1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_inet.h" 36 #include "opt_ipsec.h" 37 #include "opt_kern_tls.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_ratelimit.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 #include "opt_sctp.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/ktls.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mbuf.h> 51 #include <sys/priv.h> 52 #include <sys/proc.h> 53 #include <sys/protosw.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_private.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/ethernet.h> 66 #include <net/netisr.h> 67 #include <net/pfil.h> 68 #include <net/route.h> 69 #include <net/route/nhop.h> 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_fib.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_fib.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_rss.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/ip_options.h> 84 85 #include <netinet/udp.h> 86 #include <netinet/udp_var.h> 87 88 #if defined(SCTP) || defined(SCTP_SUPPORT) 89 #include <netinet/sctp.h> 90 #include <netinet/sctp_crc32.h> 91 #endif 92 93 #include <netipsec/ipsec_support.h> 94 95 #include <machine/in_cksum.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #ifdef MBUF_STRESS_TEST 100 static int mbuf_frag_size = 0; 101 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 102 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 103 #endif 104 105 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 106 107 extern int in_mcast_loop; 108 109 static inline int 110 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 111 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 112 { 113 struct m_tag *fwd_tag = NULL; 114 struct mbuf *m; 115 struct in_addr odst; 116 struct ip *ip; 117 118 m = *mp; 119 ip = mtod(m, struct ip *); 120 121 /* Run through list of hooks for output packets. */ 122 odst.s_addr = ip->ip_dst.s_addr; 123 switch (pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp)) { 124 case PFIL_DROPPED: 125 *error = EACCES; 126 /* FALLTHROUGH */ 127 case PFIL_CONSUMED: 128 return 1; /* Finished */ 129 case PFIL_PASS: 130 *error = 0; 131 } 132 m = *mp; 133 ip = mtod(m, struct ip *); 134 135 /* See if destination IP address was changed by packet filter. */ 136 if (odst.s_addr != ip->ip_dst.s_addr) { 137 m->m_flags |= M_SKIP_FIREWALL; 138 /* If destination is now ourself drop to ip_input(). */ 139 if (in_localip(ip->ip_dst)) { 140 m->m_flags |= M_FASTFWD_OURS; 141 if (m->m_pkthdr.rcvif == NULL) 142 m->m_pkthdr.rcvif = V_loif; 143 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 144 m->m_pkthdr.csum_flags |= 145 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 146 m->m_pkthdr.csum_data = 0xffff; 147 } 148 m->m_pkthdr.csum_flags |= 149 CSUM_IP_CHECKED | CSUM_IP_VALID; 150 #if defined(SCTP) || defined(SCTP_SUPPORT) 151 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 152 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 153 #endif 154 *error = netisr_queue(NETISR_IP, m); 155 return 1; /* Finished */ 156 } 157 158 bzero(dst, sizeof(*dst)); 159 dst->sin_family = AF_INET; 160 dst->sin_len = sizeof(*dst); 161 dst->sin_addr = ip->ip_dst; 162 163 return -1; /* Reloop */ 164 } 165 /* See if fib was changed by packet filter. */ 166 if ((*fibnum) != M_GETFIB(m)) { 167 m->m_flags |= M_SKIP_FIREWALL; 168 *fibnum = M_GETFIB(m); 169 return -1; /* Reloop for FIB change */ 170 } 171 172 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 173 if (m->m_flags & M_FASTFWD_OURS) { 174 if (m->m_pkthdr.rcvif == NULL) 175 m->m_pkthdr.rcvif = V_loif; 176 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 177 m->m_pkthdr.csum_flags |= 178 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 179 m->m_pkthdr.csum_data = 0xffff; 180 } 181 #if defined(SCTP) || defined(SCTP_SUPPORT) 182 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 183 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 184 #endif 185 m->m_pkthdr.csum_flags |= 186 CSUM_IP_CHECKED | CSUM_IP_VALID; 187 188 *error = netisr_queue(NETISR_IP, m); 189 return 1; /* Finished */ 190 } 191 /* Or forward to some other address? */ 192 if ((m->m_flags & M_IP_NEXTHOP) && 193 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 194 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 195 m->m_flags |= M_SKIP_FIREWALL; 196 m->m_flags &= ~M_IP_NEXTHOP; 197 m_tag_delete(m, fwd_tag); 198 199 return -1; /* Reloop for CHANGE of dst */ 200 } 201 202 return 0; 203 } 204 205 static int 206 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 207 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 208 { 209 #ifdef KERN_TLS 210 struct ktls_session *tls = NULL; 211 #endif 212 struct m_snd_tag *mst; 213 int error; 214 215 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 216 mst = NULL; 217 218 #ifdef KERN_TLS 219 /* 220 * If this is an unencrypted TLS record, save a reference to 221 * the record. This local reference is used to call 222 * ktls_output_eagain after the mbuf has been freed (thus 223 * dropping the mbuf's reference) in if_output. 224 */ 225 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 226 tls = ktls_hold(m->m_next->m_epg_tls); 227 mst = tls->snd_tag; 228 229 /* 230 * If a TLS session doesn't have a valid tag, it must 231 * have had an earlier ifp mismatch, so drop this 232 * packet. 233 */ 234 if (mst == NULL) { 235 m_freem(m); 236 error = EAGAIN; 237 goto done; 238 } 239 /* 240 * Always stamp tags that include NIC ktls. 241 */ 242 stamp_tag = true; 243 } 244 #endif 245 #ifdef RATELIMIT 246 if (inp != NULL && mst == NULL) { 247 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 248 (inp->inp_snd_tag != NULL && 249 inp->inp_snd_tag->ifp != ifp)) 250 in_pcboutput_txrtlmt(inp, ifp, m); 251 252 if (inp->inp_snd_tag != NULL) 253 mst = inp->inp_snd_tag; 254 } 255 #endif 256 if (stamp_tag && mst != NULL) { 257 KASSERT(m->m_pkthdr.rcvif == NULL, 258 ("trying to add a send tag to a forwarded packet")); 259 if (mst->ifp != ifp) { 260 m_freem(m); 261 error = EAGAIN; 262 goto done; 263 } 264 265 /* stamp send tag on mbuf */ 266 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 267 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 268 } 269 270 error = (*ifp->if_output)(ifp, m, gw, ro); 271 272 done: 273 /* Check for route change invalidating send tags. */ 274 #ifdef KERN_TLS 275 if (tls != NULL) { 276 if (error == EAGAIN) 277 error = ktls_output_eagain(inp, tls); 278 ktls_free(tls); 279 } 280 #endif 281 #ifdef RATELIMIT 282 if (error == EAGAIN) 283 in_pcboutput_eagain(inp); 284 #endif 285 return (error); 286 } 287 288 /* rte<>ro_flags translation */ 289 static inline void 290 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 291 { 292 int nh_flags = nh->nh_flags; 293 294 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 295 296 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 297 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 298 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 299 } 300 301 /* 302 * IP output. The packet in mbuf chain m contains a skeletal IP 303 * header (with len, off, ttl, proto, tos, src, dst). 304 * The mbuf chain containing the packet will be freed. 305 * The mbuf opt, if present, will not be freed. 306 * If route ro is present and has ro_rt initialized, route lookup would be 307 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 308 * then result of route lookup is stored in ro->ro_rt. 309 * 310 * In the IP forwarding case, the packet will arrive with options already 311 * inserted, so must have a NULL opt pointer. 312 */ 313 int 314 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 315 struct ip_moptions *imo, struct inpcb *inp) 316 { 317 struct ip *ip; 318 struct ifnet *ifp = NULL; /* keep compiler happy */ 319 struct mbuf *m0; 320 int hlen = sizeof (struct ip); 321 int mtu = 0; 322 int error = 0; 323 int vlan_pcp = -1; 324 struct sockaddr_in *dst; 325 const struct sockaddr *gw; 326 struct in_ifaddr *ia = NULL; 327 struct in_addr src; 328 int isbroadcast; 329 uint16_t ip_len, ip_off; 330 struct route iproute; 331 uint32_t fibnum; 332 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 333 int no_route_but_check_spd = 0; 334 #endif 335 336 M_ASSERTPKTHDR(m); 337 NET_EPOCH_ASSERT(); 338 339 if (inp != NULL) { 340 INP_LOCK_ASSERT(inp); 341 M_SETFIB(m, inp->inp_inc.inc_fibnum); 342 if ((flags & IP_NODEFAULTFLOWID) == 0) { 343 m->m_pkthdr.flowid = inp->inp_flowid; 344 M_HASHTYPE_SET(m, inp->inp_flowtype); 345 } 346 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 347 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 348 INP_2PCP_SHIFT; 349 #ifdef NUMA 350 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 351 #endif 352 } 353 354 if (opt) { 355 int len = 0; 356 m = ip_insertoptions(m, opt, &len); 357 if (len != 0) 358 hlen = len; /* ip->ip_hl is updated above */ 359 } 360 ip = mtod(m, struct ip *); 361 ip_len = ntohs(ip->ip_len); 362 ip_off = ntohs(ip->ip_off); 363 364 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 365 ip->ip_v = IPVERSION; 366 ip->ip_hl = hlen >> 2; 367 ip_fillid(ip); 368 } else { 369 /* Header already set, fetch hlen from there */ 370 hlen = ip->ip_hl << 2; 371 } 372 if ((flags & IP_FORWARDING) == 0) 373 IPSTAT_INC(ips_localout); 374 375 /* 376 * dst/gw handling: 377 * 378 * gw is readonly but can point either to dst OR rt_gateway, 379 * therefore we need restore gw if we're redoing lookup. 380 */ 381 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 382 if (ro == NULL) { 383 ro = &iproute; 384 bzero(ro, sizeof (*ro)); 385 } 386 dst = (struct sockaddr_in *)&ro->ro_dst; 387 if (ro->ro_nh == NULL) { 388 dst->sin_family = AF_INET; 389 dst->sin_len = sizeof(*dst); 390 dst->sin_addr = ip->ip_dst; 391 } 392 gw = (const struct sockaddr *)dst; 393 again: 394 /* 395 * Validate route against routing table additions; 396 * a better/more specific route might have been added. 397 */ 398 if (inp != NULL && ro->ro_nh != NULL) 399 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 400 /* 401 * If there is a cached route, 402 * check that it is to the same destination 403 * and is still up. If not, free it and try again. 404 * The address family should also be checked in case of sharing the 405 * cache with IPv6. 406 * Also check whether routing cache needs invalidation. 407 */ 408 if (ro->ro_nh != NULL && 409 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 410 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 411 RO_INVALIDATE_CACHE(ro); 412 ia = NULL; 413 /* 414 * If routing to interface only, short circuit routing lookup. 415 * The use of an all-ones broadcast address implies this; an 416 * interface is specified by the broadcast address of an interface, 417 * or the destination address of a ptp interface. 418 */ 419 if (flags & IP_SENDONES) { 420 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 421 M_GETFIB(m)))) == NULL && 422 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 423 M_GETFIB(m)))) == NULL) { 424 IPSTAT_INC(ips_noroute); 425 error = ENETUNREACH; 426 goto bad; 427 } 428 ip->ip_dst.s_addr = INADDR_BROADCAST; 429 dst->sin_addr = ip->ip_dst; 430 ifp = ia->ia_ifp; 431 mtu = ifp->if_mtu; 432 ip->ip_ttl = 1; 433 isbroadcast = 1; 434 src = IA_SIN(ia)->sin_addr; 435 } else if (flags & IP_ROUTETOIF) { 436 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 437 M_GETFIB(m)))) == NULL && 438 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 439 M_GETFIB(m)))) == NULL) { 440 IPSTAT_INC(ips_noroute); 441 error = ENETUNREACH; 442 goto bad; 443 } 444 ifp = ia->ia_ifp; 445 mtu = ifp->if_mtu; 446 ip->ip_ttl = 1; 447 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 448 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 449 src = IA_SIN(ia)->sin_addr; 450 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 451 imo != NULL && imo->imo_multicast_ifp != NULL) { 452 /* 453 * Bypass the normal routing lookup for multicast 454 * packets if the interface is specified. 455 */ 456 ifp = imo->imo_multicast_ifp; 457 mtu = ifp->if_mtu; 458 IFP_TO_IA(ifp, ia); 459 isbroadcast = 0; /* fool gcc */ 460 /* Interface may have no addresses. */ 461 if (ia != NULL) 462 src = IA_SIN(ia)->sin_addr; 463 else 464 src.s_addr = INADDR_ANY; 465 } else if (ro != &iproute) { 466 if (ro->ro_nh == NULL) { 467 /* 468 * We want to do any cloning requested by the link 469 * layer, as this is probably required in all cases 470 * for correct operation (as it is for ARP). 471 */ 472 uint32_t flowid; 473 flowid = m->m_pkthdr.flowid; 474 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 475 NHR_REF, flowid); 476 477 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 478 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 479 /* 480 * There is no route for this packet, but it is 481 * possible that a matching SPD entry exists. 482 */ 483 no_route_but_check_spd = 1; 484 goto sendit; 485 #endif 486 IPSTAT_INC(ips_noroute); 487 error = EHOSTUNREACH; 488 goto bad; 489 } 490 } 491 struct nhop_object *nh = ro->ro_nh; 492 493 ia = ifatoia(nh->nh_ifa); 494 ifp = nh->nh_ifp; 495 counter_u64_add(nh->nh_pksent, 1); 496 rt_update_ro_flags(ro, nh); 497 if (nh->nh_flags & NHF_GATEWAY) 498 gw = &nh->gw_sa; 499 if (nh->nh_flags & NHF_HOST) 500 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 501 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 502 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 503 else 504 isbroadcast = 0; 505 mtu = nh->nh_mtu; 506 src = IA_SIN(ia)->sin_addr; 507 } else { 508 struct nhop_object *nh; 509 510 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 511 m->m_pkthdr.flowid); 512 if (nh == NULL) { 513 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 514 /* 515 * There is no route for this packet, but it is 516 * possible that a matching SPD entry exists. 517 */ 518 no_route_but_check_spd = 1; 519 goto sendit; 520 #endif 521 IPSTAT_INC(ips_noroute); 522 error = EHOSTUNREACH; 523 goto bad; 524 } 525 ifp = nh->nh_ifp; 526 mtu = nh->nh_mtu; 527 rt_update_ro_flags(ro, nh); 528 if (nh->nh_flags & NHF_GATEWAY) 529 gw = &nh->gw_sa; 530 ia = ifatoia(nh->nh_ifa); 531 src = IA_SIN(ia)->sin_addr; 532 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 533 (NHF_HOST | NHF_BROADCAST)) || 534 ((ifp->if_flags & IFF_BROADCAST) && 535 (gw->sa_family == AF_INET) && 536 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 537 } 538 539 /* Catch a possible divide by zero later. */ 540 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 541 __func__, mtu, ro, 542 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 543 544 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 545 m->m_flags |= M_MCAST; 546 /* 547 * IP destination address is multicast. Make sure "gw" 548 * still points to the address in "ro". (It may have been 549 * changed to point to a gateway address, above.) 550 */ 551 gw = (const struct sockaddr *)dst; 552 /* 553 * See if the caller provided any multicast options 554 */ 555 if (imo != NULL) { 556 ip->ip_ttl = imo->imo_multicast_ttl; 557 if (imo->imo_multicast_vif != -1) 558 ip->ip_src.s_addr = 559 ip_mcast_src ? 560 ip_mcast_src(imo->imo_multicast_vif) : 561 INADDR_ANY; 562 } else 563 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 564 /* 565 * Confirm that the outgoing interface supports multicast. 566 */ 567 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 568 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 569 IPSTAT_INC(ips_noroute); 570 error = ENETUNREACH; 571 goto bad; 572 } 573 } 574 /* 575 * If source address not specified yet, use address 576 * of outgoing interface. 577 */ 578 if (ip->ip_src.s_addr == INADDR_ANY) 579 ip->ip_src = src; 580 581 if ((imo == NULL && in_mcast_loop) || 582 (imo && imo->imo_multicast_loop)) { 583 /* 584 * Loop back multicast datagram if not expressly 585 * forbidden to do so, even if we are not a member 586 * of the group; ip_input() will filter it later, 587 * thus deferring a hash lookup and mutex acquisition 588 * at the expense of a cheap copy using m_copym(). 589 */ 590 ip_mloopback(ifp, m, hlen); 591 } else { 592 /* 593 * If we are acting as a multicast router, perform 594 * multicast forwarding as if the packet had just 595 * arrived on the interface to which we are about 596 * to send. The multicast forwarding function 597 * recursively calls this function, using the 598 * IP_FORWARDING flag to prevent infinite recursion. 599 * 600 * Multicasts that are looped back by ip_mloopback(), 601 * above, will be forwarded by the ip_input() routine, 602 * if necessary. 603 */ 604 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 605 /* 606 * If rsvp daemon is not running, do not 607 * set ip_moptions. This ensures that the packet 608 * is multicast and not just sent down one link 609 * as prescribed by rsvpd. 610 */ 611 if (!V_rsvp_on) 612 imo = NULL; 613 if (ip_mforward && 614 ip_mforward(ip, ifp, m, imo) != 0) { 615 m_freem(m); 616 goto done; 617 } 618 } 619 } 620 621 /* 622 * Multicasts with a time-to-live of zero may be looped- 623 * back, above, but must not be transmitted on a network. 624 * Also, multicasts addressed to the loopback interface 625 * are not sent -- the above call to ip_mloopback() will 626 * loop back a copy. ip_input() will drop the copy if 627 * this host does not belong to the destination group on 628 * the loopback interface. 629 */ 630 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 631 m_freem(m); 632 goto done; 633 } 634 635 goto sendit; 636 } 637 638 /* 639 * If the source address is not specified yet, use the address 640 * of the outoing interface. 641 */ 642 if (ip->ip_src.s_addr == INADDR_ANY) 643 ip->ip_src = src; 644 645 /* 646 * Look for broadcast address and 647 * verify user is allowed to send 648 * such a packet. 649 */ 650 if (isbroadcast) { 651 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 652 error = EADDRNOTAVAIL; 653 goto bad; 654 } 655 if ((flags & IP_ALLOWBROADCAST) == 0) { 656 error = EACCES; 657 goto bad; 658 } 659 /* don't allow broadcast messages to be fragmented */ 660 if (ip_len > mtu) { 661 error = EMSGSIZE; 662 goto bad; 663 } 664 m->m_flags |= M_BCAST; 665 } else { 666 m->m_flags &= ~M_BCAST; 667 } 668 669 sendit: 670 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 671 if (IPSEC_ENABLED(ipv4)) { 672 m = mb_unmapped_to_ext(m); 673 if (m == NULL) { 674 IPSTAT_INC(ips_odropped); 675 error = ENOBUFS; 676 goto bad; 677 } 678 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 679 if (error == EINPROGRESS) 680 error = 0; 681 goto done; 682 } 683 } 684 /* 685 * Check if there was a route for this packet; return error if not. 686 */ 687 if (no_route_but_check_spd) { 688 IPSTAT_INC(ips_noroute); 689 error = EHOSTUNREACH; 690 goto bad; 691 } 692 /* Update variables that are affected by ipsec4_output(). */ 693 ip = mtod(m, struct ip *); 694 hlen = ip->ip_hl << 2; 695 #endif /* IPSEC */ 696 697 /* Jump over all PFIL processing if hooks are not active. */ 698 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 699 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 700 &error)) { 701 case 1: /* Finished */ 702 goto done; 703 704 case 0: /* Continue normally */ 705 ip = mtod(m, struct ip *); 706 ip_len = ntohs(ip->ip_len); 707 break; 708 709 case -1: /* Need to try again */ 710 /* Reset everything for a new round */ 711 if (ro != NULL) { 712 RO_NHFREE(ro); 713 ro->ro_prepend = NULL; 714 } 715 gw = (const struct sockaddr *)dst; 716 ip = mtod(m, struct ip *); 717 goto again; 718 } 719 } 720 721 if (vlan_pcp > -1) 722 EVL_APPLY_PRI(m, vlan_pcp); 723 724 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 725 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 726 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 727 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 728 IPSTAT_INC(ips_badaddr); 729 error = EADDRNOTAVAIL; 730 goto bad; 731 } 732 } 733 734 /* Ensure the packet data is mapped if the interface requires it. */ 735 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 736 m = mb_unmapped_to_ext(m); 737 if (m == NULL) { 738 IPSTAT_INC(ips_odropped); 739 error = ENOBUFS; 740 goto bad; 741 } 742 } 743 744 m->m_pkthdr.csum_flags |= CSUM_IP; 745 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 746 in_delayed_cksum(m); 747 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 748 } 749 #if defined(SCTP) || defined(SCTP_SUPPORT) 750 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 751 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 752 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 753 } 754 #endif 755 756 /* 757 * If small enough for interface, or the interface will take 758 * care of the fragmentation for us, we can just send directly. 759 * Note that if_vxlan could have requested TSO even though the outer 760 * frame is UDP. It is correct to not fragment such datagrams and 761 * instead just pass them on to the driver. 762 */ 763 if (ip_len <= mtu || 764 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 765 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 766 ip->ip_sum = 0; 767 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 768 ip->ip_sum = in_cksum(m, hlen); 769 m->m_pkthdr.csum_flags &= ~CSUM_IP; 770 } 771 772 /* 773 * Record statistics for this interface address. 774 * With CSUM_TSO the byte/packet count will be slightly 775 * incorrect because we count the IP+TCP headers only 776 * once instead of for every generated packet. 777 */ 778 if (!(flags & IP_FORWARDING) && ia) { 779 if (m->m_pkthdr.csum_flags & 780 (CSUM_TSO | CSUM_INNER_TSO)) 781 counter_u64_add(ia->ia_ifa.ifa_opackets, 782 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 783 else 784 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 785 786 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 787 } 788 #ifdef MBUF_STRESS_TEST 789 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 790 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 791 #endif 792 /* 793 * Reset layer specific mbuf flags 794 * to avoid confusing lower layers. 795 */ 796 m_clrprotoflags(m); 797 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 798 error = ip_output_send(inp, ifp, m, gw, ro, 799 (flags & IP_NO_SND_TAG_RL) ? false : true); 800 goto done; 801 } 802 803 /* Balk when DF bit is set or the interface didn't support TSO. */ 804 if ((ip_off & IP_DF) || 805 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 806 error = EMSGSIZE; 807 IPSTAT_INC(ips_cantfrag); 808 goto bad; 809 } 810 811 /* 812 * Too large for interface; fragment if possible. If successful, 813 * on return, m will point to a list of packets to be sent. 814 */ 815 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 816 if (error) 817 goto bad; 818 for (; m; m = m0) { 819 m0 = m->m_nextpkt; 820 m->m_nextpkt = 0; 821 if (error == 0) { 822 /* Record statistics for this interface address. */ 823 if (ia != NULL) { 824 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 825 counter_u64_add(ia->ia_ifa.ifa_obytes, 826 m->m_pkthdr.len); 827 } 828 /* 829 * Reset layer specific mbuf flags 830 * to avoid confusing upper layers. 831 */ 832 m_clrprotoflags(m); 833 834 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 835 mtod(m, struct ip *), NULL); 836 error = ip_output_send(inp, ifp, m, gw, ro, true); 837 } else 838 m_freem(m); 839 } 840 841 if (error == 0) 842 IPSTAT_INC(ips_fragmented); 843 844 done: 845 return (error); 846 bad: 847 m_freem(m); 848 goto done; 849 } 850 851 /* 852 * Create a chain of fragments which fit the given mtu. m_frag points to the 853 * mbuf to be fragmented; on return it points to the chain with the fragments. 854 * Return 0 if no error. If error, m_frag may contain a partially built 855 * chain of fragments that should be freed by the caller. 856 * 857 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 858 */ 859 int 860 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 861 u_long if_hwassist_flags) 862 { 863 int error = 0; 864 int hlen = ip->ip_hl << 2; 865 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 866 int off; 867 struct mbuf *m0 = *m_frag; /* the original packet */ 868 int firstlen; 869 struct mbuf **mnext; 870 int nfrags; 871 uint16_t ip_len, ip_off; 872 873 ip_len = ntohs(ip->ip_len); 874 ip_off = ntohs(ip->ip_off); 875 876 /* 877 * Packet shall not have "Don't Fragment" flag and have at least 8 878 * bytes of payload. 879 */ 880 if (__predict_false((ip_off & IP_DF) || len < 8)) { 881 IPSTAT_INC(ips_cantfrag); 882 return (EMSGSIZE); 883 } 884 885 /* 886 * If the interface will not calculate checksums on 887 * fragmented packets, then do it here. 888 */ 889 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 890 in_delayed_cksum(m0); 891 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 892 } 893 #if defined(SCTP) || defined(SCTP_SUPPORT) 894 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 895 sctp_delayed_cksum(m0, hlen); 896 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 897 } 898 #endif 899 if (len > PAGE_SIZE) { 900 /* 901 * Fragment large datagrams such that each segment 902 * contains a multiple of PAGE_SIZE amount of data, 903 * plus headers. This enables a receiver to perform 904 * page-flipping zero-copy optimizations. 905 * 906 * XXX When does this help given that sender and receiver 907 * could have different page sizes, and also mtu could 908 * be less than the receiver's page size ? 909 */ 910 int newlen; 911 912 off = MIN(mtu, m0->m_pkthdr.len); 913 914 /* 915 * firstlen (off - hlen) must be aligned on an 916 * 8-byte boundary 917 */ 918 if (off < hlen) 919 goto smart_frag_failure; 920 off = ((off - hlen) & ~7) + hlen; 921 newlen = (~PAGE_MASK) & mtu; 922 if ((newlen + sizeof (struct ip)) > mtu) { 923 /* we failed, go back the default */ 924 smart_frag_failure: 925 newlen = len; 926 off = hlen + len; 927 } 928 len = newlen; 929 930 } else { 931 off = hlen + len; 932 } 933 934 firstlen = off - hlen; 935 mnext = &m0->m_nextpkt; /* pointer to next packet */ 936 937 /* 938 * Loop through length of segment after first fragment, 939 * make new header and copy data of each part and link onto chain. 940 * Here, m0 is the original packet, m is the fragment being created. 941 * The fragments are linked off the m_nextpkt of the original 942 * packet, which after processing serves as the first fragment. 943 */ 944 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 945 struct ip *mhip; /* ip header on the fragment */ 946 struct mbuf *m; 947 int mhlen = sizeof (struct ip); 948 949 m = m_gethdr(M_NOWAIT, MT_DATA); 950 if (m == NULL) { 951 error = ENOBUFS; 952 IPSTAT_INC(ips_odropped); 953 goto done; 954 } 955 /* 956 * Make sure the complete packet header gets copied 957 * from the originating mbuf to the newly created 958 * mbuf. This also ensures that existing firewall 959 * classification(s), VLAN tags and so on get copied 960 * to the resulting fragmented packet(s): 961 */ 962 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 963 m_free(m); 964 error = ENOBUFS; 965 IPSTAT_INC(ips_odropped); 966 goto done; 967 } 968 /* 969 * In the first mbuf, leave room for the link header, then 970 * copy the original IP header including options. The payload 971 * goes into an additional mbuf chain returned by m_copym(). 972 */ 973 m->m_data += max_linkhdr; 974 mhip = mtod(m, struct ip *); 975 *mhip = *ip; 976 if (hlen > sizeof (struct ip)) { 977 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 978 mhip->ip_v = IPVERSION; 979 mhip->ip_hl = mhlen >> 2; 980 } 981 m->m_len = mhlen; 982 /* XXX do we need to add ip_off below ? */ 983 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 984 if (off + len >= ip_len) 985 len = ip_len - off; 986 else 987 mhip->ip_off |= IP_MF; 988 mhip->ip_len = htons((u_short)(len + mhlen)); 989 m->m_next = m_copym(m0, off, len, M_NOWAIT); 990 if (m->m_next == NULL) { /* copy failed */ 991 m_free(m); 992 error = ENOBUFS; /* ??? */ 993 IPSTAT_INC(ips_odropped); 994 goto done; 995 } 996 m->m_pkthdr.len = mhlen + len; 997 #ifdef MAC 998 mac_netinet_fragment(m0, m); 999 #endif 1000 mhip->ip_off = htons(mhip->ip_off); 1001 mhip->ip_sum = 0; 1002 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1003 mhip->ip_sum = in_cksum(m, mhlen); 1004 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1005 } 1006 *mnext = m; 1007 mnext = &m->m_nextpkt; 1008 } 1009 IPSTAT_ADD(ips_ofragments, nfrags); 1010 1011 /* 1012 * Update first fragment by trimming what's been copied out 1013 * and updating header. 1014 */ 1015 m_adj(m0, hlen + firstlen - ip_len); 1016 m0->m_pkthdr.len = hlen + firstlen; 1017 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1018 ip->ip_off = htons(ip_off | IP_MF); 1019 ip->ip_sum = 0; 1020 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1021 ip->ip_sum = in_cksum(m0, hlen); 1022 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1023 } 1024 1025 done: 1026 *m_frag = m0; 1027 return error; 1028 } 1029 1030 void 1031 in_delayed_cksum(struct mbuf *m) 1032 { 1033 struct ip *ip; 1034 struct udphdr *uh; 1035 uint16_t cklen, csum, offset; 1036 1037 ip = mtod(m, struct ip *); 1038 offset = ip->ip_hl << 2 ; 1039 1040 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1041 /* if udp header is not in the first mbuf copy udplen */ 1042 if (offset + sizeof(struct udphdr) > m->m_len) { 1043 m_copydata(m, offset + offsetof(struct udphdr, 1044 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1045 cklen = ntohs(cklen); 1046 } else { 1047 uh = (struct udphdr *)mtodo(m, offset); 1048 cklen = ntohs(uh->uh_ulen); 1049 } 1050 csum = in_cksum_skip(m, cklen + offset, offset); 1051 if (csum == 0) 1052 csum = 0xffff; 1053 } else { 1054 cklen = ntohs(ip->ip_len); 1055 csum = in_cksum_skip(m, cklen, offset); 1056 } 1057 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1058 1059 if (offset + sizeof(csum) > m->m_len) 1060 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1061 else 1062 *(u_short *)mtodo(m, offset) = csum; 1063 } 1064 1065 /* 1066 * IP socket option processing. 1067 */ 1068 int 1069 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1070 { 1071 struct inpcb *inp = sotoinpcb(so); 1072 int error, optval; 1073 #ifdef RSS 1074 uint32_t rss_bucket; 1075 int retval; 1076 #endif 1077 1078 error = optval = 0; 1079 if (sopt->sopt_level != IPPROTO_IP) { 1080 error = EINVAL; 1081 1082 if (sopt->sopt_level == SOL_SOCKET && 1083 sopt->sopt_dir == SOPT_SET) { 1084 switch (sopt->sopt_name) { 1085 case SO_SETFIB: 1086 INP_WLOCK(inp); 1087 inp->inp_inc.inc_fibnum = so->so_fibnum; 1088 INP_WUNLOCK(inp); 1089 error = 0; 1090 break; 1091 case SO_MAX_PACING_RATE: 1092 #ifdef RATELIMIT 1093 INP_WLOCK(inp); 1094 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1095 INP_WUNLOCK(inp); 1096 error = 0; 1097 #else 1098 error = EOPNOTSUPP; 1099 #endif 1100 break; 1101 default: 1102 break; 1103 } 1104 } 1105 return (error); 1106 } 1107 1108 switch (sopt->sopt_dir) { 1109 case SOPT_SET: 1110 switch (sopt->sopt_name) { 1111 case IP_OPTIONS: 1112 #ifdef notyet 1113 case IP_RETOPTS: 1114 #endif 1115 { 1116 struct mbuf *m; 1117 if (sopt->sopt_valsize > MLEN) { 1118 error = EMSGSIZE; 1119 break; 1120 } 1121 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1122 if (m == NULL) { 1123 error = ENOBUFS; 1124 break; 1125 } 1126 m->m_len = sopt->sopt_valsize; 1127 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1128 m->m_len); 1129 if (error) { 1130 m_free(m); 1131 break; 1132 } 1133 INP_WLOCK(inp); 1134 error = ip_pcbopts(inp, sopt->sopt_name, m); 1135 INP_WUNLOCK(inp); 1136 return (error); 1137 } 1138 1139 case IP_BINDANY: 1140 if (sopt->sopt_td != NULL) { 1141 error = priv_check(sopt->sopt_td, 1142 PRIV_NETINET_BINDANY); 1143 if (error) 1144 break; 1145 } 1146 /* FALLTHROUGH */ 1147 case IP_TOS: 1148 case IP_TTL: 1149 case IP_MINTTL: 1150 case IP_RECVOPTS: 1151 case IP_RECVRETOPTS: 1152 case IP_ORIGDSTADDR: 1153 case IP_RECVDSTADDR: 1154 case IP_RECVTTL: 1155 case IP_RECVIF: 1156 case IP_ONESBCAST: 1157 case IP_DONTFRAG: 1158 case IP_RECVTOS: 1159 case IP_RECVFLOWID: 1160 #ifdef RSS 1161 case IP_RECVRSSBUCKETID: 1162 #endif 1163 case IP_VLAN_PCP: 1164 error = sooptcopyin(sopt, &optval, sizeof optval, 1165 sizeof optval); 1166 if (error) 1167 break; 1168 1169 switch (sopt->sopt_name) { 1170 case IP_TOS: 1171 inp->inp_ip_tos = optval; 1172 break; 1173 1174 case IP_TTL: 1175 inp->inp_ip_ttl = optval; 1176 break; 1177 1178 case IP_MINTTL: 1179 if (optval >= 0 && optval <= MAXTTL) 1180 inp->inp_ip_minttl = optval; 1181 else 1182 error = EINVAL; 1183 break; 1184 1185 #define OPTSET(bit) do { \ 1186 INP_WLOCK(inp); \ 1187 if (optval) \ 1188 inp->inp_flags |= bit; \ 1189 else \ 1190 inp->inp_flags &= ~bit; \ 1191 INP_WUNLOCK(inp); \ 1192 } while (0) 1193 1194 #define OPTSET2(bit, val) do { \ 1195 INP_WLOCK(inp); \ 1196 if (val) \ 1197 inp->inp_flags2 |= bit; \ 1198 else \ 1199 inp->inp_flags2 &= ~bit; \ 1200 INP_WUNLOCK(inp); \ 1201 } while (0) 1202 1203 case IP_RECVOPTS: 1204 OPTSET(INP_RECVOPTS); 1205 break; 1206 1207 case IP_RECVRETOPTS: 1208 OPTSET(INP_RECVRETOPTS); 1209 break; 1210 1211 case IP_RECVDSTADDR: 1212 OPTSET(INP_RECVDSTADDR); 1213 break; 1214 1215 case IP_ORIGDSTADDR: 1216 OPTSET2(INP_ORIGDSTADDR, optval); 1217 break; 1218 1219 case IP_RECVTTL: 1220 OPTSET(INP_RECVTTL); 1221 break; 1222 1223 case IP_RECVIF: 1224 OPTSET(INP_RECVIF); 1225 break; 1226 1227 case IP_ONESBCAST: 1228 OPTSET(INP_ONESBCAST); 1229 break; 1230 case IP_DONTFRAG: 1231 OPTSET(INP_DONTFRAG); 1232 break; 1233 case IP_BINDANY: 1234 OPTSET(INP_BINDANY); 1235 break; 1236 case IP_RECVTOS: 1237 OPTSET(INP_RECVTOS); 1238 break; 1239 case IP_RECVFLOWID: 1240 OPTSET2(INP_RECVFLOWID, optval); 1241 break; 1242 #ifdef RSS 1243 case IP_RECVRSSBUCKETID: 1244 OPTSET2(INP_RECVRSSBUCKETID, optval); 1245 break; 1246 #endif 1247 case IP_VLAN_PCP: 1248 if ((optval >= -1) && (optval <= 1249 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1250 if (optval == -1) { 1251 INP_WLOCK(inp); 1252 inp->inp_flags2 &= 1253 ~(INP_2PCP_SET | 1254 INP_2PCP_MASK); 1255 INP_WUNLOCK(inp); 1256 } else { 1257 INP_WLOCK(inp); 1258 inp->inp_flags2 |= 1259 INP_2PCP_SET; 1260 inp->inp_flags2 &= 1261 ~INP_2PCP_MASK; 1262 inp->inp_flags2 |= 1263 optval << INP_2PCP_SHIFT; 1264 INP_WUNLOCK(inp); 1265 } 1266 } else 1267 error = EINVAL; 1268 break; 1269 } 1270 break; 1271 #undef OPTSET 1272 #undef OPTSET2 1273 1274 /* 1275 * Multicast socket options are processed by the in_mcast 1276 * module. 1277 */ 1278 case IP_MULTICAST_IF: 1279 case IP_MULTICAST_VIF: 1280 case IP_MULTICAST_TTL: 1281 case IP_MULTICAST_LOOP: 1282 case IP_ADD_MEMBERSHIP: 1283 case IP_DROP_MEMBERSHIP: 1284 case IP_ADD_SOURCE_MEMBERSHIP: 1285 case IP_DROP_SOURCE_MEMBERSHIP: 1286 case IP_BLOCK_SOURCE: 1287 case IP_UNBLOCK_SOURCE: 1288 case IP_MSFILTER: 1289 case MCAST_JOIN_GROUP: 1290 case MCAST_LEAVE_GROUP: 1291 case MCAST_JOIN_SOURCE_GROUP: 1292 case MCAST_LEAVE_SOURCE_GROUP: 1293 case MCAST_BLOCK_SOURCE: 1294 case MCAST_UNBLOCK_SOURCE: 1295 error = inp_setmoptions(inp, sopt); 1296 break; 1297 1298 case IP_PORTRANGE: 1299 error = sooptcopyin(sopt, &optval, sizeof optval, 1300 sizeof optval); 1301 if (error) 1302 break; 1303 1304 INP_WLOCK(inp); 1305 switch (optval) { 1306 case IP_PORTRANGE_DEFAULT: 1307 inp->inp_flags &= ~(INP_LOWPORT); 1308 inp->inp_flags &= ~(INP_HIGHPORT); 1309 break; 1310 1311 case IP_PORTRANGE_HIGH: 1312 inp->inp_flags &= ~(INP_LOWPORT); 1313 inp->inp_flags |= INP_HIGHPORT; 1314 break; 1315 1316 case IP_PORTRANGE_LOW: 1317 inp->inp_flags &= ~(INP_HIGHPORT); 1318 inp->inp_flags |= INP_LOWPORT; 1319 break; 1320 1321 default: 1322 error = EINVAL; 1323 break; 1324 } 1325 INP_WUNLOCK(inp); 1326 break; 1327 1328 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1329 case IP_IPSEC_POLICY: 1330 if (IPSEC_ENABLED(ipv4)) { 1331 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1332 break; 1333 } 1334 /* FALLTHROUGH */ 1335 #endif /* IPSEC */ 1336 1337 default: 1338 error = ENOPROTOOPT; 1339 break; 1340 } 1341 break; 1342 1343 case SOPT_GET: 1344 switch (sopt->sopt_name) { 1345 case IP_OPTIONS: 1346 case IP_RETOPTS: 1347 INP_RLOCK(inp); 1348 if (inp->inp_options) { 1349 struct mbuf *options; 1350 1351 options = m_copym(inp->inp_options, 0, 1352 M_COPYALL, M_NOWAIT); 1353 INP_RUNLOCK(inp); 1354 if (options != NULL) { 1355 error = sooptcopyout(sopt, 1356 mtod(options, char *), 1357 options->m_len); 1358 m_freem(options); 1359 } else 1360 error = ENOMEM; 1361 } else { 1362 INP_RUNLOCK(inp); 1363 sopt->sopt_valsize = 0; 1364 } 1365 break; 1366 1367 case IP_TOS: 1368 case IP_TTL: 1369 case IP_MINTTL: 1370 case IP_RECVOPTS: 1371 case IP_RECVRETOPTS: 1372 case IP_ORIGDSTADDR: 1373 case IP_RECVDSTADDR: 1374 case IP_RECVTTL: 1375 case IP_RECVIF: 1376 case IP_PORTRANGE: 1377 case IP_ONESBCAST: 1378 case IP_DONTFRAG: 1379 case IP_BINDANY: 1380 case IP_RECVTOS: 1381 case IP_FLOWID: 1382 case IP_FLOWTYPE: 1383 case IP_RECVFLOWID: 1384 #ifdef RSS 1385 case IP_RSSBUCKETID: 1386 case IP_RECVRSSBUCKETID: 1387 #endif 1388 case IP_VLAN_PCP: 1389 switch (sopt->sopt_name) { 1390 case IP_TOS: 1391 optval = inp->inp_ip_tos; 1392 break; 1393 1394 case IP_TTL: 1395 optval = inp->inp_ip_ttl; 1396 break; 1397 1398 case IP_MINTTL: 1399 optval = inp->inp_ip_minttl; 1400 break; 1401 1402 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1403 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1404 1405 case IP_RECVOPTS: 1406 optval = OPTBIT(INP_RECVOPTS); 1407 break; 1408 1409 case IP_RECVRETOPTS: 1410 optval = OPTBIT(INP_RECVRETOPTS); 1411 break; 1412 1413 case IP_RECVDSTADDR: 1414 optval = OPTBIT(INP_RECVDSTADDR); 1415 break; 1416 1417 case IP_ORIGDSTADDR: 1418 optval = OPTBIT2(INP_ORIGDSTADDR); 1419 break; 1420 1421 case IP_RECVTTL: 1422 optval = OPTBIT(INP_RECVTTL); 1423 break; 1424 1425 case IP_RECVIF: 1426 optval = OPTBIT(INP_RECVIF); 1427 break; 1428 1429 case IP_PORTRANGE: 1430 if (inp->inp_flags & INP_HIGHPORT) 1431 optval = IP_PORTRANGE_HIGH; 1432 else if (inp->inp_flags & INP_LOWPORT) 1433 optval = IP_PORTRANGE_LOW; 1434 else 1435 optval = 0; 1436 break; 1437 1438 case IP_ONESBCAST: 1439 optval = OPTBIT(INP_ONESBCAST); 1440 break; 1441 case IP_DONTFRAG: 1442 optval = OPTBIT(INP_DONTFRAG); 1443 break; 1444 case IP_BINDANY: 1445 optval = OPTBIT(INP_BINDANY); 1446 break; 1447 case IP_RECVTOS: 1448 optval = OPTBIT(INP_RECVTOS); 1449 break; 1450 case IP_FLOWID: 1451 optval = inp->inp_flowid; 1452 break; 1453 case IP_FLOWTYPE: 1454 optval = inp->inp_flowtype; 1455 break; 1456 case IP_RECVFLOWID: 1457 optval = OPTBIT2(INP_RECVFLOWID); 1458 break; 1459 #ifdef RSS 1460 case IP_RSSBUCKETID: 1461 retval = rss_hash2bucket(inp->inp_flowid, 1462 inp->inp_flowtype, 1463 &rss_bucket); 1464 if (retval == 0) 1465 optval = rss_bucket; 1466 else 1467 error = EINVAL; 1468 break; 1469 case IP_RECVRSSBUCKETID: 1470 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1471 break; 1472 #endif 1473 case IP_VLAN_PCP: 1474 if (OPTBIT2(INP_2PCP_SET)) { 1475 optval = (inp->inp_flags2 & 1476 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1477 } else { 1478 optval = -1; 1479 } 1480 break; 1481 } 1482 error = sooptcopyout(sopt, &optval, sizeof optval); 1483 break; 1484 1485 /* 1486 * Multicast socket options are processed by the in_mcast 1487 * module. 1488 */ 1489 case IP_MULTICAST_IF: 1490 case IP_MULTICAST_VIF: 1491 case IP_MULTICAST_TTL: 1492 case IP_MULTICAST_LOOP: 1493 case IP_MSFILTER: 1494 error = inp_getmoptions(inp, sopt); 1495 break; 1496 1497 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1498 case IP_IPSEC_POLICY: 1499 if (IPSEC_ENABLED(ipv4)) { 1500 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1501 break; 1502 } 1503 /* FALLTHROUGH */ 1504 #endif /* IPSEC */ 1505 1506 default: 1507 error = ENOPROTOOPT; 1508 break; 1509 } 1510 break; 1511 } 1512 return (error); 1513 } 1514 1515 /* 1516 * Routine called from ip_output() to loop back a copy of an IP multicast 1517 * packet to the input queue of a specified interface. Note that this 1518 * calls the output routine of the loopback "driver", but with an interface 1519 * pointer that might NOT be a loopback interface -- evil, but easier than 1520 * replicating that code here. 1521 */ 1522 static void 1523 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1524 { 1525 struct ip *ip; 1526 struct mbuf *copym; 1527 1528 /* 1529 * Make a deep copy of the packet because we're going to 1530 * modify the pack in order to generate checksums. 1531 */ 1532 copym = m_dup(m, M_NOWAIT); 1533 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1534 copym = m_pullup(copym, hlen); 1535 if (copym != NULL) { 1536 /* If needed, compute the checksum and mark it as valid. */ 1537 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1538 in_delayed_cksum(copym); 1539 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1540 copym->m_pkthdr.csum_flags |= 1541 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1542 copym->m_pkthdr.csum_data = 0xffff; 1543 } 1544 /* 1545 * We don't bother to fragment if the IP length is greater 1546 * than the interface's MTU. Can this possibly matter? 1547 */ 1548 ip = mtod(copym, struct ip *); 1549 ip->ip_sum = 0; 1550 ip->ip_sum = in_cksum(copym, hlen); 1551 if_simloop(ifp, copym, AF_INET, 0); 1552 } 1553 } 1554