xref: /freebsd/sys/netinet/ip_output.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipsec.h"
35 #include "opt_mac.h"
36 #include "opt_mbuf_stress_test.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/mac.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/netisr.h>
51 #include <net/pfil.h>
52 #include <net/route.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/ip.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip_var.h>
60 #include <netinet/ip_options.h>
61 
62 #include <machine/in_cksum.h>
63 
64 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
65 
66 #ifdef IPSEC
67 #include <netinet6/ipsec.h>
68 #include <netkey/key.h>
69 #ifdef IPSEC_DEBUG
70 #include <netkey/key_debug.h>
71 #else
72 #define	KEYDEBUG(lev,arg)
73 #endif
74 #endif /*IPSEC*/
75 
76 #ifdef FAST_IPSEC
77 #include <netipsec/ipsec.h>
78 #include <netipsec/xform.h>
79 #include <netipsec/key.h>
80 #endif /*FAST_IPSEC*/
81 
82 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
83 				x, (ntohl(a.s_addr)>>24)&0xFF,\
84 				  (ntohl(a.s_addr)>>16)&0xFF,\
85 				  (ntohl(a.s_addr)>>8)&0xFF,\
86 				  (ntohl(a.s_addr))&0xFF, y);
87 
88 u_short ip_id;
89 
90 #ifdef MBUF_STRESS_TEST
91 int mbuf_frag_size = 0;
92 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
93 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
94 #endif
95 
96 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97 static void	ip_mloopback
98 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99 static int	ip_getmoptions(struct inpcb *, struct sockopt *);
100 static int	ip_setmoptions(struct inpcb *, struct sockopt *);
101 
102 
103 extern	struct protosw inetsw[];
104 
105 /*
106  * IP output.  The packet in mbuf chain m contains a skeletal IP
107  * header (with len, off, ttl, proto, tos, src, dst).
108  * The mbuf chain containing the packet will be freed.
109  * The mbuf opt, if present, will not be freed.
110  * In the IP forwarding case, the packet will arrive with options already
111  * inserted, so must have a NULL opt pointer.
112  */
113 int
114 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
115 	int flags, struct ip_moptions *imo, struct inpcb *inp)
116 {
117 	struct ip *ip;
118 	struct ifnet *ifp = NULL;	/* keep compiler happy */
119 	struct mbuf *m0;
120 	int hlen = sizeof (struct ip);
121 	int len, error = 0;
122 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
123 	struct in_ifaddr *ia = NULL;
124 	int isbroadcast, sw_csum;
125 	struct route iproute;
126 	struct in_addr odst;
127 #ifdef IPFIREWALL_FORWARD
128 	struct m_tag *fwd_tag = NULL;
129 #endif
130 #ifdef IPSEC
131 	struct secpolicy *sp = NULL;
132 #endif
133 #ifdef FAST_IPSEC
134 	struct secpolicy *sp = NULL;
135 	struct tdb_ident *tdbi;
136 	struct m_tag *mtag;
137 	int s;
138 #endif /* FAST_IPSEC */
139 
140 	M_ASSERTPKTHDR(m);
141 
142 	if (ro == NULL) {
143 		ro = &iproute;
144 		bzero(ro, sizeof (*ro));
145 	}
146 
147 	if (inp != NULL)
148 		INP_LOCK_ASSERT(inp);
149 
150 	if (opt) {
151 		len = 0;
152 		m = ip_insertoptions(m, opt, &len);
153 		if (len != 0)
154 			hlen = len;
155 	}
156 	ip = mtod(m, struct ip *);
157 
158 	/*
159 	 * Fill in IP header.  If we are not allowing fragmentation,
160 	 * then the ip_id field is meaningless, but we don't set it
161 	 * to zero.  Doing so causes various problems when devices along
162 	 * the path (routers, load balancers, firewalls, etc.) illegally
163 	 * disable DF on our packet.  Note that a 16-bit counter
164 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
165 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
166 	 * for Counting NATted Hosts", Proc. IMW'02, available at
167 	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
168 	 */
169 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
170 		ip->ip_v = IPVERSION;
171 		ip->ip_hl = hlen >> 2;
172 		ip->ip_id = ip_newid();
173 		ipstat.ips_localout++;
174 	} else {
175 		hlen = ip->ip_hl << 2;
176 	}
177 
178 	dst = (struct sockaddr_in *)&ro->ro_dst;
179 again:
180 	/*
181 	 * If there is a cached route,
182 	 * check that it is to the same destination
183 	 * and is still up.  If not, free it and try again.
184 	 * The address family should also be checked in case of sharing the
185 	 * cache with IPv6.
186 	 */
187 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
188 			  dst->sin_family != AF_INET ||
189 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
190 		RTFREE(ro->ro_rt);
191 		ro->ro_rt = (struct rtentry *)0;
192 	}
193 #ifdef IPFIREWALL_FORWARD
194 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
195 #else
196 	if (ro->ro_rt == NULL) {
197 #endif
198 		bzero(dst, sizeof(*dst));
199 		dst->sin_family = AF_INET;
200 		dst->sin_len = sizeof(*dst);
201 		dst->sin_addr = ip->ip_dst;
202 	}
203 	/*
204 	 * If routing to interface only,
205 	 * short circuit routing lookup.
206 	 */
207 	if (flags & IP_ROUTETOIF) {
208 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
209 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
210 			ipstat.ips_noroute++;
211 			error = ENETUNREACH;
212 			goto bad;
213 		}
214 		ifp = ia->ia_ifp;
215 		ip->ip_ttl = 1;
216 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
217 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
218 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
219 		/*
220 		 * Bypass the normal routing lookup for multicast
221 		 * packets if the interface is specified.
222 		 */
223 		ifp = imo->imo_multicast_ifp;
224 		IFP_TO_IA(ifp, ia);
225 		isbroadcast = 0;	/* fool gcc */
226 	} else {
227 		/*
228 		 * We want to do any cloning requested by the link layer,
229 		 * as this is probably required in all cases for correct
230 		 * operation (as it is for ARP).
231 		 */
232 		if (ro->ro_rt == NULL)
233 			rtalloc_ign(ro, 0);
234 		if (ro->ro_rt == NULL) {
235 			ipstat.ips_noroute++;
236 			error = EHOSTUNREACH;
237 			goto bad;
238 		}
239 		ia = ifatoia(ro->ro_rt->rt_ifa);
240 		ifp = ro->ro_rt->rt_ifp;
241 		ro->ro_rt->rt_rmx.rmx_pksent++;
242 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
243 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
244 		if (ro->ro_rt->rt_flags & RTF_HOST)
245 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
246 		else
247 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
248 	}
249 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
250 		struct in_multi *inm;
251 
252 		m->m_flags |= M_MCAST;
253 		/*
254 		 * IP destination address is multicast.  Make sure "dst"
255 		 * still points to the address in "ro".  (It may have been
256 		 * changed to point to a gateway address, above.)
257 		 */
258 		dst = (struct sockaddr_in *)&ro->ro_dst;
259 		/*
260 		 * See if the caller provided any multicast options
261 		 */
262 		if (imo != NULL) {
263 			ip->ip_ttl = imo->imo_multicast_ttl;
264 			if (imo->imo_multicast_vif != -1)
265 				ip->ip_src.s_addr =
266 				    ip_mcast_src ?
267 				    ip_mcast_src(imo->imo_multicast_vif) :
268 				    INADDR_ANY;
269 		} else
270 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
271 		/*
272 		 * Confirm that the outgoing interface supports multicast.
273 		 */
274 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
275 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
276 				ipstat.ips_noroute++;
277 				error = ENETUNREACH;
278 				goto bad;
279 			}
280 		}
281 		/*
282 		 * If source address not specified yet, use address
283 		 * of outgoing interface.
284 		 */
285 		if (ip->ip_src.s_addr == INADDR_ANY) {
286 			/* Interface may have no addresses. */
287 			if (ia != NULL)
288 				ip->ip_src = IA_SIN(ia)->sin_addr;
289 		}
290 
291 		IN_MULTI_LOCK();
292 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
293 		if (inm != NULL &&
294 		   (imo == NULL || imo->imo_multicast_loop)) {
295 			IN_MULTI_UNLOCK();
296 			/*
297 			 * If we belong to the destination multicast group
298 			 * on the outgoing interface, and the caller did not
299 			 * forbid loopback, loop back a copy.
300 			 */
301 			ip_mloopback(ifp, m, dst, hlen);
302 		}
303 		else {
304 			IN_MULTI_UNLOCK();
305 			/*
306 			 * If we are acting as a multicast router, perform
307 			 * multicast forwarding as if the packet had just
308 			 * arrived on the interface to which we are about
309 			 * to send.  The multicast forwarding function
310 			 * recursively calls this function, using the
311 			 * IP_FORWARDING flag to prevent infinite recursion.
312 			 *
313 			 * Multicasts that are looped back by ip_mloopback(),
314 			 * above, will be forwarded by the ip_input() routine,
315 			 * if necessary.
316 			 */
317 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
318 				/*
319 				 * If rsvp daemon is not running, do not
320 				 * set ip_moptions. This ensures that the packet
321 				 * is multicast and not just sent down one link
322 				 * as prescribed by rsvpd.
323 				 */
324 				if (!rsvp_on)
325 					imo = NULL;
326 				if (ip_mforward &&
327 				    ip_mforward(ip, ifp, m, imo) != 0) {
328 					m_freem(m);
329 					goto done;
330 				}
331 			}
332 		}
333 
334 		/*
335 		 * Multicasts with a time-to-live of zero may be looped-
336 		 * back, above, but must not be transmitted on a network.
337 		 * Also, multicasts addressed to the loopback interface
338 		 * are not sent -- the above call to ip_mloopback() will
339 		 * loop back a copy if this host actually belongs to the
340 		 * destination group on the loopback interface.
341 		 */
342 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
343 			m_freem(m);
344 			goto done;
345 		}
346 
347 		goto sendit;
348 	}
349 #ifndef notdef
350 	/*
351 	 * If the source address is not specified yet, use the address
352 	 * of the outoing interface.
353 	 */
354 	if (ip->ip_src.s_addr == INADDR_ANY) {
355 		/* Interface may have no addresses. */
356 		if (ia != NULL) {
357 			ip->ip_src = IA_SIN(ia)->sin_addr;
358 		}
359 	}
360 #endif /* notdef */
361 	/*
362 	 * Verify that we have any chance at all of being able to queue the
363 	 * packet or packet fragments, unless ALTQ is enabled on the given
364 	 * interface in which case packetdrop should be done by queueing.
365 	 */
366 #ifdef ALTQ
367 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
368 	    ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
369 	    ifp->if_snd.ifq_maxlen))
370 #else
371 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
372 	    ifp->if_snd.ifq_maxlen)
373 #endif /* ALTQ */
374 	{
375 		error = ENOBUFS;
376 		ipstat.ips_odropped++;
377 		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
378 		goto bad;
379 	}
380 
381 	/*
382 	 * Look for broadcast address and
383 	 * verify user is allowed to send
384 	 * such a packet.
385 	 */
386 	if (isbroadcast) {
387 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
388 			error = EADDRNOTAVAIL;
389 			goto bad;
390 		}
391 		if ((flags & IP_ALLOWBROADCAST) == 0) {
392 			error = EACCES;
393 			goto bad;
394 		}
395 		/* don't allow broadcast messages to be fragmented */
396 		if (ip->ip_len > ifp->if_mtu) {
397 			error = EMSGSIZE;
398 			goto bad;
399 		}
400 		if (flags & IP_SENDONES)
401 			ip->ip_dst.s_addr = INADDR_BROADCAST;
402 		m->m_flags |= M_BCAST;
403 	} else {
404 		m->m_flags &= ~M_BCAST;
405 	}
406 
407 sendit:
408 #ifdef IPSEC
409 	/* get SP for this packet */
410 	if (inp == NULL)
411 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
412 		    flags, &error);
413 	else
414 		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
415 
416 	if (sp == NULL) {
417 		ipsecstat.out_inval++;
418 		goto bad;
419 	}
420 
421 	error = 0;
422 
423 	/* check policy */
424 	switch (sp->policy) {
425 	case IPSEC_POLICY_DISCARD:
426 		/*
427 		 * This packet is just discarded.
428 		 */
429 		ipsecstat.out_polvio++;
430 		goto bad;
431 
432 	case IPSEC_POLICY_BYPASS:
433 	case IPSEC_POLICY_NONE:
434 	case IPSEC_POLICY_TCP:
435 		/* no need to do IPsec. */
436 		goto skip_ipsec;
437 
438 	case IPSEC_POLICY_IPSEC:
439 		if (sp->req == NULL) {
440 			/* acquire a policy */
441 			error = key_spdacquire(sp);
442 			goto bad;
443 		}
444 		break;
445 
446 	case IPSEC_POLICY_ENTRUST:
447 	default:
448 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
449 	}
450     {
451 	struct ipsec_output_state state;
452 	bzero(&state, sizeof(state));
453 	state.m = m;
454 	if (flags & IP_ROUTETOIF) {
455 		state.ro = &iproute;
456 		bzero(&iproute, sizeof(iproute));
457 	} else
458 		state.ro = ro;
459 	state.dst = (struct sockaddr *)dst;
460 
461 	ip->ip_sum = 0;
462 
463 	/*
464 	 * XXX
465 	 * delayed checksums are not currently compatible with IPsec
466 	 */
467 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
468 		in_delayed_cksum(m);
469 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
470 	}
471 
472 	ip->ip_len = htons(ip->ip_len);
473 	ip->ip_off = htons(ip->ip_off);
474 
475 	error = ipsec4_output(&state, sp, flags);
476 
477 	m = state.m;
478 	if (flags & IP_ROUTETOIF) {
479 		/*
480 		 * if we have tunnel mode SA, we may need to ignore
481 		 * IP_ROUTETOIF.
482 		 */
483 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
484 			flags &= ~IP_ROUTETOIF;
485 			ro = state.ro;
486 		}
487 	} else
488 		ro = state.ro;
489 	dst = (struct sockaddr_in *)state.dst;
490 	if (error) {
491 		/* mbuf is already reclaimed in ipsec4_output. */
492 		m = NULL;
493 		switch (error) {
494 		case EHOSTUNREACH:
495 		case ENETUNREACH:
496 		case EMSGSIZE:
497 		case ENOBUFS:
498 		case ENOMEM:
499 			break;
500 		default:
501 			printf("ip4_output (ipsec): error code %d\n", error);
502 			/*fall through*/
503 		case ENOENT:
504 			/* don't show these error codes to the user */
505 			error = 0;
506 			break;
507 		}
508 		goto bad;
509 	}
510 
511 	/* be sure to update variables that are affected by ipsec4_output() */
512 	ip = mtod(m, struct ip *);
513 	hlen = ip->ip_hl << 2;
514 	if (ro->ro_rt == NULL) {
515 		if ((flags & IP_ROUTETOIF) == 0) {
516 			printf("ip_output: "
517 				"can't update route after IPsec processing\n");
518 			error = EHOSTUNREACH;	/*XXX*/
519 			goto bad;
520 		}
521 	} else {
522 		if (state.encap) {
523 			ia = ifatoia(ro->ro_rt->rt_ifa);
524 			ifp = ro->ro_rt->rt_ifp;
525 		}
526 	}
527     }
528 
529 	/* make it flipped, again. */
530 	ip->ip_len = ntohs(ip->ip_len);
531 	ip->ip_off = ntohs(ip->ip_off);
532 skip_ipsec:
533 #endif /*IPSEC*/
534 #ifdef FAST_IPSEC
535 	/*
536 	 * Check the security policy (SP) for the packet and, if
537 	 * required, do IPsec-related processing.  There are two
538 	 * cases here; the first time a packet is sent through
539 	 * it will be untagged and handled by ipsec4_checkpolicy.
540 	 * If the packet is resubmitted to ip_output (e.g. after
541 	 * AH, ESP, etc. processing), there will be a tag to bypass
542 	 * the lookup and related policy checking.
543 	 */
544 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
545 	s = splnet();
546 	if (mtag != NULL) {
547 		tdbi = (struct tdb_ident *)(mtag + 1);
548 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
549 		if (sp == NULL)
550 			error = -EINVAL;	/* force silent drop */
551 		m_tag_delete(m, mtag);
552 	} else {
553 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
554 					&error, inp);
555 	}
556 	/*
557 	 * There are four return cases:
558 	 *    sp != NULL	 	    apply IPsec policy
559 	 *    sp == NULL, error == 0	    no IPsec handling needed
560 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
561 	 *    sp == NULL, error != 0	    discard packet, report error
562 	 */
563 	if (sp != NULL) {
564 		/* Loop detection, check if ipsec processing already done */
565 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
566 		for (mtag = m_tag_first(m); mtag != NULL;
567 		     mtag = m_tag_next(m, mtag)) {
568 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
569 				continue;
570 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
571 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
572 				continue;
573 			/*
574 			 * Check if policy has an SA associated with it.
575 			 * This can happen when an SP has yet to acquire
576 			 * an SA; e.g. on first reference.  If it occurs,
577 			 * then we let ipsec4_process_packet do its thing.
578 			 */
579 			if (sp->req->sav == NULL)
580 				break;
581 			tdbi = (struct tdb_ident *)(mtag + 1);
582 			if (tdbi->spi == sp->req->sav->spi &&
583 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
584 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
585 				 sizeof (union sockaddr_union)) == 0) {
586 				/*
587 				 * No IPsec processing is needed, free
588 				 * reference to SP.
589 				 *
590 				 * NB: null pointer to avoid free at
591 				 *     done: below.
592 				 */
593 				KEY_FREESP(&sp), sp = NULL;
594 				splx(s);
595 				goto spd_done;
596 			}
597 		}
598 
599 		/*
600 		 * Do delayed checksums now because we send before
601 		 * this is done in the normal processing path.
602 		 */
603 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
604 			in_delayed_cksum(m);
605 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
606 		}
607 
608 		ip->ip_len = htons(ip->ip_len);
609 		ip->ip_off = htons(ip->ip_off);
610 
611 		/* NB: callee frees mbuf */
612 		error = ipsec4_process_packet(m, sp->req, flags, 0);
613 		/*
614 		 * Preserve KAME behaviour: ENOENT can be returned
615 		 * when an SA acquire is in progress.  Don't propagate
616 		 * this to user-level; it confuses applications.
617 		 *
618 		 * XXX this will go away when the SADB is redone.
619 		 */
620 		if (error == ENOENT)
621 			error = 0;
622 		splx(s);
623 		goto done;
624 	} else {
625 		splx(s);
626 
627 		if (error != 0) {
628 			/*
629 			 * Hack: -EINVAL is used to signal that a packet
630 			 * should be silently discarded.  This is typically
631 			 * because we asked key management for an SA and
632 			 * it was delayed (e.g. kicked up to IKE).
633 			 */
634 			if (error == -EINVAL)
635 				error = 0;
636 			goto bad;
637 		} else {
638 			/* No IPsec processing for this packet. */
639 		}
640 #ifdef notyet
641 		/*
642 		 * If deferred crypto processing is needed, check that
643 		 * the interface supports it.
644 		 */
645 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
646 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
647 			/* notify IPsec to do its own crypto */
648 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
649 			error = EHOSTUNREACH;
650 			goto bad;
651 		}
652 #endif
653 	}
654 spd_done:
655 #endif /* FAST_IPSEC */
656 
657 	/* Jump over all PFIL processing if hooks are not active. */
658 	if (inet_pfil_hook.ph_busy_count == -1)
659 		goto passout;
660 
661 	/* Run through list of hooks for output packets. */
662 	odst.s_addr = ip->ip_dst.s_addr;
663 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
664 	if (error != 0 || m == NULL)
665 		goto done;
666 
667 	ip = mtod(m, struct ip *);
668 
669 	/* See if destination IP address was changed by packet filter. */
670 	if (odst.s_addr != ip->ip_dst.s_addr) {
671 		m->m_flags |= M_SKIP_FIREWALL;
672 		/* If destination is now ourself drop to ip_input(). */
673 		if (in_localip(ip->ip_dst)) {
674 			m->m_flags |= M_FASTFWD_OURS;
675 			if (m->m_pkthdr.rcvif == NULL)
676 				m->m_pkthdr.rcvif = loif;
677 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
678 				m->m_pkthdr.csum_flags |=
679 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
680 				m->m_pkthdr.csum_data = 0xffff;
681 			}
682 			m->m_pkthdr.csum_flags |=
683 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
684 
685 			error = netisr_queue(NETISR_IP, m);
686 			goto done;
687 		} else
688 			goto again;	/* Redo the routing table lookup. */
689 	}
690 
691 #ifdef IPFIREWALL_FORWARD
692 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
693 	if (m->m_flags & M_FASTFWD_OURS) {
694 		if (m->m_pkthdr.rcvif == NULL)
695 			m->m_pkthdr.rcvif = loif;
696 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
697 			m->m_pkthdr.csum_flags |=
698 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
699 			m->m_pkthdr.csum_data = 0xffff;
700 		}
701 		m->m_pkthdr.csum_flags |=
702 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
703 
704 		error = netisr_queue(NETISR_IP, m);
705 		goto done;
706 	}
707 	/* Or forward to some other address? */
708 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
709 	if (fwd_tag) {
710 #ifndef IPFIREWALL_FORWARD_EXTENDED
711 		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
712 #endif
713 			dst = (struct sockaddr_in *)&ro->ro_dst;
714 			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
715 			m->m_flags |= M_SKIP_FIREWALL;
716 			m_tag_delete(m, fwd_tag);
717 			goto again;
718 #ifndef IPFIREWALL_FORWARD_EXTENDED
719 		} else {
720 			m_tag_delete(m, fwd_tag);
721 			/* Continue. */
722 		}
723 #endif
724 	}
725 #endif /* IPFIREWALL_FORWARD */
726 
727 passout:
728 	/* 127/8 must not appear on wire - RFC1122. */
729 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
730 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
731 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
732 			ipstat.ips_badaddr++;
733 			error = EADDRNOTAVAIL;
734 			goto bad;
735 		}
736 	}
737 
738 	m->m_pkthdr.csum_flags |= CSUM_IP;
739 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
740 	if (sw_csum & CSUM_DELAY_DATA) {
741 		in_delayed_cksum(m);
742 		sw_csum &= ~CSUM_DELAY_DATA;
743 	}
744 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
745 
746 	/*
747 	 * If small enough for interface, or the interface will take
748 	 * care of the fragmentation for us, can just send directly.
749 	 */
750 	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
751 	    ((ip->ip_off & IP_DF) == 0))) {
752 		ip->ip_len = htons(ip->ip_len);
753 		ip->ip_off = htons(ip->ip_off);
754 		ip->ip_sum = 0;
755 		if (sw_csum & CSUM_DELAY_IP)
756 			ip->ip_sum = in_cksum(m, hlen);
757 
758 		/* Record statistics for this interface address. */
759 		if (!(flags & IP_FORWARDING) && ia) {
760 			ia->ia_ifa.if_opackets++;
761 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
762 		}
763 
764 #ifdef IPSEC
765 		/* clean ipsec history once it goes out of the node */
766 		ipsec_delaux(m);
767 #endif
768 
769 #ifdef MBUF_STRESS_TEST
770 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
771 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
772 #endif
773 		/*
774 		 * Reset layer specific mbuf flags
775 		 * to avoid confusing lower layers.
776 		 */
777 		m->m_flags &= ~(M_PROTOFLAGS);
778 
779 		error = (*ifp->if_output)(ifp, m,
780 				(struct sockaddr *)dst, ro->ro_rt);
781 		goto done;
782 	}
783 
784 	if (ip->ip_off & IP_DF) {
785 		error = EMSGSIZE;
786 		/*
787 		 * This case can happen if the user changed the MTU
788 		 * of an interface after enabling IP on it.  Because
789 		 * most netifs don't keep track of routes pointing to
790 		 * them, there is no way for one to update all its
791 		 * routes when the MTU is changed.
792 		 */
793 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
794 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
795 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
796 		}
797 		ipstat.ips_cantfrag++;
798 		goto bad;
799 	}
800 
801 	/*
802 	 * Too large for interface; fragment if possible. If successful,
803 	 * on return, m will point to a list of packets to be sent.
804 	 */
805 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
806 	if (error)
807 		goto bad;
808 	for (; m; m = m0) {
809 		m0 = m->m_nextpkt;
810 		m->m_nextpkt = 0;
811 #ifdef IPSEC
812 		/* clean ipsec history once it goes out of the node */
813 		ipsec_delaux(m);
814 #endif
815 		if (error == 0) {
816 			/* Record statistics for this interface address. */
817 			if (ia != NULL) {
818 				ia->ia_ifa.if_opackets++;
819 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
820 			}
821 			/*
822 			 * Reset layer specific mbuf flags
823 			 * to avoid confusing upper layers.
824 			 */
825 			m->m_flags &= ~(M_PROTOFLAGS);
826 
827 			error = (*ifp->if_output)(ifp, m,
828 			    (struct sockaddr *)dst, ro->ro_rt);
829 		} else
830 			m_freem(m);
831 	}
832 
833 	if (error == 0)
834 		ipstat.ips_fragmented++;
835 
836 done:
837 	if (ro == &iproute && ro->ro_rt) {
838 		RTFREE(ro->ro_rt);
839 	}
840 #ifdef IPSEC
841 	if (sp != NULL) {
842 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
843 			printf("DP ip_output call free SP:%p\n", sp));
844 		key_freesp(sp);
845 	}
846 #endif
847 #ifdef FAST_IPSEC
848 	if (sp != NULL)
849 		KEY_FREESP(&sp);
850 #endif
851 	return (error);
852 bad:
853 	m_freem(m);
854 	goto done;
855 }
856 
857 /*
858  * Create a chain of fragments which fit the given mtu. m_frag points to the
859  * mbuf to be fragmented; on return it points to the chain with the fragments.
860  * Return 0 if no error. If error, m_frag may contain a partially built
861  * chain of fragments that should be freed by the caller.
862  *
863  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
864  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
865  */
866 int
867 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
868 	    u_long if_hwassist_flags, int sw_csum)
869 {
870 	int error = 0;
871 	int hlen = ip->ip_hl << 2;
872 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
873 	int off;
874 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
875 	int firstlen;
876 	struct mbuf **mnext;
877 	int nfrags;
878 
879 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
880 		ipstat.ips_cantfrag++;
881 		return EMSGSIZE;
882 	}
883 
884 	/*
885 	 * Must be able to put at least 8 bytes per fragment.
886 	 */
887 	if (len < 8)
888 		return EMSGSIZE;
889 
890 	/*
891 	 * If the interface will not calculate checksums on
892 	 * fragmented packets, then do it here.
893 	 */
894 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
895 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
896 		in_delayed_cksum(m0);
897 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
898 	}
899 
900 	if (len > PAGE_SIZE) {
901 		/*
902 		 * Fragment large datagrams such that each segment
903 		 * contains a multiple of PAGE_SIZE amount of data,
904 		 * plus headers. This enables a receiver to perform
905 		 * page-flipping zero-copy optimizations.
906 		 *
907 		 * XXX When does this help given that sender and receiver
908 		 * could have different page sizes, and also mtu could
909 		 * be less than the receiver's page size ?
910 		 */
911 		int newlen;
912 		struct mbuf *m;
913 
914 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
915 			off += m->m_len;
916 
917 		/*
918 		 * firstlen (off - hlen) must be aligned on an
919 		 * 8-byte boundary
920 		 */
921 		if (off < hlen)
922 			goto smart_frag_failure;
923 		off = ((off - hlen) & ~7) + hlen;
924 		newlen = (~PAGE_MASK) & mtu;
925 		if ((newlen + sizeof (struct ip)) > mtu) {
926 			/* we failed, go back the default */
927 smart_frag_failure:
928 			newlen = len;
929 			off = hlen + len;
930 		}
931 		len = newlen;
932 
933 	} else {
934 		off = hlen + len;
935 	}
936 
937 	firstlen = off - hlen;
938 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
939 
940 	/*
941 	 * Loop through length of segment after first fragment,
942 	 * make new header and copy data of each part and link onto chain.
943 	 * Here, m0 is the original packet, m is the fragment being created.
944 	 * The fragments are linked off the m_nextpkt of the original
945 	 * packet, which after processing serves as the first fragment.
946 	 */
947 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
948 		struct ip *mhip;	/* ip header on the fragment */
949 		struct mbuf *m;
950 		int mhlen = sizeof (struct ip);
951 
952 		MGETHDR(m, M_DONTWAIT, MT_DATA);
953 		if (m == NULL) {
954 			error = ENOBUFS;
955 			ipstat.ips_odropped++;
956 			goto done;
957 		}
958 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
959 		/*
960 		 * In the first mbuf, leave room for the link header, then
961 		 * copy the original IP header including options. The payload
962 		 * goes into an additional mbuf chain returned by m_copy().
963 		 */
964 		m->m_data += max_linkhdr;
965 		mhip = mtod(m, struct ip *);
966 		*mhip = *ip;
967 		if (hlen > sizeof (struct ip)) {
968 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
969 			mhip->ip_v = IPVERSION;
970 			mhip->ip_hl = mhlen >> 2;
971 		}
972 		m->m_len = mhlen;
973 		/* XXX do we need to add ip->ip_off below ? */
974 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
975 		if (off + len >= ip->ip_len) {	/* last fragment */
976 			len = ip->ip_len - off;
977 			m->m_flags |= M_LASTFRAG;
978 		} else
979 			mhip->ip_off |= IP_MF;
980 		mhip->ip_len = htons((u_short)(len + mhlen));
981 		m->m_next = m_copy(m0, off, len);
982 		if (m->m_next == NULL) {	/* copy failed */
983 			m_free(m);
984 			error = ENOBUFS;	/* ??? */
985 			ipstat.ips_odropped++;
986 			goto done;
987 		}
988 		m->m_pkthdr.len = mhlen + len;
989 		m->m_pkthdr.rcvif = NULL;
990 #ifdef MAC
991 		mac_create_fragment(m0, m);
992 #endif
993 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
994 		mhip->ip_off = htons(mhip->ip_off);
995 		mhip->ip_sum = 0;
996 		if (sw_csum & CSUM_DELAY_IP)
997 			mhip->ip_sum = in_cksum(m, mhlen);
998 		*mnext = m;
999 		mnext = &m->m_nextpkt;
1000 	}
1001 	ipstat.ips_ofragments += nfrags;
1002 
1003 	/* set first marker for fragment chain */
1004 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1005 	m0->m_pkthdr.csum_data = nfrags;
1006 
1007 	/*
1008 	 * Update first fragment by trimming what's been copied out
1009 	 * and updating header.
1010 	 */
1011 	m_adj(m0, hlen + firstlen - ip->ip_len);
1012 	m0->m_pkthdr.len = hlen + firstlen;
1013 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1014 	ip->ip_off |= IP_MF;
1015 	ip->ip_off = htons(ip->ip_off);
1016 	ip->ip_sum = 0;
1017 	if (sw_csum & CSUM_DELAY_IP)
1018 		ip->ip_sum = in_cksum(m0, hlen);
1019 
1020 done:
1021 	*m_frag = m0;
1022 	return error;
1023 }
1024 
1025 void
1026 in_delayed_cksum(struct mbuf *m)
1027 {
1028 	struct ip *ip;
1029 	u_short csum, offset;
1030 
1031 	ip = mtod(m, struct ip *);
1032 	offset = ip->ip_hl << 2 ;
1033 	csum = in_cksum_skip(m, ip->ip_len, offset);
1034 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1035 		csum = 0xffff;
1036 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1037 
1038 	if (offset + sizeof(u_short) > m->m_len) {
1039 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1040 		    m->m_len, offset, ip->ip_p);
1041 		/*
1042 		 * XXX
1043 		 * this shouldn't happen, but if it does, the
1044 		 * correct behavior may be to insert the checksum
1045 		 * in the existing chain instead of rearranging it.
1046 		 */
1047 		m = m_pullup(m, offset + sizeof(u_short));
1048 	}
1049 	*(u_short *)(m->m_data + offset) = csum;
1050 }
1051 
1052 /*
1053  * IP socket option processing.
1054  */
1055 int
1056 ip_ctloutput(so, sopt)
1057 	struct socket *so;
1058 	struct sockopt *sopt;
1059 {
1060 	struct	inpcb *inp = sotoinpcb(so);
1061 	int	error, optval;
1062 
1063 	error = optval = 0;
1064 	if (sopt->sopt_level != IPPROTO_IP) {
1065 		return (EINVAL);
1066 	}
1067 
1068 	switch (sopt->sopt_dir) {
1069 	case SOPT_SET:
1070 		switch (sopt->sopt_name) {
1071 		case IP_OPTIONS:
1072 #ifdef notyet
1073 		case IP_RETOPTS:
1074 #endif
1075 		{
1076 			struct mbuf *m;
1077 			if (sopt->sopt_valsize > MLEN) {
1078 				error = EMSGSIZE;
1079 				break;
1080 			}
1081 			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1082 			if (m == NULL) {
1083 				error = ENOBUFS;
1084 				break;
1085 			}
1086 			m->m_len = sopt->sopt_valsize;
1087 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1088 					    m->m_len);
1089 			INP_LOCK(inp);
1090 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1091 			INP_UNLOCK(inp);
1092 			return (error);
1093 		}
1094 
1095 		case IP_TOS:
1096 		case IP_TTL:
1097 		case IP_MINTTL:
1098 		case IP_RECVOPTS:
1099 		case IP_RECVRETOPTS:
1100 		case IP_RECVDSTADDR:
1101 		case IP_RECVTTL:
1102 		case IP_RECVIF:
1103 		case IP_FAITH:
1104 		case IP_ONESBCAST:
1105 		case IP_DONTFRAG:
1106 			error = sooptcopyin(sopt, &optval, sizeof optval,
1107 					    sizeof optval);
1108 			if (error)
1109 				break;
1110 
1111 			switch (sopt->sopt_name) {
1112 			case IP_TOS:
1113 				inp->inp_ip_tos = optval;
1114 				break;
1115 
1116 			case IP_TTL:
1117 				inp->inp_ip_ttl = optval;
1118 				break;
1119 
1120 			case IP_MINTTL:
1121 				if (optval > 0 && optval <= MAXTTL)
1122 					inp->inp_ip_minttl = optval;
1123 				else
1124 					error = EINVAL;
1125 				break;
1126 
1127 #define	OPTSET(bit) do {						\
1128 	INP_LOCK(inp);							\
1129 	if (optval)							\
1130 		inp->inp_flags |= bit;					\
1131 	else								\
1132 		inp->inp_flags &= ~bit;					\
1133 	INP_UNLOCK(inp);						\
1134 } while (0)
1135 
1136 			case IP_RECVOPTS:
1137 				OPTSET(INP_RECVOPTS);
1138 				break;
1139 
1140 			case IP_RECVRETOPTS:
1141 				OPTSET(INP_RECVRETOPTS);
1142 				break;
1143 
1144 			case IP_RECVDSTADDR:
1145 				OPTSET(INP_RECVDSTADDR);
1146 				break;
1147 
1148 			case IP_RECVTTL:
1149 				OPTSET(INP_RECVTTL);
1150 				break;
1151 
1152 			case IP_RECVIF:
1153 				OPTSET(INP_RECVIF);
1154 				break;
1155 
1156 			case IP_FAITH:
1157 				OPTSET(INP_FAITH);
1158 				break;
1159 
1160 			case IP_ONESBCAST:
1161 				OPTSET(INP_ONESBCAST);
1162 				break;
1163 			case IP_DONTFRAG:
1164 				OPTSET(INP_DONTFRAG);
1165 				break;
1166 			}
1167 			break;
1168 #undef OPTSET
1169 
1170 		case IP_MULTICAST_IF:
1171 		case IP_MULTICAST_VIF:
1172 		case IP_MULTICAST_TTL:
1173 		case IP_MULTICAST_LOOP:
1174 		case IP_ADD_MEMBERSHIP:
1175 		case IP_DROP_MEMBERSHIP:
1176 			error = ip_setmoptions(inp, sopt);
1177 			break;
1178 
1179 		case IP_PORTRANGE:
1180 			error = sooptcopyin(sopt, &optval, sizeof optval,
1181 					    sizeof optval);
1182 			if (error)
1183 				break;
1184 
1185 			INP_LOCK(inp);
1186 			switch (optval) {
1187 			case IP_PORTRANGE_DEFAULT:
1188 				inp->inp_flags &= ~(INP_LOWPORT);
1189 				inp->inp_flags &= ~(INP_HIGHPORT);
1190 				break;
1191 
1192 			case IP_PORTRANGE_HIGH:
1193 				inp->inp_flags &= ~(INP_LOWPORT);
1194 				inp->inp_flags |= INP_HIGHPORT;
1195 				break;
1196 
1197 			case IP_PORTRANGE_LOW:
1198 				inp->inp_flags &= ~(INP_HIGHPORT);
1199 				inp->inp_flags |= INP_LOWPORT;
1200 				break;
1201 
1202 			default:
1203 				error = EINVAL;
1204 				break;
1205 			}
1206 			INP_UNLOCK(inp);
1207 			break;
1208 
1209 #if defined(IPSEC) || defined(FAST_IPSEC)
1210 		case IP_IPSEC_POLICY:
1211 		{
1212 			caddr_t req;
1213 			size_t len = 0;
1214 			int priv;
1215 			struct mbuf *m;
1216 			int optname;
1217 
1218 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1219 				break;
1220 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1221 				break;
1222 			priv = (sopt->sopt_td != NULL &&
1223 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1224 			req = mtod(m, caddr_t);
1225 			len = m->m_len;
1226 			optname = sopt->sopt_name;
1227 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1228 			m_freem(m);
1229 			break;
1230 		}
1231 #endif /*IPSEC*/
1232 
1233 		default:
1234 			error = ENOPROTOOPT;
1235 			break;
1236 		}
1237 		break;
1238 
1239 	case SOPT_GET:
1240 		switch (sopt->sopt_name) {
1241 		case IP_OPTIONS:
1242 		case IP_RETOPTS:
1243 			if (inp->inp_options)
1244 				error = sooptcopyout(sopt,
1245 						     mtod(inp->inp_options,
1246 							  char *),
1247 						     inp->inp_options->m_len);
1248 			else
1249 				sopt->sopt_valsize = 0;
1250 			break;
1251 
1252 		case IP_TOS:
1253 		case IP_TTL:
1254 		case IP_MINTTL:
1255 		case IP_RECVOPTS:
1256 		case IP_RECVRETOPTS:
1257 		case IP_RECVDSTADDR:
1258 		case IP_RECVTTL:
1259 		case IP_RECVIF:
1260 		case IP_PORTRANGE:
1261 		case IP_FAITH:
1262 		case IP_ONESBCAST:
1263 		case IP_DONTFRAG:
1264 			switch (sopt->sopt_name) {
1265 
1266 			case IP_TOS:
1267 				optval = inp->inp_ip_tos;
1268 				break;
1269 
1270 			case IP_TTL:
1271 				optval = inp->inp_ip_ttl;
1272 				break;
1273 
1274 			case IP_MINTTL:
1275 				optval = inp->inp_ip_minttl;
1276 				break;
1277 
1278 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1279 
1280 			case IP_RECVOPTS:
1281 				optval = OPTBIT(INP_RECVOPTS);
1282 				break;
1283 
1284 			case IP_RECVRETOPTS:
1285 				optval = OPTBIT(INP_RECVRETOPTS);
1286 				break;
1287 
1288 			case IP_RECVDSTADDR:
1289 				optval = OPTBIT(INP_RECVDSTADDR);
1290 				break;
1291 
1292 			case IP_RECVTTL:
1293 				optval = OPTBIT(INP_RECVTTL);
1294 				break;
1295 
1296 			case IP_RECVIF:
1297 				optval = OPTBIT(INP_RECVIF);
1298 				break;
1299 
1300 			case IP_PORTRANGE:
1301 				if (inp->inp_flags & INP_HIGHPORT)
1302 					optval = IP_PORTRANGE_HIGH;
1303 				else if (inp->inp_flags & INP_LOWPORT)
1304 					optval = IP_PORTRANGE_LOW;
1305 				else
1306 					optval = 0;
1307 				break;
1308 
1309 			case IP_FAITH:
1310 				optval = OPTBIT(INP_FAITH);
1311 				break;
1312 
1313 			case IP_ONESBCAST:
1314 				optval = OPTBIT(INP_ONESBCAST);
1315 				break;
1316 			case IP_DONTFRAG:
1317 				optval = OPTBIT(INP_DONTFRAG);
1318 				break;
1319 			}
1320 			error = sooptcopyout(sopt, &optval, sizeof optval);
1321 			break;
1322 
1323 		case IP_MULTICAST_IF:
1324 		case IP_MULTICAST_VIF:
1325 		case IP_MULTICAST_TTL:
1326 		case IP_MULTICAST_LOOP:
1327 		case IP_ADD_MEMBERSHIP:
1328 		case IP_DROP_MEMBERSHIP:
1329 			error = ip_getmoptions(inp, sopt);
1330 			break;
1331 
1332 #if defined(IPSEC) || defined(FAST_IPSEC)
1333 		case IP_IPSEC_POLICY:
1334 		{
1335 			struct mbuf *m = NULL;
1336 			caddr_t req = NULL;
1337 			size_t len = 0;
1338 
1339 			if (m != 0) {
1340 				req = mtod(m, caddr_t);
1341 				len = m->m_len;
1342 			}
1343 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1344 			if (error == 0)
1345 				error = soopt_mcopyout(sopt, m); /* XXX */
1346 			if (error == 0)
1347 				m_freem(m);
1348 			break;
1349 		}
1350 #endif /*IPSEC*/
1351 
1352 		default:
1353 			error = ENOPROTOOPT;
1354 			break;
1355 		}
1356 		break;
1357 	}
1358 	return (error);
1359 }
1360 
1361 /*
1362  * XXX
1363  * The whole multicast option thing needs to be re-thought.
1364  * Several of these options are equally applicable to non-multicast
1365  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1366  * standard option (IP_TTL).
1367  */
1368 
1369 /*
1370  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1371  */
1372 static struct ifnet *
1373 ip_multicast_if(a, ifindexp)
1374 	struct in_addr *a;
1375 	int *ifindexp;
1376 {
1377 	int ifindex;
1378 	struct ifnet *ifp;
1379 
1380 	if (ifindexp)
1381 		*ifindexp = 0;
1382 	if (ntohl(a->s_addr) >> 24 == 0) {
1383 		ifindex = ntohl(a->s_addr) & 0xffffff;
1384 		if (ifindex < 0 || if_index < ifindex)
1385 			return NULL;
1386 		ifp = ifnet_byindex(ifindex);
1387 		if (ifindexp)
1388 			*ifindexp = ifindex;
1389 	} else {
1390 		INADDR_TO_IFP(*a, ifp);
1391 	}
1392 	return ifp;
1393 }
1394 
1395 /*
1396  * Given an inpcb, return its multicast options structure pointer.  Accepts
1397  * an unlocked inpcb pointer, but will return it locked.  May sleep.
1398  */
1399 static struct ip_moptions *
1400 ip_findmoptions(struct inpcb *inp)
1401 {
1402 	struct ip_moptions *imo;
1403 
1404 	INP_LOCK(inp);
1405 	if (inp->inp_moptions != NULL)
1406 		return (inp->inp_moptions);
1407 
1408 	INP_UNLOCK(inp);
1409 
1410 	imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1411 
1412 	imo->imo_multicast_ifp = NULL;
1413 	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1414 	imo->imo_multicast_vif = -1;
1415 	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1416 	imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1417 	imo->imo_num_memberships = 0;
1418 
1419 	INP_LOCK(inp);
1420 	if (inp->inp_moptions != NULL) {
1421 		free(imo, M_IPMOPTS);
1422 		return (inp->inp_moptions);
1423 	}
1424 	inp->inp_moptions = imo;
1425 	return (imo);
1426 }
1427 
1428 /*
1429  * Set the IP multicast options in response to user setsockopt().
1430  */
1431 static int
1432 ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1433 {
1434 	int error = 0;
1435 	int i;
1436 	struct in_addr addr;
1437 	struct ip_mreq mreq;
1438 	struct ifnet *ifp;
1439 	struct ip_moptions *imo;
1440 	struct route ro;
1441 	struct sockaddr_in *dst;
1442 	int ifindex;
1443 	int s;
1444 
1445 	switch (sopt->sopt_name) {
1446 	/* store an index number for the vif you wanna use in the send */
1447 	case IP_MULTICAST_VIF:
1448 		if (legal_vif_num == 0) {
1449 			error = EOPNOTSUPP;
1450 			break;
1451 		}
1452 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1453 		if (error)
1454 			break;
1455 		if (!legal_vif_num(i) && (i != -1)) {
1456 			error = EINVAL;
1457 			break;
1458 		}
1459 		imo = ip_findmoptions(inp);
1460 		imo->imo_multicast_vif = i;
1461 		INP_UNLOCK(inp);
1462 		break;
1463 
1464 	case IP_MULTICAST_IF:
1465 		/*
1466 		 * Select the interface for outgoing multicast packets.
1467 		 */
1468 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1469 		if (error)
1470 			break;
1471 		/*
1472 		 * INADDR_ANY is used to remove a previous selection.
1473 		 * When no interface is selected, a default one is
1474 		 * chosen every time a multicast packet is sent.
1475 		 */
1476 		imo = ip_findmoptions(inp);
1477 		if (addr.s_addr == INADDR_ANY) {
1478 			imo->imo_multicast_ifp = NULL;
1479 			INP_UNLOCK(inp);
1480 			break;
1481 		}
1482 		/*
1483 		 * The selected interface is identified by its local
1484 		 * IP address.  Find the interface and confirm that
1485 		 * it supports multicasting.
1486 		 */
1487 		s = splimp();
1488 		ifp = ip_multicast_if(&addr, &ifindex);
1489 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1490 			INP_UNLOCK(inp);
1491 			splx(s);
1492 			error = EADDRNOTAVAIL;
1493 			break;
1494 		}
1495 		imo->imo_multicast_ifp = ifp;
1496 		if (ifindex)
1497 			imo->imo_multicast_addr = addr;
1498 		else
1499 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1500 		INP_UNLOCK(inp);
1501 		splx(s);
1502 		break;
1503 
1504 	case IP_MULTICAST_TTL:
1505 		/*
1506 		 * Set the IP time-to-live for outgoing multicast packets.
1507 		 * The original multicast API required a char argument,
1508 		 * which is inconsistent with the rest of the socket API.
1509 		 * We allow either a char or an int.
1510 		 */
1511 		if (sopt->sopt_valsize == 1) {
1512 			u_char ttl;
1513 			error = sooptcopyin(sopt, &ttl, 1, 1);
1514 			if (error)
1515 				break;
1516 			imo = ip_findmoptions(inp);
1517 			imo->imo_multicast_ttl = ttl;
1518 			INP_UNLOCK(inp);
1519 		} else {
1520 			u_int ttl;
1521 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1522 					    sizeof ttl);
1523 			if (error)
1524 				break;
1525 			if (ttl > 255)
1526 				error = EINVAL;
1527 			else {
1528 				imo = ip_findmoptions(inp);
1529 				imo->imo_multicast_ttl = ttl;
1530 				INP_UNLOCK(inp);
1531 			}
1532 		}
1533 		break;
1534 
1535 	case IP_MULTICAST_LOOP:
1536 		/*
1537 		 * Set the loopback flag for outgoing multicast packets.
1538 		 * Must be zero or one.  The original multicast API required a
1539 		 * char argument, which is inconsistent with the rest
1540 		 * of the socket API.  We allow either a char or an int.
1541 		 */
1542 		if (sopt->sopt_valsize == 1) {
1543 			u_char loop;
1544 			error = sooptcopyin(sopt, &loop, 1, 1);
1545 			if (error)
1546 				break;
1547 			imo = ip_findmoptions(inp);
1548 			imo->imo_multicast_loop = !!loop;
1549 			INP_UNLOCK(inp);
1550 		} else {
1551 			u_int loop;
1552 			error = sooptcopyin(sopt, &loop, sizeof loop,
1553 					    sizeof loop);
1554 			if (error)
1555 				break;
1556 			imo = ip_findmoptions(inp);
1557 			imo->imo_multicast_loop = !!loop;
1558 			INP_UNLOCK(inp);
1559 		}
1560 		break;
1561 
1562 	case IP_ADD_MEMBERSHIP:
1563 		/*
1564 		 * Add a multicast group membership.
1565 		 * Group must be a valid IP multicast address.
1566 		 */
1567 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1568 		if (error)
1569 			break;
1570 
1571 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1572 			error = EINVAL;
1573 			break;
1574 		}
1575 		s = splimp();
1576 		/*
1577 		 * If no interface address was provided, use the interface of
1578 		 * the route to the given multicast address.
1579 		 */
1580 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1581 			bzero((caddr_t)&ro, sizeof(ro));
1582 			dst = (struct sockaddr_in *)&ro.ro_dst;
1583 			dst->sin_len = sizeof(*dst);
1584 			dst->sin_family = AF_INET;
1585 			dst->sin_addr = mreq.imr_multiaddr;
1586 			rtalloc_ign(&ro, RTF_CLONING);
1587 			if (ro.ro_rt == NULL) {
1588 				error = EADDRNOTAVAIL;
1589 				splx(s);
1590 				break;
1591 			}
1592 			ifp = ro.ro_rt->rt_ifp;
1593 			RTFREE(ro.ro_rt);
1594 		}
1595 		else {
1596 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1597 		}
1598 
1599 		/*
1600 		 * See if we found an interface, and confirm that it
1601 		 * supports multicast.
1602 		 */
1603 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1604 			error = EADDRNOTAVAIL;
1605 			splx(s);
1606 			break;
1607 		}
1608 		/*
1609 		 * See if the membership already exists or if all the
1610 		 * membership slots are full.
1611 		 */
1612 		imo = ip_findmoptions(inp);
1613 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1614 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1615 			    imo->imo_membership[i]->inm_addr.s_addr
1616 						== mreq.imr_multiaddr.s_addr)
1617 				break;
1618 		}
1619 		if (i < imo->imo_num_memberships) {
1620 			INP_UNLOCK(inp);
1621 			error = EADDRINUSE;
1622 			splx(s);
1623 			break;
1624 		}
1625 		if (i == IP_MAX_MEMBERSHIPS) {
1626 			INP_UNLOCK(inp);
1627 			error = ETOOMANYREFS;
1628 			splx(s);
1629 			break;
1630 		}
1631 		/*
1632 		 * Everything looks good; add a new record to the multicast
1633 		 * address list for the given interface.
1634 		 */
1635 		if ((imo->imo_membership[i] =
1636 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1637 			INP_UNLOCK(inp);
1638 			error = ENOBUFS;
1639 			splx(s);
1640 			break;
1641 		}
1642 		++imo->imo_num_memberships;
1643 		INP_UNLOCK(inp);
1644 		splx(s);
1645 		break;
1646 
1647 	case IP_DROP_MEMBERSHIP:
1648 		/*
1649 		 * Drop a multicast group membership.
1650 		 * Group must be a valid IP multicast address.
1651 		 */
1652 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1653 		if (error)
1654 			break;
1655 
1656 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1657 			error = EINVAL;
1658 			break;
1659 		}
1660 
1661 		s = splimp();
1662 		/*
1663 		 * If an interface address was specified, get a pointer
1664 		 * to its ifnet structure.
1665 		 */
1666 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1667 			ifp = NULL;
1668 		else {
1669 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1670 			if (ifp == NULL) {
1671 				error = EADDRNOTAVAIL;
1672 				splx(s);
1673 				break;
1674 			}
1675 		}
1676 		/*
1677 		 * Find the membership in the membership array.
1678 		 */
1679 		imo = ip_findmoptions(inp);
1680 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1681 			if ((ifp == NULL ||
1682 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1683 			     imo->imo_membership[i]->inm_addr.s_addr ==
1684 			     mreq.imr_multiaddr.s_addr)
1685 				break;
1686 		}
1687 		if (i == imo->imo_num_memberships) {
1688 			INP_UNLOCK(inp);
1689 			error = EADDRNOTAVAIL;
1690 			splx(s);
1691 			break;
1692 		}
1693 		/*
1694 		 * Give up the multicast address record to which the
1695 		 * membership points.
1696 		 */
1697 		in_delmulti(imo->imo_membership[i]);
1698 		/*
1699 		 * Remove the gap in the membership array.
1700 		 */
1701 		for (++i; i < imo->imo_num_memberships; ++i)
1702 			imo->imo_membership[i-1] = imo->imo_membership[i];
1703 		--imo->imo_num_memberships;
1704 		INP_UNLOCK(inp);
1705 		splx(s);
1706 		break;
1707 
1708 	default:
1709 		error = EOPNOTSUPP;
1710 		break;
1711 	}
1712 
1713 	return (error);
1714 }
1715 
1716 /*
1717  * Return the IP multicast options in response to user getsockopt().
1718  */
1719 static int
1720 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1721 {
1722 	struct ip_moptions *imo;
1723 	struct in_addr addr;
1724 	struct in_ifaddr *ia;
1725 	int error, optval;
1726 	u_char coptval;
1727 
1728 	INP_LOCK(inp);
1729 	imo = inp->inp_moptions;
1730 
1731 	error = 0;
1732 	switch (sopt->sopt_name) {
1733 	case IP_MULTICAST_VIF:
1734 		if (imo != NULL)
1735 			optval = imo->imo_multicast_vif;
1736 		else
1737 			optval = -1;
1738 		INP_UNLOCK(inp);
1739 		error = sooptcopyout(sopt, &optval, sizeof optval);
1740 		break;
1741 
1742 	case IP_MULTICAST_IF:
1743 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1744 			addr.s_addr = INADDR_ANY;
1745 		else if (imo->imo_multicast_addr.s_addr) {
1746 			/* return the value user has set */
1747 			addr = imo->imo_multicast_addr;
1748 		} else {
1749 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1750 			addr.s_addr = (ia == NULL) ? INADDR_ANY
1751 				: IA_SIN(ia)->sin_addr.s_addr;
1752 		}
1753 		INP_UNLOCK(inp);
1754 		error = sooptcopyout(sopt, &addr, sizeof addr);
1755 		break;
1756 
1757 	case IP_MULTICAST_TTL:
1758 		if (imo == 0)
1759 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1760 		else
1761 			optval = coptval = imo->imo_multicast_ttl;
1762 		INP_UNLOCK(inp);
1763 		if (sopt->sopt_valsize == 1)
1764 			error = sooptcopyout(sopt, &coptval, 1);
1765 		else
1766 			error = sooptcopyout(sopt, &optval, sizeof optval);
1767 		break;
1768 
1769 	case IP_MULTICAST_LOOP:
1770 		if (imo == 0)
1771 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1772 		else
1773 			optval = coptval = imo->imo_multicast_loop;
1774 		INP_UNLOCK(inp);
1775 		if (sopt->sopt_valsize == 1)
1776 			error = sooptcopyout(sopt, &coptval, 1);
1777 		else
1778 			error = sooptcopyout(sopt, &optval, sizeof optval);
1779 		break;
1780 
1781 	default:
1782 		INP_UNLOCK(inp);
1783 		error = ENOPROTOOPT;
1784 		break;
1785 	}
1786 	INP_UNLOCK_ASSERT(inp);
1787 
1788 	return (error);
1789 }
1790 
1791 /*
1792  * Discard the IP multicast options.
1793  */
1794 void
1795 ip_freemoptions(imo)
1796 	register struct ip_moptions *imo;
1797 {
1798 	register int i;
1799 
1800 	if (imo != NULL) {
1801 		for (i = 0; i < imo->imo_num_memberships; ++i)
1802 			in_delmulti(imo->imo_membership[i]);
1803 		free(imo, M_IPMOPTS);
1804 	}
1805 }
1806 
1807 /*
1808  * Routine called from ip_output() to loop back a copy of an IP multicast
1809  * packet to the input queue of a specified interface.  Note that this
1810  * calls the output routine of the loopback "driver", but with an interface
1811  * pointer that might NOT be a loopback interface -- evil, but easier than
1812  * replicating that code here.
1813  */
1814 static void
1815 ip_mloopback(ifp, m, dst, hlen)
1816 	struct ifnet *ifp;
1817 	register struct mbuf *m;
1818 	register struct sockaddr_in *dst;
1819 	int hlen;
1820 {
1821 	register struct ip *ip;
1822 	struct mbuf *copym;
1823 
1824 	copym = m_copy(m, 0, M_COPYALL);
1825 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1826 		copym = m_pullup(copym, hlen);
1827 	if (copym != NULL) {
1828 		/* If needed, compute the checksum and mark it as valid. */
1829 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1830 			in_delayed_cksum(copym);
1831 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1832 			copym->m_pkthdr.csum_flags |=
1833 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1834 			copym->m_pkthdr.csum_data = 0xffff;
1835 		}
1836 		/*
1837 		 * We don't bother to fragment if the IP length is greater
1838 		 * than the interface's MTU.  Can this possibly matter?
1839 		 */
1840 		ip = mtod(copym, struct ip *);
1841 		ip->ip_len = htons(ip->ip_len);
1842 		ip->ip_off = htons(ip->ip_off);
1843 		ip->ip_sum = 0;
1844 		ip->ip_sum = in_cksum(copym, hlen);
1845 		/*
1846 		 * NB:
1847 		 * It's not clear whether there are any lingering
1848 		 * reentrancy problems in other areas which might
1849 		 * be exposed by using ip_input directly (in
1850 		 * particular, everything which modifies the packet
1851 		 * in-place).  Yet another option is using the
1852 		 * protosw directly to deliver the looped back
1853 		 * packet.  For the moment, we'll err on the side
1854 		 * of safety by using if_simloop().
1855 		 */
1856 #if 1 /* XXX */
1857 		if (dst->sin_family != AF_INET) {
1858 			printf("ip_mloopback: bad address family %d\n",
1859 						dst->sin_family);
1860 			dst->sin_family = AF_INET;
1861 		}
1862 #endif
1863 
1864 #ifdef notdef
1865 		copym->m_pkthdr.rcvif = ifp;
1866 		ip_input(copym);
1867 #else
1868 		if_simloop(ifp, copym, dst->sin_family, 0);
1869 #endif
1870 	}
1871 }
1872