1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/sysctl.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_vlan_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/ethernet.h> 68 #include <net/netisr.h> 69 #include <net/pfil.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 #include <net/vnet.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/ip.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 #include <netinet/ip_mroute.h> 87 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #if defined(SCTP) || defined(SCTP_SUPPORT) 92 #include <netinet/sctp.h> 93 #include <netinet/sctp_crc32.h> 94 #endif 95 96 #include <netipsec/ipsec_support.h> 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #ifdef MBUF_STRESS_TEST 103 static int mbuf_frag_size = 0; 104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 105 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 106 #endif 107 108 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 109 110 extern int in_mcast_loop; 111 extern struct protosw inetsw[]; 112 113 static inline int 114 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 115 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 116 { 117 struct m_tag *fwd_tag = NULL; 118 struct mbuf *m; 119 struct in_addr odst; 120 struct ip *ip; 121 int pflags = PFIL_OUT; 122 123 if (flags & IP_FORWARDING) 124 pflags |= PFIL_FWD; 125 126 m = *mp; 127 ip = mtod(m, struct ip *); 128 129 /* Run through list of hooks for output packets. */ 130 odst.s_addr = ip->ip_dst.s_addr; 131 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 132 case PFIL_DROPPED: 133 *error = EACCES; 134 /* FALLTHROUGH */ 135 case PFIL_CONSUMED: 136 return 1; /* Finished */ 137 case PFIL_PASS: 138 *error = 0; 139 } 140 m = *mp; 141 ip = mtod(m, struct ip *); 142 143 /* See if destination IP address was changed by packet filter. */ 144 if (odst.s_addr != ip->ip_dst.s_addr) { 145 m->m_flags |= M_SKIP_FIREWALL; 146 /* If destination is now ourself drop to ip_input(). */ 147 if (in_localip(ip->ip_dst)) { 148 m->m_flags |= M_FASTFWD_OURS; 149 if (m->m_pkthdr.rcvif == NULL) 150 m->m_pkthdr.rcvif = V_loif; 151 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 152 m->m_pkthdr.csum_flags |= 153 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 154 m->m_pkthdr.csum_data = 0xffff; 155 } 156 m->m_pkthdr.csum_flags |= 157 CSUM_IP_CHECKED | CSUM_IP_VALID; 158 #if defined(SCTP) || defined(SCTP_SUPPORT) 159 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 160 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 161 #endif 162 *error = netisr_queue(NETISR_IP, m); 163 return 1; /* Finished */ 164 } 165 166 bzero(dst, sizeof(*dst)); 167 dst->sin_family = AF_INET; 168 dst->sin_len = sizeof(*dst); 169 dst->sin_addr = ip->ip_dst; 170 171 return -1; /* Reloop */ 172 } 173 /* See if fib was changed by packet filter. */ 174 if ((*fibnum) != M_GETFIB(m)) { 175 m->m_flags |= M_SKIP_FIREWALL; 176 *fibnum = M_GETFIB(m); 177 return -1; /* Reloop for FIB change */ 178 } 179 180 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 181 if (m->m_flags & M_FASTFWD_OURS) { 182 if (m->m_pkthdr.rcvif == NULL) 183 m->m_pkthdr.rcvif = V_loif; 184 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 185 m->m_pkthdr.csum_flags |= 186 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 187 m->m_pkthdr.csum_data = 0xffff; 188 } 189 #if defined(SCTP) || defined(SCTP_SUPPORT) 190 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 191 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 192 #endif 193 m->m_pkthdr.csum_flags |= 194 CSUM_IP_CHECKED | CSUM_IP_VALID; 195 196 *error = netisr_queue(NETISR_IP, m); 197 return 1; /* Finished */ 198 } 199 /* Or forward to some other address? */ 200 if ((m->m_flags & M_IP_NEXTHOP) && 201 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 202 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 203 m->m_flags |= M_SKIP_FIREWALL; 204 m->m_flags &= ~M_IP_NEXTHOP; 205 m_tag_delete(m, fwd_tag); 206 207 return -1; /* Reloop for CHANGE of dst */ 208 } 209 210 return 0; 211 } 212 213 static int 214 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 215 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 216 { 217 #ifdef KERN_TLS 218 struct ktls_session *tls = NULL; 219 #endif 220 struct m_snd_tag *mst; 221 int error; 222 223 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 224 mst = NULL; 225 226 #ifdef KERN_TLS 227 /* 228 * If this is an unencrypted TLS record, save a reference to 229 * the record. This local reference is used to call 230 * ktls_output_eagain after the mbuf has been freed (thus 231 * dropping the mbuf's reference) in if_output. 232 */ 233 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 234 tls = ktls_hold(m->m_next->m_epg_tls); 235 mst = tls->snd_tag; 236 237 /* 238 * If a TLS session doesn't have a valid tag, it must 239 * have had an earlier ifp mismatch, so drop this 240 * packet. 241 */ 242 if (mst == NULL) { 243 error = EAGAIN; 244 goto done; 245 } 246 /* 247 * Always stamp tags that include NIC ktls. 248 */ 249 stamp_tag = true; 250 } 251 #endif 252 #ifdef RATELIMIT 253 if (inp != NULL && mst == NULL) { 254 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 255 (inp->inp_snd_tag != NULL && 256 inp->inp_snd_tag->ifp != ifp)) 257 in_pcboutput_txrtlmt(inp, ifp, m); 258 259 if (inp->inp_snd_tag != NULL) 260 mst = inp->inp_snd_tag; 261 } 262 #endif 263 if (stamp_tag && mst != NULL) { 264 KASSERT(m->m_pkthdr.rcvif == NULL, 265 ("trying to add a send tag to a forwarded packet")); 266 if (mst->ifp != ifp) { 267 error = EAGAIN; 268 goto done; 269 } 270 271 /* stamp send tag on mbuf */ 272 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 273 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 274 } 275 276 error = (*ifp->if_output)(ifp, m, gw, ro); 277 278 done: 279 /* Check for route change invalidating send tags. */ 280 #ifdef KERN_TLS 281 if (tls != NULL) { 282 if (error == EAGAIN) 283 error = ktls_output_eagain(inp, tls); 284 ktls_free(tls); 285 } 286 #endif 287 #ifdef RATELIMIT 288 if (error == EAGAIN) 289 in_pcboutput_eagain(inp); 290 #endif 291 return (error); 292 } 293 294 /* rte<>ro_flags translation */ 295 static inline void 296 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 297 { 298 int nh_flags = nh->nh_flags; 299 300 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 301 302 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 303 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 304 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 305 } 306 307 /* 308 * IP output. The packet in mbuf chain m contains a skeletal IP 309 * header (with len, off, ttl, proto, tos, src, dst). 310 * The mbuf chain containing the packet will be freed. 311 * The mbuf opt, if present, will not be freed. 312 * If route ro is present and has ro_rt initialized, route lookup would be 313 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 314 * then result of route lookup is stored in ro->ro_rt. 315 * 316 * In the IP forwarding case, the packet will arrive with options already 317 * inserted, so must have a NULL opt pointer. 318 */ 319 int 320 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 321 struct ip_moptions *imo, struct inpcb *inp) 322 { 323 MROUTER_RLOCK_TRACKER; 324 struct rm_priotracker in_ifa_tracker; 325 struct ip *ip; 326 struct ifnet *ifp = NULL; /* keep compiler happy */ 327 struct mbuf *m0; 328 int hlen = sizeof (struct ip); 329 int mtu = 0; 330 int error = 0; 331 int vlan_pcp = -1; 332 struct sockaddr_in *dst; 333 const struct sockaddr *gw; 334 struct in_ifaddr *ia = NULL; 335 struct in_addr src; 336 int isbroadcast; 337 uint16_t ip_len, ip_off; 338 struct route iproute; 339 uint32_t fibnum; 340 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 341 int no_route_but_check_spd = 0; 342 #endif 343 344 M_ASSERTPKTHDR(m); 345 NET_EPOCH_ASSERT(); 346 347 if (inp != NULL) { 348 INP_LOCK_ASSERT(inp); 349 M_SETFIB(m, inp->inp_inc.inc_fibnum); 350 if ((flags & IP_NODEFAULTFLOWID) == 0) { 351 m->m_pkthdr.flowid = inp->inp_flowid; 352 M_HASHTYPE_SET(m, inp->inp_flowtype); 353 } 354 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 355 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 356 INP_2PCP_SHIFT; 357 #ifdef NUMA 358 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 359 #endif 360 } 361 362 if (opt) { 363 int len = 0; 364 m = ip_insertoptions(m, opt, &len); 365 if (len != 0) 366 hlen = len; /* ip->ip_hl is updated above */ 367 } 368 ip = mtod(m, struct ip *); 369 ip_len = ntohs(ip->ip_len); 370 ip_off = ntohs(ip->ip_off); 371 372 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 373 ip->ip_v = IPVERSION; 374 ip->ip_hl = hlen >> 2; 375 ip_fillid(ip); 376 } else { 377 /* Header already set, fetch hlen from there */ 378 hlen = ip->ip_hl << 2; 379 } 380 if ((flags & IP_FORWARDING) == 0) 381 IPSTAT_INC(ips_localout); 382 383 /* 384 * dst/gw handling: 385 * 386 * gw is readonly but can point either to dst OR rt_gateway, 387 * therefore we need restore gw if we're redoing lookup. 388 */ 389 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 390 if (ro == NULL) { 391 ro = &iproute; 392 bzero(ro, sizeof (*ro)); 393 } 394 dst = (struct sockaddr_in *)&ro->ro_dst; 395 if (ro->ro_nh == NULL) { 396 dst->sin_family = AF_INET; 397 dst->sin_len = sizeof(*dst); 398 dst->sin_addr = ip->ip_dst; 399 } 400 gw = (const struct sockaddr *)dst; 401 again: 402 /* 403 * Validate route against routing table additions; 404 * a better/more specific route might have been added. 405 */ 406 if (inp != NULL && ro->ro_nh != NULL) 407 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 408 /* 409 * If there is a cached route, 410 * check that it is to the same destination 411 * and is still up. If not, free it and try again. 412 * The address family should also be checked in case of sharing the 413 * cache with IPv6. 414 * Also check whether routing cache needs invalidation. 415 */ 416 if (ro->ro_nh != NULL && 417 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 418 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 419 RO_INVALIDATE_CACHE(ro); 420 ia = NULL; 421 /* 422 * If routing to interface only, short circuit routing lookup. 423 * The use of an all-ones broadcast address implies this; an 424 * interface is specified by the broadcast address of an interface, 425 * or the destination address of a ptp interface. 426 */ 427 if (flags & IP_SENDONES) { 428 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 429 M_GETFIB(m)))) == NULL && 430 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 431 M_GETFIB(m)))) == NULL) { 432 IPSTAT_INC(ips_noroute); 433 error = ENETUNREACH; 434 goto bad; 435 } 436 ip->ip_dst.s_addr = INADDR_BROADCAST; 437 dst->sin_addr = ip->ip_dst; 438 ifp = ia->ia_ifp; 439 mtu = ifp->if_mtu; 440 ip->ip_ttl = 1; 441 isbroadcast = 1; 442 src = IA_SIN(ia)->sin_addr; 443 } else if (flags & IP_ROUTETOIF) { 444 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 445 M_GETFIB(m)))) == NULL && 446 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 447 M_GETFIB(m)))) == NULL) { 448 IPSTAT_INC(ips_noroute); 449 error = ENETUNREACH; 450 goto bad; 451 } 452 ifp = ia->ia_ifp; 453 mtu = ifp->if_mtu; 454 ip->ip_ttl = 1; 455 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 456 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 457 src = IA_SIN(ia)->sin_addr; 458 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 459 imo != NULL && imo->imo_multicast_ifp != NULL) { 460 /* 461 * Bypass the normal routing lookup for multicast 462 * packets if the interface is specified. 463 */ 464 ifp = imo->imo_multicast_ifp; 465 mtu = ifp->if_mtu; 466 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 467 isbroadcast = 0; /* fool gcc */ 468 /* Interface may have no addresses. */ 469 if (ia != NULL) 470 src = IA_SIN(ia)->sin_addr; 471 else 472 src.s_addr = INADDR_ANY; 473 } else if (ro != &iproute) { 474 if (ro->ro_nh == NULL) { 475 /* 476 * We want to do any cloning requested by the link 477 * layer, as this is probably required in all cases 478 * for correct operation (as it is for ARP). 479 */ 480 uint32_t flowid; 481 flowid = m->m_pkthdr.flowid; 482 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 483 NHR_REF, flowid); 484 485 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 486 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 487 /* 488 * There is no route for this packet, but it is 489 * possible that a matching SPD entry exists. 490 */ 491 no_route_but_check_spd = 1; 492 goto sendit; 493 #endif 494 IPSTAT_INC(ips_noroute); 495 error = EHOSTUNREACH; 496 goto bad; 497 } 498 } 499 struct nhop_object *nh = ro->ro_nh; 500 501 ia = ifatoia(nh->nh_ifa); 502 ifp = nh->nh_ifp; 503 counter_u64_add(nh->nh_pksent, 1); 504 rt_update_ro_flags(ro, nh); 505 if (nh->nh_flags & NHF_GATEWAY) 506 gw = &nh->gw_sa; 507 if (nh->nh_flags & NHF_HOST) 508 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 509 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 510 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 511 else 512 isbroadcast = 0; 513 mtu = nh->nh_mtu; 514 src = IA_SIN(ia)->sin_addr; 515 } else { 516 struct nhop_object *nh; 517 518 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 519 m->m_pkthdr.flowid); 520 if (nh == NULL) { 521 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 522 /* 523 * There is no route for this packet, but it is 524 * possible that a matching SPD entry exists. 525 */ 526 no_route_but_check_spd = 1; 527 goto sendit; 528 #endif 529 IPSTAT_INC(ips_noroute); 530 error = EHOSTUNREACH; 531 goto bad; 532 } 533 ifp = nh->nh_ifp; 534 mtu = nh->nh_mtu; 535 rt_update_ro_flags(ro, nh); 536 if (nh->nh_flags & NHF_GATEWAY) 537 gw = &nh->gw_sa; 538 ia = ifatoia(nh->nh_ifa); 539 src = IA_SIN(ia)->sin_addr; 540 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 541 (NHF_HOST | NHF_BROADCAST)) || 542 ((ifp->if_flags & IFF_BROADCAST) && 543 (gw->sa_family == AF_INET) && 544 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 545 } 546 547 /* Catch a possible divide by zero later. */ 548 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 549 __func__, mtu, ro, 550 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 551 552 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 553 m->m_flags |= M_MCAST; 554 /* 555 * IP destination address is multicast. Make sure "gw" 556 * still points to the address in "ro". (It may have been 557 * changed to point to a gateway address, above.) 558 */ 559 gw = (const struct sockaddr *)dst; 560 /* 561 * See if the caller provided any multicast options 562 */ 563 if (imo != NULL) { 564 ip->ip_ttl = imo->imo_multicast_ttl; 565 if (imo->imo_multicast_vif != -1) 566 ip->ip_src.s_addr = 567 ip_mcast_src ? 568 ip_mcast_src(imo->imo_multicast_vif) : 569 INADDR_ANY; 570 } else 571 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 572 /* 573 * Confirm that the outgoing interface supports multicast. 574 */ 575 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 576 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 577 IPSTAT_INC(ips_noroute); 578 error = ENETUNREACH; 579 goto bad; 580 } 581 } 582 /* 583 * If source address not specified yet, use address 584 * of outgoing interface. 585 */ 586 if (ip->ip_src.s_addr == INADDR_ANY) 587 ip->ip_src = src; 588 589 if ((imo == NULL && in_mcast_loop) || 590 (imo && imo->imo_multicast_loop)) { 591 /* 592 * Loop back multicast datagram if not expressly 593 * forbidden to do so, even if we are not a member 594 * of the group; ip_input() will filter it later, 595 * thus deferring a hash lookup and mutex acquisition 596 * at the expense of a cheap copy using m_copym(). 597 */ 598 ip_mloopback(ifp, m, hlen); 599 } else { 600 /* 601 * If we are acting as a multicast router, perform 602 * multicast forwarding as if the packet had just 603 * arrived on the interface to which we are about 604 * to send. The multicast forwarding function 605 * recursively calls this function, using the 606 * IP_FORWARDING flag to prevent infinite recursion. 607 * 608 * Multicasts that are looped back by ip_mloopback(), 609 * above, will be forwarded by the ip_input() routine, 610 * if necessary. 611 */ 612 MROUTER_RLOCK(); 613 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 614 /* 615 * If rsvp daemon is not running, do not 616 * set ip_moptions. This ensures that the packet 617 * is multicast and not just sent down one link 618 * as prescribed by rsvpd. 619 */ 620 if (!V_rsvp_on) 621 imo = NULL; 622 if (ip_mforward && 623 ip_mforward(ip, ifp, m, imo) != 0) { 624 MROUTER_RUNLOCK(); 625 m_freem(m); 626 goto done; 627 } 628 } 629 MROUTER_RUNLOCK(); 630 } 631 632 /* 633 * Multicasts with a time-to-live of zero may be looped- 634 * back, above, but must not be transmitted on a network. 635 * Also, multicasts addressed to the loopback interface 636 * are not sent -- the above call to ip_mloopback() will 637 * loop back a copy. ip_input() will drop the copy if 638 * this host does not belong to the destination group on 639 * the loopback interface. 640 */ 641 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 642 m_freem(m); 643 goto done; 644 } 645 646 goto sendit; 647 } 648 649 /* 650 * If the source address is not specified yet, use the address 651 * of the outoing interface. 652 */ 653 if (ip->ip_src.s_addr == INADDR_ANY) 654 ip->ip_src = src; 655 656 /* 657 * Look for broadcast address and 658 * verify user is allowed to send 659 * such a packet. 660 */ 661 if (isbroadcast) { 662 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 663 error = EADDRNOTAVAIL; 664 goto bad; 665 } 666 if ((flags & IP_ALLOWBROADCAST) == 0) { 667 error = EACCES; 668 goto bad; 669 } 670 /* don't allow broadcast messages to be fragmented */ 671 if (ip_len > mtu) { 672 error = EMSGSIZE; 673 goto bad; 674 } 675 m->m_flags |= M_BCAST; 676 } else { 677 m->m_flags &= ~M_BCAST; 678 } 679 680 sendit: 681 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 682 if (IPSEC_ENABLED(ipv4)) { 683 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 684 if (error == EINPROGRESS) 685 error = 0; 686 goto done; 687 } 688 } 689 /* 690 * Check if there was a route for this packet; return error if not. 691 */ 692 if (no_route_but_check_spd) { 693 IPSTAT_INC(ips_noroute); 694 error = EHOSTUNREACH; 695 goto bad; 696 } 697 /* Update variables that are affected by ipsec4_output(). */ 698 ip = mtod(m, struct ip *); 699 hlen = ip->ip_hl << 2; 700 #endif /* IPSEC */ 701 702 /* Jump over all PFIL processing if hooks are not active. */ 703 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 704 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 705 &error)) { 706 case 1: /* Finished */ 707 goto done; 708 709 case 0: /* Continue normally */ 710 ip = mtod(m, struct ip *); 711 break; 712 713 case -1: /* Need to try again */ 714 /* Reset everything for a new round */ 715 if (ro != NULL) { 716 RO_NHFREE(ro); 717 ro->ro_prepend = NULL; 718 } 719 gw = (const struct sockaddr *)dst; 720 ip = mtod(m, struct ip *); 721 goto again; 722 } 723 } 724 725 if (vlan_pcp > -1) 726 EVL_APPLY_PRI(m, vlan_pcp); 727 728 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 729 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 730 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 731 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 732 IPSTAT_INC(ips_badaddr); 733 error = EADDRNOTAVAIL; 734 goto bad; 735 } 736 } 737 738 m->m_pkthdr.csum_flags |= CSUM_IP; 739 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 740 m = mb_unmapped_to_ext(m); 741 if (m == NULL) { 742 IPSTAT_INC(ips_odropped); 743 error = ENOBUFS; 744 goto bad; 745 } 746 in_delayed_cksum(m); 747 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 748 } else if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 749 m = mb_unmapped_to_ext(m); 750 if (m == NULL) { 751 IPSTAT_INC(ips_odropped); 752 error = ENOBUFS; 753 goto bad; 754 } 755 } 756 #if defined(SCTP) || defined(SCTP_SUPPORT) 757 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 758 m = mb_unmapped_to_ext(m); 759 if (m == NULL) { 760 IPSTAT_INC(ips_odropped); 761 error = ENOBUFS; 762 goto bad; 763 } 764 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 765 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 766 } 767 #endif 768 769 /* 770 * If small enough for interface, or the interface will take 771 * care of the fragmentation for us, we can just send directly. 772 * Note that if_vxlan could have requested TSO even though the outer 773 * frame is UDP. It is correct to not fragment such datagrams and 774 * instead just pass them on to the driver. 775 */ 776 if (ip_len <= mtu || 777 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 778 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 779 ip->ip_sum = 0; 780 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 781 ip->ip_sum = in_cksum(m, hlen); 782 m->m_pkthdr.csum_flags &= ~CSUM_IP; 783 } 784 785 /* 786 * Record statistics for this interface address. 787 * With CSUM_TSO the byte/packet count will be slightly 788 * incorrect because we count the IP+TCP headers only 789 * once instead of for every generated packet. 790 */ 791 if (!(flags & IP_FORWARDING) && ia) { 792 if (m->m_pkthdr.csum_flags & 793 (CSUM_TSO | CSUM_INNER_TSO)) 794 counter_u64_add(ia->ia_ifa.ifa_opackets, 795 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 796 else 797 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 798 799 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 800 } 801 #ifdef MBUF_STRESS_TEST 802 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 803 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 804 #endif 805 /* 806 * Reset layer specific mbuf flags 807 * to avoid confusing lower layers. 808 */ 809 m_clrprotoflags(m); 810 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 811 error = ip_output_send(inp, ifp, m, gw, ro, 812 (flags & IP_NO_SND_TAG_RL) ? false : true); 813 goto done; 814 } 815 816 /* Balk when DF bit is set or the interface didn't support TSO. */ 817 if ((ip_off & IP_DF) || 818 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 819 error = EMSGSIZE; 820 IPSTAT_INC(ips_cantfrag); 821 goto bad; 822 } 823 824 /* 825 * Too large for interface; fragment if possible. If successful, 826 * on return, m will point to a list of packets to be sent. 827 */ 828 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 829 if (error) 830 goto bad; 831 for (; m; m = m0) { 832 m0 = m->m_nextpkt; 833 m->m_nextpkt = 0; 834 if (error == 0) { 835 /* Record statistics for this interface address. */ 836 if (ia != NULL) { 837 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 838 counter_u64_add(ia->ia_ifa.ifa_obytes, 839 m->m_pkthdr.len); 840 } 841 /* 842 * Reset layer specific mbuf flags 843 * to avoid confusing upper layers. 844 */ 845 m_clrprotoflags(m); 846 847 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 848 mtod(m, struct ip *), NULL); 849 error = ip_output_send(inp, ifp, m, gw, ro, true); 850 } else 851 m_freem(m); 852 } 853 854 if (error == 0) 855 IPSTAT_INC(ips_fragmented); 856 857 done: 858 return (error); 859 bad: 860 m_freem(m); 861 goto done; 862 } 863 864 /* 865 * Create a chain of fragments which fit the given mtu. m_frag points to the 866 * mbuf to be fragmented; on return it points to the chain with the fragments. 867 * Return 0 if no error. If error, m_frag may contain a partially built 868 * chain of fragments that should be freed by the caller. 869 * 870 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 871 */ 872 int 873 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 874 u_long if_hwassist_flags) 875 { 876 int error = 0; 877 int hlen = ip->ip_hl << 2; 878 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 879 int off; 880 struct mbuf *m0 = *m_frag; /* the original packet */ 881 int firstlen; 882 struct mbuf **mnext; 883 int nfrags; 884 uint16_t ip_len, ip_off; 885 886 ip_len = ntohs(ip->ip_len); 887 ip_off = ntohs(ip->ip_off); 888 889 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 890 IPSTAT_INC(ips_cantfrag); 891 return EMSGSIZE; 892 } 893 894 /* 895 * Must be able to put at least 8 bytes per fragment. 896 */ 897 if (len < 8) 898 return EMSGSIZE; 899 900 /* 901 * If the interface will not calculate checksums on 902 * fragmented packets, then do it here. 903 */ 904 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 905 m0 = mb_unmapped_to_ext(m0); 906 if (m0 == NULL) { 907 error = ENOBUFS; 908 IPSTAT_INC(ips_odropped); 909 goto done; 910 } 911 in_delayed_cksum(m0); 912 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 913 } 914 #if defined(SCTP) || defined(SCTP_SUPPORT) 915 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 916 m0 = mb_unmapped_to_ext(m0); 917 if (m0 == NULL) { 918 error = ENOBUFS; 919 IPSTAT_INC(ips_odropped); 920 goto done; 921 } 922 sctp_delayed_cksum(m0, hlen); 923 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 924 } 925 #endif 926 if (len > PAGE_SIZE) { 927 /* 928 * Fragment large datagrams such that each segment 929 * contains a multiple of PAGE_SIZE amount of data, 930 * plus headers. This enables a receiver to perform 931 * page-flipping zero-copy optimizations. 932 * 933 * XXX When does this help given that sender and receiver 934 * could have different page sizes, and also mtu could 935 * be less than the receiver's page size ? 936 */ 937 int newlen; 938 939 off = MIN(mtu, m0->m_pkthdr.len); 940 941 /* 942 * firstlen (off - hlen) must be aligned on an 943 * 8-byte boundary 944 */ 945 if (off < hlen) 946 goto smart_frag_failure; 947 off = ((off - hlen) & ~7) + hlen; 948 newlen = (~PAGE_MASK) & mtu; 949 if ((newlen + sizeof (struct ip)) > mtu) { 950 /* we failed, go back the default */ 951 smart_frag_failure: 952 newlen = len; 953 off = hlen + len; 954 } 955 len = newlen; 956 957 } else { 958 off = hlen + len; 959 } 960 961 firstlen = off - hlen; 962 mnext = &m0->m_nextpkt; /* pointer to next packet */ 963 964 /* 965 * Loop through length of segment after first fragment, 966 * make new header and copy data of each part and link onto chain. 967 * Here, m0 is the original packet, m is the fragment being created. 968 * The fragments are linked off the m_nextpkt of the original 969 * packet, which after processing serves as the first fragment. 970 */ 971 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 972 struct ip *mhip; /* ip header on the fragment */ 973 struct mbuf *m; 974 int mhlen = sizeof (struct ip); 975 976 m = m_gethdr(M_NOWAIT, MT_DATA); 977 if (m == NULL) { 978 error = ENOBUFS; 979 IPSTAT_INC(ips_odropped); 980 goto done; 981 } 982 /* 983 * Make sure the complete packet header gets copied 984 * from the originating mbuf to the newly created 985 * mbuf. This also ensures that existing firewall 986 * classification(s), VLAN tags and so on get copied 987 * to the resulting fragmented packet(s): 988 */ 989 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 990 m_free(m); 991 error = ENOBUFS; 992 IPSTAT_INC(ips_odropped); 993 goto done; 994 } 995 /* 996 * In the first mbuf, leave room for the link header, then 997 * copy the original IP header including options. The payload 998 * goes into an additional mbuf chain returned by m_copym(). 999 */ 1000 m->m_data += max_linkhdr; 1001 mhip = mtod(m, struct ip *); 1002 *mhip = *ip; 1003 if (hlen > sizeof (struct ip)) { 1004 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1005 mhip->ip_v = IPVERSION; 1006 mhip->ip_hl = mhlen >> 2; 1007 } 1008 m->m_len = mhlen; 1009 /* XXX do we need to add ip_off below ? */ 1010 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1011 if (off + len >= ip_len) 1012 len = ip_len - off; 1013 else 1014 mhip->ip_off |= IP_MF; 1015 mhip->ip_len = htons((u_short)(len + mhlen)); 1016 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1017 if (m->m_next == NULL) { /* copy failed */ 1018 m_free(m); 1019 error = ENOBUFS; /* ??? */ 1020 IPSTAT_INC(ips_odropped); 1021 goto done; 1022 } 1023 m->m_pkthdr.len = mhlen + len; 1024 #ifdef MAC 1025 mac_netinet_fragment(m0, m); 1026 #endif 1027 mhip->ip_off = htons(mhip->ip_off); 1028 mhip->ip_sum = 0; 1029 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1030 mhip->ip_sum = in_cksum(m, mhlen); 1031 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1032 } 1033 *mnext = m; 1034 mnext = &m->m_nextpkt; 1035 } 1036 IPSTAT_ADD(ips_ofragments, nfrags); 1037 1038 /* 1039 * Update first fragment by trimming what's been copied out 1040 * and updating header. 1041 */ 1042 m_adj(m0, hlen + firstlen - ip_len); 1043 m0->m_pkthdr.len = hlen + firstlen; 1044 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1045 ip->ip_off = htons(ip_off | IP_MF); 1046 ip->ip_sum = 0; 1047 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1048 ip->ip_sum = in_cksum(m0, hlen); 1049 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1050 } 1051 1052 done: 1053 *m_frag = m0; 1054 return error; 1055 } 1056 1057 void 1058 in_delayed_cksum(struct mbuf *m) 1059 { 1060 struct ip *ip; 1061 struct udphdr *uh; 1062 uint16_t cklen, csum, offset; 1063 1064 ip = mtod(m, struct ip *); 1065 offset = ip->ip_hl << 2 ; 1066 1067 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1068 /* if udp header is not in the first mbuf copy udplen */ 1069 if (offset + sizeof(struct udphdr) > m->m_len) { 1070 m_copydata(m, offset + offsetof(struct udphdr, 1071 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1072 cklen = ntohs(cklen); 1073 } else { 1074 uh = (struct udphdr *)mtodo(m, offset); 1075 cklen = ntohs(uh->uh_ulen); 1076 } 1077 csum = in_cksum_skip(m, cklen + offset, offset); 1078 if (csum == 0) 1079 csum = 0xffff; 1080 } else { 1081 cklen = ntohs(ip->ip_len); 1082 csum = in_cksum_skip(m, cklen, offset); 1083 } 1084 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1085 1086 if (offset + sizeof(csum) > m->m_len) 1087 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1088 else 1089 *(u_short *)mtodo(m, offset) = csum; 1090 } 1091 1092 /* 1093 * IP socket option processing. 1094 */ 1095 int 1096 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1097 { 1098 struct inpcb *inp = sotoinpcb(so); 1099 int error, optval; 1100 #ifdef RSS 1101 uint32_t rss_bucket; 1102 int retval; 1103 #endif 1104 1105 error = optval = 0; 1106 if (sopt->sopt_level != IPPROTO_IP) { 1107 error = EINVAL; 1108 1109 if (sopt->sopt_level == SOL_SOCKET && 1110 sopt->sopt_dir == SOPT_SET) { 1111 switch (sopt->sopt_name) { 1112 case SO_REUSEADDR: 1113 INP_WLOCK(inp); 1114 if ((so->so_options & SO_REUSEADDR) != 0) 1115 inp->inp_flags2 |= INP_REUSEADDR; 1116 else 1117 inp->inp_flags2 &= ~INP_REUSEADDR; 1118 INP_WUNLOCK(inp); 1119 error = 0; 1120 break; 1121 case SO_REUSEPORT: 1122 INP_WLOCK(inp); 1123 if ((so->so_options & SO_REUSEPORT) != 0) 1124 inp->inp_flags2 |= INP_REUSEPORT; 1125 else 1126 inp->inp_flags2 &= ~INP_REUSEPORT; 1127 INP_WUNLOCK(inp); 1128 error = 0; 1129 break; 1130 case SO_REUSEPORT_LB: 1131 INP_WLOCK(inp); 1132 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1133 inp->inp_flags2 |= INP_REUSEPORT_LB; 1134 else 1135 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1136 INP_WUNLOCK(inp); 1137 error = 0; 1138 break; 1139 case SO_SETFIB: 1140 INP_WLOCK(inp); 1141 inp->inp_inc.inc_fibnum = so->so_fibnum; 1142 INP_WUNLOCK(inp); 1143 error = 0; 1144 break; 1145 case SO_MAX_PACING_RATE: 1146 #ifdef RATELIMIT 1147 INP_WLOCK(inp); 1148 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1149 INP_WUNLOCK(inp); 1150 error = 0; 1151 #else 1152 error = EOPNOTSUPP; 1153 #endif 1154 break; 1155 default: 1156 break; 1157 } 1158 } 1159 return (error); 1160 } 1161 1162 switch (sopt->sopt_dir) { 1163 case SOPT_SET: 1164 switch (sopt->sopt_name) { 1165 case IP_OPTIONS: 1166 #ifdef notyet 1167 case IP_RETOPTS: 1168 #endif 1169 { 1170 struct mbuf *m; 1171 if (sopt->sopt_valsize > MLEN) { 1172 error = EMSGSIZE; 1173 break; 1174 } 1175 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1176 if (m == NULL) { 1177 error = ENOBUFS; 1178 break; 1179 } 1180 m->m_len = sopt->sopt_valsize; 1181 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1182 m->m_len); 1183 if (error) { 1184 m_free(m); 1185 break; 1186 } 1187 INP_WLOCK(inp); 1188 error = ip_pcbopts(inp, sopt->sopt_name, m); 1189 INP_WUNLOCK(inp); 1190 return (error); 1191 } 1192 1193 case IP_BINDANY: 1194 if (sopt->sopt_td != NULL) { 1195 error = priv_check(sopt->sopt_td, 1196 PRIV_NETINET_BINDANY); 1197 if (error) 1198 break; 1199 } 1200 /* FALLTHROUGH */ 1201 case IP_BINDMULTI: 1202 #ifdef RSS 1203 case IP_RSS_LISTEN_BUCKET: 1204 #endif 1205 case IP_TOS: 1206 case IP_TTL: 1207 case IP_MINTTL: 1208 case IP_RECVOPTS: 1209 case IP_RECVRETOPTS: 1210 case IP_ORIGDSTADDR: 1211 case IP_RECVDSTADDR: 1212 case IP_RECVTTL: 1213 case IP_RECVIF: 1214 case IP_ONESBCAST: 1215 case IP_DONTFRAG: 1216 case IP_RECVTOS: 1217 case IP_RECVFLOWID: 1218 #ifdef RSS 1219 case IP_RECVRSSBUCKETID: 1220 #endif 1221 case IP_VLAN_PCP: 1222 error = sooptcopyin(sopt, &optval, sizeof optval, 1223 sizeof optval); 1224 if (error) 1225 break; 1226 1227 switch (sopt->sopt_name) { 1228 case IP_TOS: 1229 inp->inp_ip_tos = optval; 1230 break; 1231 1232 case IP_TTL: 1233 inp->inp_ip_ttl = optval; 1234 break; 1235 1236 case IP_MINTTL: 1237 if (optval >= 0 && optval <= MAXTTL) 1238 inp->inp_ip_minttl = optval; 1239 else 1240 error = EINVAL; 1241 break; 1242 1243 #define OPTSET(bit) do { \ 1244 INP_WLOCK(inp); \ 1245 if (optval) \ 1246 inp->inp_flags |= bit; \ 1247 else \ 1248 inp->inp_flags &= ~bit; \ 1249 INP_WUNLOCK(inp); \ 1250 } while (0) 1251 1252 #define OPTSET2(bit, val) do { \ 1253 INP_WLOCK(inp); \ 1254 if (val) \ 1255 inp->inp_flags2 |= bit; \ 1256 else \ 1257 inp->inp_flags2 &= ~bit; \ 1258 INP_WUNLOCK(inp); \ 1259 } while (0) 1260 1261 case IP_RECVOPTS: 1262 OPTSET(INP_RECVOPTS); 1263 break; 1264 1265 case IP_RECVRETOPTS: 1266 OPTSET(INP_RECVRETOPTS); 1267 break; 1268 1269 case IP_RECVDSTADDR: 1270 OPTSET(INP_RECVDSTADDR); 1271 break; 1272 1273 case IP_ORIGDSTADDR: 1274 OPTSET2(INP_ORIGDSTADDR, optval); 1275 break; 1276 1277 case IP_RECVTTL: 1278 OPTSET(INP_RECVTTL); 1279 break; 1280 1281 case IP_RECVIF: 1282 OPTSET(INP_RECVIF); 1283 break; 1284 1285 case IP_ONESBCAST: 1286 OPTSET(INP_ONESBCAST); 1287 break; 1288 case IP_DONTFRAG: 1289 OPTSET(INP_DONTFRAG); 1290 break; 1291 case IP_BINDANY: 1292 OPTSET(INP_BINDANY); 1293 break; 1294 case IP_RECVTOS: 1295 OPTSET(INP_RECVTOS); 1296 break; 1297 case IP_BINDMULTI: 1298 OPTSET2(INP_BINDMULTI, optval); 1299 break; 1300 case IP_RECVFLOWID: 1301 OPTSET2(INP_RECVFLOWID, optval); 1302 break; 1303 #ifdef RSS 1304 case IP_RSS_LISTEN_BUCKET: 1305 if ((optval >= 0) && 1306 (optval < rss_getnumbuckets())) { 1307 inp->inp_rss_listen_bucket = optval; 1308 OPTSET2(INP_RSS_BUCKET_SET, 1); 1309 } else { 1310 error = EINVAL; 1311 } 1312 break; 1313 case IP_RECVRSSBUCKETID: 1314 OPTSET2(INP_RECVRSSBUCKETID, optval); 1315 break; 1316 #endif 1317 case IP_VLAN_PCP: 1318 if ((optval >= -1) && (optval <= 1319 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1320 if (optval == -1) { 1321 INP_WLOCK(inp); 1322 inp->inp_flags2 &= 1323 ~(INP_2PCP_SET | 1324 INP_2PCP_MASK); 1325 INP_WUNLOCK(inp); 1326 } else { 1327 INP_WLOCK(inp); 1328 inp->inp_flags2 |= 1329 INP_2PCP_SET; 1330 inp->inp_flags2 &= 1331 ~INP_2PCP_MASK; 1332 inp->inp_flags2 |= 1333 optval << INP_2PCP_SHIFT; 1334 INP_WUNLOCK(inp); 1335 } 1336 } else 1337 error = EINVAL; 1338 break; 1339 } 1340 break; 1341 #undef OPTSET 1342 #undef OPTSET2 1343 1344 /* 1345 * Multicast socket options are processed by the in_mcast 1346 * module. 1347 */ 1348 case IP_MULTICAST_IF: 1349 case IP_MULTICAST_VIF: 1350 case IP_MULTICAST_TTL: 1351 case IP_MULTICAST_LOOP: 1352 case IP_ADD_MEMBERSHIP: 1353 case IP_DROP_MEMBERSHIP: 1354 case IP_ADD_SOURCE_MEMBERSHIP: 1355 case IP_DROP_SOURCE_MEMBERSHIP: 1356 case IP_BLOCK_SOURCE: 1357 case IP_UNBLOCK_SOURCE: 1358 case IP_MSFILTER: 1359 case MCAST_JOIN_GROUP: 1360 case MCAST_LEAVE_GROUP: 1361 case MCAST_JOIN_SOURCE_GROUP: 1362 case MCAST_LEAVE_SOURCE_GROUP: 1363 case MCAST_BLOCK_SOURCE: 1364 case MCAST_UNBLOCK_SOURCE: 1365 error = inp_setmoptions(inp, sopt); 1366 break; 1367 1368 case IP_PORTRANGE: 1369 error = sooptcopyin(sopt, &optval, sizeof optval, 1370 sizeof optval); 1371 if (error) 1372 break; 1373 1374 INP_WLOCK(inp); 1375 switch (optval) { 1376 case IP_PORTRANGE_DEFAULT: 1377 inp->inp_flags &= ~(INP_LOWPORT); 1378 inp->inp_flags &= ~(INP_HIGHPORT); 1379 break; 1380 1381 case IP_PORTRANGE_HIGH: 1382 inp->inp_flags &= ~(INP_LOWPORT); 1383 inp->inp_flags |= INP_HIGHPORT; 1384 break; 1385 1386 case IP_PORTRANGE_LOW: 1387 inp->inp_flags &= ~(INP_HIGHPORT); 1388 inp->inp_flags |= INP_LOWPORT; 1389 break; 1390 1391 default: 1392 error = EINVAL; 1393 break; 1394 } 1395 INP_WUNLOCK(inp); 1396 break; 1397 1398 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1399 case IP_IPSEC_POLICY: 1400 if (IPSEC_ENABLED(ipv4)) { 1401 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1402 break; 1403 } 1404 /* FALLTHROUGH */ 1405 #endif /* IPSEC */ 1406 1407 default: 1408 error = ENOPROTOOPT; 1409 break; 1410 } 1411 break; 1412 1413 case SOPT_GET: 1414 switch (sopt->sopt_name) { 1415 case IP_OPTIONS: 1416 case IP_RETOPTS: 1417 INP_RLOCK(inp); 1418 if (inp->inp_options) { 1419 struct mbuf *options; 1420 1421 options = m_copym(inp->inp_options, 0, 1422 M_COPYALL, M_NOWAIT); 1423 INP_RUNLOCK(inp); 1424 if (options != NULL) { 1425 error = sooptcopyout(sopt, 1426 mtod(options, char *), 1427 options->m_len); 1428 m_freem(options); 1429 } else 1430 error = ENOMEM; 1431 } else { 1432 INP_RUNLOCK(inp); 1433 sopt->sopt_valsize = 0; 1434 } 1435 break; 1436 1437 case IP_TOS: 1438 case IP_TTL: 1439 case IP_MINTTL: 1440 case IP_RECVOPTS: 1441 case IP_RECVRETOPTS: 1442 case IP_ORIGDSTADDR: 1443 case IP_RECVDSTADDR: 1444 case IP_RECVTTL: 1445 case IP_RECVIF: 1446 case IP_PORTRANGE: 1447 case IP_ONESBCAST: 1448 case IP_DONTFRAG: 1449 case IP_BINDANY: 1450 case IP_RECVTOS: 1451 case IP_BINDMULTI: 1452 case IP_FLOWID: 1453 case IP_FLOWTYPE: 1454 case IP_RECVFLOWID: 1455 #ifdef RSS 1456 case IP_RSSBUCKETID: 1457 case IP_RECVRSSBUCKETID: 1458 #endif 1459 case IP_VLAN_PCP: 1460 switch (sopt->sopt_name) { 1461 case IP_TOS: 1462 optval = inp->inp_ip_tos; 1463 break; 1464 1465 case IP_TTL: 1466 optval = inp->inp_ip_ttl; 1467 break; 1468 1469 case IP_MINTTL: 1470 optval = inp->inp_ip_minttl; 1471 break; 1472 1473 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1474 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1475 1476 case IP_RECVOPTS: 1477 optval = OPTBIT(INP_RECVOPTS); 1478 break; 1479 1480 case IP_RECVRETOPTS: 1481 optval = OPTBIT(INP_RECVRETOPTS); 1482 break; 1483 1484 case IP_RECVDSTADDR: 1485 optval = OPTBIT(INP_RECVDSTADDR); 1486 break; 1487 1488 case IP_ORIGDSTADDR: 1489 optval = OPTBIT2(INP_ORIGDSTADDR); 1490 break; 1491 1492 case IP_RECVTTL: 1493 optval = OPTBIT(INP_RECVTTL); 1494 break; 1495 1496 case IP_RECVIF: 1497 optval = OPTBIT(INP_RECVIF); 1498 break; 1499 1500 case IP_PORTRANGE: 1501 if (inp->inp_flags & INP_HIGHPORT) 1502 optval = IP_PORTRANGE_HIGH; 1503 else if (inp->inp_flags & INP_LOWPORT) 1504 optval = IP_PORTRANGE_LOW; 1505 else 1506 optval = 0; 1507 break; 1508 1509 case IP_ONESBCAST: 1510 optval = OPTBIT(INP_ONESBCAST); 1511 break; 1512 case IP_DONTFRAG: 1513 optval = OPTBIT(INP_DONTFRAG); 1514 break; 1515 case IP_BINDANY: 1516 optval = OPTBIT(INP_BINDANY); 1517 break; 1518 case IP_RECVTOS: 1519 optval = OPTBIT(INP_RECVTOS); 1520 break; 1521 case IP_FLOWID: 1522 optval = inp->inp_flowid; 1523 break; 1524 case IP_FLOWTYPE: 1525 optval = inp->inp_flowtype; 1526 break; 1527 case IP_RECVFLOWID: 1528 optval = OPTBIT2(INP_RECVFLOWID); 1529 break; 1530 #ifdef RSS 1531 case IP_RSSBUCKETID: 1532 retval = rss_hash2bucket(inp->inp_flowid, 1533 inp->inp_flowtype, 1534 &rss_bucket); 1535 if (retval == 0) 1536 optval = rss_bucket; 1537 else 1538 error = EINVAL; 1539 break; 1540 case IP_RECVRSSBUCKETID: 1541 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1542 break; 1543 #endif 1544 case IP_BINDMULTI: 1545 optval = OPTBIT2(INP_BINDMULTI); 1546 break; 1547 case IP_VLAN_PCP: 1548 if (OPTBIT2(INP_2PCP_SET)) { 1549 optval = (inp->inp_flags2 & 1550 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1551 } else { 1552 optval = -1; 1553 } 1554 break; 1555 } 1556 error = sooptcopyout(sopt, &optval, sizeof optval); 1557 break; 1558 1559 /* 1560 * Multicast socket options are processed by the in_mcast 1561 * module. 1562 */ 1563 case IP_MULTICAST_IF: 1564 case IP_MULTICAST_VIF: 1565 case IP_MULTICAST_TTL: 1566 case IP_MULTICAST_LOOP: 1567 case IP_MSFILTER: 1568 error = inp_getmoptions(inp, sopt); 1569 break; 1570 1571 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1572 case IP_IPSEC_POLICY: 1573 if (IPSEC_ENABLED(ipv4)) { 1574 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1575 break; 1576 } 1577 /* FALLTHROUGH */ 1578 #endif /* IPSEC */ 1579 1580 default: 1581 error = ENOPROTOOPT; 1582 break; 1583 } 1584 break; 1585 } 1586 return (error); 1587 } 1588 1589 /* 1590 * Routine called from ip_output() to loop back a copy of an IP multicast 1591 * packet to the input queue of a specified interface. Note that this 1592 * calls the output routine of the loopback "driver", but with an interface 1593 * pointer that might NOT be a loopback interface -- evil, but easier than 1594 * replicating that code here. 1595 */ 1596 static void 1597 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1598 { 1599 struct ip *ip; 1600 struct mbuf *copym; 1601 1602 /* 1603 * Make a deep copy of the packet because we're going to 1604 * modify the pack in order to generate checksums. 1605 */ 1606 copym = m_dup(m, M_NOWAIT); 1607 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1608 copym = m_pullup(copym, hlen); 1609 if (copym != NULL) { 1610 /* If needed, compute the checksum and mark it as valid. */ 1611 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1612 in_delayed_cksum(copym); 1613 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1614 copym->m_pkthdr.csum_flags |= 1615 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1616 copym->m_pkthdr.csum_data = 0xffff; 1617 } 1618 /* 1619 * We don't bother to fragment if the IP length is greater 1620 * than the interface's MTU. Can this possibly matter? 1621 */ 1622 ip = mtod(copym, struct ip *); 1623 ip->ip_sum = 0; 1624 ip->ip_sum = in_cksum(copym, hlen); 1625 if_simloop(ifp, copym, AF_INET, 0); 1626 } 1627 } 1628