s_addr != ip->ip_dst.s_addr) { 141 m->m_flags |= M_SKIP_FIREWALL; 142 /* If destination is now ourself drop to ip_input(). */ 143 if (in_localip(ip->ip_dst)) { 144 m->m_flags |= M_FASTFWD_OURS; 145 if (m->m_pkthdr.rcvif == NULL) 146 m->m_pkthdr.rcvif = V_loif; 147 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 148 m->m_pkthdr.csum_flags |= 149 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 150 m->m_pkthdr.csum_data = 0xffff; 151 } 152 m->m_pkthdr.csum_flags |= 153 CSUM_IP_CHECKED | CSUM_IP_VALID; 154 #if defined(SCTP) || defined(SCTP_SUPPORT) 155 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 156 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 157 #endif 158 *error = netisr_queue(NETISR_IP, m); 159 return 1; /* Finished */ 160 } 161 162 bzero(dst, sizeof(*dst)); 163 dst->sin_family = AF_INET; 164 dst->sin_len = sizeof(*dst); 165 dst->sin_addr = ip->ip_dst; 166 167 return -1; /* Reloop */ 168 } 169 /* See if fib was changed by packet filter. */ 170 if ((*fibnum) != M_GETFIB(m)) { 171 m->m_flags |= M_SKIP_FIREWALL; 172 *fibnum = M_GETFIB(m); 173 return -1; /* Reloop for FIB change */ 174 } 175 176 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 177 if (m->m_flags & M_FASTFWD_OURS) { 178 if (m->m_pkthdr.rcvif == NULL) 179 m->m_pkthdr.rcvif = V_loif; 180 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 181 m->m_pkthdr.csum_flags |= 182 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 183 m->m_pkthdr.csum_data = 0xffff; 184 } 185 #if defined(SCTP) || defined(SCTP_SUPPORT) 186 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 187 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 188 #endif 189 m->m_pkthdr.csum_flags |= 190 CSUM_IP_CHECKED | CSUM_IP_VALID; 191 192 *error = netisr_queue(NETISR_IP, m); 193 return 1; /* Finished */ 194 } 195 /* Or forward to some other address? */ 196 if ((m->m_flags & M_IP_NEXTHOP) && 197 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 198 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 199 m->m_flags |= M_SKIP_FIREWALL; 200 m->m_flags &= ~M_IP_NEXTHOP; 201 m_tag_delete(m, fwd_tag); 202 203 return -1; /* Reloop for CHANGE of dst */ 204 } 205 206 return 0; 207 } 208 209 static int 210 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 211 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 212 { 213 #ifdef KERN_TLS 214 struct ktls_session *tls = NULL; 215 #endif 216 struct m_snd_tag *mst; 217 int error; 218 219 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 220 mst = NULL; 221 222 #ifdef KERN_TLS 223 /* 224 * If this is an unencrypted TLS record, save a reference to 225 * the record. This local reference is used to call 226 * ktls_output_eagain after the mbuf has been freed (thus 227 * dropping the mbuf's reference) in if_output. 228 */ 229 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 230 tls = ktls_hold(m->m_next->m_epg_tls); 231 mst = tls->snd_tag; 232 233 /* 234 * If a TLS session doesn't have a valid tag, it must 235 * have had an earlier ifp mismatch, so drop this 236 * packet. 237 */ 238 if (mst == NULL) { 239 m_freem(m); 240 error = EAGAIN; 241 goto done; 242 } 243 /* 244 * Always stamp tags that include NIC ktls. 245 */ 246 stamp_tag = true; 247 } 248 #endif 249 #ifdef RATELIMIT 250 if (inp != NULL && mst == NULL) { 251 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 252 (inp->inp_snd_tag != NULL && 253 inp->inp_snd_tag->ifp != ifp)) 254 in_pcboutput_txrtlmt(inp, ifp, m); 255 256 if (inp->inp_snd_tag != NULL) 257 mst = inp->inp_snd_tag; 258 } 259 #endif 260 if (stamp_tag && mst != NULL) { 261 KASSERT(m->m_pkthdr.rcvif == NULL, 262 ("trying to add a send tag to a forwarded packet")); 263 if (mst->ifp != ifp) { 264 m_freem(m); 265 error = EAGAIN; 266 goto done; 267 } 268 269 /* stamp send tag on mbuf */ 270 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 271 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 272 } 273 274 error = (*ifp->if_output)(ifp, m, gw, ro); 275 276 done: 277 /* Check for route change invalidating send tags. */ 278 #ifdef KERN_TLS 279 if (tls != NULL) { 280 if (error == EAGAIN) 281 error = ktls_output_eagain(inp, tls); 282 ktls_free(tls); 283 } 284 #endif 285 #ifdef RATELIMIT 286 if (error == EAGAIN) 287 in_pcboutput_eagain(inp); 288 #endif 289 return (error); 290 } 291 292 /* rte<>ro_flags translation */ 293 static inline void 294 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 295 { 296 int nh_flags = nh->nh_flags; 297 298 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 299 300 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 301 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 302 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 303 } 304 305 /* 306 * IP output. The packet in mbuf chain m contains a skeletal IP 307 * header (with len, off, ttl, proto, tos, src, dst). 308 * The mbuf chain containing the packet will be freed. 309 * The mbuf opt, if present, will not be freed. 310 * If route ro is present and has ro_rt initialized, route lookup would be 311 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 312 * then result of route lookup is stored in ro->ro_rt. 313 * 314 * In the IP forwarding case, the packet will arrive with options already 315 * inserted, so must have a NULL opt pointer. 316 */ 317 int 318 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 319 struct ip_moptions *imo, struct inpcb *inp) 320 { 321 struct ip *ip; 322 struct ifnet *ifp = NULL; /* keep compiler happy */ 323 struct mbuf *m0; 324 int hlen = sizeof (struct ip); 325 int mtu = 0; 326 int error = 0; 327 int vlan_pcp = -1; 328 struct sockaddr_in *dst; 329 const struct sockaddr *gw; 330 struct in_ifaddr *ia = NULL; 331 struct in_addr src; 332 bool isbroadcast; 333 uint16_t ip_len, ip_off; 334 struct route iproute; 335 uint32_t fibnum; 336 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 337 int no_route_but_check_spd = 0; 338 #endif 339 340 M_ASSERTPKTHDR(m); 341 NET_EPOCH_ASSERT(); 342 343 if (inp != NULL) { 344 INP_LOCK_ASSERT(inp); 345 M_SETFIB(m, inp->inp_inc.inc_fibnum); 346 if ((flags & IP_NODEFAULTFLOWID) == 0) { 347 m->m_pkthdr.flowid = inp->inp_flowid; 348 M_HASHTYPE_SET(m, inp->inp_flowtype); 349 } 350 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 351 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 352 INP_2PCP_SHIFT; 353 #ifdef NUMA 354 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 355 #endif 356 } 357 358 if (opt) { 359 int len = 0; 360 m = ip_insertoptions(m, opt, &len); 361 if (len != 0) 362 hlen = len; /* ip->ip_hl is updated above */ 363 } 364 ip = mtod(m, struct ip *); 365 ip_len = ntohs(ip->ip_len); 366 ip_off = ntohs(ip->ip_off); 367 368 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 369 ip->ip_v = IPVERSION; 370 ip->ip_hl = hlen >> 2; 371 ip_fillid(ip, V_ip_random_id); 372 } else { 373 /* Header already set, fetch hlen from there */ 374 hlen = ip->ip_hl << 2; 375 } 376 if ((flags & IP_FORWARDING) == 0) 377 IPSTAT_INC(ips_localout); 378 379 /* 380 * dst/gw handling: 381 * 382 * gw is readonly but can point either to dst OR rt_gateway, 383 * therefore we need restore gw if we're redoing lookup. 384 */ 385 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 386 if (ro == NULL) { 387 ro = &iproute; 388 bzero(ro, sizeof (*ro)); 389 } 390 dst = (struct sockaddr_in *)&ro->ro_dst; 391 if (ro->ro_nh == NULL) { 392 dst->sin_family = AF_INET; 393 dst->sin_len = sizeof(*dst); 394 dst->sin_addr = ip->ip_dst; 395 } 396 gw = (const struct sockaddr *)dst; 397 again: 398 /* 399 * Validate route against routing table additions; 400 * a better/more specific route might have been added. 401 */ 402 if (inp != NULL && ro->ro_nh != NULL) 403 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 404 /* 405 * If there is a cached route, 406 * check that it is to the same destination 407 * and is still up. If not, free it and try again. 408 * The address family should also be checked in case of sharing the 409 * cache with IPv6. 410 * Also check whether routing cache needs invalidation. 411 */ 412 if (ro->ro_nh != NULL && 413 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 414 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 415 RO_INVALIDATE_CACHE(ro); 416 ia = NULL; 417 /* 418 * If routing to interface only, short circuit routing lookup. 419 * The use of an all-ones broadcast address implies this; an 420 * interface is specified by the broadcast address of an interface, 421 * or the destination address of a ptp interface. 422 */ 423 if (flags & IP_SENDONES) { 424 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 425 M_GETFIB(m)))) == NULL && 426 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 427 M_GETFIB(m)))) == NULL) { 428 IPSTAT_INC(ips_noroute); 429 error = ENETUNREACH; 430 goto bad; 431 } 432 ip->ip_dst.s_addr = INADDR_BROADCAST; 433 dst->sin_addr = ip->ip_dst; 434 ifp = ia->ia_ifp; 435 mtu = ifp->if_mtu; 436 ip->ip_ttl = 1; 437 isbroadcast = true; 438 src = IA_SIN(ia)->sin_addr; 439 } else if (flags & IP_ROUTETOIF) { 440 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 441 M_GETFIB(m)))) == NULL && 442 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 443 M_GETFIB(m)))) == NULL) { 444 IPSTAT_INC(ips_noroute); 445 error = ENETUNREACH; 446 goto bad; 447 } 448 ifp = ia->ia_ifp; 449 mtu = ifp->if_mtu; 450 ip->ip_ttl = 1; 451 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 452 (in_broadcast(ip->ip_dst) || 453 in_ifaddr_broadcast(dst->sin_addr, ia)) : 0; 454 src = IA_SIN(ia)->sin_addr; 455 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 456 imo != NULL && imo->imo_multicast_ifp != NULL) { 457 /* 458 * Bypass the normal routing lookup for multicast 459 * packets if the interface is specified. 460 */ 461 ifp = imo->imo_multicast_ifp; 462 mtu = ifp->if_mtu; 463 IFP_TO_IA(ifp, ia); 464 isbroadcast = false; 465 /* Interface may have no addresses. */ 466 if (ia != NULL) 467 src = IA_SIN(ia)->sin_addr; 468 else 469 src.s_addr = INADDR_ANY; 470 } else if (ro != &iproute) { 471 if (ro->ro_nh == NULL) { 472 /* 473 * We want to do any cloning requested by the link 474 * layer, as this is probably required in all cases 475 * for correct operation (as it is for ARP). 476 */ 477 uint32_t flowid; 478 flowid = m->m_pkthdr.flowid; 479 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 480 NHR_REF, flowid); 481 482 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 483 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 484 /* 485 * There is no route for this packet, but it is 486 * possible that a matching SPD entry exists. 487 */ 488 no_route_but_check_spd = 1; 489 goto sendit; 490 #endif 491 IPSTAT_INC(ips_noroute); 492 error = EHOSTUNREACH; 493 goto bad; 494 } 495 } 496 struct nhop_object *nh = ro->ro_nh; 497 498 ia = ifatoia(nh->nh_ifa); 499 ifp = nh->nh_ifp; 500 counter_u64_add(nh->nh_pksent, 1); 501 rt_update_ro_flags(ro, nh); 502 if (nh->nh_flags & NHF_GATEWAY) 503 gw = &nh->gw_sa; 504 if (nh->nh_flags & NHF_HOST) 505 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 506 else if ((ifp->if_flags & IFF_BROADCAST) && 507 (gw->sa_family == AF_INET)) 508 isbroadcast = in_broadcast(ip->ip_dst) || 509 in_ifaddr_broadcast( 510 ((const struct sockaddr_in *)gw)->sin_addr, ia); 511 else 512 isbroadcast = false; 513 mtu = nh->nh_mtu; 514 src = IA_SIN(ia)->sin_addr; 515 } else { 516 struct nhop_object *nh; 517 518 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 519 m->m_pkthdr.flowid); 520 if (nh == NULL) { 521 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 522 /* 523 * There is no route for this packet, but it is 524 * possible that a matching SPD entry exists. 525 */ 526 no_route_but_check_spd = 1; 527 goto sendit; 528 #endif 529 IPSTAT_INC(ips_noroute); 530 error = EHOSTUNREACH; 531 goto bad; 532 } 533 ifp = nh->nh_ifp; 534 mtu = nh->nh_mtu; 535 rt_update_ro_flags(ro, nh); 536 if (nh->nh_flags & NHF_GATEWAY) 537 gw = &nh->gw_sa; 538 ia = ifatoia(nh->nh_ifa); 539 src = IA_SIN(ia)->sin_addr; 540 isbroadcast = ((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 541 (NHF_HOST | NHF_BROADCAST)) || 542 ((ifp->if_flags & IFF_BROADCAST) && 543 (gw->sa_family == AF_INET) && 544 (in_broadcast(ip->ip_dst) || in_ifaddr_broadcast( 545 ((const struct sockaddr_in *)gw)->sin_addr, ia))); 546 } 547 548 /* Catch a possible divide by zero later. */ 549 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 550 __func__, mtu, ro, 551 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 552 553 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 554 m->m_flags |= M_MCAST; 555 /* 556 * IP destination address is multicast. Make sure "gw" 557 * still points to the address in "ro". (It may have been 558 * changed to point to a gateway address, above.) 559 */ 560 gw = (const struct sockaddr *)dst; 561 /* 562 * See if the caller provided any multicast options 563 */ 564 if (imo != NULL) { 565 ip->ip_ttl = imo->imo_multicast_ttl; 566 if (imo->imo_multicast_vif != -1) 567 ip->ip_src.s_addr = 568 ip_mcast_src ? 569 ip_mcast_src(imo->imo_multicast_vif) : 570 INADDR_ANY; 571 } else 572 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 573 /* 574 * Confirm that the outgoing interface supports multicast. 575 */ 576 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 577 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 578 IPSTAT_INC(ips_noroute); 579 error = ENETUNREACH; 580 goto bad; 581 } 582 } 583 /* 584 * If source address not specified yet, use address 585 * of outgoing interface. 586 */ 587 if (ip->ip_src.s_addr == INADDR_ANY) 588 ip->ip_src = src; 589 590 if ((imo == NULL && in_mcast_loop) || 591 (imo && imo->imo_multicast_loop)) { 592 /* 593 * Loop back multicast datagram if not expressly 594 * forbidden to do so, even if we are not a member 595 * of the group; ip_input() will filter it later, 596 * thus deferring a hash lookup and mutex acquisition 597 * at the expense of a cheap copy using m_copym(). 598 */ 599 ip_mloopback(ifp, m, hlen); 600 } else { 601 /* 602 * If we are acting as a multicast router, perform 603 * multicast forwarding as if the packet had just 604 * arrived on the interface to which we are about 605 * to send. The multicast forwarding function 606 * recursively calls this function, using the 607 * IP_FORWARDING flag to prevent infinite recursion. 608 * 609 * Multicasts that are looped back by ip_mloopback(), 610 * above, will be forwarded by the ip_input() routine, 611 * if necessary. 612 */ 613 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 614 /* 615 * If rsvp daemon is not running, do not 616 * set ip_moptions. This ensures that the packet 617 * is multicast and not just sent down one link 618 * as prescribed by rsvpd. 619 */ 620 if (!V_rsvp_on) 621 imo = NULL; 622 if (ip_mforward && 623 ip_mforward(ip, ifp, m, imo) != 0) { 624 m_freem(m); 625 goto done; 626 } 627 } 628 } 629 630 /* 631 * Multicasts with a time-to-live of zero may be looped- 632 * back, above, but must not be transmitted on a network. 633 * Also, multicasts addressed to the loopback interface 634 * are not sent -- the above call to ip_mloopback() will 635 * loop back a copy. ip_input() will drop the copy if 636 * this host does not belong to the destination group on 637 * the loopback interface. 638 */ 639 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 640 m_freem(m); 641 goto done; 642 } 643 644 goto sendit; 645 } 646 647 /* 648 * If the source address is not specified yet, use the address 649 * of the outoing interface. 650 */ 651 if (ip->ip_src.s_addr == INADDR_ANY) 652 ip->ip_src = src; 653 654 /* 655 * Look for broadcast address and 656 * verify user is allowed to send 657 * such a packet. 658 */ 659 if (isbroadcast) { 660 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 661 error = EADDRNOTAVAIL; 662 goto bad; 663 } 664 if ((flags & IP_ALLOWBROADCAST) == 0) { 665 error = EACCES; 666 goto bad; 667 } 668 /* don't allow broadcast messages to be fragmented */ 669 if (ip_len > mtu) { 670 error = EMSGSIZE; 671 goto bad; 672 } 673 m->m_flags |= M_BCAST; 674 } else { 675 m->m_flags &= ~M_BCAST; 676 } 677 678 sendit: 679 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 680 if (IPSEC_ENABLED(ipv4)) { 681 struct ip ip_hdr; 682 683 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) { 684 if (error == EINPROGRESS) 685 error = 0; 686 goto done; 687 } 688 689 /* Update variables that are affected by ipsec4_output(). */ 690 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr); 691 hlen = ip_hdr.ip_hl << 2; 692 } 693 694 /* 695 * Check if there was a route for this packet; return error if not. 696 */ 697 if (no_route_but_check_spd) { 698 IPSTAT_INC(ips_noroute); 699 error = EHOSTUNREACH; 700 goto bad; 701 } 702 #endif /* IPSEC */ 703 704 /* Jump over all PFIL processing if hooks are not active. */ 705 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 706 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 707 &error)) { 708 case 1: /* Finished */ 709 goto done; 710 711 case 0: /* Continue normally */ 712 ip = mtod(m, struct ip *); 713 ip_len = ntohs(ip->ip_len); 714 break; 715 716 case -1: /* Need to try again */ 717 /* Reset everything for a new round */ 718 if (ro != NULL) { 719 RO_NHFREE(ro); 720 ro->ro_prepend = NULL; 721 } 722 gw = (const struct sockaddr *)dst; 723 ip = mtod(m, struct ip *); 724 goto again; 725 } 726 } 727 728 if (vlan_pcp > -1) 729 EVL_APPLY_PRI(m, vlan_pcp); 730 731 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 732 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 733 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 734 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 735 IPSTAT_INC(ips_badaddr); 736 error = EADDRNOTAVAIL; 737 goto bad; 738 } 739 } 740 741 /* Ensure the packet data is mapped if the interface requires it. */ 742 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 743 struct mbuf *m1; 744 745 error = mb_unmapped_to_ext(m, &m1); 746 if (error != 0) { 747 if (error == EINVAL) { 748 if_printf(ifp, "TLS packet\n"); 749 /* XXXKIB */ 750 } else if (error == ENOMEM) { 751 error = ENOBUFS; 752 } 753 IPSTAT_INC(ips_odropped); 754 goto done; 755 } else { 756 m = m1; 757 } 758 } 759 760 m->m_pkthdr.csum_flags |= CSUM_IP; 761 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 762 in_delayed_cksum(m); 763 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 764 } 765 #if defined(SCTP) || defined(SCTP_SUPPORT) 766 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 767 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 768 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 769 } 770 #endif 771 772 /* 773 * If small enough for interface, or the interface will take 774 * care of the fragmentation for us, we can just send directly. 775 * Note that if_vxlan could have requested TSO even though the outer 776 * frame is UDP. It is correct to not fragment such datagrams and 777 * instead just pass them on to the driver. 778 */ 779 if (ip_len <= mtu || 780 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 781 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 782 ip->ip_sum = 0; 783 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 784 ip->ip_sum = in_cksum(m, hlen); 785 m->m_pkthdr.csum_flags &= ~CSUM_IP; 786 } 787 788 /* 789 * Record statistics for this interface address. 790 * With CSUM_TSO the byte/packet count will be slightly 791 * incorrect because we count the IP+TCP headers only 792 * once instead of for every generated packet. 793 */ 794 if (!(flags & IP_FORWARDING) && ia) { 795 if (m->m_pkthdr.csum_flags & 796 (CSUM_TSO | CSUM_INNER_TSO)) 797 counter_u64_add(ia->ia_ifa.ifa_opackets, 798 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 799 else 800 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 801 802 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 803 } 804 #ifdef MBUF_STRESS_TEST 805 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 806 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 807 #endif 808 /* 809 * Reset layer specific mbuf flags 810 * to avoid confusing lower layers. 811 */ 812 m_clrprotoflags(m); 813 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 814 error = ip_output_send(inp, ifp, m, gw, ro, 815 (flags & IP_NO_SND_TAG_RL) ? false : true); 816 goto done; 817 } 818 819 /* Balk when DF bit is set or the interface didn't support TSO. */ 820 if ((ip_off & IP_DF) || 821 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 822 error = EMSGSIZE; 823 IPSTAT_INC(ips_cantfrag); 824 goto bad; 825 } 826 827 /* 828 * Too large for interface; fragment if possible. If successful, 829 * on return, m will point to a list of packets to be sent. 830 */ 831 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 832 if (error) 833 goto bad; 834 for (; m; m = m0) { 835 m0 = m->m_nextpkt; 836 m->m_nextpkt = 0; 837 if (error == 0) { 838 /* Record statistics for this interface address. */ 839 if (ia != NULL) { 840 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 841 counter_u64_add(ia->ia_ifa.ifa_obytes, 842 m->m_pkthdr.len); 843 } 844 /* 845 * Reset layer specific mbuf flags 846 * to avoid confusing upper layers. 847 */ 848 m_clrprotoflags(m); 849 850 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 851 mtod(m, struct ip *), NULL); 852 error = ip_output_send(inp, ifp, m, gw, ro, true); 853 } else 854 m_freem(m); 855 } 856 857 if (error == 0) 858 IPSTAT_INC(ips_fragmented); 859 860 done: 861 return (error); 862 bad: 863 m_freem(m); 864 goto done; 865 } 866 867 /* 868 * Create a chain of fragments which fit the given mtu. m_frag points to the 869 * mbuf to be fragmented; on return it points to the chain with the fragments. 870 * Return 0 if no error. If error, m_frag may contain a partially built 871 * chain of fragments that should be freed by the caller. 872 * 873 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 874 */ 875 int 876 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 877 u_long if_hwassist_flags) 878 { 879 int error = 0; 880 int hlen = ip->ip_hl << 2; 881 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 882 int off; 883 struct mbuf *m0 = *m_frag; /* the original packet */ 884 int firstlen; 885 struct mbuf **mnext; 886 int nfrags; 887 uint16_t ip_len, ip_off; 888 889 ip_len = ntohs(ip->ip_len); 890 ip_off = ntohs(ip->ip_off); 891 892 /* 893 * Packet shall not have "Don't Fragment" flag and have at least 8 894 * bytes of payload. 895 */ 896 if (__predict_false((ip_off & IP_DF) || len < 8)) { 897 IPSTAT_INC(ips_cantfrag); 898 return (EMSGSIZE); 899 } 900 901 /* 902 * If the interface will not calculate checksums on 903 * fragmented packets, then do it here. 904 */ 905 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 906 in_delayed_cksum(m0); 907 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 908 } 909 #if defined(SCTP) || defined(SCTP_SUPPORT) 910 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 911 sctp_delayed_cksum(m0, hlen); 912 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 913 } 914 #endif 915 if (len > PAGE_SIZE) { 916 /* 917 * Fragment large datagrams such that each segment 918 * contains a multiple of PAGE_SIZE amount of data, 919 * plus headers. This enables a receiver to perform 920 * page-flipping zero-copy optimizations. 921 * 922 * XXX When does this help given that sender and receiver 923 * could have different page sizes, and also mtu could 924 * be less than the receiver's page size ? 925 */ 926 int newlen; 927 928 off = MIN(mtu, m0->m_pkthdr.len); 929 930 /* 931 * firstlen (off - hlen) must be aligned on an 932 * 8-byte boundary 933 */ 934 if (off < hlen) 935 goto smart_frag_failure; 936 off = ((off - hlen) & ~7) + hlen; 937 newlen = (~PAGE_MASK) & mtu; 938 if ((newlen + sizeof (struct ip)) > mtu) { 939 /* we failed, go back the default */ 940 smart_frag_failure: 941 newlen = len; 942 off = hlen + len; 943 } 944 len = newlen; 945 946 } else { 947 off = hlen + len; 948 } 949 950 firstlen = off - hlen; 951 mnext = &m0->m_nextpkt; /* pointer to next packet */ 952 953 /* 954 * Loop through length of segment after first fragment, 955 * make new header and copy data of each part and link onto chain. 956 * Here, m0 is the original packet, m is the fragment being created. 957 * The fragments are linked off the m_nextpkt of the original 958 * packet, which after processing serves as the first fragment. 959 */ 960 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 961 struct ip *mhip; /* ip header on the fragment */ 962 struct mbuf *m; 963 int mhlen = sizeof (struct ip); 964 965 m = m_gethdr(M_NOWAIT, MT_DATA); 966 if (m == NULL) { 967 error = ENOBUFS; 968 IPSTAT_INC(ips_odropped); 969 goto done; 970 } 971 /* 972 * Make sure the complete packet header gets copied 973 * from the originating mbuf to the newly created 974 * mbuf. This also ensures that existing firewall 975 * classification(s), VLAN tags and so on get copied 976 * to the resulting fragmented packet(s): 977 */ 978 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 979 m_free(m); 980 error = ENOBUFS; 981 IPSTAT_INC(ips_odropped); 982 goto done; 983 } 984 /* 985 * In the first mbuf, leave room for the link header, then 986 * copy the original IP header including options. The payload 987 * goes into an additional mbuf chain returned by m_copym(). 988 */ 989 m->m_data += max_linkhdr; 990 mhip = mtod(m, struct ip *); 991 *mhip = *ip; 992 if (hlen > sizeof (struct ip)) { 993 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 994 mhip->ip_v = IPVERSION; 995 mhip->ip_hl = mhlen >> 2; 996 } 997 m->m_len = mhlen; 998 /* XXX do we need to add ip_off below ? */ 999 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1000 if (off + len >= ip_len) 1001 len = ip_len - off; 1002 else 1003 mhip->ip_off |= IP_MF; 1004 mhip->ip_len = htons((u_short)(len + mhlen)); 1005 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1006 if (m->m_next == NULL) { /* copy failed */ 1007 m_free(m); 1008 error = ENOBUFS; /* ??? */ 1009 IPSTAT_INC(ips_odropped); 1010 goto done; 1011 } 1012 m->m_pkthdr.len = mhlen + len; 1013 #ifdef MAC 1014 mac_netinet_fragment(m0, m); 1015 #endif 1016 mhip->ip_off = htons(mhip->ip_off); 1017 mhip->ip_sum = 0; 1018 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1019 mhip->ip_sum = in_cksum(m, mhlen); 1020 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1021 } 1022 *mnext = m; 1023 mnext = &m->m_nextpkt; 1024 } 1025 IPSTAT_ADD(ips_ofragments, nfrags); 1026 1027 /* 1028 * Update first fragment by trimming what's been copied out 1029 * and updating header. 1030 */ 1031 m_adj(m0, hlen + firstlen - ip_len); 1032 m0->m_pkthdr.len = hlen + firstlen; 1033 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1034 ip->ip_off = htons(ip_off | IP_MF); 1035 ip->ip_sum = 0; 1036 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1037 ip->ip_sum = in_cksum(m0, hlen); 1038 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1039 } 1040 1041 done: 1042 *m_frag = m0; 1043 return error; 1044 } 1045 1046 void 1047 in_delayed_cksum(struct mbuf *m) 1048 { 1049 struct ip *ip; 1050 struct udphdr *uh; 1051 uint16_t cklen, csum, offset; 1052 1053 ip = mtod(m, struct ip *); 1054 offset = ip->ip_hl << 2 ; 1055 1056 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1057 /* if udp header is not in the first mbuf copy udplen */ 1058 if (offset + sizeof(struct udphdr) > m->m_len) { 1059 m_copydata(m, offset + offsetof(struct udphdr, 1060 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1061 cklen = ntohs(cklen); 1062 } else { 1063 uh = (struct udphdr *)mtodo(m, offset); 1064 cklen = ntohs(uh->uh_ulen); 1065 } 1066 csum = in_cksum_skip(m, cklen + offset, offset); 1067 if (csum == 0) 1068 csum = 0xffff; 1069 } else { 1070 cklen = ntohs(ip->ip_len); 1071 csum = in_cksum_skip(m, cklen, offset); 1072 } 1073 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1074 1075 if (offset + sizeof(csum) > m->m_len) 1076 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1077 else 1078 *(u_short *)mtodo(m, offset) = csum; 1079 } 1080 1081 /* 1082 * IP socket option processing. 1083 */ 1084 int 1085 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1086 { 1087 struct inpcb *inp = sotoinpcb(so); 1088 int error, optval; 1089 #ifdef RSS 1090 uint32_t rss_bucket; 1091 int retval; 1092 #endif 1093 1094 error = optval = 0; 1095 if (sopt->sopt_level != IPPROTO_IP) { 1096 error = EINVAL; 1097 1098 if (sopt->sopt_level == SOL_SOCKET && 1099 sopt->sopt_dir == SOPT_SET) { 1100 switch (sopt->sopt_name) { 1101 case SO_SETFIB: 1102 error = sooptcopyin(sopt, &optval, 1103 sizeof(optval), sizeof(optval)); 1104 if (error != 0) 1105 break; 1106 1107 INP_WLOCK(inp); 1108 if ((inp->inp_flags & INP_BOUNDFIB) != 0 && 1109 optval != so->so_fibnum) { 1110 INP_WUNLOCK(inp); 1111 error = EISCONN; 1112 break; 1113 } 1114 error = sosetfib(inp->inp_socket, optval); 1115 if (error == 0) 1116 inp->inp_inc.inc_fibnum = optval; 1117 INP_WUNLOCK(inp); 1118 break; 1119 case SO_MAX_PACING_RATE: 1120 #ifdef RATELIMIT 1121 INP_WLOCK(inp); 1122 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1123 INP_WUNLOCK(inp); 1124 error = 0; 1125 #else 1126 error = EOPNOTSUPP; 1127 #endif 1128 break; 1129 default: 1130 break; 1131 } 1132 } 1133 return (error); 1134 } 1135 1136 switch (sopt->sopt_dir) { 1137 case SOPT_SET: 1138 switch (sopt->sopt_name) { 1139 case IP_OPTIONS: 1140 #ifdef notyet 1141 case IP_RETOPTS: 1142 #endif 1143 { 1144 struct mbuf *m; 1145 if (sopt->sopt_valsize > MLEN) { 1146 error = EMSGSIZE; 1147 break; 1148 } 1149 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1150 if (m == NULL) { 1151 error = ENOBUFS; 1152 break; 1153 } 1154 m->m_len = sopt->sopt_valsize; 1155 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1156 m->m_len); 1157 if (error) { 1158 m_free(m); 1159 break; 1160 } 1161 INP_WLOCK(inp); 1162 error = ip_pcbopts(inp, sopt->sopt_name, m); 1163 INP_WUNLOCK(inp); 1164 return (error); 1165 } 1166 1167 case IP_BINDANY: 1168 if (sopt->sopt_td != NULL) { 1169 error = priv_check(sopt->sopt_td, 1170 PRIV_NETINET_BINDANY); 1171 if (error) 1172 break; 1173 } 1174 /* FALLTHROUGH */ 1175 case IP_TOS: 1176 case IP_TTL: 1177 case IP_MINTTL: 1178 case IP_RECVOPTS: 1179 case IP_RECVRETOPTS: 1180 case IP_ORIGDSTADDR: 1181 case IP_RECVDSTADDR: 1182 case IP_RECVTTL: 1183 case IP_RECVIF: 1184 case IP_ONESBCAST: 1185 case IP_DONTFRAG: 1186 case IP_RECVTOS: 1187 case IP_RECVFLOWID: 1188 #ifdef RSS 1189 case IP_RECVRSSBUCKETID: 1190 #endif 1191 case IP_VLAN_PCP: 1192 error = sooptcopyin(sopt, &optval, sizeof optval, 1193 sizeof optval); 1194 if (error) 1195 break; 1196 1197 switch (sopt->sopt_name) { 1198 case IP_TOS: 1199 inp->inp_ip_tos = optval; 1200 break; 1201 1202 case IP_TTL: 1203 inp->inp_ip_ttl = optval; 1204 break; 1205 1206 case IP_MINTTL: 1207 if (optval >= 0 && optval <= MAXTTL) 1208 inp->inp_ip_minttl = optval; 1209 else 1210 error = EINVAL; 1211 break; 1212 1213 #define OPTSET(bit) do { \ 1214 INP_WLOCK(inp); \ 1215 if (optval) \ 1216 inp->inp_flags |= bit; \ 1217 else \ 1218 inp->inp_flags &= ~bit; \ 1219 INP_WUNLOCK(inp); \ 1220 } while (0) 1221 1222 #define OPTSET2(bit, val) do { \ 1223 INP_WLOCK(inp); \ 1224 if (val) \ 1225 inp->inp_flags2 |= bit; \ 1226 else \ 1227 inp->inp_flags2 &= ~bit; \ 1228 INP_WUNLOCK(inp); \ 1229 } while (0) 1230 1231 case IP_RECVOPTS: 1232 OPTSET(INP_RECVOPTS); 1233 break; 1234 1235 case IP_RECVRETOPTS: 1236 OPTSET(INP_RECVRETOPTS); 1237 break; 1238 1239 case IP_RECVDSTADDR: 1240 OPTSET(INP_RECVDSTADDR); 1241 break; 1242 1243 case IP_ORIGDSTADDR: 1244 OPTSET2(INP_ORIGDSTADDR, optval); 1245 break; 1246 1247 case IP_RECVTTL: 1248 OPTSET(INP_RECVTTL); 1249 break; 1250 1251 case IP_RECVIF: 1252 OPTSET(INP_RECVIF); 1253 break; 1254 1255 case IP_ONESBCAST: 1256 OPTSET(INP_ONESBCAST); 1257 break; 1258 case IP_DONTFRAG: 1259 OPTSET(INP_DONTFRAG); 1260 break; 1261 case IP_BINDANY: 1262 OPTSET(INP_BINDANY); 1263 break; 1264 case IP_RECVTOS: 1265 OPTSET(INP_RECVTOS); 1266 break; 1267 case IP_RECVFLOWID: 1268 OPTSET2(INP_RECVFLOWID, optval); 1269 break; 1270 #ifdef RSS 1271 case IP_RECVRSSBUCKETID: 1272 OPTSET2(INP_RECVRSSBUCKETID, optval); 1273 break; 1274 #endif 1275 case IP_VLAN_PCP: 1276 if ((optval >= -1) && (optval <= 1277 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1278 if (optval == -1) { 1279 INP_WLOCK(inp); 1280 inp->inp_flags2 &= 1281 ~(INP_2PCP_SET | 1282 INP_2PCP_MASK); 1283 INP_WUNLOCK(inp); 1284 } else { 1285 INP_WLOCK(inp); 1286 inp->inp_flags2 |= 1287 INP_2PCP_SET; 1288 inp->inp_flags2 &= 1289 ~INP_2PCP_MASK; 1290 inp->inp_flags2 |= 1291 optval << INP_2PCP_SHIFT; 1292 INP_WUNLOCK(inp); 1293 } 1294 } else 1295 error = EINVAL; 1296 break; 1297 } 1298 break; 1299 #undef OPTSET 1300 #undef OPTSET2 1301 1302 /* 1303 * Multicast socket options are processed by the in_mcast 1304 * module. 1305 */ 1306 case IP_MULTICAST_IF: 1307 case IP_MULTICAST_VIF: 1308 case IP_MULTICAST_TTL: 1309 case IP_MULTICAST_LOOP: 1310 case IP_ADD_MEMBERSHIP: 1311 case IP_DROP_MEMBERSHIP: 1312 case IP_ADD_SOURCE_MEMBERSHIP: 1313 case IP_DROP_SOURCE_MEMBERSHIP: 1314 case IP_BLOCK_SOURCE: 1315 case IP_UNBLOCK_SOURCE: 1316 case IP_MSFILTER: 1317 case MCAST_JOIN_GROUP: 1318 case MCAST_LEAVE_GROUP: 1319 case MCAST_JOIN_SOURCE_GROUP: 1320 case MCAST_LEAVE_SOURCE_GROUP: 1321 case MCAST_BLOCK_SOURCE: 1322 case MCAST_UNBLOCK_SOURCE: 1323 error = inp_setmoptions(inp, sopt); 1324 break; 1325 1326 case IP_PORTRANGE: 1327 error = sooptcopyin(sopt, &optval, sizeof optval, 1328 sizeof optval); 1329 if (error) 1330 break; 1331 1332 INP_WLOCK(inp); 1333 switch (optval) { 1334 case IP_PORTRANGE_DEFAULT: 1335 inp->inp_flags &= ~(INP_LOWPORT); 1336 inp->inp_flags &= ~(INP_HIGHPORT); 1337 break; 1338 1339 case IP_PORTRANGE_HIGH: 1340 inp->inp_flags &= ~(INP_LOWPORT); 1341 inp->inp_flags |= INP_HIGHPORT; 1342 break; 1343 1344 case IP_PORTRANGE_LOW: 1345 inp->inp_flags &= ~(INP_HIGHPORT); 1346 inp->inp_flags |= INP_LOWPORT; 1347 break; 1348 1349 default: 1350 error = EINVAL; 1351 break; 1352 } 1353 INP_WUNLOCK(inp); 1354 break; 1355 1356 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1357 case IP_IPSEC_POLICY: 1358 if (IPSEC_ENABLED(ipv4)) { 1359 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1360 break; 1361 } 1362 /* FALLTHROUGH */ 1363 #endif /* IPSEC */ 1364 1365 default: 1366 error = ENOPROTOOPT; 1367 break; 1368 } 1369 break; 1370 1371 case SOPT_GET: 1372 switch (sopt->sopt_name) { 1373 case IP_OPTIONS: 1374 case IP_RETOPTS: 1375 INP_RLOCK(inp); 1376 if (inp->inp_options) { 1377 struct mbuf *options; 1378 1379 options = m_copym(inp->inp_options, 0, 1380 M_COPYALL, M_NOWAIT); 1381 INP_RUNLOCK(inp); 1382 if (options != NULL) { 1383 error = sooptcopyout(sopt, 1384 mtod(options, char *), 1385 options->m_len); 1386 m_freem(options); 1387 } else 1388 error = ENOMEM; 1389 } else { 1390 INP_RUNLOCK(inp); 1391 sopt->sopt_valsize = 0; 1392 } 1393 break; 1394 1395 case IP_TOS: 1396 case IP_TTL: 1397 case IP_MINTTL: 1398 case IP_RECVOPTS: 1399 case IP_RECVRETOPTS: 1400 case IP_ORIGDSTADDR: 1401 case IP_RECVDSTADDR: 1402 case IP_RECVTTL: 1403 case IP_RECVIF: 1404 case IP_PORTRANGE: 1405 case IP_ONESBCAST: 1406 case IP_DONTFRAG: 1407 case IP_BINDANY: 1408 case IP_RECVTOS: 1409 case IP_FLOWID: 1410 case IP_FLOWTYPE: 1411 case IP_RECVFLOWID: 1412 #ifdef RSS 1413 case IP_RSSBUCKETID: 1414 case IP_RECVRSSBUCKETID: 1415 #endif 1416 case IP_VLAN_PCP: 1417 switch (sopt->sopt_name) { 1418 case IP_TOS: 1419 optval = inp->inp_ip_tos; 1420 break; 1421 1422 case IP_TTL: 1423 optval = inp->inp_ip_ttl; 1424 break; 1425 1426 case IP_MINTTL: 1427 optval = inp->inp_ip_minttl; 1428 break; 1429 1430 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1431 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1432 1433 case IP_RECVOPTS: 1434 optval = OPTBIT(INP_RECVOPTS); 1435 break; 1436 1437 case IP_RECVRETOPTS: 1438 optval = OPTBIT(INP_RECVRETOPTS); 1439 break; 1440 1441 case IP_RECVDSTADDR: 1442 optval = OPTBIT(INP_RECVDSTADDR); 1443 break; 1444 1445 case IP_ORIGDSTADDR: 1446 optval = OPTBIT2(INP_ORIGDSTADDR); 1447 break; 1448 1449 case IP_RECVTTL: 1450 optval = OPTBIT(INP_RECVTTL); 1451 break; 1452 1453 case IP_RECVIF: 1454 optval = OPTBIT(INP_RECVIF); 1455 break; 1456 1457 case IP_PORTRANGE: 1458 if (inp->inp_flags & INP_HIGHPORT) 1459 optval = IP_PORTRANGE_HIGH; 1460 else if (inp->inp_flags & INP_LOWPORT) 1461 optval = IP_PORTRANGE_LOW; 1462 else 1463 optval = 0; 1464 break; 1465 1466 case IP_ONESBCAST: 1467 optval = OPTBIT(INP_ONESBCAST); 1468 break; 1469 case IP_DONTFRAG: 1470 optval = OPTBIT(INP_DONTFRAG); 1471 break; 1472 case IP_BINDANY: 1473 optval = OPTBIT(INP_BINDANY); 1474 break; 1475 case IP_RECVTOS: 1476 optval = OPTBIT(INP_RECVTOS); 1477 break; 1478 case IP_FLOWID: 1479 optval = inp->inp_flowid; 1480 break; 1481 case IP_FLOWTYPE: 1482 optval = inp->inp_flowtype; 1483 break; 1484 case IP_RECVFLOWID: 1485 optval = OPTBIT2(INP_RECVFLOWID); 1486 break; 1487 #ifdef RSS 1488 case IP_RSSBUCKETID: 1489 retval = rss_hash2bucket(inp->inp_flowid, 1490 inp->inp_flowtype, 1491 &rss_bucket); 1492 if (retval == 0) 1493 optval = rss_bucket; 1494 else 1495 error = EINVAL; 1496 break; 1497 case IP_RECVRSSBUCKETID: 1498 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1499 break; 1500 #endif 1501 case IP_VLAN_PCP: 1502 if (OPTBIT2(INP_2PCP_SET)) { 1503 optval = (inp->inp_flags2 & 1504 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1505 } else { 1506 optval = -1; 1507 } 1508 break; 1509 } 1510 error = sooptcopyout(sopt, &optval, sizeof optval); 1511 break; 1512 1513 /* 1514 * Multicast socket options are processed by the in_mcast 1515 * module. 1516 */ 1517 case IP_MULTICAST_IF: 1518 case IP_MULTICAST_VIF: 1519 case IP_MULTICAST_TTL: 1520 case IP_MULTICAST_LOOP: 1521 case IP_MSFILTER: 1522 error = inp_getmoptions(inp, sopt); 1523 break; 1524 1525 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1526 case IP_IPSEC_POLICY: 1527 if (IPSEC_ENABLED(ipv4)) { 1528 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1529 break; 1530 } 1531 /* FALLTHROUGH */ 1532 #endif /* IPSEC */ 1533 1534 default: 1535 error = ENOPROTOOPT; 1536 break; 1537 } 1538 break; 1539 } 1540 return (error); 1541 } 1542 1543 /* 1544 * Routine called from ip_output() to loop back a copy of an IP multicast 1545 * packet to the input queue of a specified interface. Note that this 1546 * calls the output routine of the loopback "driver", but with an interface 1547 * pointer that might NOT be a loopback interface -- evil, but easier than 1548 * replicating that code here. 1549 */ 1550 static void 1551 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1552 { 1553 struct ip *ip; 1554 struct mbuf *copym; 1555 1556 /* 1557 * Make a deep copy of the packet because we're going to 1558 * modify the pack in order to generate checksums. 1559 */ 1560 copym = m_dup(m, M_NOWAIT); 1561 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1562 copym = m_pullup(copym, hlen); 1563 if (copym != NULL) { 1564 /* If needed, compute the checksum and mark it as valid. */ 1565 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1566 in_delayed_cksum(copym); 1567 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1568 copym->m_pkthdr.csum_flags |= 1569 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1570 copym->m_pkthdr.csum_data = 0xffff; 1571 } 1572 /* 1573 * We don't bother to fragment if the IP length is greater 1574 * than the interface's MTU. Can this possibly matter? 1575 */ 1576 ip = mtod(copym, struct ip *); 1577 ip->ip_sum = 0; 1578 ip->ip_sum = in_cksum(copym, hlen); 1579 if_simloop(ifp, copym, AF_INET, 0); 1580 } 1581 } 1582