xref: /freebsd/sys/netinet/ip_output.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipsec.h"
35 #include "opt_mac.h"
36 #include "opt_mbuf_stress_test.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/netisr.h>
51 #include <net/pfil.h>
52 #include <net/route.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/ip.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip_var.h>
60 #include <netinet/ip_options.h>
61 
62 #if defined(IPSEC) || defined(FAST_IPSEC)
63 #include <netinet/ip_ipsec.h>
64 #ifdef IPSEC
65 #include <netinet6/ipsec.h>
66 #endif
67 #ifdef FAST_IPSEC
68 #include <netipsec/ipsec.h>
69 #endif
70 #endif /*IPSEC*/
71 
72 #include <machine/in_cksum.h>
73 
74 #include <security/mac/mac_framework.h>
75 
76 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
77 
78 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
79 				x, (ntohl(a.s_addr)>>24)&0xFF,\
80 				  (ntohl(a.s_addr)>>16)&0xFF,\
81 				  (ntohl(a.s_addr)>>8)&0xFF,\
82 				  (ntohl(a.s_addr))&0xFF, y);
83 
84 u_short ip_id;
85 
86 #ifdef MBUF_STRESS_TEST
87 int mbuf_frag_size = 0;
88 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
89 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
90 #endif
91 
92 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
93 static void	ip_mloopback
94 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
95 static int	ip_getmoptions(struct inpcb *, struct sockopt *);
96 static int	ip_setmoptions(struct inpcb *, struct sockopt *);
97 
98 
99 extern	struct protosw inetsw[];
100 
101 /*
102  * IP output.  The packet in mbuf chain m contains a skeletal IP
103  * header (with len, off, ttl, proto, tos, src, dst).
104  * The mbuf chain containing the packet will be freed.
105  * The mbuf opt, if present, will not be freed.
106  * In the IP forwarding case, the packet will arrive with options already
107  * inserted, so must have a NULL opt pointer.
108  */
109 int
110 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
111 	int flags, struct ip_moptions *imo, struct inpcb *inp)
112 {
113 	struct ip *ip;
114 	struct ifnet *ifp = NULL;	/* keep compiler happy */
115 	struct mbuf *m0;
116 	int hlen = sizeof (struct ip);
117 	int mtu;
118 	int len, error = 0;
119 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
120 	struct in_ifaddr *ia = NULL;
121 	int isbroadcast, sw_csum;
122 	struct route iproute;
123 	struct in_addr odst;
124 #ifdef IPFIREWALL_FORWARD
125 	struct m_tag *fwd_tag = NULL;
126 #endif
127 	M_ASSERTPKTHDR(m);
128 
129 	if (ro == NULL) {
130 		ro = &iproute;
131 		bzero(ro, sizeof (*ro));
132 	}
133 
134 	if (inp != NULL)
135 		INP_LOCK_ASSERT(inp);
136 
137 	if (opt) {
138 		len = 0;
139 		m = ip_insertoptions(m, opt, &len);
140 		if (len != 0)
141 			hlen = len;
142 	}
143 	ip = mtod(m, struct ip *);
144 
145 	/*
146 	 * Fill in IP header.  If we are not allowing fragmentation,
147 	 * then the ip_id field is meaningless, but we don't set it
148 	 * to zero.  Doing so causes various problems when devices along
149 	 * the path (routers, load balancers, firewalls, etc.) illegally
150 	 * disable DF on our packet.  Note that a 16-bit counter
151 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
152 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
153 	 * for Counting NATted Hosts", Proc. IMW'02, available at
154 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
155 	 */
156 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
157 		ip->ip_v = IPVERSION;
158 		ip->ip_hl = hlen >> 2;
159 		ip->ip_id = ip_newid();
160 		ipstat.ips_localout++;
161 	} else {
162 		hlen = ip->ip_hl << 2;
163 	}
164 
165 	dst = (struct sockaddr_in *)&ro->ro_dst;
166 again:
167 	/*
168 	 * If there is a cached route,
169 	 * check that it is to the same destination
170 	 * and is still up.  If not, free it and try again.
171 	 * The address family should also be checked in case of sharing the
172 	 * cache with IPv6.
173 	 */
174 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
175 			  dst->sin_family != AF_INET ||
176 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
177 		RTFREE(ro->ro_rt);
178 		ro->ro_rt = (struct rtentry *)NULL;
179 	}
180 #ifdef IPFIREWALL_FORWARD
181 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
182 #else
183 	if (ro->ro_rt == NULL) {
184 #endif
185 		bzero(dst, sizeof(*dst));
186 		dst->sin_family = AF_INET;
187 		dst->sin_len = sizeof(*dst);
188 		dst->sin_addr = ip->ip_dst;
189 	}
190 	/*
191 	 * If routing to interface only,
192 	 * short circuit routing lookup.
193 	 */
194 	if (flags & IP_ROUTETOIF) {
195 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
196 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
197 			ipstat.ips_noroute++;
198 			error = ENETUNREACH;
199 			goto bad;
200 		}
201 		ifp = ia->ia_ifp;
202 		ip->ip_ttl = 1;
203 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
204 	} else if (flags & IP_SENDONES) {
205 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL) {
206 			ipstat.ips_noroute++;
207 			error = ENETUNREACH;
208 			goto bad;
209 		}
210 		ifp = ia->ia_ifp;
211 		ip->ip_dst.s_addr = INADDR_BROADCAST;
212 		dst->sin_addr = ip->ip_dst;
213 		ip->ip_ttl = 1;
214 		isbroadcast = 1;
215 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
216 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
217 		/*
218 		 * Bypass the normal routing lookup for multicast
219 		 * packets if the interface is specified.
220 		 */
221 		ifp = imo->imo_multicast_ifp;
222 		IFP_TO_IA(ifp, ia);
223 		isbroadcast = 0;	/* fool gcc */
224 	} else {
225 		/*
226 		 * We want to do any cloning requested by the link layer,
227 		 * as this is probably required in all cases for correct
228 		 * operation (as it is for ARP).
229 		 */
230 		if (ro->ro_rt == NULL)
231 			rtalloc_ign(ro, 0);
232 		if (ro->ro_rt == NULL) {
233 			ipstat.ips_noroute++;
234 			error = EHOSTUNREACH;
235 			goto bad;
236 		}
237 		ia = ifatoia(ro->ro_rt->rt_ifa);
238 		ifp = ro->ro_rt->rt_ifp;
239 		ro->ro_rt->rt_rmx.rmx_pksent++;
240 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
241 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
242 		if (ro->ro_rt->rt_flags & RTF_HOST)
243 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
244 		else
245 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
246 	}
247 	/*
248 	 * Calculate MTU.  If we have a route that is up, use that,
249 	 * otherwise use the interface's MTU.
250 	 */
251 	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
252 		/*
253 		 * This case can happen if the user changed the MTU
254 		 * of an interface after enabling IP on it.  Because
255 		 * most netifs don't keep track of routes pointing to
256 		 * them, there is no way for one to update all its
257 		 * routes when the MTU is changed.
258 		 */
259 		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
260 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
261 		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
262 	} else {
263 		mtu = ifp->if_mtu;
264 	}
265 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
266 		struct in_multi *inm;
267 
268 		m->m_flags |= M_MCAST;
269 		/*
270 		 * IP destination address is multicast.  Make sure "dst"
271 		 * still points to the address in "ro".  (It may have been
272 		 * changed to point to a gateway address, above.)
273 		 */
274 		dst = (struct sockaddr_in *)&ro->ro_dst;
275 		/*
276 		 * See if the caller provided any multicast options
277 		 */
278 		if (imo != NULL) {
279 			ip->ip_ttl = imo->imo_multicast_ttl;
280 			if (imo->imo_multicast_vif != -1)
281 				ip->ip_src.s_addr =
282 				    ip_mcast_src ?
283 				    ip_mcast_src(imo->imo_multicast_vif) :
284 				    INADDR_ANY;
285 		} else
286 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
287 		/*
288 		 * Confirm that the outgoing interface supports multicast.
289 		 */
290 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
291 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
292 				ipstat.ips_noroute++;
293 				error = ENETUNREACH;
294 				goto bad;
295 			}
296 		}
297 		/*
298 		 * If source address not specified yet, use address
299 		 * of outgoing interface.
300 		 */
301 		if (ip->ip_src.s_addr == INADDR_ANY) {
302 			/* Interface may have no addresses. */
303 			if (ia != NULL)
304 				ip->ip_src = IA_SIN(ia)->sin_addr;
305 		}
306 
307 		IN_MULTI_LOCK();
308 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
309 		if (inm != NULL &&
310 		   (imo == NULL || imo->imo_multicast_loop)) {
311 			IN_MULTI_UNLOCK();
312 			/*
313 			 * If we belong to the destination multicast group
314 			 * on the outgoing interface, and the caller did not
315 			 * forbid loopback, loop back a copy.
316 			 */
317 			ip_mloopback(ifp, m, dst, hlen);
318 		}
319 		else {
320 			IN_MULTI_UNLOCK();
321 			/*
322 			 * If we are acting as a multicast router, perform
323 			 * multicast forwarding as if the packet had just
324 			 * arrived on the interface to which we are about
325 			 * to send.  The multicast forwarding function
326 			 * recursively calls this function, using the
327 			 * IP_FORWARDING flag to prevent infinite recursion.
328 			 *
329 			 * Multicasts that are looped back by ip_mloopback(),
330 			 * above, will be forwarded by the ip_input() routine,
331 			 * if necessary.
332 			 */
333 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
334 				/*
335 				 * If rsvp daemon is not running, do not
336 				 * set ip_moptions. This ensures that the packet
337 				 * is multicast and not just sent down one link
338 				 * as prescribed by rsvpd.
339 				 */
340 				if (!rsvp_on)
341 					imo = NULL;
342 				if (ip_mforward &&
343 				    ip_mforward(ip, ifp, m, imo) != 0) {
344 					m_freem(m);
345 					goto done;
346 				}
347 			}
348 		}
349 
350 		/*
351 		 * Multicasts with a time-to-live of zero may be looped-
352 		 * back, above, but must not be transmitted on a network.
353 		 * Also, multicasts addressed to the loopback interface
354 		 * are not sent -- the above call to ip_mloopback() will
355 		 * loop back a copy if this host actually belongs to the
356 		 * destination group on the loopback interface.
357 		 */
358 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
359 			m_freem(m);
360 			goto done;
361 		}
362 
363 		goto sendit;
364 	}
365 
366 	/*
367 	 * If the source address is not specified yet, use the address
368 	 * of the outoing interface.
369 	 */
370 	if (ip->ip_src.s_addr == INADDR_ANY) {
371 		/* Interface may have no addresses. */
372 		if (ia != NULL) {
373 			ip->ip_src = IA_SIN(ia)->sin_addr;
374 		}
375 	}
376 
377 	/*
378 	 * Verify that we have any chance at all of being able to queue the
379 	 * packet or packet fragments, unless ALTQ is enabled on the given
380 	 * interface in which case packetdrop should be done by queueing.
381 	 */
382 #ifdef ALTQ
383 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
384 	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
385 	    ifp->if_snd.ifq_maxlen))
386 #else
387 	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
388 	    ifp->if_snd.ifq_maxlen)
389 #endif /* ALTQ */
390 	{
391 		error = ENOBUFS;
392 		ipstat.ips_odropped++;
393 		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
394 		goto bad;
395 	}
396 
397 	/*
398 	 * Look for broadcast address and
399 	 * verify user is allowed to send
400 	 * such a packet.
401 	 */
402 	if (isbroadcast) {
403 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
404 			error = EADDRNOTAVAIL;
405 			goto bad;
406 		}
407 		if ((flags & IP_ALLOWBROADCAST) == 0) {
408 			error = EACCES;
409 			goto bad;
410 		}
411 		/* don't allow broadcast messages to be fragmented */
412 		if (ip->ip_len > mtu) {
413 			error = EMSGSIZE;
414 			goto bad;
415 		}
416 		m->m_flags |= M_BCAST;
417 	} else {
418 		m->m_flags &= ~M_BCAST;
419 	}
420 
421 sendit:
422 #if defined(IPSEC) || defined(FAST_IPSEC)
423 	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
424 	case 1:
425 		goto bad;
426 	case -1:
427 		goto done;
428 	case 0:
429 	default:
430 		break;	/* Continue with packet processing. */
431 	}
432 	/* Update variables that are affected by ipsec4_output(). */
433 	ip = mtod(m, struct ip *);
434 	hlen = ip->ip_hl << 2;
435 #endif /* IPSEC */
436 
437 	/* Jump over all PFIL processing if hooks are not active. */
438 	if (!PFIL_HOOKED(&inet_pfil_hook))
439 		goto passout;
440 
441 	/* Run through list of hooks for output packets. */
442 	odst.s_addr = ip->ip_dst.s_addr;
443 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
444 	if (error != 0 || m == NULL)
445 		goto done;
446 
447 	ip = mtod(m, struct ip *);
448 
449 	/* See if destination IP address was changed by packet filter. */
450 	if (odst.s_addr != ip->ip_dst.s_addr) {
451 		m->m_flags |= M_SKIP_FIREWALL;
452 		/* If destination is now ourself drop to ip_input(). */
453 		if (in_localip(ip->ip_dst)) {
454 			m->m_flags |= M_FASTFWD_OURS;
455 			if (m->m_pkthdr.rcvif == NULL)
456 				m->m_pkthdr.rcvif = loif;
457 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
458 				m->m_pkthdr.csum_flags |=
459 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
460 				m->m_pkthdr.csum_data = 0xffff;
461 			}
462 			m->m_pkthdr.csum_flags |=
463 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
464 
465 			error = netisr_queue(NETISR_IP, m);
466 			goto done;
467 		} else
468 			goto again;	/* Redo the routing table lookup. */
469 	}
470 
471 #ifdef IPFIREWALL_FORWARD
472 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
473 	if (m->m_flags & M_FASTFWD_OURS) {
474 		if (m->m_pkthdr.rcvif == NULL)
475 			m->m_pkthdr.rcvif = loif;
476 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
477 			m->m_pkthdr.csum_flags |=
478 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
479 			m->m_pkthdr.csum_data = 0xffff;
480 		}
481 		m->m_pkthdr.csum_flags |=
482 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
483 
484 		error = netisr_queue(NETISR_IP, m);
485 		goto done;
486 	}
487 	/* Or forward to some other address? */
488 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
489 	if (fwd_tag) {
490 		dst = (struct sockaddr_in *)&ro->ro_dst;
491 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
492 		m->m_flags |= M_SKIP_FIREWALL;
493 		m_tag_delete(m, fwd_tag);
494 		goto again;
495 	}
496 #endif /* IPFIREWALL_FORWARD */
497 
498 passout:
499 	/* 127/8 must not appear on wire - RFC1122. */
500 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
501 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
502 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
503 			ipstat.ips_badaddr++;
504 			error = EADDRNOTAVAIL;
505 			goto bad;
506 		}
507 	}
508 
509 	m->m_pkthdr.csum_flags |= CSUM_IP;
510 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
511 	if (sw_csum & CSUM_DELAY_DATA) {
512 		in_delayed_cksum(m);
513 		sw_csum &= ~CSUM_DELAY_DATA;
514 	}
515 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
516 
517 	/*
518 	 * If small enough for interface, or the interface will take
519 	 * care of the fragmentation for us, we can just send directly.
520 	 */
521 	if (ip->ip_len <= mtu ||
522 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
523 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
524 		ip->ip_len = htons(ip->ip_len);
525 		ip->ip_off = htons(ip->ip_off);
526 		ip->ip_sum = 0;
527 		if (sw_csum & CSUM_DELAY_IP)
528 			ip->ip_sum = in_cksum(m, hlen);
529 
530 		/*
531 		 * Record statistics for this interface address.
532 		 * With CSUM_TSO the byte/packet count will be slightly
533 		 * incorrect because we count the IP+TCP headers only
534 		 * once instead of for every generated packet.
535 		 */
536 		if (!(flags & IP_FORWARDING) && ia) {
537 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
538 				ia->ia_ifa.if_opackets +=
539 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
540 			else
541 				ia->ia_ifa.if_opackets++;
542 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
543 		}
544 #ifdef IPSEC
545 		/* clean ipsec history once it goes out of the node */
546 		ipsec_delaux(m);
547 #endif
548 #ifdef MBUF_STRESS_TEST
549 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
550 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
551 #endif
552 		/*
553 		 * Reset layer specific mbuf flags
554 		 * to avoid confusing lower layers.
555 		 */
556 		m->m_flags &= ~(M_PROTOFLAGS);
557 
558 		error = (*ifp->if_output)(ifp, m,
559 				(struct sockaddr *)dst, ro->ro_rt);
560 		goto done;
561 	}
562 
563 	/* Balk when DF bit is set or the interface didn't support TSO. */
564 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
565 		error = EMSGSIZE;
566 		ipstat.ips_cantfrag++;
567 		goto bad;
568 	}
569 
570 	/*
571 	 * Too large for interface; fragment if possible. If successful,
572 	 * on return, m will point to a list of packets to be sent.
573 	 */
574 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
575 	if (error)
576 		goto bad;
577 	for (; m; m = m0) {
578 		m0 = m->m_nextpkt;
579 		m->m_nextpkt = 0;
580 #ifdef IPSEC
581 		/* clean ipsec history once it goes out of the node */
582 		ipsec_delaux(m);
583 #endif
584 		if (error == 0) {
585 			/* Record statistics for this interface address. */
586 			if (ia != NULL) {
587 				ia->ia_ifa.if_opackets++;
588 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
589 			}
590 			/*
591 			 * Reset layer specific mbuf flags
592 			 * to avoid confusing upper layers.
593 			 */
594 			m->m_flags &= ~(M_PROTOFLAGS);
595 
596 			error = (*ifp->if_output)(ifp, m,
597 			    (struct sockaddr *)dst, ro->ro_rt);
598 		} else
599 			m_freem(m);
600 	}
601 
602 	if (error == 0)
603 		ipstat.ips_fragmented++;
604 
605 done:
606 	if (ro == &iproute && ro->ro_rt) {
607 		RTFREE(ro->ro_rt);
608 	}
609 	return (error);
610 bad:
611 	m_freem(m);
612 	goto done;
613 }
614 
615 /*
616  * Create a chain of fragments which fit the given mtu. m_frag points to the
617  * mbuf to be fragmented; on return it points to the chain with the fragments.
618  * Return 0 if no error. If error, m_frag may contain a partially built
619  * chain of fragments that should be freed by the caller.
620  *
621  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
622  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
623  */
624 int
625 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
626 	    u_long if_hwassist_flags, int sw_csum)
627 {
628 	int error = 0;
629 	int hlen = ip->ip_hl << 2;
630 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
631 	int off;
632 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
633 	int firstlen;
634 	struct mbuf **mnext;
635 	int nfrags;
636 
637 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
638 		ipstat.ips_cantfrag++;
639 		return EMSGSIZE;
640 	}
641 
642 	/*
643 	 * Must be able to put at least 8 bytes per fragment.
644 	 */
645 	if (len < 8)
646 		return EMSGSIZE;
647 
648 	/*
649 	 * If the interface will not calculate checksums on
650 	 * fragmented packets, then do it here.
651 	 */
652 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
653 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
654 		in_delayed_cksum(m0);
655 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
656 	}
657 
658 	if (len > PAGE_SIZE) {
659 		/*
660 		 * Fragment large datagrams such that each segment
661 		 * contains a multiple of PAGE_SIZE amount of data,
662 		 * plus headers. This enables a receiver to perform
663 		 * page-flipping zero-copy optimizations.
664 		 *
665 		 * XXX When does this help given that sender and receiver
666 		 * could have different page sizes, and also mtu could
667 		 * be less than the receiver's page size ?
668 		 */
669 		int newlen;
670 		struct mbuf *m;
671 
672 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
673 			off += m->m_len;
674 
675 		/*
676 		 * firstlen (off - hlen) must be aligned on an
677 		 * 8-byte boundary
678 		 */
679 		if (off < hlen)
680 			goto smart_frag_failure;
681 		off = ((off - hlen) & ~7) + hlen;
682 		newlen = (~PAGE_MASK) & mtu;
683 		if ((newlen + sizeof (struct ip)) > mtu) {
684 			/* we failed, go back the default */
685 smart_frag_failure:
686 			newlen = len;
687 			off = hlen + len;
688 		}
689 		len = newlen;
690 
691 	} else {
692 		off = hlen + len;
693 	}
694 
695 	firstlen = off - hlen;
696 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
697 
698 	/*
699 	 * Loop through length of segment after first fragment,
700 	 * make new header and copy data of each part and link onto chain.
701 	 * Here, m0 is the original packet, m is the fragment being created.
702 	 * The fragments are linked off the m_nextpkt of the original
703 	 * packet, which after processing serves as the first fragment.
704 	 */
705 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
706 		struct ip *mhip;	/* ip header on the fragment */
707 		struct mbuf *m;
708 		int mhlen = sizeof (struct ip);
709 
710 		MGETHDR(m, M_DONTWAIT, MT_DATA);
711 		if (m == NULL) {
712 			error = ENOBUFS;
713 			ipstat.ips_odropped++;
714 			goto done;
715 		}
716 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
717 		/*
718 		 * In the first mbuf, leave room for the link header, then
719 		 * copy the original IP header including options. The payload
720 		 * goes into an additional mbuf chain returned by m_copy().
721 		 */
722 		m->m_data += max_linkhdr;
723 		mhip = mtod(m, struct ip *);
724 		*mhip = *ip;
725 		if (hlen > sizeof (struct ip)) {
726 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
727 			mhip->ip_v = IPVERSION;
728 			mhip->ip_hl = mhlen >> 2;
729 		}
730 		m->m_len = mhlen;
731 		/* XXX do we need to add ip->ip_off below ? */
732 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
733 		if (off + len >= ip->ip_len) {	/* last fragment */
734 			len = ip->ip_len - off;
735 			m->m_flags |= M_LASTFRAG;
736 		} else
737 			mhip->ip_off |= IP_MF;
738 		mhip->ip_len = htons((u_short)(len + mhlen));
739 		m->m_next = m_copy(m0, off, len);
740 		if (m->m_next == NULL) {	/* copy failed */
741 			m_free(m);
742 			error = ENOBUFS;	/* ??? */
743 			ipstat.ips_odropped++;
744 			goto done;
745 		}
746 		m->m_pkthdr.len = mhlen + len;
747 		m->m_pkthdr.rcvif = NULL;
748 #ifdef MAC
749 		mac_create_fragment(m0, m);
750 #endif
751 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
752 		mhip->ip_off = htons(mhip->ip_off);
753 		mhip->ip_sum = 0;
754 		if (sw_csum & CSUM_DELAY_IP)
755 			mhip->ip_sum = in_cksum(m, mhlen);
756 		*mnext = m;
757 		mnext = &m->m_nextpkt;
758 	}
759 	ipstat.ips_ofragments += nfrags;
760 
761 	/* set first marker for fragment chain */
762 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
763 	m0->m_pkthdr.csum_data = nfrags;
764 
765 	/*
766 	 * Update first fragment by trimming what's been copied out
767 	 * and updating header.
768 	 */
769 	m_adj(m0, hlen + firstlen - ip->ip_len);
770 	m0->m_pkthdr.len = hlen + firstlen;
771 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
772 	ip->ip_off |= IP_MF;
773 	ip->ip_off = htons(ip->ip_off);
774 	ip->ip_sum = 0;
775 	if (sw_csum & CSUM_DELAY_IP)
776 		ip->ip_sum = in_cksum(m0, hlen);
777 
778 done:
779 	*m_frag = m0;
780 	return error;
781 }
782 
783 void
784 in_delayed_cksum(struct mbuf *m)
785 {
786 	struct ip *ip;
787 	u_short csum, offset;
788 
789 	ip = mtod(m, struct ip *);
790 	offset = ip->ip_hl << 2 ;
791 	csum = in_cksum_skip(m, ip->ip_len, offset);
792 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
793 		csum = 0xffff;
794 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
795 
796 	if (offset + sizeof(u_short) > m->m_len) {
797 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
798 		    m->m_len, offset, ip->ip_p);
799 		/*
800 		 * XXX
801 		 * this shouldn't happen, but if it does, the
802 		 * correct behavior may be to insert the checksum
803 		 * in the appropriate next mbuf in the chain.
804 		 */
805 		return;
806 	}
807 	*(u_short *)(m->m_data + offset) = csum;
808 }
809 
810 /*
811  * IP socket option processing.
812  */
813 int
814 ip_ctloutput(so, sopt)
815 	struct socket *so;
816 	struct sockopt *sopt;
817 {
818 	struct	inpcb *inp = sotoinpcb(so);
819 	int	error, optval;
820 
821 	error = optval = 0;
822 	if (sopt->sopt_level != IPPROTO_IP) {
823 		return (EINVAL);
824 	}
825 
826 	switch (sopt->sopt_dir) {
827 	case SOPT_SET:
828 		switch (sopt->sopt_name) {
829 		case IP_OPTIONS:
830 #ifdef notyet
831 		case IP_RETOPTS:
832 #endif
833 		{
834 			struct mbuf *m;
835 			if (sopt->sopt_valsize > MLEN) {
836 				error = EMSGSIZE;
837 				break;
838 			}
839 			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
840 			if (m == NULL) {
841 				error = ENOBUFS;
842 				break;
843 			}
844 			m->m_len = sopt->sopt_valsize;
845 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
846 					    m->m_len);
847 			if (error) {
848 				m_free(m);
849 				break;
850 			}
851 			INP_LOCK(inp);
852 			error = ip_pcbopts(inp, sopt->sopt_name, m);
853 			INP_UNLOCK(inp);
854 			return (error);
855 		}
856 
857 		case IP_TOS:
858 		case IP_TTL:
859 		case IP_MINTTL:
860 		case IP_RECVOPTS:
861 		case IP_RECVRETOPTS:
862 		case IP_RECVDSTADDR:
863 		case IP_RECVTTL:
864 		case IP_RECVIF:
865 		case IP_FAITH:
866 		case IP_ONESBCAST:
867 		case IP_DONTFRAG:
868 			error = sooptcopyin(sopt, &optval, sizeof optval,
869 					    sizeof optval);
870 			if (error)
871 				break;
872 
873 			switch (sopt->sopt_name) {
874 			case IP_TOS:
875 				inp->inp_ip_tos = optval;
876 				break;
877 
878 			case IP_TTL:
879 				inp->inp_ip_ttl = optval;
880 				break;
881 
882 			case IP_MINTTL:
883 				if (optval > 0 && optval <= MAXTTL)
884 					inp->inp_ip_minttl = optval;
885 				else
886 					error = EINVAL;
887 				break;
888 
889 #define	OPTSET(bit) do {						\
890 	INP_LOCK(inp);							\
891 	if (optval)							\
892 		inp->inp_flags |= bit;					\
893 	else								\
894 		inp->inp_flags &= ~bit;					\
895 	INP_UNLOCK(inp);						\
896 } while (0)
897 
898 			case IP_RECVOPTS:
899 				OPTSET(INP_RECVOPTS);
900 				break;
901 
902 			case IP_RECVRETOPTS:
903 				OPTSET(INP_RECVRETOPTS);
904 				break;
905 
906 			case IP_RECVDSTADDR:
907 				OPTSET(INP_RECVDSTADDR);
908 				break;
909 
910 			case IP_RECVTTL:
911 				OPTSET(INP_RECVTTL);
912 				break;
913 
914 			case IP_RECVIF:
915 				OPTSET(INP_RECVIF);
916 				break;
917 
918 			case IP_FAITH:
919 				OPTSET(INP_FAITH);
920 				break;
921 
922 			case IP_ONESBCAST:
923 				OPTSET(INP_ONESBCAST);
924 				break;
925 			case IP_DONTFRAG:
926 				OPTSET(INP_DONTFRAG);
927 				break;
928 			}
929 			break;
930 #undef OPTSET
931 
932 		case IP_MULTICAST_IF:
933 		case IP_MULTICAST_VIF:
934 		case IP_MULTICAST_TTL:
935 		case IP_MULTICAST_LOOP:
936 		case IP_ADD_MEMBERSHIP:
937 		case IP_DROP_MEMBERSHIP:
938 			error = ip_setmoptions(inp, sopt);
939 			break;
940 
941 		case IP_PORTRANGE:
942 			error = sooptcopyin(sopt, &optval, sizeof optval,
943 					    sizeof optval);
944 			if (error)
945 				break;
946 
947 			INP_LOCK(inp);
948 			switch (optval) {
949 			case IP_PORTRANGE_DEFAULT:
950 				inp->inp_flags &= ~(INP_LOWPORT);
951 				inp->inp_flags &= ~(INP_HIGHPORT);
952 				break;
953 
954 			case IP_PORTRANGE_HIGH:
955 				inp->inp_flags &= ~(INP_LOWPORT);
956 				inp->inp_flags |= INP_HIGHPORT;
957 				break;
958 
959 			case IP_PORTRANGE_LOW:
960 				inp->inp_flags &= ~(INP_HIGHPORT);
961 				inp->inp_flags |= INP_LOWPORT;
962 				break;
963 
964 			default:
965 				error = EINVAL;
966 				break;
967 			}
968 			INP_UNLOCK(inp);
969 			break;
970 
971 #if defined(IPSEC) || defined(FAST_IPSEC)
972 		case IP_IPSEC_POLICY:
973 		{
974 			caddr_t req;
975 			size_t len = 0;
976 			int priv;
977 			struct mbuf *m;
978 			int optname;
979 
980 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
981 				break;
982 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
983 				break;
984 			if (sopt->sopt_td != NULL) {
985 				/*
986 				 * XXXRW: Would be more desirable to do this
987 				 * one layer down so that we only exercise
988 				 * privilege if it is needed.
989 				 */
990 				error = priv_check(sopt->sopt_td,
991 				    PRIV_NETINET_IPSEC);
992 				if (error)
993 					priv = 0;
994 				else
995 					priv = 1;
996 			} else
997 				priv = 1;
998 			req = mtod(m, caddr_t);
999 			len = m->m_len;
1000 			optname = sopt->sopt_name;
1001 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1002 			m_freem(m);
1003 			break;
1004 		}
1005 #endif /*IPSEC*/
1006 
1007 		default:
1008 			error = ENOPROTOOPT;
1009 			break;
1010 		}
1011 		break;
1012 
1013 	case SOPT_GET:
1014 		switch (sopt->sopt_name) {
1015 		case IP_OPTIONS:
1016 		case IP_RETOPTS:
1017 			if (inp->inp_options)
1018 				error = sooptcopyout(sopt,
1019 						     mtod(inp->inp_options,
1020 							  char *),
1021 						     inp->inp_options->m_len);
1022 			else
1023 				sopt->sopt_valsize = 0;
1024 			break;
1025 
1026 		case IP_TOS:
1027 		case IP_TTL:
1028 		case IP_MINTTL:
1029 		case IP_RECVOPTS:
1030 		case IP_RECVRETOPTS:
1031 		case IP_RECVDSTADDR:
1032 		case IP_RECVTTL:
1033 		case IP_RECVIF:
1034 		case IP_PORTRANGE:
1035 		case IP_FAITH:
1036 		case IP_ONESBCAST:
1037 		case IP_DONTFRAG:
1038 			switch (sopt->sopt_name) {
1039 
1040 			case IP_TOS:
1041 				optval = inp->inp_ip_tos;
1042 				break;
1043 
1044 			case IP_TTL:
1045 				optval = inp->inp_ip_ttl;
1046 				break;
1047 
1048 			case IP_MINTTL:
1049 				optval = inp->inp_ip_minttl;
1050 				break;
1051 
1052 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1053 
1054 			case IP_RECVOPTS:
1055 				optval = OPTBIT(INP_RECVOPTS);
1056 				break;
1057 
1058 			case IP_RECVRETOPTS:
1059 				optval = OPTBIT(INP_RECVRETOPTS);
1060 				break;
1061 
1062 			case IP_RECVDSTADDR:
1063 				optval = OPTBIT(INP_RECVDSTADDR);
1064 				break;
1065 
1066 			case IP_RECVTTL:
1067 				optval = OPTBIT(INP_RECVTTL);
1068 				break;
1069 
1070 			case IP_RECVIF:
1071 				optval = OPTBIT(INP_RECVIF);
1072 				break;
1073 
1074 			case IP_PORTRANGE:
1075 				if (inp->inp_flags & INP_HIGHPORT)
1076 					optval = IP_PORTRANGE_HIGH;
1077 				else if (inp->inp_flags & INP_LOWPORT)
1078 					optval = IP_PORTRANGE_LOW;
1079 				else
1080 					optval = 0;
1081 				break;
1082 
1083 			case IP_FAITH:
1084 				optval = OPTBIT(INP_FAITH);
1085 				break;
1086 
1087 			case IP_ONESBCAST:
1088 				optval = OPTBIT(INP_ONESBCAST);
1089 				break;
1090 			case IP_DONTFRAG:
1091 				optval = OPTBIT(INP_DONTFRAG);
1092 				break;
1093 			}
1094 			error = sooptcopyout(sopt, &optval, sizeof optval);
1095 			break;
1096 
1097 		case IP_MULTICAST_IF:
1098 		case IP_MULTICAST_VIF:
1099 		case IP_MULTICAST_TTL:
1100 		case IP_MULTICAST_LOOP:
1101 		case IP_ADD_MEMBERSHIP:
1102 		case IP_DROP_MEMBERSHIP:
1103 			error = ip_getmoptions(inp, sopt);
1104 			break;
1105 
1106 #if defined(IPSEC) || defined(FAST_IPSEC)
1107 		case IP_IPSEC_POLICY:
1108 		{
1109 			struct mbuf *m = NULL;
1110 			caddr_t req = NULL;
1111 			size_t len = 0;
1112 
1113 			if (m != 0) {
1114 				req = mtod(m, caddr_t);
1115 				len = m->m_len;
1116 			}
1117 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1118 			if (error == 0)
1119 				error = soopt_mcopyout(sopt, m); /* XXX */
1120 			if (error == 0)
1121 				m_freem(m);
1122 			break;
1123 		}
1124 #endif /*IPSEC*/
1125 
1126 		default:
1127 			error = ENOPROTOOPT;
1128 			break;
1129 		}
1130 		break;
1131 	}
1132 	return (error);
1133 }
1134 
1135 /*
1136  * XXX
1137  * The whole multicast option thing needs to be re-thought.
1138  * Several of these options are equally applicable to non-multicast
1139  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1140  * standard option (IP_TTL).
1141  */
1142 
1143 /*
1144  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1145  */
1146 static struct ifnet *
1147 ip_multicast_if(a, ifindexp)
1148 	struct in_addr *a;
1149 	int *ifindexp;
1150 {
1151 	int ifindex;
1152 	struct ifnet *ifp;
1153 
1154 	if (ifindexp)
1155 		*ifindexp = 0;
1156 	if (ntohl(a->s_addr) >> 24 == 0) {
1157 		ifindex = ntohl(a->s_addr) & 0xffffff;
1158 		if (ifindex < 0 || if_index < ifindex)
1159 			return NULL;
1160 		ifp = ifnet_byindex(ifindex);
1161 		if (ifindexp)
1162 			*ifindexp = ifindex;
1163 	} else {
1164 		INADDR_TO_IFP(*a, ifp);
1165 	}
1166 	return ifp;
1167 }
1168 
1169 /*
1170  * Given an inpcb, return its multicast options structure pointer.  Accepts
1171  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1172  */
1173 static struct ip_moptions *
1174 ip_findmoptions(struct inpcb *inp)
1175 {
1176 	struct ip_moptions *imo;
1177 	struct in_multi **immp;
1178 
1179 	INP_LOCK(inp);
1180 	if (inp->inp_moptions != NULL)
1181 		return (inp->inp_moptions);
1182 
1183 	INP_UNLOCK(inp);
1184 
1185 	imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1186 	immp = (struct in_multi **)malloc((sizeof(*immp) * IP_MIN_MEMBERSHIPS),
1187 					  M_IPMOPTS, M_WAITOK);
1188 
1189 	imo->imo_multicast_ifp = NULL;
1190 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1191 	imo->imo_multicast_vif = -1;
1192 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1193 	imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1194 	imo->imo_num_memberships = 0;
1195 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1196 	imo->imo_membership = immp;
1197 
1198 	INP_LOCK(inp);
1199 	if (inp->inp_moptions != NULL) {
1200 		free(immp, M_IPMOPTS);
1201 		free(imo, M_IPMOPTS);
1202 		return (inp->inp_moptions);
1203 	}
1204 	inp->inp_moptions = imo;
1205 	return (imo);
1206 }
1207 
1208 /*
1209  * Set the IP multicast options in response to user setsockopt().
1210  */
1211 static int
1212 ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1213 {
1214 	int error = 0;
1215 	int i;
1216 	struct in_addr addr;
1217 	struct ip_mreq mreq;
1218 	struct ifnet *ifp;
1219 	struct ip_moptions *imo;
1220 	struct route ro;
1221 	struct sockaddr_in *dst;
1222 	int ifindex;
1223 	int s;
1224 
1225 	switch (sopt->sopt_name) {
1226 	/* store an index number for the vif you wanna use in the send */
1227 	case IP_MULTICAST_VIF:
1228 		if (legal_vif_num == 0) {
1229 			error = EOPNOTSUPP;
1230 			break;
1231 		}
1232 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1233 		if (error)
1234 			break;
1235 		if (!legal_vif_num(i) && (i != -1)) {
1236 			error = EINVAL;
1237 			break;
1238 		}
1239 		imo = ip_findmoptions(inp);
1240 		imo->imo_multicast_vif = i;
1241 		INP_UNLOCK(inp);
1242 		break;
1243 
1244 	case IP_MULTICAST_IF:
1245 		/*
1246 		 * Select the interface for outgoing multicast packets.
1247 		 */
1248 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1249 		if (error)
1250 			break;
1251 		/*
1252 		 * INADDR_ANY is used to remove a previous selection.
1253 		 * When no interface is selected, a default one is
1254 		 * chosen every time a multicast packet is sent.
1255 		 */
1256 		imo = ip_findmoptions(inp);
1257 		if (addr.s_addr == INADDR_ANY) {
1258 			imo->imo_multicast_ifp = NULL;
1259 			INP_UNLOCK(inp);
1260 			break;
1261 		}
1262 		/*
1263 		 * The selected interface is identified by its local
1264 		 * IP address.  Find the interface and confirm that
1265 		 * it supports multicasting.
1266 		 */
1267 		s = splimp();
1268 		ifp = ip_multicast_if(&addr, &ifindex);
1269 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1270 			INP_UNLOCK(inp);
1271 			splx(s);
1272 			error = EADDRNOTAVAIL;
1273 			break;
1274 		}
1275 		imo->imo_multicast_ifp = ifp;
1276 		if (ifindex)
1277 			imo->imo_multicast_addr = addr;
1278 		else
1279 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1280 		INP_UNLOCK(inp);
1281 		splx(s);
1282 		break;
1283 
1284 	case IP_MULTICAST_TTL:
1285 		/*
1286 		 * Set the IP time-to-live for outgoing multicast packets.
1287 		 * The original multicast API required a char argument,
1288 		 * which is inconsistent with the rest of the socket API.
1289 		 * We allow either a char or an int.
1290 		 */
1291 		if (sopt->sopt_valsize == 1) {
1292 			u_char ttl;
1293 			error = sooptcopyin(sopt, &ttl, 1, 1);
1294 			if (error)
1295 				break;
1296 			imo = ip_findmoptions(inp);
1297 			imo->imo_multicast_ttl = ttl;
1298 			INP_UNLOCK(inp);
1299 		} else {
1300 			u_int ttl;
1301 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1302 					    sizeof ttl);
1303 			if (error)
1304 				break;
1305 			if (ttl > 255)
1306 				error = EINVAL;
1307 			else {
1308 				imo = ip_findmoptions(inp);
1309 				imo->imo_multicast_ttl = ttl;
1310 				INP_UNLOCK(inp);
1311 			}
1312 		}
1313 		break;
1314 
1315 	case IP_MULTICAST_LOOP:
1316 		/*
1317 		 * Set the loopback flag for outgoing multicast packets.
1318 		 * Must be zero or one.  The original multicast API required a
1319 		 * char argument, which is inconsistent with the rest
1320 		 * of the socket API.  We allow either a char or an int.
1321 		 */
1322 		if (sopt->sopt_valsize == 1) {
1323 			u_char loop;
1324 			error = sooptcopyin(sopt, &loop, 1, 1);
1325 			if (error)
1326 				break;
1327 			imo = ip_findmoptions(inp);
1328 			imo->imo_multicast_loop = !!loop;
1329 			INP_UNLOCK(inp);
1330 		} else {
1331 			u_int loop;
1332 			error = sooptcopyin(sopt, &loop, sizeof loop,
1333 					    sizeof loop);
1334 			if (error)
1335 				break;
1336 			imo = ip_findmoptions(inp);
1337 			imo->imo_multicast_loop = !!loop;
1338 			INP_UNLOCK(inp);
1339 		}
1340 		break;
1341 
1342 	case IP_ADD_MEMBERSHIP:
1343 		/*
1344 		 * Add a multicast group membership.
1345 		 * Group must be a valid IP multicast address.
1346 		 */
1347 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1348 		if (error)
1349 			break;
1350 
1351 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1352 			error = EINVAL;
1353 			break;
1354 		}
1355 		s = splimp();
1356 		/*
1357 		 * If no interface address was provided, use the interface of
1358 		 * the route to the given multicast address.
1359 		 */
1360 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1361 			bzero((caddr_t)&ro, sizeof(ro));
1362 			dst = (struct sockaddr_in *)&ro.ro_dst;
1363 			dst->sin_len = sizeof(*dst);
1364 			dst->sin_family = AF_INET;
1365 			dst->sin_addr = mreq.imr_multiaddr;
1366 			rtalloc_ign(&ro, RTF_CLONING);
1367 			if (ro.ro_rt == NULL) {
1368 				error = EADDRNOTAVAIL;
1369 				splx(s);
1370 				break;
1371 			}
1372 			ifp = ro.ro_rt->rt_ifp;
1373 			RTFREE(ro.ro_rt);
1374 		}
1375 		else {
1376 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1377 		}
1378 
1379 		/*
1380 		 * See if we found an interface, and confirm that it
1381 		 * supports multicast.
1382 		 */
1383 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1384 			error = EADDRNOTAVAIL;
1385 			splx(s);
1386 			break;
1387 		}
1388 		/*
1389 		 * See if the membership already exists or if all the
1390 		 * membership slots are full.
1391 		 */
1392 		imo = ip_findmoptions(inp);
1393 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1394 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1395 			    imo->imo_membership[i]->inm_addr.s_addr
1396 						== mreq.imr_multiaddr.s_addr)
1397 				break;
1398 		}
1399 		if (i < imo->imo_num_memberships) {
1400 			INP_UNLOCK(inp);
1401 			error = EADDRINUSE;
1402 			splx(s);
1403 			break;
1404 		}
1405 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1406 		    struct in_multi **nmships, **omships;
1407 		    size_t newmax;
1408 		    /*
1409 		     * Resize the vector to next power-of-two minus 1. If the
1410 		     * size would exceed the maximum then we know we've really
1411 		     * run out of entries. Otherwise, we realloc() the vector
1412 		     * with the INP lock held to avoid introducing a race.
1413 		     */
1414 		    nmships = NULL;
1415 		    omships = imo->imo_membership;
1416 		    newmax = ((imo->imo_max_memberships + 1) * 2) - 1;
1417 		    if (newmax <= IP_MAX_MEMBERSHIPS) {
1418 			nmships = (struct in_multi **)realloc(omships,
1419 sizeof(*nmships) * newmax, M_IPMOPTS, M_NOWAIT);
1420 			if (nmships != NULL) {
1421 			    imo->imo_membership = nmships;
1422 			    imo->imo_max_memberships = newmax;
1423 			}
1424 		    }
1425 		    if (nmships == NULL) {
1426 			INP_UNLOCK(inp);
1427 			error = ETOOMANYREFS;
1428 			splx(s);
1429 			break;
1430 		    }
1431 		}
1432 		/*
1433 		 * Everything looks good; add a new record to the multicast
1434 		 * address list for the given interface.
1435 		 */
1436 		if ((imo->imo_membership[i] =
1437 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1438 			INP_UNLOCK(inp);
1439 			error = ENOBUFS;
1440 			splx(s);
1441 			break;
1442 		}
1443 		++imo->imo_num_memberships;
1444 		INP_UNLOCK(inp);
1445 		splx(s);
1446 		break;
1447 
1448 	case IP_DROP_MEMBERSHIP:
1449 		/*
1450 		 * Drop a multicast group membership.
1451 		 * Group must be a valid IP multicast address.
1452 		 */
1453 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1454 		if (error)
1455 			break;
1456 
1457 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1458 			error = EINVAL;
1459 			break;
1460 		}
1461 
1462 		s = splimp();
1463 		/*
1464 		 * If an interface address was specified, get a pointer
1465 		 * to its ifnet structure.
1466 		 */
1467 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1468 			ifp = NULL;
1469 		else {
1470 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1471 			if (ifp == NULL) {
1472 				error = EADDRNOTAVAIL;
1473 				splx(s);
1474 				break;
1475 			}
1476 		}
1477 		/*
1478 		 * Find the membership in the membership array.
1479 		 */
1480 		imo = ip_findmoptions(inp);
1481 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1482 			if ((ifp == NULL ||
1483 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1484 			     imo->imo_membership[i]->inm_addr.s_addr ==
1485 			     mreq.imr_multiaddr.s_addr)
1486 				break;
1487 		}
1488 		if (i == imo->imo_num_memberships) {
1489 			INP_UNLOCK(inp);
1490 			error = EADDRNOTAVAIL;
1491 			splx(s);
1492 			break;
1493 		}
1494 		/*
1495 		 * Give up the multicast address record to which the
1496 		 * membership points.
1497 		 */
1498 		in_delmulti(imo->imo_membership[i]);
1499 		/*
1500 		 * Remove the gap in the membership array.
1501 		 */
1502 		for (++i; i < imo->imo_num_memberships; ++i)
1503 			imo->imo_membership[i-1] = imo->imo_membership[i];
1504 		--imo->imo_num_memberships;
1505 		INP_UNLOCK(inp);
1506 		splx(s);
1507 		break;
1508 
1509 	default:
1510 		error = EOPNOTSUPP;
1511 		break;
1512 	}
1513 
1514 	return (error);
1515 }
1516 
1517 /*
1518  * Return the IP multicast options in response to user getsockopt().
1519  */
1520 static int
1521 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1522 {
1523 	struct ip_moptions *imo;
1524 	struct in_addr addr;
1525 	struct in_ifaddr *ia;
1526 	int error, optval;
1527 	u_char coptval;
1528 
1529 	INP_LOCK(inp);
1530 	imo = inp->inp_moptions;
1531 
1532 	error = 0;
1533 	switch (sopt->sopt_name) {
1534 	case IP_MULTICAST_VIF:
1535 		if (imo != NULL)
1536 			optval = imo->imo_multicast_vif;
1537 		else
1538 			optval = -1;
1539 		INP_UNLOCK(inp);
1540 		error = sooptcopyout(sopt, &optval, sizeof optval);
1541 		break;
1542 
1543 	case IP_MULTICAST_IF:
1544 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1545 			addr.s_addr = INADDR_ANY;
1546 		else if (imo->imo_multicast_addr.s_addr) {
1547 			/* return the value user has set */
1548 			addr = imo->imo_multicast_addr;
1549 		} else {
1550 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1551 			addr.s_addr = (ia == NULL) ? INADDR_ANY
1552 				: IA_SIN(ia)->sin_addr.s_addr;
1553 		}
1554 		INP_UNLOCK(inp);
1555 		error = sooptcopyout(sopt, &addr, sizeof addr);
1556 		break;
1557 
1558 	case IP_MULTICAST_TTL:
1559 		if (imo == 0)
1560 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1561 		else
1562 			optval = coptval = imo->imo_multicast_ttl;
1563 		INP_UNLOCK(inp);
1564 		if (sopt->sopt_valsize == 1)
1565 			error = sooptcopyout(sopt, &coptval, 1);
1566 		else
1567 			error = sooptcopyout(sopt, &optval, sizeof optval);
1568 		break;
1569 
1570 	case IP_MULTICAST_LOOP:
1571 		if (imo == 0)
1572 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1573 		else
1574 			optval = coptval = imo->imo_multicast_loop;
1575 		INP_UNLOCK(inp);
1576 		if (sopt->sopt_valsize == 1)
1577 			error = sooptcopyout(sopt, &coptval, 1);
1578 		else
1579 			error = sooptcopyout(sopt, &optval, sizeof optval);
1580 		break;
1581 
1582 	default:
1583 		INP_UNLOCK(inp);
1584 		error = ENOPROTOOPT;
1585 		break;
1586 	}
1587 	INP_UNLOCK_ASSERT(inp);
1588 
1589 	return (error);
1590 }
1591 
1592 /*
1593  * Discard the IP multicast options.
1594  */
1595 void
1596 ip_freemoptions(imo)
1597 	register struct ip_moptions *imo;
1598 {
1599 	register int i;
1600 
1601 	if (imo != NULL) {
1602 		for (i = 0; i < imo->imo_num_memberships; ++i)
1603 			in_delmulti(imo->imo_membership[i]);
1604 		free(imo->imo_membership, M_IPMOPTS);
1605 		free(imo, M_IPMOPTS);
1606 	}
1607 }
1608 
1609 /*
1610  * Routine called from ip_output() to loop back a copy of an IP multicast
1611  * packet to the input queue of a specified interface.  Note that this
1612  * calls the output routine of the loopback "driver", but with an interface
1613  * pointer that might NOT be a loopback interface -- evil, but easier than
1614  * replicating that code here.
1615  */
1616 static void
1617 ip_mloopback(ifp, m, dst, hlen)
1618 	struct ifnet *ifp;
1619 	register struct mbuf *m;
1620 	register struct sockaddr_in *dst;
1621 	int hlen;
1622 {
1623 	register struct ip *ip;
1624 	struct mbuf *copym;
1625 
1626 	copym = m_copy(m, 0, M_COPYALL);
1627 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1628 		copym = m_pullup(copym, hlen);
1629 	if (copym != NULL) {
1630 		/* If needed, compute the checksum and mark it as valid. */
1631 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1632 			in_delayed_cksum(copym);
1633 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1634 			copym->m_pkthdr.csum_flags |=
1635 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1636 			copym->m_pkthdr.csum_data = 0xffff;
1637 		}
1638 		/*
1639 		 * We don't bother to fragment if the IP length is greater
1640 		 * than the interface's MTU.  Can this possibly matter?
1641 		 */
1642 		ip = mtod(copym, struct ip *);
1643 		ip->ip_len = htons(ip->ip_len);
1644 		ip->ip_off = htons(ip->ip_off);
1645 		ip->ip_sum = 0;
1646 		ip->ip_sum = in_cksum(copym, hlen);
1647 		/*
1648 		 * NB:
1649 		 * It's not clear whether there are any lingering
1650 		 * reentrancy problems in other areas which might
1651 		 * be exposed by using ip_input directly (in
1652 		 * particular, everything which modifies the packet
1653 		 * in-place).  Yet another option is using the
1654 		 * protosw directly to deliver the looped back
1655 		 * packet.  For the moment, we'll err on the side
1656 		 * of safety by using if_simloop().
1657 		 */
1658 #if 1 /* XXX */
1659 		if (dst->sin_family != AF_INET) {
1660 			printf("ip_mloopback: bad address family %d\n",
1661 						dst->sin_family);
1662 			dst->sin_family = AF_INET;
1663 		}
1664 #endif
1665 
1666 #ifdef notdef
1667 		copym->m_pkthdr.rcvif = ifp;
1668 		ip_input(copym);
1669 #else
1670 		if_simloop(ifp, copym, dst->sin_family, 0);
1671 #endif
1672 	}
1673 }
1674