1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/sysctl.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_vlan_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/ethernet.h> 68 #include <net/netisr.h> 69 #include <net/pfil.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 #include <net/vnet.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/ip.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 #include <netinet/ip_mroute.h> 87 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #if defined(SCTP) || defined(SCTP_SUPPORT) 92 #include <netinet/sctp.h> 93 #include <netinet/sctp_crc32.h> 94 #endif 95 96 #include <netipsec/ipsec_support.h> 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #ifdef MBUF_STRESS_TEST 103 static int mbuf_frag_size = 0; 104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 105 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 106 #endif 107 108 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 109 110 extern int in_mcast_loop; 111 extern struct protosw inetsw[]; 112 113 static inline int 114 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 115 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 116 { 117 struct m_tag *fwd_tag = NULL; 118 struct mbuf *m; 119 struct in_addr odst; 120 struct ip *ip; 121 int pflags = PFIL_OUT; 122 123 if (flags & IP_FORWARDING) 124 pflags |= PFIL_FWD; 125 126 m = *mp; 127 ip = mtod(m, struct ip *); 128 129 /* Run through list of hooks for output packets. */ 130 odst.s_addr = ip->ip_dst.s_addr; 131 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 132 case PFIL_DROPPED: 133 *error = EACCES; 134 /* FALLTHROUGH */ 135 case PFIL_CONSUMED: 136 return 1; /* Finished */ 137 case PFIL_PASS: 138 *error = 0; 139 } 140 m = *mp; 141 ip = mtod(m, struct ip *); 142 143 /* See if destination IP address was changed by packet filter. */ 144 if (odst.s_addr != ip->ip_dst.s_addr) { 145 m->m_flags |= M_SKIP_FIREWALL; 146 /* If destination is now ourself drop to ip_input(). */ 147 if (in_localip(ip->ip_dst)) { 148 m->m_flags |= M_FASTFWD_OURS; 149 if (m->m_pkthdr.rcvif == NULL) 150 m->m_pkthdr.rcvif = V_loif; 151 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 152 m->m_pkthdr.csum_flags |= 153 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 154 m->m_pkthdr.csum_data = 0xffff; 155 } 156 m->m_pkthdr.csum_flags |= 157 CSUM_IP_CHECKED | CSUM_IP_VALID; 158 #if defined(SCTP) || defined(SCTP_SUPPORT) 159 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 160 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 161 #endif 162 *error = netisr_queue(NETISR_IP, m); 163 return 1; /* Finished */ 164 } 165 166 bzero(dst, sizeof(*dst)); 167 dst->sin_family = AF_INET; 168 dst->sin_len = sizeof(*dst); 169 dst->sin_addr = ip->ip_dst; 170 171 return -1; /* Reloop */ 172 } 173 /* See if fib was changed by packet filter. */ 174 if ((*fibnum) != M_GETFIB(m)) { 175 m->m_flags |= M_SKIP_FIREWALL; 176 *fibnum = M_GETFIB(m); 177 return -1; /* Reloop for FIB change */ 178 } 179 180 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 181 if (m->m_flags & M_FASTFWD_OURS) { 182 if (m->m_pkthdr.rcvif == NULL) 183 m->m_pkthdr.rcvif = V_loif; 184 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 185 m->m_pkthdr.csum_flags |= 186 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 187 m->m_pkthdr.csum_data = 0xffff; 188 } 189 #if defined(SCTP) || defined(SCTP_SUPPORT) 190 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 191 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 192 #endif 193 m->m_pkthdr.csum_flags |= 194 CSUM_IP_CHECKED | CSUM_IP_VALID; 195 196 *error = netisr_queue(NETISR_IP, m); 197 return 1; /* Finished */ 198 } 199 /* Or forward to some other address? */ 200 if ((m->m_flags & M_IP_NEXTHOP) && 201 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 202 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 203 m->m_flags |= M_SKIP_FIREWALL; 204 m->m_flags &= ~M_IP_NEXTHOP; 205 m_tag_delete(m, fwd_tag); 206 207 return -1; /* Reloop for CHANGE of dst */ 208 } 209 210 return 0; 211 } 212 213 static int 214 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 215 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 216 { 217 #ifdef KERN_TLS 218 struct ktls_session *tls = NULL; 219 #endif 220 struct m_snd_tag *mst; 221 int error; 222 223 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 224 mst = NULL; 225 226 #ifdef KERN_TLS 227 /* 228 * If this is an unencrypted TLS record, save a reference to 229 * the record. This local reference is used to call 230 * ktls_output_eagain after the mbuf has been freed (thus 231 * dropping the mbuf's reference) in if_output. 232 */ 233 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 234 tls = ktls_hold(m->m_next->m_epg_tls); 235 mst = tls->snd_tag; 236 237 /* 238 * If a TLS session doesn't have a valid tag, it must 239 * have had an earlier ifp mismatch, so drop this 240 * packet. 241 */ 242 if (mst == NULL) { 243 error = EAGAIN; 244 goto done; 245 } 246 /* 247 * Always stamp tags that include NIC ktls. 248 */ 249 stamp_tag = true; 250 } 251 #endif 252 #ifdef RATELIMIT 253 if (inp != NULL && mst == NULL) { 254 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 255 (inp->inp_snd_tag != NULL && 256 inp->inp_snd_tag->ifp != ifp)) 257 in_pcboutput_txrtlmt(inp, ifp, m); 258 259 if (inp->inp_snd_tag != NULL) 260 mst = inp->inp_snd_tag; 261 } 262 #endif 263 if (stamp_tag && mst != NULL) { 264 KASSERT(m->m_pkthdr.rcvif == NULL, 265 ("trying to add a send tag to a forwarded packet")); 266 if (mst->ifp != ifp) { 267 error = EAGAIN; 268 goto done; 269 } 270 271 /* stamp send tag on mbuf */ 272 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 273 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 274 } 275 276 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 277 278 done: 279 /* Check for route change invalidating send tags. */ 280 #ifdef KERN_TLS 281 if (tls != NULL) { 282 if (error == EAGAIN) 283 error = ktls_output_eagain(inp, tls); 284 ktls_free(tls); 285 } 286 #endif 287 #ifdef RATELIMIT 288 if (error == EAGAIN) 289 in_pcboutput_eagain(inp); 290 #endif 291 return (error); 292 } 293 294 /* rte<>ro_flags translation */ 295 static inline void 296 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 297 { 298 int nh_flags = nh->nh_flags; 299 300 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 301 302 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 303 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 304 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 305 } 306 307 /* 308 * IP output. The packet in mbuf chain m contains a skeletal IP 309 * header (with len, off, ttl, proto, tos, src, dst). 310 * The mbuf chain containing the packet will be freed. 311 * The mbuf opt, if present, will not be freed. 312 * If route ro is present and has ro_rt initialized, route lookup would be 313 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 314 * then result of route lookup is stored in ro->ro_rt. 315 * 316 * In the IP forwarding case, the packet will arrive with options already 317 * inserted, so must have a NULL opt pointer. 318 */ 319 int 320 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 321 struct ip_moptions *imo, struct inpcb *inp) 322 { 323 MROUTER_RLOCK_TRACKER; 324 struct rm_priotracker in_ifa_tracker; 325 struct ip *ip; 326 struct ifnet *ifp = NULL; /* keep compiler happy */ 327 struct mbuf *m0; 328 int hlen = sizeof (struct ip); 329 int mtu = 0; 330 int error = 0; 331 int vlan_pcp = -1; 332 struct sockaddr_in *dst, sin; 333 const struct sockaddr_in *gw; 334 struct in_ifaddr *ia = NULL; 335 struct in_addr src; 336 int isbroadcast; 337 uint16_t ip_len, ip_off; 338 uint32_t fibnum; 339 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 340 int no_route_but_check_spd = 0; 341 #endif 342 343 M_ASSERTPKTHDR(m); 344 NET_EPOCH_ASSERT(); 345 346 if (inp != NULL) { 347 INP_LOCK_ASSERT(inp); 348 M_SETFIB(m, inp->inp_inc.inc_fibnum); 349 if ((flags & IP_NODEFAULTFLOWID) == 0) { 350 m->m_pkthdr.flowid = inp->inp_flowid; 351 M_HASHTYPE_SET(m, inp->inp_flowtype); 352 } 353 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 354 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 355 INP_2PCP_SHIFT; 356 #ifdef NUMA 357 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 358 #endif 359 } 360 361 if (opt) { 362 int len = 0; 363 m = ip_insertoptions(m, opt, &len); 364 if (len != 0) 365 hlen = len; /* ip->ip_hl is updated above */ 366 } 367 ip = mtod(m, struct ip *); 368 ip_len = ntohs(ip->ip_len); 369 ip_off = ntohs(ip->ip_off); 370 371 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 372 ip->ip_v = IPVERSION; 373 ip->ip_hl = hlen >> 2; 374 ip_fillid(ip); 375 } else { 376 /* Header already set, fetch hlen from there */ 377 hlen = ip->ip_hl << 2; 378 } 379 if ((flags & IP_FORWARDING) == 0) 380 IPSTAT_INC(ips_localout); 381 382 /* 383 * dst/gw handling: 384 * 385 * gw is readonly but can point either to dst OR rt_gateway, 386 * therefore we need restore gw if we're redoing lookup. 387 */ 388 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 389 if (ro != NULL) 390 dst = (struct sockaddr_in *)&ro->ro_dst; 391 else 392 dst = &sin; 393 if (ro == NULL || ro->ro_nh == NULL) { 394 bzero(dst, sizeof(*dst)); 395 dst->sin_family = AF_INET; 396 dst->sin_len = sizeof(*dst); 397 dst->sin_addr = ip->ip_dst; 398 } 399 gw = dst; 400 again: 401 /* 402 * Validate route against routing table additions; 403 * a better/more specific route might have been added. 404 */ 405 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 406 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 407 /* 408 * If there is a cached route, 409 * check that it is to the same destination 410 * and is still up. If not, free it and try again. 411 * The address family should also be checked in case of sharing the 412 * cache with IPv6. 413 * Also check whether routing cache needs invalidation. 414 */ 415 if (ro != NULL && ro->ro_nh != NULL && 416 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 417 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 418 RO_INVALIDATE_CACHE(ro); 419 ia = NULL; 420 /* 421 * If routing to interface only, short circuit routing lookup. 422 * The use of an all-ones broadcast address implies this; an 423 * interface is specified by the broadcast address of an interface, 424 * or the destination address of a ptp interface. 425 */ 426 if (flags & IP_SENDONES) { 427 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 428 M_GETFIB(m)))) == NULL && 429 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 430 M_GETFIB(m)))) == NULL) { 431 IPSTAT_INC(ips_noroute); 432 error = ENETUNREACH; 433 goto bad; 434 } 435 ip->ip_dst.s_addr = INADDR_BROADCAST; 436 dst->sin_addr = ip->ip_dst; 437 ifp = ia->ia_ifp; 438 mtu = ifp->if_mtu; 439 ip->ip_ttl = 1; 440 isbroadcast = 1; 441 src = IA_SIN(ia)->sin_addr; 442 } else if (flags & IP_ROUTETOIF) { 443 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 444 M_GETFIB(m)))) == NULL && 445 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 446 M_GETFIB(m)))) == NULL) { 447 IPSTAT_INC(ips_noroute); 448 error = ENETUNREACH; 449 goto bad; 450 } 451 ifp = ia->ia_ifp; 452 mtu = ifp->if_mtu; 453 ip->ip_ttl = 1; 454 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 455 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 456 src = IA_SIN(ia)->sin_addr; 457 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 458 imo != NULL && imo->imo_multicast_ifp != NULL) { 459 /* 460 * Bypass the normal routing lookup for multicast 461 * packets if the interface is specified. 462 */ 463 ifp = imo->imo_multicast_ifp; 464 mtu = ifp->if_mtu; 465 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 466 isbroadcast = 0; /* fool gcc */ 467 /* Interface may have no addresses. */ 468 if (ia != NULL) 469 src = IA_SIN(ia)->sin_addr; 470 else 471 src.s_addr = INADDR_ANY; 472 } else if (ro != NULL) { 473 if (ro->ro_nh == NULL) { 474 /* 475 * We want to do any cloning requested by the link 476 * layer, as this is probably required in all cases 477 * for correct operation (as it is for ARP). 478 */ 479 uint32_t flowid; 480 flowid = m->m_pkthdr.flowid; 481 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 482 NHR_REF, flowid); 483 484 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 485 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 486 /* 487 * There is no route for this packet, but it is 488 * possible that a matching SPD entry exists. 489 */ 490 no_route_but_check_spd = 1; 491 goto sendit; 492 #endif 493 IPSTAT_INC(ips_noroute); 494 error = EHOSTUNREACH; 495 goto bad; 496 } 497 } 498 struct nhop_object *nh = ro->ro_nh; 499 500 ia = ifatoia(nh->nh_ifa); 501 ifp = nh->nh_ifp; 502 counter_u64_add(nh->nh_pksent, 1); 503 rt_update_ro_flags(ro, nh); 504 if (nh->nh_flags & NHF_GATEWAY) 505 gw = &nh->gw4_sa; 506 if (nh->nh_flags & NHF_HOST) 507 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 508 else if (ifp->if_flags & IFF_BROADCAST) 509 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 510 else 511 isbroadcast = 0; 512 mtu = nh->nh_mtu; 513 src = IA_SIN(ia)->sin_addr; 514 } else { 515 struct nhop_object *nh; 516 517 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 518 m->m_pkthdr.flowid); 519 if (nh == NULL) { 520 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 521 /* 522 * There is no route for this packet, but it is 523 * possible that a matching SPD entry exists. 524 */ 525 no_route_but_check_spd = 1; 526 goto sendit; 527 #endif 528 IPSTAT_INC(ips_noroute); 529 error = EHOSTUNREACH; 530 goto bad; 531 } 532 ifp = nh->nh_ifp; 533 mtu = nh->nh_mtu; 534 /* 535 * We are rewriting here dst to be gw actually, contradicting 536 * comment at the beginning of the function. However, in this 537 * case we are always dealing with on stack dst. 538 * In case if pfil(9) sends us back to beginning of the 539 * function, the dst would be rewritten by ip_output_pfil(). 540 */ 541 MPASS(dst == &sin); 542 if (nh->nh_flags & NHF_GATEWAY) 543 dst->sin_addr = nh->gw4_sa.sin_addr; 544 ia = ifatoia(nh->nh_ifa); 545 src = IA_SIN(ia)->sin_addr; 546 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 547 (NHF_HOST | NHF_BROADCAST)) || 548 ((ifp->if_flags & IFF_BROADCAST) && 549 in_ifaddr_broadcast(dst->sin_addr, ia))); 550 } 551 552 /* Catch a possible divide by zero later. */ 553 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 554 __func__, mtu, ro, 555 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 556 557 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 558 m->m_flags |= M_MCAST; 559 /* 560 * IP destination address is multicast. Make sure "gw" 561 * still points to the address in "ro". (It may have been 562 * changed to point to a gateway address, above.) 563 */ 564 gw = dst; 565 /* 566 * See if the caller provided any multicast options 567 */ 568 if (imo != NULL) { 569 ip->ip_ttl = imo->imo_multicast_ttl; 570 if (imo->imo_multicast_vif != -1) 571 ip->ip_src.s_addr = 572 ip_mcast_src ? 573 ip_mcast_src(imo->imo_multicast_vif) : 574 INADDR_ANY; 575 } else 576 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 577 /* 578 * Confirm that the outgoing interface supports multicast. 579 */ 580 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 581 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 582 IPSTAT_INC(ips_noroute); 583 error = ENETUNREACH; 584 goto bad; 585 } 586 } 587 /* 588 * If source address not specified yet, use address 589 * of outgoing interface. 590 */ 591 if (ip->ip_src.s_addr == INADDR_ANY) 592 ip->ip_src = src; 593 594 if ((imo == NULL && in_mcast_loop) || 595 (imo && imo->imo_multicast_loop)) { 596 /* 597 * Loop back multicast datagram if not expressly 598 * forbidden to do so, even if we are not a member 599 * of the group; ip_input() will filter it later, 600 * thus deferring a hash lookup and mutex acquisition 601 * at the expense of a cheap copy using m_copym(). 602 */ 603 ip_mloopback(ifp, m, hlen); 604 } else { 605 /* 606 * If we are acting as a multicast router, perform 607 * multicast forwarding as if the packet had just 608 * arrived on the interface to which we are about 609 * to send. The multicast forwarding function 610 * recursively calls this function, using the 611 * IP_FORWARDING flag to prevent infinite recursion. 612 * 613 * Multicasts that are looped back by ip_mloopback(), 614 * above, will be forwarded by the ip_input() routine, 615 * if necessary. 616 */ 617 MROUTER_RLOCK(); 618 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 619 /* 620 * If rsvp daemon is not running, do not 621 * set ip_moptions. This ensures that the packet 622 * is multicast and not just sent down one link 623 * as prescribed by rsvpd. 624 */ 625 if (!V_rsvp_on) 626 imo = NULL; 627 if (ip_mforward && 628 ip_mforward(ip, ifp, m, imo) != 0) { 629 MROUTER_RUNLOCK(); 630 m_freem(m); 631 goto done; 632 } 633 } 634 MROUTER_RUNLOCK(); 635 } 636 637 /* 638 * Multicasts with a time-to-live of zero may be looped- 639 * back, above, but must not be transmitted on a network. 640 * Also, multicasts addressed to the loopback interface 641 * are not sent -- the above call to ip_mloopback() will 642 * loop back a copy. ip_input() will drop the copy if 643 * this host does not belong to the destination group on 644 * the loopback interface. 645 */ 646 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 647 m_freem(m); 648 goto done; 649 } 650 651 goto sendit; 652 } 653 654 /* 655 * If the source address is not specified yet, use the address 656 * of the outoing interface. 657 */ 658 if (ip->ip_src.s_addr == INADDR_ANY) 659 ip->ip_src = src; 660 661 /* 662 * Look for broadcast address and 663 * verify user is allowed to send 664 * such a packet. 665 */ 666 if (isbroadcast) { 667 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 668 error = EADDRNOTAVAIL; 669 goto bad; 670 } 671 if ((flags & IP_ALLOWBROADCAST) == 0) { 672 error = EACCES; 673 goto bad; 674 } 675 /* don't allow broadcast messages to be fragmented */ 676 if (ip_len > mtu) { 677 error = EMSGSIZE; 678 goto bad; 679 } 680 m->m_flags |= M_BCAST; 681 } else { 682 m->m_flags &= ~M_BCAST; 683 } 684 685 sendit: 686 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 687 if (IPSEC_ENABLED(ipv4)) { 688 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 689 if (error == EINPROGRESS) 690 error = 0; 691 goto done; 692 } 693 } 694 /* 695 * Check if there was a route for this packet; return error if not. 696 */ 697 if (no_route_but_check_spd) { 698 IPSTAT_INC(ips_noroute); 699 error = EHOSTUNREACH; 700 goto bad; 701 } 702 /* Update variables that are affected by ipsec4_output(). */ 703 ip = mtod(m, struct ip *); 704 hlen = ip->ip_hl << 2; 705 #endif /* IPSEC */ 706 707 /* Jump over all PFIL processing if hooks are not active. */ 708 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 709 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 710 &error)) { 711 case 1: /* Finished */ 712 goto done; 713 714 case 0: /* Continue normally */ 715 ip = mtod(m, struct ip *); 716 break; 717 718 case -1: /* Need to try again */ 719 /* Reset everything for a new round */ 720 if (ro != NULL) { 721 RO_NHFREE(ro); 722 ro->ro_prepend = NULL; 723 } 724 gw = dst; 725 ip = mtod(m, struct ip *); 726 goto again; 727 } 728 } 729 730 if (vlan_pcp > -1) 731 EVL_APPLY_PRI(m, vlan_pcp); 732 733 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 734 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 735 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 736 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 737 IPSTAT_INC(ips_badaddr); 738 error = EADDRNOTAVAIL; 739 goto bad; 740 } 741 } 742 743 m->m_pkthdr.csum_flags |= CSUM_IP; 744 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 745 m = mb_unmapped_to_ext(m); 746 if (m == NULL) { 747 IPSTAT_INC(ips_odropped); 748 error = ENOBUFS; 749 goto bad; 750 } 751 in_delayed_cksum(m); 752 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 753 } else if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 754 m = mb_unmapped_to_ext(m); 755 if (m == NULL) { 756 IPSTAT_INC(ips_odropped); 757 error = ENOBUFS; 758 goto bad; 759 } 760 } 761 #if defined(SCTP) || defined(SCTP_SUPPORT) 762 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 763 m = mb_unmapped_to_ext(m); 764 if (m == NULL) { 765 IPSTAT_INC(ips_odropped); 766 error = ENOBUFS; 767 goto bad; 768 } 769 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 770 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 771 } 772 #endif 773 774 /* 775 * If small enough for interface, or the interface will take 776 * care of the fragmentation for us, we can just send directly. 777 * Note that if_vxlan could have requested TSO even though the outer 778 * frame is UDP. It is correct to not fragment such datagrams and 779 * instead just pass them on to the driver. 780 */ 781 if (ip_len <= mtu || 782 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 783 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 784 ip->ip_sum = 0; 785 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 786 ip->ip_sum = in_cksum(m, hlen); 787 m->m_pkthdr.csum_flags &= ~CSUM_IP; 788 } 789 790 /* 791 * Record statistics for this interface address. 792 * With CSUM_TSO the byte/packet count will be slightly 793 * incorrect because we count the IP+TCP headers only 794 * once instead of for every generated packet. 795 */ 796 if (!(flags & IP_FORWARDING) && ia) { 797 if (m->m_pkthdr.csum_flags & 798 (CSUM_TSO | CSUM_INNER_TSO)) 799 counter_u64_add(ia->ia_ifa.ifa_opackets, 800 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 801 else 802 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 803 804 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 805 } 806 #ifdef MBUF_STRESS_TEST 807 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 808 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 809 #endif 810 /* 811 * Reset layer specific mbuf flags 812 * to avoid confusing lower layers. 813 */ 814 m_clrprotoflags(m); 815 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 816 error = ip_output_send(inp, ifp, m, gw, ro, 817 (flags & IP_NO_SND_TAG_RL) ? false : true); 818 goto done; 819 } 820 821 /* Balk when DF bit is set or the interface didn't support TSO. */ 822 if ((ip_off & IP_DF) || 823 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 824 error = EMSGSIZE; 825 IPSTAT_INC(ips_cantfrag); 826 goto bad; 827 } 828 829 /* 830 * Too large for interface; fragment if possible. If successful, 831 * on return, m will point to a list of packets to be sent. 832 */ 833 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 834 if (error) 835 goto bad; 836 for (; m; m = m0) { 837 m0 = m->m_nextpkt; 838 m->m_nextpkt = 0; 839 if (error == 0) { 840 /* Record statistics for this interface address. */ 841 if (ia != NULL) { 842 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 843 counter_u64_add(ia->ia_ifa.ifa_obytes, 844 m->m_pkthdr.len); 845 } 846 /* 847 * Reset layer specific mbuf flags 848 * to avoid confusing upper layers. 849 */ 850 m_clrprotoflags(m); 851 852 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 853 mtod(m, struct ip *), NULL); 854 error = ip_output_send(inp, ifp, m, gw, ro, true); 855 } else 856 m_freem(m); 857 } 858 859 if (error == 0) 860 IPSTAT_INC(ips_fragmented); 861 862 done: 863 return (error); 864 bad: 865 m_freem(m); 866 goto done; 867 } 868 869 /* 870 * Create a chain of fragments which fit the given mtu. m_frag points to the 871 * mbuf to be fragmented; on return it points to the chain with the fragments. 872 * Return 0 if no error. If error, m_frag may contain a partially built 873 * chain of fragments that should be freed by the caller. 874 * 875 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 876 */ 877 int 878 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 879 u_long if_hwassist_flags) 880 { 881 int error = 0; 882 int hlen = ip->ip_hl << 2; 883 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 884 int off; 885 struct mbuf *m0 = *m_frag; /* the original packet */ 886 int firstlen; 887 struct mbuf **mnext; 888 int nfrags; 889 uint16_t ip_len, ip_off; 890 891 ip_len = ntohs(ip->ip_len); 892 ip_off = ntohs(ip->ip_off); 893 894 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 895 IPSTAT_INC(ips_cantfrag); 896 return EMSGSIZE; 897 } 898 899 /* 900 * Must be able to put at least 8 bytes per fragment. 901 */ 902 if (len < 8) 903 return EMSGSIZE; 904 905 /* 906 * If the interface will not calculate checksums on 907 * fragmented packets, then do it here. 908 */ 909 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 910 m0 = mb_unmapped_to_ext(m0); 911 if (m0 == NULL) { 912 error = ENOBUFS; 913 IPSTAT_INC(ips_odropped); 914 goto done; 915 } 916 in_delayed_cksum(m0); 917 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 918 } 919 #if defined(SCTP) || defined(SCTP_SUPPORT) 920 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 921 m0 = mb_unmapped_to_ext(m0); 922 if (m0 == NULL) { 923 error = ENOBUFS; 924 IPSTAT_INC(ips_odropped); 925 goto done; 926 } 927 sctp_delayed_cksum(m0, hlen); 928 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 929 } 930 #endif 931 if (len > PAGE_SIZE) { 932 /* 933 * Fragment large datagrams such that each segment 934 * contains a multiple of PAGE_SIZE amount of data, 935 * plus headers. This enables a receiver to perform 936 * page-flipping zero-copy optimizations. 937 * 938 * XXX When does this help given that sender and receiver 939 * could have different page sizes, and also mtu could 940 * be less than the receiver's page size ? 941 */ 942 int newlen; 943 944 off = MIN(mtu, m0->m_pkthdr.len); 945 946 /* 947 * firstlen (off - hlen) must be aligned on an 948 * 8-byte boundary 949 */ 950 if (off < hlen) 951 goto smart_frag_failure; 952 off = ((off - hlen) & ~7) + hlen; 953 newlen = (~PAGE_MASK) & mtu; 954 if ((newlen + sizeof (struct ip)) > mtu) { 955 /* we failed, go back the default */ 956 smart_frag_failure: 957 newlen = len; 958 off = hlen + len; 959 } 960 len = newlen; 961 962 } else { 963 off = hlen + len; 964 } 965 966 firstlen = off - hlen; 967 mnext = &m0->m_nextpkt; /* pointer to next packet */ 968 969 /* 970 * Loop through length of segment after first fragment, 971 * make new header and copy data of each part and link onto chain. 972 * Here, m0 is the original packet, m is the fragment being created. 973 * The fragments are linked off the m_nextpkt of the original 974 * packet, which after processing serves as the first fragment. 975 */ 976 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 977 struct ip *mhip; /* ip header on the fragment */ 978 struct mbuf *m; 979 int mhlen = sizeof (struct ip); 980 981 m = m_gethdr(M_NOWAIT, MT_DATA); 982 if (m == NULL) { 983 error = ENOBUFS; 984 IPSTAT_INC(ips_odropped); 985 goto done; 986 } 987 /* 988 * Make sure the complete packet header gets copied 989 * from the originating mbuf to the newly created 990 * mbuf. This also ensures that existing firewall 991 * classification(s), VLAN tags and so on get copied 992 * to the resulting fragmented packet(s): 993 */ 994 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 995 m_free(m); 996 error = ENOBUFS; 997 IPSTAT_INC(ips_odropped); 998 goto done; 999 } 1000 /* 1001 * In the first mbuf, leave room for the link header, then 1002 * copy the original IP header including options. The payload 1003 * goes into an additional mbuf chain returned by m_copym(). 1004 */ 1005 m->m_data += max_linkhdr; 1006 mhip = mtod(m, struct ip *); 1007 *mhip = *ip; 1008 if (hlen > sizeof (struct ip)) { 1009 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1010 mhip->ip_v = IPVERSION; 1011 mhip->ip_hl = mhlen >> 2; 1012 } 1013 m->m_len = mhlen; 1014 /* XXX do we need to add ip_off below ? */ 1015 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1016 if (off + len >= ip_len) 1017 len = ip_len - off; 1018 else 1019 mhip->ip_off |= IP_MF; 1020 mhip->ip_len = htons((u_short)(len + mhlen)); 1021 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1022 if (m->m_next == NULL) { /* copy failed */ 1023 m_free(m); 1024 error = ENOBUFS; /* ??? */ 1025 IPSTAT_INC(ips_odropped); 1026 goto done; 1027 } 1028 m->m_pkthdr.len = mhlen + len; 1029 #ifdef MAC 1030 mac_netinet_fragment(m0, m); 1031 #endif 1032 mhip->ip_off = htons(mhip->ip_off); 1033 mhip->ip_sum = 0; 1034 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1035 mhip->ip_sum = in_cksum(m, mhlen); 1036 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1037 } 1038 *mnext = m; 1039 mnext = &m->m_nextpkt; 1040 } 1041 IPSTAT_ADD(ips_ofragments, nfrags); 1042 1043 /* 1044 * Update first fragment by trimming what's been copied out 1045 * and updating header. 1046 */ 1047 m_adj(m0, hlen + firstlen - ip_len); 1048 m0->m_pkthdr.len = hlen + firstlen; 1049 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1050 ip->ip_off = htons(ip_off | IP_MF); 1051 ip->ip_sum = 0; 1052 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1053 ip->ip_sum = in_cksum(m0, hlen); 1054 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1055 } 1056 1057 done: 1058 *m_frag = m0; 1059 return error; 1060 } 1061 1062 void 1063 in_delayed_cksum(struct mbuf *m) 1064 { 1065 struct ip *ip; 1066 struct udphdr *uh; 1067 uint16_t cklen, csum, offset; 1068 1069 ip = mtod(m, struct ip *); 1070 offset = ip->ip_hl << 2 ; 1071 1072 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1073 /* if udp header is not in the first mbuf copy udplen */ 1074 if (offset + sizeof(struct udphdr) > m->m_len) { 1075 m_copydata(m, offset + offsetof(struct udphdr, 1076 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1077 cklen = ntohs(cklen); 1078 } else { 1079 uh = (struct udphdr *)mtodo(m, offset); 1080 cklen = ntohs(uh->uh_ulen); 1081 } 1082 csum = in_cksum_skip(m, cklen + offset, offset); 1083 if (csum == 0) 1084 csum = 0xffff; 1085 } else { 1086 cklen = ntohs(ip->ip_len); 1087 csum = in_cksum_skip(m, cklen, offset); 1088 } 1089 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1090 1091 if (offset + sizeof(csum) > m->m_len) 1092 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1093 else 1094 *(u_short *)mtodo(m, offset) = csum; 1095 } 1096 1097 /* 1098 * IP socket option processing. 1099 */ 1100 int 1101 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1102 { 1103 struct inpcb *inp = sotoinpcb(so); 1104 int error, optval; 1105 #ifdef RSS 1106 uint32_t rss_bucket; 1107 int retval; 1108 #endif 1109 1110 error = optval = 0; 1111 if (sopt->sopt_level != IPPROTO_IP) { 1112 error = EINVAL; 1113 1114 if (sopt->sopt_level == SOL_SOCKET && 1115 sopt->sopt_dir == SOPT_SET) { 1116 switch (sopt->sopt_name) { 1117 case SO_REUSEADDR: 1118 INP_WLOCK(inp); 1119 if ((so->so_options & SO_REUSEADDR) != 0) 1120 inp->inp_flags2 |= INP_REUSEADDR; 1121 else 1122 inp->inp_flags2 &= ~INP_REUSEADDR; 1123 INP_WUNLOCK(inp); 1124 error = 0; 1125 break; 1126 case SO_REUSEPORT: 1127 INP_WLOCK(inp); 1128 if ((so->so_options & SO_REUSEPORT) != 0) 1129 inp->inp_flags2 |= INP_REUSEPORT; 1130 else 1131 inp->inp_flags2 &= ~INP_REUSEPORT; 1132 INP_WUNLOCK(inp); 1133 error = 0; 1134 break; 1135 case SO_REUSEPORT_LB: 1136 INP_WLOCK(inp); 1137 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1138 inp->inp_flags2 |= INP_REUSEPORT_LB; 1139 else 1140 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1141 INP_WUNLOCK(inp); 1142 error = 0; 1143 break; 1144 case SO_SETFIB: 1145 INP_WLOCK(inp); 1146 inp->inp_inc.inc_fibnum = so->so_fibnum; 1147 INP_WUNLOCK(inp); 1148 error = 0; 1149 break; 1150 case SO_MAX_PACING_RATE: 1151 #ifdef RATELIMIT 1152 INP_WLOCK(inp); 1153 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1154 INP_WUNLOCK(inp); 1155 error = 0; 1156 #else 1157 error = EOPNOTSUPP; 1158 #endif 1159 break; 1160 default: 1161 break; 1162 } 1163 } 1164 return (error); 1165 } 1166 1167 switch (sopt->sopt_dir) { 1168 case SOPT_SET: 1169 switch (sopt->sopt_name) { 1170 case IP_OPTIONS: 1171 #ifdef notyet 1172 case IP_RETOPTS: 1173 #endif 1174 { 1175 struct mbuf *m; 1176 if (sopt->sopt_valsize > MLEN) { 1177 error = EMSGSIZE; 1178 break; 1179 } 1180 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1181 if (m == NULL) { 1182 error = ENOBUFS; 1183 break; 1184 } 1185 m->m_len = sopt->sopt_valsize; 1186 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1187 m->m_len); 1188 if (error) { 1189 m_free(m); 1190 break; 1191 } 1192 INP_WLOCK(inp); 1193 error = ip_pcbopts(inp, sopt->sopt_name, m); 1194 INP_WUNLOCK(inp); 1195 return (error); 1196 } 1197 1198 case IP_BINDANY: 1199 if (sopt->sopt_td != NULL) { 1200 error = priv_check(sopt->sopt_td, 1201 PRIV_NETINET_BINDANY); 1202 if (error) 1203 break; 1204 } 1205 /* FALLTHROUGH */ 1206 case IP_BINDMULTI: 1207 #ifdef RSS 1208 case IP_RSS_LISTEN_BUCKET: 1209 #endif 1210 case IP_TOS: 1211 case IP_TTL: 1212 case IP_MINTTL: 1213 case IP_RECVOPTS: 1214 case IP_RECVRETOPTS: 1215 case IP_ORIGDSTADDR: 1216 case IP_RECVDSTADDR: 1217 case IP_RECVTTL: 1218 case IP_RECVIF: 1219 case IP_ONESBCAST: 1220 case IP_DONTFRAG: 1221 case IP_RECVTOS: 1222 case IP_RECVFLOWID: 1223 #ifdef RSS 1224 case IP_RECVRSSBUCKETID: 1225 #endif 1226 case IP_VLAN_PCP: 1227 error = sooptcopyin(sopt, &optval, sizeof optval, 1228 sizeof optval); 1229 if (error) 1230 break; 1231 1232 switch (sopt->sopt_name) { 1233 case IP_TOS: 1234 inp->inp_ip_tos = optval; 1235 break; 1236 1237 case IP_TTL: 1238 inp->inp_ip_ttl = optval; 1239 break; 1240 1241 case IP_MINTTL: 1242 if (optval >= 0 && optval <= MAXTTL) 1243 inp->inp_ip_minttl = optval; 1244 else 1245 error = EINVAL; 1246 break; 1247 1248 #define OPTSET(bit) do { \ 1249 INP_WLOCK(inp); \ 1250 if (optval) \ 1251 inp->inp_flags |= bit; \ 1252 else \ 1253 inp->inp_flags &= ~bit; \ 1254 INP_WUNLOCK(inp); \ 1255 } while (0) 1256 1257 #define OPTSET2(bit, val) do { \ 1258 INP_WLOCK(inp); \ 1259 if (val) \ 1260 inp->inp_flags2 |= bit; \ 1261 else \ 1262 inp->inp_flags2 &= ~bit; \ 1263 INP_WUNLOCK(inp); \ 1264 } while (0) 1265 1266 case IP_RECVOPTS: 1267 OPTSET(INP_RECVOPTS); 1268 break; 1269 1270 case IP_RECVRETOPTS: 1271 OPTSET(INP_RECVRETOPTS); 1272 break; 1273 1274 case IP_RECVDSTADDR: 1275 OPTSET(INP_RECVDSTADDR); 1276 break; 1277 1278 case IP_ORIGDSTADDR: 1279 OPTSET2(INP_ORIGDSTADDR, optval); 1280 break; 1281 1282 case IP_RECVTTL: 1283 OPTSET(INP_RECVTTL); 1284 break; 1285 1286 case IP_RECVIF: 1287 OPTSET(INP_RECVIF); 1288 break; 1289 1290 case IP_ONESBCAST: 1291 OPTSET(INP_ONESBCAST); 1292 break; 1293 case IP_DONTFRAG: 1294 OPTSET(INP_DONTFRAG); 1295 break; 1296 case IP_BINDANY: 1297 OPTSET(INP_BINDANY); 1298 break; 1299 case IP_RECVTOS: 1300 OPTSET(INP_RECVTOS); 1301 break; 1302 case IP_BINDMULTI: 1303 OPTSET2(INP_BINDMULTI, optval); 1304 break; 1305 case IP_RECVFLOWID: 1306 OPTSET2(INP_RECVFLOWID, optval); 1307 break; 1308 #ifdef RSS 1309 case IP_RSS_LISTEN_BUCKET: 1310 if ((optval >= 0) && 1311 (optval < rss_getnumbuckets())) { 1312 inp->inp_rss_listen_bucket = optval; 1313 OPTSET2(INP_RSS_BUCKET_SET, 1); 1314 } else { 1315 error = EINVAL; 1316 } 1317 break; 1318 case IP_RECVRSSBUCKETID: 1319 OPTSET2(INP_RECVRSSBUCKETID, optval); 1320 break; 1321 #endif 1322 case IP_VLAN_PCP: 1323 if ((optval >= -1) && (optval <= 1324 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1325 if (optval == -1) { 1326 INP_WLOCK(inp); 1327 inp->inp_flags2 &= 1328 ~(INP_2PCP_SET | 1329 INP_2PCP_MASK); 1330 INP_WUNLOCK(inp); 1331 } else { 1332 INP_WLOCK(inp); 1333 inp->inp_flags2 |= 1334 INP_2PCP_SET; 1335 inp->inp_flags2 &= 1336 ~INP_2PCP_MASK; 1337 inp->inp_flags2 |= 1338 optval << INP_2PCP_SHIFT; 1339 INP_WUNLOCK(inp); 1340 } 1341 } else 1342 error = EINVAL; 1343 break; 1344 } 1345 break; 1346 #undef OPTSET 1347 #undef OPTSET2 1348 1349 /* 1350 * Multicast socket options are processed by the in_mcast 1351 * module. 1352 */ 1353 case IP_MULTICAST_IF: 1354 case IP_MULTICAST_VIF: 1355 case IP_MULTICAST_TTL: 1356 case IP_MULTICAST_LOOP: 1357 case IP_ADD_MEMBERSHIP: 1358 case IP_DROP_MEMBERSHIP: 1359 case IP_ADD_SOURCE_MEMBERSHIP: 1360 case IP_DROP_SOURCE_MEMBERSHIP: 1361 case IP_BLOCK_SOURCE: 1362 case IP_UNBLOCK_SOURCE: 1363 case IP_MSFILTER: 1364 case MCAST_JOIN_GROUP: 1365 case MCAST_LEAVE_GROUP: 1366 case MCAST_JOIN_SOURCE_GROUP: 1367 case MCAST_LEAVE_SOURCE_GROUP: 1368 case MCAST_BLOCK_SOURCE: 1369 case MCAST_UNBLOCK_SOURCE: 1370 error = inp_setmoptions(inp, sopt); 1371 break; 1372 1373 case IP_PORTRANGE: 1374 error = sooptcopyin(sopt, &optval, sizeof optval, 1375 sizeof optval); 1376 if (error) 1377 break; 1378 1379 INP_WLOCK(inp); 1380 switch (optval) { 1381 case IP_PORTRANGE_DEFAULT: 1382 inp->inp_flags &= ~(INP_LOWPORT); 1383 inp->inp_flags &= ~(INP_HIGHPORT); 1384 break; 1385 1386 case IP_PORTRANGE_HIGH: 1387 inp->inp_flags &= ~(INP_LOWPORT); 1388 inp->inp_flags |= INP_HIGHPORT; 1389 break; 1390 1391 case IP_PORTRANGE_LOW: 1392 inp->inp_flags &= ~(INP_HIGHPORT); 1393 inp->inp_flags |= INP_LOWPORT; 1394 break; 1395 1396 default: 1397 error = EINVAL; 1398 break; 1399 } 1400 INP_WUNLOCK(inp); 1401 break; 1402 1403 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1404 case IP_IPSEC_POLICY: 1405 if (IPSEC_ENABLED(ipv4)) { 1406 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1407 break; 1408 } 1409 /* FALLTHROUGH */ 1410 #endif /* IPSEC */ 1411 1412 default: 1413 error = ENOPROTOOPT; 1414 break; 1415 } 1416 break; 1417 1418 case SOPT_GET: 1419 switch (sopt->sopt_name) { 1420 case IP_OPTIONS: 1421 case IP_RETOPTS: 1422 INP_RLOCK(inp); 1423 if (inp->inp_options) { 1424 struct mbuf *options; 1425 1426 options = m_copym(inp->inp_options, 0, 1427 M_COPYALL, M_NOWAIT); 1428 INP_RUNLOCK(inp); 1429 if (options != NULL) { 1430 error = sooptcopyout(sopt, 1431 mtod(options, char *), 1432 options->m_len); 1433 m_freem(options); 1434 } else 1435 error = ENOMEM; 1436 } else { 1437 INP_RUNLOCK(inp); 1438 sopt->sopt_valsize = 0; 1439 } 1440 break; 1441 1442 case IP_TOS: 1443 case IP_TTL: 1444 case IP_MINTTL: 1445 case IP_RECVOPTS: 1446 case IP_RECVRETOPTS: 1447 case IP_ORIGDSTADDR: 1448 case IP_RECVDSTADDR: 1449 case IP_RECVTTL: 1450 case IP_RECVIF: 1451 case IP_PORTRANGE: 1452 case IP_ONESBCAST: 1453 case IP_DONTFRAG: 1454 case IP_BINDANY: 1455 case IP_RECVTOS: 1456 case IP_BINDMULTI: 1457 case IP_FLOWID: 1458 case IP_FLOWTYPE: 1459 case IP_RECVFLOWID: 1460 #ifdef RSS 1461 case IP_RSSBUCKETID: 1462 case IP_RECVRSSBUCKETID: 1463 #endif 1464 case IP_VLAN_PCP: 1465 switch (sopt->sopt_name) { 1466 case IP_TOS: 1467 optval = inp->inp_ip_tos; 1468 break; 1469 1470 case IP_TTL: 1471 optval = inp->inp_ip_ttl; 1472 break; 1473 1474 case IP_MINTTL: 1475 optval = inp->inp_ip_minttl; 1476 break; 1477 1478 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1479 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1480 1481 case IP_RECVOPTS: 1482 optval = OPTBIT(INP_RECVOPTS); 1483 break; 1484 1485 case IP_RECVRETOPTS: 1486 optval = OPTBIT(INP_RECVRETOPTS); 1487 break; 1488 1489 case IP_RECVDSTADDR: 1490 optval = OPTBIT(INP_RECVDSTADDR); 1491 break; 1492 1493 case IP_ORIGDSTADDR: 1494 optval = OPTBIT2(INP_ORIGDSTADDR); 1495 break; 1496 1497 case IP_RECVTTL: 1498 optval = OPTBIT(INP_RECVTTL); 1499 break; 1500 1501 case IP_RECVIF: 1502 optval = OPTBIT(INP_RECVIF); 1503 break; 1504 1505 case IP_PORTRANGE: 1506 if (inp->inp_flags & INP_HIGHPORT) 1507 optval = IP_PORTRANGE_HIGH; 1508 else if (inp->inp_flags & INP_LOWPORT) 1509 optval = IP_PORTRANGE_LOW; 1510 else 1511 optval = 0; 1512 break; 1513 1514 case IP_ONESBCAST: 1515 optval = OPTBIT(INP_ONESBCAST); 1516 break; 1517 case IP_DONTFRAG: 1518 optval = OPTBIT(INP_DONTFRAG); 1519 break; 1520 case IP_BINDANY: 1521 optval = OPTBIT(INP_BINDANY); 1522 break; 1523 case IP_RECVTOS: 1524 optval = OPTBIT(INP_RECVTOS); 1525 break; 1526 case IP_FLOWID: 1527 optval = inp->inp_flowid; 1528 break; 1529 case IP_FLOWTYPE: 1530 optval = inp->inp_flowtype; 1531 break; 1532 case IP_RECVFLOWID: 1533 optval = OPTBIT2(INP_RECVFLOWID); 1534 break; 1535 #ifdef RSS 1536 case IP_RSSBUCKETID: 1537 retval = rss_hash2bucket(inp->inp_flowid, 1538 inp->inp_flowtype, 1539 &rss_bucket); 1540 if (retval == 0) 1541 optval = rss_bucket; 1542 else 1543 error = EINVAL; 1544 break; 1545 case IP_RECVRSSBUCKETID: 1546 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1547 break; 1548 #endif 1549 case IP_BINDMULTI: 1550 optval = OPTBIT2(INP_BINDMULTI); 1551 break; 1552 case IP_VLAN_PCP: 1553 if (OPTBIT2(INP_2PCP_SET)) { 1554 optval = (inp->inp_flags2 & 1555 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1556 } else { 1557 optval = -1; 1558 } 1559 break; 1560 } 1561 error = sooptcopyout(sopt, &optval, sizeof optval); 1562 break; 1563 1564 /* 1565 * Multicast socket options are processed by the in_mcast 1566 * module. 1567 */ 1568 case IP_MULTICAST_IF: 1569 case IP_MULTICAST_VIF: 1570 case IP_MULTICAST_TTL: 1571 case IP_MULTICAST_LOOP: 1572 case IP_MSFILTER: 1573 error = inp_getmoptions(inp, sopt); 1574 break; 1575 1576 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1577 case IP_IPSEC_POLICY: 1578 if (IPSEC_ENABLED(ipv4)) { 1579 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1580 break; 1581 } 1582 /* FALLTHROUGH */ 1583 #endif /* IPSEC */ 1584 1585 default: 1586 error = ENOPROTOOPT; 1587 break; 1588 } 1589 break; 1590 } 1591 return (error); 1592 } 1593 1594 /* 1595 * Routine called from ip_output() to loop back a copy of an IP multicast 1596 * packet to the input queue of a specified interface. Note that this 1597 * calls the output routine of the loopback "driver", but with an interface 1598 * pointer that might NOT be a loopback interface -- evil, but easier than 1599 * replicating that code here. 1600 */ 1601 static void 1602 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1603 { 1604 struct ip *ip; 1605 struct mbuf *copym; 1606 1607 /* 1608 * Make a deep copy of the packet because we're going to 1609 * modify the pack in order to generate checksums. 1610 */ 1611 copym = m_dup(m, M_NOWAIT); 1612 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1613 copym = m_pullup(copym, hlen); 1614 if (copym != NULL) { 1615 /* If needed, compute the checksum and mark it as valid. */ 1616 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1617 in_delayed_cksum(copym); 1618 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1619 copym->m_pkthdr.csum_flags |= 1620 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1621 copym->m_pkthdr.csum_data = 0xffff; 1622 } 1623 /* 1624 * We don't bother to fragment if the IP length is greater 1625 * than the interface's MTU. Can this possibly matter? 1626 */ 1627 ip = mtod(copym, struct ip *); 1628 ip->ip_sum = 0; 1629 ip->ip_sum = in_cksum(copym, hlen); 1630 if_simloop(ifp, copym, AF_INET, 0); 1631 } 1632 } 1633