1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ratelimit.h" 39 #include "opt_ipsec.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_route.h" 43 #include "opt_sctp.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/protosw.h> 55 #include <sys/rmlock.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/netisr.h> 66 #include <net/pfil.h> 67 #include <net/route.h> 68 #ifdef RADIX_MPATH 69 #include <net/radix_mpath.h> 70 #endif 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_rss.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/ip_options.h> 83 84 #include <netinet/udp.h> 85 #include <netinet/udp_var.h> 86 87 #ifdef SCTP 88 #include <netinet/sctp.h> 89 #include <netinet/sctp_crc32.h> 90 #endif 91 92 #include <netipsec/ipsec_support.h> 93 94 #include <machine/in_cksum.h> 95 96 #include <security/mac/mac_framework.h> 97 98 #ifdef MBUF_STRESS_TEST 99 static int mbuf_frag_size = 0; 100 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 101 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 102 #endif 103 104 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 105 106 107 extern int in_mcast_loop; 108 extern struct protosw inetsw[]; 109 110 static inline int 111 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 112 struct sockaddr_in *dst, int *fibnum, int *error) 113 { 114 struct m_tag *fwd_tag = NULL; 115 struct mbuf *m; 116 struct in_addr odst; 117 struct ip *ip; 118 119 m = *mp; 120 ip = mtod(m, struct ip *); 121 122 /* Run through list of hooks for output packets. */ 123 odst.s_addr = ip->ip_dst.s_addr; 124 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, 0, inp); 125 m = *mp; 126 if ((*error) != 0 || m == NULL) 127 return 1; /* Finished */ 128 129 ip = mtod(m, struct ip *); 130 131 /* See if destination IP address was changed by packet filter. */ 132 if (odst.s_addr != ip->ip_dst.s_addr) { 133 m->m_flags |= M_SKIP_FIREWALL; 134 /* If destination is now ourself drop to ip_input(). */ 135 if (in_localip(ip->ip_dst)) { 136 m->m_flags |= M_FASTFWD_OURS; 137 if (m->m_pkthdr.rcvif == NULL) 138 m->m_pkthdr.rcvif = V_loif; 139 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 140 m->m_pkthdr.csum_flags |= 141 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 142 m->m_pkthdr.csum_data = 0xffff; 143 } 144 m->m_pkthdr.csum_flags |= 145 CSUM_IP_CHECKED | CSUM_IP_VALID; 146 #ifdef SCTP 147 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 148 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 149 #endif 150 *error = netisr_queue(NETISR_IP, m); 151 return 1; /* Finished */ 152 } 153 154 bzero(dst, sizeof(*dst)); 155 dst->sin_family = AF_INET; 156 dst->sin_len = sizeof(*dst); 157 dst->sin_addr = ip->ip_dst; 158 159 return -1; /* Reloop */ 160 } 161 /* See if fib was changed by packet filter. */ 162 if ((*fibnum) != M_GETFIB(m)) { 163 m->m_flags |= M_SKIP_FIREWALL; 164 *fibnum = M_GETFIB(m); 165 return -1; /* Reloop for FIB change */ 166 } 167 168 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 169 if (m->m_flags & M_FASTFWD_OURS) { 170 if (m->m_pkthdr.rcvif == NULL) 171 m->m_pkthdr.rcvif = V_loif; 172 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 173 m->m_pkthdr.csum_flags |= 174 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 175 m->m_pkthdr.csum_data = 0xffff; 176 } 177 #ifdef SCTP 178 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 179 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 180 #endif 181 m->m_pkthdr.csum_flags |= 182 CSUM_IP_CHECKED | CSUM_IP_VALID; 183 184 *error = netisr_queue(NETISR_IP, m); 185 return 1; /* Finished */ 186 } 187 /* Or forward to some other address? */ 188 if ((m->m_flags & M_IP_NEXTHOP) && 189 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 190 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 191 m->m_flags |= M_SKIP_FIREWALL; 192 m->m_flags &= ~M_IP_NEXTHOP; 193 m_tag_delete(m, fwd_tag); 194 195 return -1; /* Reloop for CHANGE of dst */ 196 } 197 198 return 0; 199 } 200 201 /* 202 * IP output. The packet in mbuf chain m contains a skeletal IP 203 * header (with len, off, ttl, proto, tos, src, dst). 204 * The mbuf chain containing the packet will be freed. 205 * The mbuf opt, if present, will not be freed. 206 * If route ro is present and has ro_rt initialized, route lookup would be 207 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 208 * then result of route lookup is stored in ro->ro_rt. 209 * 210 * In the IP forwarding case, the packet will arrive with options already 211 * inserted, so must have a NULL opt pointer. 212 */ 213 int 214 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 215 struct ip_moptions *imo, struct inpcb *inp) 216 { 217 struct rm_priotracker in_ifa_tracker; 218 struct epoch_tracker et; 219 struct ip *ip; 220 struct ifnet *ifp = NULL; /* keep compiler happy */ 221 struct mbuf *m0; 222 int hlen = sizeof (struct ip); 223 int mtu; 224 int error = 0; 225 struct sockaddr_in *dst; 226 const struct sockaddr_in *gw; 227 struct in_ifaddr *ia; 228 int isbroadcast; 229 uint16_t ip_len, ip_off; 230 struct route iproute; 231 struct rtentry *rte; /* cache for ro->ro_rt */ 232 uint32_t fibnum; 233 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 234 int no_route_but_check_spd = 0; 235 #endif 236 M_ASSERTPKTHDR(m); 237 238 if (inp != NULL) { 239 INP_LOCK_ASSERT(inp); 240 M_SETFIB(m, inp->inp_inc.inc_fibnum); 241 if ((flags & IP_NODEFAULTFLOWID) == 0) { 242 m->m_pkthdr.flowid = inp->inp_flowid; 243 M_HASHTYPE_SET(m, inp->inp_flowtype); 244 } 245 } 246 247 if (ro == NULL) { 248 ro = &iproute; 249 bzero(ro, sizeof (*ro)); 250 } 251 252 if (opt) { 253 int len = 0; 254 m = ip_insertoptions(m, opt, &len); 255 if (len != 0) 256 hlen = len; /* ip->ip_hl is updated above */ 257 } 258 ip = mtod(m, struct ip *); 259 ip_len = ntohs(ip->ip_len); 260 ip_off = ntohs(ip->ip_off); 261 262 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 263 ip->ip_v = IPVERSION; 264 ip->ip_hl = hlen >> 2; 265 ip_fillid(ip); 266 } else { 267 /* Header already set, fetch hlen from there */ 268 hlen = ip->ip_hl << 2; 269 } 270 if ((flags & IP_FORWARDING) == 0) 271 IPSTAT_INC(ips_localout); 272 273 /* 274 * dst/gw handling: 275 * 276 * dst can be rewritten but always points to &ro->ro_dst. 277 * gw is readonly but can point either to dst OR rt_gateway, 278 * therefore we need restore gw if we're redoing lookup. 279 */ 280 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 281 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 282 rte = ro->ro_rt; 283 if (rte == NULL) { 284 bzero(dst, sizeof(*dst)); 285 dst->sin_family = AF_INET; 286 dst->sin_len = sizeof(*dst); 287 dst->sin_addr = ip->ip_dst; 288 } 289 NET_EPOCH_ENTER(et); 290 again: 291 /* 292 * Validate route against routing table additions; 293 * a better/more specific route might have been added. 294 */ 295 if (inp) 296 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 297 /* 298 * If there is a cached route, 299 * check that it is to the same destination 300 * and is still up. If not, free it and try again. 301 * The address family should also be checked in case of sharing the 302 * cache with IPv6. 303 * Also check whether routing cache needs invalidation. 304 */ 305 rte = ro->ro_rt; 306 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 307 rte->rt_ifp == NULL || 308 !RT_LINK_IS_UP(rte->rt_ifp) || 309 dst->sin_family != AF_INET || 310 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 311 RO_INVALIDATE_CACHE(ro); 312 rte = NULL; 313 } 314 ia = NULL; 315 /* 316 * If routing to interface only, short circuit routing lookup. 317 * The use of an all-ones broadcast address implies this; an 318 * interface is specified by the broadcast address of an interface, 319 * or the destination address of a ptp interface. 320 */ 321 if (flags & IP_SENDONES) { 322 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 323 M_GETFIB(m)))) == NULL && 324 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 325 M_GETFIB(m)))) == NULL) { 326 IPSTAT_INC(ips_noroute); 327 error = ENETUNREACH; 328 goto bad; 329 } 330 ip->ip_dst.s_addr = INADDR_BROADCAST; 331 dst->sin_addr = ip->ip_dst; 332 ifp = ia->ia_ifp; 333 ip->ip_ttl = 1; 334 isbroadcast = 1; 335 } else if (flags & IP_ROUTETOIF) { 336 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 337 M_GETFIB(m)))) == NULL && 338 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 339 M_GETFIB(m)))) == NULL) { 340 IPSTAT_INC(ips_noroute); 341 error = ENETUNREACH; 342 goto bad; 343 } 344 ifp = ia->ia_ifp; 345 ip->ip_ttl = 1; 346 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 347 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 348 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 349 imo != NULL && imo->imo_multicast_ifp != NULL) { 350 /* 351 * Bypass the normal routing lookup for multicast 352 * packets if the interface is specified. 353 */ 354 ifp = imo->imo_multicast_ifp; 355 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 356 isbroadcast = 0; /* fool gcc */ 357 } else { 358 /* 359 * We want to do any cloning requested by the link layer, 360 * as this is probably required in all cases for correct 361 * operation (as it is for ARP). 362 */ 363 if (rte == NULL) { 364 #ifdef RADIX_MPATH 365 rtalloc_mpath_fib(ro, 366 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 367 fibnum); 368 #else 369 in_rtalloc_ign(ro, 0, fibnum); 370 #endif 371 rte = ro->ro_rt; 372 } 373 if (rte == NULL || 374 (rte->rt_flags & RTF_UP) == 0 || 375 rte->rt_ifp == NULL || 376 !RT_LINK_IS_UP(rte->rt_ifp)) { 377 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 378 /* 379 * There is no route for this packet, but it is 380 * possible that a matching SPD entry exists. 381 */ 382 no_route_but_check_spd = 1; 383 mtu = 0; /* Silence GCC warning. */ 384 goto sendit; 385 #endif 386 IPSTAT_INC(ips_noroute); 387 error = EHOSTUNREACH; 388 goto bad; 389 } 390 ia = ifatoia(rte->rt_ifa); 391 ifp = rte->rt_ifp; 392 counter_u64_add(rte->rt_pksent, 1); 393 rt_update_ro_flags(ro); 394 if (rte->rt_flags & RTF_GATEWAY) 395 gw = (struct sockaddr_in *)rte->rt_gateway; 396 if (rte->rt_flags & RTF_HOST) 397 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 398 else if (ifp->if_flags & IFF_BROADCAST) 399 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 400 else 401 isbroadcast = 0; 402 } 403 404 /* 405 * Calculate MTU. If we have a route that is up, use that, 406 * otherwise use the interface's MTU. 407 */ 408 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 409 mtu = rte->rt_mtu; 410 else 411 mtu = ifp->if_mtu; 412 /* Catch a possible divide by zero later. */ 413 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 414 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 415 416 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 417 m->m_flags |= M_MCAST; 418 /* 419 * IP destination address is multicast. Make sure "gw" 420 * still points to the address in "ro". (It may have been 421 * changed to point to a gateway address, above.) 422 */ 423 gw = dst; 424 /* 425 * See if the caller provided any multicast options 426 */ 427 if (imo != NULL) { 428 ip->ip_ttl = imo->imo_multicast_ttl; 429 if (imo->imo_multicast_vif != -1) 430 ip->ip_src.s_addr = 431 ip_mcast_src ? 432 ip_mcast_src(imo->imo_multicast_vif) : 433 INADDR_ANY; 434 } else 435 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 436 /* 437 * Confirm that the outgoing interface supports multicast. 438 */ 439 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 440 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 441 IPSTAT_INC(ips_noroute); 442 error = ENETUNREACH; 443 goto bad; 444 } 445 } 446 /* 447 * If source address not specified yet, use address 448 * of outgoing interface. 449 */ 450 if (ip->ip_src.s_addr == INADDR_ANY) { 451 /* Interface may have no addresses. */ 452 if (ia != NULL) 453 ip->ip_src = IA_SIN(ia)->sin_addr; 454 } 455 456 if ((imo == NULL && in_mcast_loop) || 457 (imo && imo->imo_multicast_loop)) { 458 /* 459 * Loop back multicast datagram if not expressly 460 * forbidden to do so, even if we are not a member 461 * of the group; ip_input() will filter it later, 462 * thus deferring a hash lookup and mutex acquisition 463 * at the expense of a cheap copy using m_copym(). 464 */ 465 ip_mloopback(ifp, m, hlen); 466 } else { 467 /* 468 * If we are acting as a multicast router, perform 469 * multicast forwarding as if the packet had just 470 * arrived on the interface to which we are about 471 * to send. The multicast forwarding function 472 * recursively calls this function, using the 473 * IP_FORWARDING flag to prevent infinite recursion. 474 * 475 * Multicasts that are looped back by ip_mloopback(), 476 * above, will be forwarded by the ip_input() routine, 477 * if necessary. 478 */ 479 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 480 /* 481 * If rsvp daemon is not running, do not 482 * set ip_moptions. This ensures that the packet 483 * is multicast and not just sent down one link 484 * as prescribed by rsvpd. 485 */ 486 if (!V_rsvp_on) 487 imo = NULL; 488 if (ip_mforward && 489 ip_mforward(ip, ifp, m, imo) != 0) { 490 m_freem(m); 491 goto done; 492 } 493 } 494 } 495 496 /* 497 * Multicasts with a time-to-live of zero may be looped- 498 * back, above, but must not be transmitted on a network. 499 * Also, multicasts addressed to the loopback interface 500 * are not sent -- the above call to ip_mloopback() will 501 * loop back a copy. ip_input() will drop the copy if 502 * this host does not belong to the destination group on 503 * the loopback interface. 504 */ 505 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 506 m_freem(m); 507 goto done; 508 } 509 510 goto sendit; 511 } 512 513 /* 514 * If the source address is not specified yet, use the address 515 * of the outoing interface. 516 */ 517 if (ip->ip_src.s_addr == INADDR_ANY) { 518 /* Interface may have no addresses. */ 519 if (ia != NULL) { 520 ip->ip_src = IA_SIN(ia)->sin_addr; 521 } 522 } 523 524 /* 525 * Look for broadcast address and 526 * verify user is allowed to send 527 * such a packet. 528 */ 529 if (isbroadcast) { 530 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 531 error = EADDRNOTAVAIL; 532 goto bad; 533 } 534 if ((flags & IP_ALLOWBROADCAST) == 0) { 535 error = EACCES; 536 goto bad; 537 } 538 /* don't allow broadcast messages to be fragmented */ 539 if (ip_len > mtu) { 540 error = EMSGSIZE; 541 goto bad; 542 } 543 m->m_flags |= M_BCAST; 544 } else { 545 m->m_flags &= ~M_BCAST; 546 } 547 548 sendit: 549 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 550 if (IPSEC_ENABLED(ipv4)) { 551 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 552 if (error == EINPROGRESS) 553 error = 0; 554 goto done; 555 } 556 } 557 /* 558 * Check if there was a route for this packet; return error if not. 559 */ 560 if (no_route_but_check_spd) { 561 IPSTAT_INC(ips_noroute); 562 error = EHOSTUNREACH; 563 goto bad; 564 } 565 /* Update variables that are affected by ipsec4_output(). */ 566 ip = mtod(m, struct ip *); 567 hlen = ip->ip_hl << 2; 568 #endif /* IPSEC */ 569 570 /* Jump over all PFIL processing if hooks are not active. */ 571 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 572 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 573 case 1: /* Finished */ 574 goto done; 575 576 case 0: /* Continue normally */ 577 ip = mtod(m, struct ip *); 578 break; 579 580 case -1: /* Need to try again */ 581 /* Reset everything for a new round */ 582 RO_RTFREE(ro); 583 ro->ro_prepend = NULL; 584 rte = NULL; 585 gw = dst; 586 ip = mtod(m, struct ip *); 587 goto again; 588 589 } 590 } 591 592 /* 127/8 must not appear on wire - RFC1122. */ 593 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 594 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 595 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 596 IPSTAT_INC(ips_badaddr); 597 error = EADDRNOTAVAIL; 598 goto bad; 599 } 600 } 601 602 m->m_pkthdr.csum_flags |= CSUM_IP; 603 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 604 in_delayed_cksum(m); 605 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 606 } 607 #ifdef SCTP 608 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 609 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 610 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 611 } 612 #endif 613 614 /* 615 * If small enough for interface, or the interface will take 616 * care of the fragmentation for us, we can just send directly. 617 */ 618 if (ip_len <= mtu || 619 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 620 ip->ip_sum = 0; 621 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 622 ip->ip_sum = in_cksum(m, hlen); 623 m->m_pkthdr.csum_flags &= ~CSUM_IP; 624 } 625 626 /* 627 * Record statistics for this interface address. 628 * With CSUM_TSO the byte/packet count will be slightly 629 * incorrect because we count the IP+TCP headers only 630 * once instead of for every generated packet. 631 */ 632 if (!(flags & IP_FORWARDING) && ia) { 633 if (m->m_pkthdr.csum_flags & CSUM_TSO) 634 counter_u64_add(ia->ia_ifa.ifa_opackets, 635 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 636 else 637 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 638 639 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 640 } 641 #ifdef MBUF_STRESS_TEST 642 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 643 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 644 #endif 645 /* 646 * Reset layer specific mbuf flags 647 * to avoid confusing lower layers. 648 */ 649 m_clrprotoflags(m); 650 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 651 #ifdef RATELIMIT 652 if (inp != NULL) { 653 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 654 in_pcboutput_txrtlmt(inp, ifp, m); 655 /* stamp send tag on mbuf */ 656 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 657 } else { 658 m->m_pkthdr.snd_tag = NULL; 659 } 660 #endif 661 error = (*ifp->if_output)(ifp, m, 662 (const struct sockaddr *)gw, ro); 663 #ifdef RATELIMIT 664 /* check for route change */ 665 if (error == EAGAIN) 666 in_pcboutput_eagain(inp); 667 #endif 668 goto done; 669 } 670 671 /* Balk when DF bit is set or the interface didn't support TSO. */ 672 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 673 error = EMSGSIZE; 674 IPSTAT_INC(ips_cantfrag); 675 goto bad; 676 } 677 678 /* 679 * Too large for interface; fragment if possible. If successful, 680 * on return, m will point to a list of packets to be sent. 681 */ 682 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 683 if (error) 684 goto bad; 685 for (; m; m = m0) { 686 m0 = m->m_nextpkt; 687 m->m_nextpkt = 0; 688 if (error == 0) { 689 /* Record statistics for this interface address. */ 690 if (ia != NULL) { 691 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 692 counter_u64_add(ia->ia_ifa.ifa_obytes, 693 m->m_pkthdr.len); 694 } 695 /* 696 * Reset layer specific mbuf flags 697 * to avoid confusing upper layers. 698 */ 699 m_clrprotoflags(m); 700 701 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 702 mtod(m, struct ip *), NULL); 703 #ifdef RATELIMIT 704 if (inp != NULL) { 705 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 706 in_pcboutput_txrtlmt(inp, ifp, m); 707 /* stamp send tag on mbuf */ 708 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 709 } else { 710 m->m_pkthdr.snd_tag = NULL; 711 } 712 #endif 713 error = (*ifp->if_output)(ifp, m, 714 (const struct sockaddr *)gw, ro); 715 #ifdef RATELIMIT 716 /* check for route change */ 717 if (error == EAGAIN) 718 in_pcboutput_eagain(inp); 719 #endif 720 } else 721 m_freem(m); 722 } 723 724 if (error == 0) 725 IPSTAT_INC(ips_fragmented); 726 727 done: 728 if (ro == &iproute) 729 RO_RTFREE(ro); 730 else if (rte == NULL) 731 /* 732 * If the caller supplied a route but somehow the reference 733 * to it has been released need to prevent the caller 734 * calling RTFREE on it again. 735 */ 736 ro->ro_rt = NULL; 737 NET_EPOCH_EXIT(et); 738 return (error); 739 bad: 740 m_freem(m); 741 goto done; 742 } 743 744 /* 745 * Create a chain of fragments which fit the given mtu. m_frag points to the 746 * mbuf to be fragmented; on return it points to the chain with the fragments. 747 * Return 0 if no error. If error, m_frag may contain a partially built 748 * chain of fragments that should be freed by the caller. 749 * 750 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 751 */ 752 int 753 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 754 u_long if_hwassist_flags) 755 { 756 int error = 0; 757 int hlen = ip->ip_hl << 2; 758 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 759 int off; 760 struct mbuf *m0 = *m_frag; /* the original packet */ 761 int firstlen; 762 struct mbuf **mnext; 763 int nfrags; 764 uint16_t ip_len, ip_off; 765 766 ip_len = ntohs(ip->ip_len); 767 ip_off = ntohs(ip->ip_off); 768 769 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 770 IPSTAT_INC(ips_cantfrag); 771 return EMSGSIZE; 772 } 773 774 /* 775 * Must be able to put at least 8 bytes per fragment. 776 */ 777 if (len < 8) 778 return EMSGSIZE; 779 780 /* 781 * If the interface will not calculate checksums on 782 * fragmented packets, then do it here. 783 */ 784 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 785 in_delayed_cksum(m0); 786 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 787 } 788 #ifdef SCTP 789 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 790 sctp_delayed_cksum(m0, hlen); 791 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 792 } 793 #endif 794 if (len > PAGE_SIZE) { 795 /* 796 * Fragment large datagrams such that each segment 797 * contains a multiple of PAGE_SIZE amount of data, 798 * plus headers. This enables a receiver to perform 799 * page-flipping zero-copy optimizations. 800 * 801 * XXX When does this help given that sender and receiver 802 * could have different page sizes, and also mtu could 803 * be less than the receiver's page size ? 804 */ 805 int newlen; 806 807 off = MIN(mtu, m0->m_pkthdr.len); 808 809 /* 810 * firstlen (off - hlen) must be aligned on an 811 * 8-byte boundary 812 */ 813 if (off < hlen) 814 goto smart_frag_failure; 815 off = ((off - hlen) & ~7) + hlen; 816 newlen = (~PAGE_MASK) & mtu; 817 if ((newlen + sizeof (struct ip)) > mtu) { 818 /* we failed, go back the default */ 819 smart_frag_failure: 820 newlen = len; 821 off = hlen + len; 822 } 823 len = newlen; 824 825 } else { 826 off = hlen + len; 827 } 828 829 firstlen = off - hlen; 830 mnext = &m0->m_nextpkt; /* pointer to next packet */ 831 832 /* 833 * Loop through length of segment after first fragment, 834 * make new header and copy data of each part and link onto chain. 835 * Here, m0 is the original packet, m is the fragment being created. 836 * The fragments are linked off the m_nextpkt of the original 837 * packet, which after processing serves as the first fragment. 838 */ 839 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 840 struct ip *mhip; /* ip header on the fragment */ 841 struct mbuf *m; 842 int mhlen = sizeof (struct ip); 843 844 m = m_gethdr(M_NOWAIT, MT_DATA); 845 if (m == NULL) { 846 error = ENOBUFS; 847 IPSTAT_INC(ips_odropped); 848 goto done; 849 } 850 /* 851 * Make sure the complete packet header gets copied 852 * from the originating mbuf to the newly created 853 * mbuf. This also ensures that existing firewall 854 * classification(s), VLAN tags and so on get copied 855 * to the resulting fragmented packet(s): 856 */ 857 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 858 m_free(m); 859 error = ENOBUFS; 860 IPSTAT_INC(ips_odropped); 861 goto done; 862 } 863 /* 864 * In the first mbuf, leave room for the link header, then 865 * copy the original IP header including options. The payload 866 * goes into an additional mbuf chain returned by m_copym(). 867 */ 868 m->m_data += max_linkhdr; 869 mhip = mtod(m, struct ip *); 870 *mhip = *ip; 871 if (hlen > sizeof (struct ip)) { 872 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 873 mhip->ip_v = IPVERSION; 874 mhip->ip_hl = mhlen >> 2; 875 } 876 m->m_len = mhlen; 877 /* XXX do we need to add ip_off below ? */ 878 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 879 if (off + len >= ip_len) 880 len = ip_len - off; 881 else 882 mhip->ip_off |= IP_MF; 883 mhip->ip_len = htons((u_short)(len + mhlen)); 884 m->m_next = m_copym(m0, off, len, M_NOWAIT); 885 if (m->m_next == NULL) { /* copy failed */ 886 m_free(m); 887 error = ENOBUFS; /* ??? */ 888 IPSTAT_INC(ips_odropped); 889 goto done; 890 } 891 m->m_pkthdr.len = mhlen + len; 892 #ifdef MAC 893 mac_netinet_fragment(m0, m); 894 #endif 895 mhip->ip_off = htons(mhip->ip_off); 896 mhip->ip_sum = 0; 897 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 898 mhip->ip_sum = in_cksum(m, mhlen); 899 m->m_pkthdr.csum_flags &= ~CSUM_IP; 900 } 901 *mnext = m; 902 mnext = &m->m_nextpkt; 903 } 904 IPSTAT_ADD(ips_ofragments, nfrags); 905 906 /* 907 * Update first fragment by trimming what's been copied out 908 * and updating header. 909 */ 910 m_adj(m0, hlen + firstlen - ip_len); 911 m0->m_pkthdr.len = hlen + firstlen; 912 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 913 ip->ip_off = htons(ip_off | IP_MF); 914 ip->ip_sum = 0; 915 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 916 ip->ip_sum = in_cksum(m0, hlen); 917 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 918 } 919 920 done: 921 *m_frag = m0; 922 return error; 923 } 924 925 void 926 in_delayed_cksum(struct mbuf *m) 927 { 928 struct ip *ip; 929 struct udphdr *uh; 930 uint16_t cklen, csum, offset; 931 932 ip = mtod(m, struct ip *); 933 offset = ip->ip_hl << 2 ; 934 935 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 936 /* if udp header is not in the first mbuf copy udplen */ 937 if (offset + sizeof(struct udphdr) > m->m_len) { 938 m_copydata(m, offset + offsetof(struct udphdr, 939 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 940 cklen = ntohs(cklen); 941 } else { 942 uh = (struct udphdr *)mtodo(m, offset); 943 cklen = ntohs(uh->uh_ulen); 944 } 945 csum = in_cksum_skip(m, cklen + offset, offset); 946 if (csum == 0) 947 csum = 0xffff; 948 } else { 949 cklen = ntohs(ip->ip_len); 950 csum = in_cksum_skip(m, cklen, offset); 951 } 952 offset += m->m_pkthdr.csum_data; /* checksum offset */ 953 954 if (offset + sizeof(csum) > m->m_len) 955 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 956 else 957 *(u_short *)mtodo(m, offset) = csum; 958 } 959 960 /* 961 * IP socket option processing. 962 */ 963 int 964 ip_ctloutput(struct socket *so, struct sockopt *sopt) 965 { 966 struct inpcb *inp = sotoinpcb(so); 967 int error, optval; 968 #ifdef RSS 969 uint32_t rss_bucket; 970 int retval; 971 #endif 972 973 error = optval = 0; 974 if (sopt->sopt_level != IPPROTO_IP) { 975 error = EINVAL; 976 977 if (sopt->sopt_level == SOL_SOCKET && 978 sopt->sopt_dir == SOPT_SET) { 979 switch (sopt->sopt_name) { 980 case SO_REUSEADDR: 981 INP_WLOCK(inp); 982 if ((so->so_options & SO_REUSEADDR) != 0) 983 inp->inp_flags2 |= INP_REUSEADDR; 984 else 985 inp->inp_flags2 &= ~INP_REUSEADDR; 986 INP_WUNLOCK(inp); 987 error = 0; 988 break; 989 case SO_REUSEPORT: 990 INP_WLOCK(inp); 991 if ((so->so_options & SO_REUSEPORT) != 0) 992 inp->inp_flags2 |= INP_REUSEPORT; 993 else 994 inp->inp_flags2 &= ~INP_REUSEPORT; 995 INP_WUNLOCK(inp); 996 error = 0; 997 break; 998 case SO_REUSEPORT_LB: 999 INP_WLOCK(inp); 1000 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1001 inp->inp_flags2 |= INP_REUSEPORT_LB; 1002 else 1003 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1004 INP_WUNLOCK(inp); 1005 error = 0; 1006 break; 1007 case SO_SETFIB: 1008 INP_WLOCK(inp); 1009 inp->inp_inc.inc_fibnum = so->so_fibnum; 1010 INP_WUNLOCK(inp); 1011 error = 0; 1012 break; 1013 case SO_MAX_PACING_RATE: 1014 #ifdef RATELIMIT 1015 INP_WLOCK(inp); 1016 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1017 INP_WUNLOCK(inp); 1018 error = 0; 1019 #else 1020 error = EOPNOTSUPP; 1021 #endif 1022 break; 1023 default: 1024 break; 1025 } 1026 } 1027 return (error); 1028 } 1029 1030 switch (sopt->sopt_dir) { 1031 case SOPT_SET: 1032 switch (sopt->sopt_name) { 1033 case IP_OPTIONS: 1034 #ifdef notyet 1035 case IP_RETOPTS: 1036 #endif 1037 { 1038 struct mbuf *m; 1039 if (sopt->sopt_valsize > MLEN) { 1040 error = EMSGSIZE; 1041 break; 1042 } 1043 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1044 if (m == NULL) { 1045 error = ENOBUFS; 1046 break; 1047 } 1048 m->m_len = sopt->sopt_valsize; 1049 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1050 m->m_len); 1051 if (error) { 1052 m_free(m); 1053 break; 1054 } 1055 INP_WLOCK(inp); 1056 error = ip_pcbopts(inp, sopt->sopt_name, m); 1057 INP_WUNLOCK(inp); 1058 return (error); 1059 } 1060 1061 case IP_BINDANY: 1062 if (sopt->sopt_td != NULL) { 1063 error = priv_check(sopt->sopt_td, 1064 PRIV_NETINET_BINDANY); 1065 if (error) 1066 break; 1067 } 1068 /* FALLTHROUGH */ 1069 case IP_BINDMULTI: 1070 #ifdef RSS 1071 case IP_RSS_LISTEN_BUCKET: 1072 #endif 1073 case IP_TOS: 1074 case IP_TTL: 1075 case IP_MINTTL: 1076 case IP_RECVOPTS: 1077 case IP_RECVRETOPTS: 1078 case IP_ORIGDSTADDR: 1079 case IP_RECVDSTADDR: 1080 case IP_RECVTTL: 1081 case IP_RECVIF: 1082 case IP_ONESBCAST: 1083 case IP_DONTFRAG: 1084 case IP_RECVTOS: 1085 case IP_RECVFLOWID: 1086 #ifdef RSS 1087 case IP_RECVRSSBUCKETID: 1088 #endif 1089 error = sooptcopyin(sopt, &optval, sizeof optval, 1090 sizeof optval); 1091 if (error) 1092 break; 1093 1094 switch (sopt->sopt_name) { 1095 case IP_TOS: 1096 inp->inp_ip_tos = optval; 1097 break; 1098 1099 case IP_TTL: 1100 inp->inp_ip_ttl = optval; 1101 break; 1102 1103 case IP_MINTTL: 1104 if (optval >= 0 && optval <= MAXTTL) 1105 inp->inp_ip_minttl = optval; 1106 else 1107 error = EINVAL; 1108 break; 1109 1110 #define OPTSET(bit) do { \ 1111 INP_WLOCK(inp); \ 1112 if (optval) \ 1113 inp->inp_flags |= bit; \ 1114 else \ 1115 inp->inp_flags &= ~bit; \ 1116 INP_WUNLOCK(inp); \ 1117 } while (0) 1118 1119 #define OPTSET2(bit, val) do { \ 1120 INP_WLOCK(inp); \ 1121 if (val) \ 1122 inp->inp_flags2 |= bit; \ 1123 else \ 1124 inp->inp_flags2 &= ~bit; \ 1125 INP_WUNLOCK(inp); \ 1126 } while (0) 1127 1128 case IP_RECVOPTS: 1129 OPTSET(INP_RECVOPTS); 1130 break; 1131 1132 case IP_RECVRETOPTS: 1133 OPTSET(INP_RECVRETOPTS); 1134 break; 1135 1136 case IP_RECVDSTADDR: 1137 OPTSET(INP_RECVDSTADDR); 1138 break; 1139 1140 case IP_ORIGDSTADDR: 1141 OPTSET2(INP_ORIGDSTADDR, optval); 1142 break; 1143 1144 case IP_RECVTTL: 1145 OPTSET(INP_RECVTTL); 1146 break; 1147 1148 case IP_RECVIF: 1149 OPTSET(INP_RECVIF); 1150 break; 1151 1152 case IP_ONESBCAST: 1153 OPTSET(INP_ONESBCAST); 1154 break; 1155 case IP_DONTFRAG: 1156 OPTSET(INP_DONTFRAG); 1157 break; 1158 case IP_BINDANY: 1159 OPTSET(INP_BINDANY); 1160 break; 1161 case IP_RECVTOS: 1162 OPTSET(INP_RECVTOS); 1163 break; 1164 case IP_BINDMULTI: 1165 OPTSET2(INP_BINDMULTI, optval); 1166 break; 1167 case IP_RECVFLOWID: 1168 OPTSET2(INP_RECVFLOWID, optval); 1169 break; 1170 #ifdef RSS 1171 case IP_RSS_LISTEN_BUCKET: 1172 if ((optval >= 0) && 1173 (optval < rss_getnumbuckets())) { 1174 inp->inp_rss_listen_bucket = optval; 1175 OPTSET2(INP_RSS_BUCKET_SET, 1); 1176 } else { 1177 error = EINVAL; 1178 } 1179 break; 1180 case IP_RECVRSSBUCKETID: 1181 OPTSET2(INP_RECVRSSBUCKETID, optval); 1182 break; 1183 #endif 1184 } 1185 break; 1186 #undef OPTSET 1187 #undef OPTSET2 1188 1189 /* 1190 * Multicast socket options are processed by the in_mcast 1191 * module. 1192 */ 1193 case IP_MULTICAST_IF: 1194 case IP_MULTICAST_VIF: 1195 case IP_MULTICAST_TTL: 1196 case IP_MULTICAST_LOOP: 1197 case IP_ADD_MEMBERSHIP: 1198 case IP_DROP_MEMBERSHIP: 1199 case IP_ADD_SOURCE_MEMBERSHIP: 1200 case IP_DROP_SOURCE_MEMBERSHIP: 1201 case IP_BLOCK_SOURCE: 1202 case IP_UNBLOCK_SOURCE: 1203 case IP_MSFILTER: 1204 case MCAST_JOIN_GROUP: 1205 case MCAST_LEAVE_GROUP: 1206 case MCAST_JOIN_SOURCE_GROUP: 1207 case MCAST_LEAVE_SOURCE_GROUP: 1208 case MCAST_BLOCK_SOURCE: 1209 case MCAST_UNBLOCK_SOURCE: 1210 error = inp_setmoptions(inp, sopt); 1211 break; 1212 1213 case IP_PORTRANGE: 1214 error = sooptcopyin(sopt, &optval, sizeof optval, 1215 sizeof optval); 1216 if (error) 1217 break; 1218 1219 INP_WLOCK(inp); 1220 switch (optval) { 1221 case IP_PORTRANGE_DEFAULT: 1222 inp->inp_flags &= ~(INP_LOWPORT); 1223 inp->inp_flags &= ~(INP_HIGHPORT); 1224 break; 1225 1226 case IP_PORTRANGE_HIGH: 1227 inp->inp_flags &= ~(INP_LOWPORT); 1228 inp->inp_flags |= INP_HIGHPORT; 1229 break; 1230 1231 case IP_PORTRANGE_LOW: 1232 inp->inp_flags &= ~(INP_HIGHPORT); 1233 inp->inp_flags |= INP_LOWPORT; 1234 break; 1235 1236 default: 1237 error = EINVAL; 1238 break; 1239 } 1240 INP_WUNLOCK(inp); 1241 break; 1242 1243 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1244 case IP_IPSEC_POLICY: 1245 if (IPSEC_ENABLED(ipv4)) { 1246 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1247 break; 1248 } 1249 /* FALLTHROUGH */ 1250 #endif /* IPSEC */ 1251 1252 default: 1253 error = ENOPROTOOPT; 1254 break; 1255 } 1256 break; 1257 1258 case SOPT_GET: 1259 switch (sopt->sopt_name) { 1260 case IP_OPTIONS: 1261 case IP_RETOPTS: 1262 INP_RLOCK(inp); 1263 if (inp->inp_options) { 1264 struct mbuf *options; 1265 1266 options = m_copym(inp->inp_options, 0, 1267 M_COPYALL, M_NOWAIT); 1268 INP_RUNLOCK(inp); 1269 if (options != NULL) { 1270 error = sooptcopyout(sopt, 1271 mtod(options, char *), 1272 options->m_len); 1273 m_freem(options); 1274 } else 1275 error = ENOMEM; 1276 } else { 1277 INP_RUNLOCK(inp); 1278 sopt->sopt_valsize = 0; 1279 } 1280 break; 1281 1282 case IP_TOS: 1283 case IP_TTL: 1284 case IP_MINTTL: 1285 case IP_RECVOPTS: 1286 case IP_RECVRETOPTS: 1287 case IP_ORIGDSTADDR: 1288 case IP_RECVDSTADDR: 1289 case IP_RECVTTL: 1290 case IP_RECVIF: 1291 case IP_PORTRANGE: 1292 case IP_ONESBCAST: 1293 case IP_DONTFRAG: 1294 case IP_BINDANY: 1295 case IP_RECVTOS: 1296 case IP_BINDMULTI: 1297 case IP_FLOWID: 1298 case IP_FLOWTYPE: 1299 case IP_RECVFLOWID: 1300 #ifdef RSS 1301 case IP_RSSBUCKETID: 1302 case IP_RECVRSSBUCKETID: 1303 #endif 1304 switch (sopt->sopt_name) { 1305 1306 case IP_TOS: 1307 optval = inp->inp_ip_tos; 1308 break; 1309 1310 case IP_TTL: 1311 optval = inp->inp_ip_ttl; 1312 break; 1313 1314 case IP_MINTTL: 1315 optval = inp->inp_ip_minttl; 1316 break; 1317 1318 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1319 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1320 1321 case IP_RECVOPTS: 1322 optval = OPTBIT(INP_RECVOPTS); 1323 break; 1324 1325 case IP_RECVRETOPTS: 1326 optval = OPTBIT(INP_RECVRETOPTS); 1327 break; 1328 1329 case IP_RECVDSTADDR: 1330 optval = OPTBIT(INP_RECVDSTADDR); 1331 break; 1332 1333 case IP_ORIGDSTADDR: 1334 optval = OPTBIT2(INP_ORIGDSTADDR); 1335 break; 1336 1337 case IP_RECVTTL: 1338 optval = OPTBIT(INP_RECVTTL); 1339 break; 1340 1341 case IP_RECVIF: 1342 optval = OPTBIT(INP_RECVIF); 1343 break; 1344 1345 case IP_PORTRANGE: 1346 if (inp->inp_flags & INP_HIGHPORT) 1347 optval = IP_PORTRANGE_HIGH; 1348 else if (inp->inp_flags & INP_LOWPORT) 1349 optval = IP_PORTRANGE_LOW; 1350 else 1351 optval = 0; 1352 break; 1353 1354 case IP_ONESBCAST: 1355 optval = OPTBIT(INP_ONESBCAST); 1356 break; 1357 case IP_DONTFRAG: 1358 optval = OPTBIT(INP_DONTFRAG); 1359 break; 1360 case IP_BINDANY: 1361 optval = OPTBIT(INP_BINDANY); 1362 break; 1363 case IP_RECVTOS: 1364 optval = OPTBIT(INP_RECVTOS); 1365 break; 1366 case IP_FLOWID: 1367 optval = inp->inp_flowid; 1368 break; 1369 case IP_FLOWTYPE: 1370 optval = inp->inp_flowtype; 1371 break; 1372 case IP_RECVFLOWID: 1373 optval = OPTBIT2(INP_RECVFLOWID); 1374 break; 1375 #ifdef RSS 1376 case IP_RSSBUCKETID: 1377 retval = rss_hash2bucket(inp->inp_flowid, 1378 inp->inp_flowtype, 1379 &rss_bucket); 1380 if (retval == 0) 1381 optval = rss_bucket; 1382 else 1383 error = EINVAL; 1384 break; 1385 case IP_RECVRSSBUCKETID: 1386 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1387 break; 1388 #endif 1389 case IP_BINDMULTI: 1390 optval = OPTBIT2(INP_BINDMULTI); 1391 break; 1392 } 1393 error = sooptcopyout(sopt, &optval, sizeof optval); 1394 break; 1395 1396 /* 1397 * Multicast socket options are processed by the in_mcast 1398 * module. 1399 */ 1400 case IP_MULTICAST_IF: 1401 case IP_MULTICAST_VIF: 1402 case IP_MULTICAST_TTL: 1403 case IP_MULTICAST_LOOP: 1404 case IP_MSFILTER: 1405 error = inp_getmoptions(inp, sopt); 1406 break; 1407 1408 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1409 case IP_IPSEC_POLICY: 1410 if (IPSEC_ENABLED(ipv4)) { 1411 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1412 break; 1413 } 1414 /* FALLTHROUGH */ 1415 #endif /* IPSEC */ 1416 1417 default: 1418 error = ENOPROTOOPT; 1419 break; 1420 } 1421 break; 1422 } 1423 return (error); 1424 } 1425 1426 /* 1427 * Routine called from ip_output() to loop back a copy of an IP multicast 1428 * packet to the input queue of a specified interface. Note that this 1429 * calls the output routine of the loopback "driver", but with an interface 1430 * pointer that might NOT be a loopback interface -- evil, but easier than 1431 * replicating that code here. 1432 */ 1433 static void 1434 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1435 { 1436 struct ip *ip; 1437 struct mbuf *copym; 1438 1439 /* 1440 * Make a deep copy of the packet because we're going to 1441 * modify the pack in order to generate checksums. 1442 */ 1443 copym = m_dup(m, M_NOWAIT); 1444 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1445 copym = m_pullup(copym, hlen); 1446 if (copym != NULL) { 1447 /* If needed, compute the checksum and mark it as valid. */ 1448 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1449 in_delayed_cksum(copym); 1450 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1451 copym->m_pkthdr.csum_flags |= 1452 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1453 copym->m_pkthdr.csum_data = 0xffff; 1454 } 1455 /* 1456 * We don't bother to fragment if the IP length is greater 1457 * than the interface's MTU. Can this possibly matter? 1458 */ 1459 ip = mtod(copym, struct ip *); 1460 ip->ip_sum = 0; 1461 ip->ip_sum = in_cksum(copym, hlen); 1462 if_simloop(ifp, copym, AF_INET, 0); 1463 } 1464 } 1465