1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ratelimit.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/rmlock.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/flowtable.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/ip.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 #ifdef SCTP 83 #include <netinet/sctp.h> 84 #include <netinet/sctp_crc32.h> 85 #endif 86 87 #include <netipsec/ipsec_support.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <security/mac/mac_framework.h> 92 93 #ifdef MBUF_STRESS_TEST 94 static int mbuf_frag_size = 0; 95 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 96 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 97 #endif 98 99 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 100 101 102 extern int in_mcast_loop; 103 extern struct protosw inetsw[]; 104 105 static inline int 106 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 107 struct sockaddr_in *dst, int *fibnum, int *error) 108 { 109 struct m_tag *fwd_tag = NULL; 110 struct mbuf *m; 111 struct in_addr odst; 112 struct ip *ip; 113 114 m = *mp; 115 ip = mtod(m, struct ip *); 116 117 /* Run through list of hooks for output packets. */ 118 odst.s_addr = ip->ip_dst.s_addr; 119 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); 120 m = *mp; 121 if ((*error) != 0 || m == NULL) 122 return 1; /* Finished */ 123 124 ip = mtod(m, struct ip *); 125 126 /* See if destination IP address was changed by packet filter. */ 127 if (odst.s_addr != ip->ip_dst.s_addr) { 128 m->m_flags |= M_SKIP_FIREWALL; 129 /* If destination is now ourself drop to ip_input(). */ 130 if (in_localip(ip->ip_dst)) { 131 m->m_flags |= M_FASTFWD_OURS; 132 if (m->m_pkthdr.rcvif == NULL) 133 m->m_pkthdr.rcvif = V_loif; 134 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 135 m->m_pkthdr.csum_flags |= 136 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 137 m->m_pkthdr.csum_data = 0xffff; 138 } 139 m->m_pkthdr.csum_flags |= 140 CSUM_IP_CHECKED | CSUM_IP_VALID; 141 #ifdef SCTP 142 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 143 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 144 #endif 145 *error = netisr_queue(NETISR_IP, m); 146 return 1; /* Finished */ 147 } 148 149 bzero(dst, sizeof(*dst)); 150 dst->sin_family = AF_INET; 151 dst->sin_len = sizeof(*dst); 152 dst->sin_addr = ip->ip_dst; 153 154 return -1; /* Reloop */ 155 } 156 /* See if fib was changed by packet filter. */ 157 if ((*fibnum) != M_GETFIB(m)) { 158 m->m_flags |= M_SKIP_FIREWALL; 159 *fibnum = M_GETFIB(m); 160 return -1; /* Reloop for FIB change */ 161 } 162 163 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 164 if (m->m_flags & M_FASTFWD_OURS) { 165 if (m->m_pkthdr.rcvif == NULL) 166 m->m_pkthdr.rcvif = V_loif; 167 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 168 m->m_pkthdr.csum_flags |= 169 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 170 m->m_pkthdr.csum_data = 0xffff; 171 } 172 #ifdef SCTP 173 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 174 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 175 #endif 176 m->m_pkthdr.csum_flags |= 177 CSUM_IP_CHECKED | CSUM_IP_VALID; 178 179 *error = netisr_queue(NETISR_IP, m); 180 return 1; /* Finished */ 181 } 182 /* Or forward to some other address? */ 183 if ((m->m_flags & M_IP_NEXTHOP) && 184 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 185 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 186 m->m_flags |= M_SKIP_FIREWALL; 187 m->m_flags &= ~M_IP_NEXTHOP; 188 m_tag_delete(m, fwd_tag); 189 190 return -1; /* Reloop for CHANGE of dst */ 191 } 192 193 return 0; 194 } 195 196 /* 197 * IP output. The packet in mbuf chain m contains a skeletal IP 198 * header (with len, off, ttl, proto, tos, src, dst). 199 * The mbuf chain containing the packet will be freed. 200 * The mbuf opt, if present, will not be freed. 201 * If route ro is present and has ro_rt initialized, route lookup would be 202 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 203 * then result of route lookup is stored in ro->ro_rt. 204 * 205 * In the IP forwarding case, the packet will arrive with options already 206 * inserted, so must have a NULL opt pointer. 207 */ 208 int 209 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 210 struct ip_moptions *imo, struct inpcb *inp) 211 { 212 struct rm_priotracker in_ifa_tracker; 213 struct ip *ip; 214 struct ifnet *ifp = NULL; /* keep compiler happy */ 215 struct mbuf *m0; 216 int hlen = sizeof (struct ip); 217 int mtu; 218 int error = 0; 219 struct sockaddr_in *dst; 220 const struct sockaddr_in *gw; 221 struct in_ifaddr *ia; 222 int isbroadcast; 223 uint16_t ip_len, ip_off; 224 struct route iproute; 225 struct rtentry *rte; /* cache for ro->ro_rt */ 226 uint32_t fibnum; 227 int have_ia_ref; 228 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 229 int no_route_but_check_spd = 0; 230 #endif 231 M_ASSERTPKTHDR(m); 232 233 if (inp != NULL) { 234 INP_LOCK_ASSERT(inp); 235 M_SETFIB(m, inp->inp_inc.inc_fibnum); 236 if ((flags & IP_NODEFAULTFLOWID) == 0) { 237 m->m_pkthdr.flowid = inp->inp_flowid; 238 M_HASHTYPE_SET(m, inp->inp_flowtype); 239 } 240 } 241 242 if (ro == NULL) { 243 ro = &iproute; 244 bzero(ro, sizeof (*ro)); 245 } else 246 ro->ro_flags |= RT_LLE_CACHE; 247 248 #ifdef FLOWTABLE 249 if (ro->ro_rt == NULL) 250 (void )flowtable_lookup(AF_INET, m, ro); 251 #endif 252 253 if (opt) { 254 int len = 0; 255 m = ip_insertoptions(m, opt, &len); 256 if (len != 0) 257 hlen = len; /* ip->ip_hl is updated above */ 258 } 259 ip = mtod(m, struct ip *); 260 ip_len = ntohs(ip->ip_len); 261 ip_off = ntohs(ip->ip_off); 262 263 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 264 ip->ip_v = IPVERSION; 265 ip->ip_hl = hlen >> 2; 266 ip_fillid(ip); 267 IPSTAT_INC(ips_localout); 268 } else { 269 /* Header already set, fetch hlen from there */ 270 hlen = ip->ip_hl << 2; 271 } 272 273 /* 274 * dst/gw handling: 275 * 276 * dst can be rewritten but always points to &ro->ro_dst. 277 * gw is readonly but can point either to dst OR rt_gateway, 278 * therefore we need restore gw if we're redoing lookup. 279 */ 280 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 281 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 282 rte = ro->ro_rt; 283 if (rte == NULL) { 284 bzero(dst, sizeof(*dst)); 285 dst->sin_family = AF_INET; 286 dst->sin_len = sizeof(*dst); 287 dst->sin_addr = ip->ip_dst; 288 } 289 again: 290 /* 291 * Validate route against routing table additions; 292 * a better/more specific route might have been added. 293 */ 294 if (inp) 295 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 296 /* 297 * If there is a cached route, 298 * check that it is to the same destination 299 * and is still up. If not, free it and try again. 300 * The address family should also be checked in case of sharing the 301 * cache with IPv6. 302 * Also check whether routing cache needs invalidation. 303 */ 304 rte = ro->ro_rt; 305 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 306 rte->rt_ifp == NULL || 307 !RT_LINK_IS_UP(rte->rt_ifp) || 308 dst->sin_family != AF_INET || 309 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 310 RTFREE(rte); 311 rte = ro->ro_rt = (struct rtentry *)NULL; 312 if (ro->ro_lle) 313 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 314 ro->ro_lle = (struct llentry *)NULL; 315 } 316 ia = NULL; 317 have_ia_ref = 0; 318 /* 319 * If routing to interface only, short circuit routing lookup. 320 * The use of an all-ones broadcast address implies this; an 321 * interface is specified by the broadcast address of an interface, 322 * or the destination address of a ptp interface. 323 */ 324 if (flags & IP_SENDONES) { 325 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 326 M_GETFIB(m)))) == NULL && 327 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 328 M_GETFIB(m)))) == NULL) { 329 IPSTAT_INC(ips_noroute); 330 error = ENETUNREACH; 331 goto bad; 332 } 333 have_ia_ref = 1; 334 ip->ip_dst.s_addr = INADDR_BROADCAST; 335 dst->sin_addr = ip->ip_dst; 336 ifp = ia->ia_ifp; 337 ip->ip_ttl = 1; 338 isbroadcast = 1; 339 } else if (flags & IP_ROUTETOIF) { 340 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 341 M_GETFIB(m)))) == NULL && 342 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 343 M_GETFIB(m)))) == NULL) { 344 IPSTAT_INC(ips_noroute); 345 error = ENETUNREACH; 346 goto bad; 347 } 348 have_ia_ref = 1; 349 ifp = ia->ia_ifp; 350 ip->ip_ttl = 1; 351 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 352 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 353 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 354 imo != NULL && imo->imo_multicast_ifp != NULL) { 355 /* 356 * Bypass the normal routing lookup for multicast 357 * packets if the interface is specified. 358 */ 359 ifp = imo->imo_multicast_ifp; 360 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 361 if (ia) 362 have_ia_ref = 1; 363 isbroadcast = 0; /* fool gcc */ 364 } else { 365 /* 366 * We want to do any cloning requested by the link layer, 367 * as this is probably required in all cases for correct 368 * operation (as it is for ARP). 369 */ 370 if (rte == NULL) { 371 #ifdef RADIX_MPATH 372 rtalloc_mpath_fib(ro, 373 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 374 fibnum); 375 #else 376 in_rtalloc_ign(ro, 0, fibnum); 377 #endif 378 rte = ro->ro_rt; 379 } 380 if (rte == NULL || 381 (rte->rt_flags & RTF_UP) == 0 || 382 rte->rt_ifp == NULL || 383 !RT_LINK_IS_UP(rte->rt_ifp)) { 384 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 385 /* 386 * There is no route for this packet, but it is 387 * possible that a matching SPD entry exists. 388 */ 389 no_route_but_check_spd = 1; 390 mtu = 0; /* Silence GCC warning. */ 391 goto sendit; 392 #endif 393 IPSTAT_INC(ips_noroute); 394 error = EHOSTUNREACH; 395 goto bad; 396 } 397 ia = ifatoia(rte->rt_ifa); 398 ifp = rte->rt_ifp; 399 counter_u64_add(rte->rt_pksent, 1); 400 rt_update_ro_flags(ro); 401 if (rte->rt_flags & RTF_GATEWAY) 402 gw = (struct sockaddr_in *)rte->rt_gateway; 403 if (rte->rt_flags & RTF_HOST) 404 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 405 else if (ifp->if_flags & IFF_BROADCAST) 406 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 407 else 408 isbroadcast = 0; 409 } 410 411 /* 412 * Calculate MTU. If we have a route that is up, use that, 413 * otherwise use the interface's MTU. 414 */ 415 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 416 mtu = rte->rt_mtu; 417 else 418 mtu = ifp->if_mtu; 419 /* Catch a possible divide by zero later. */ 420 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 421 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 422 423 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 424 m->m_flags |= M_MCAST; 425 /* 426 * IP destination address is multicast. Make sure "gw" 427 * still points to the address in "ro". (It may have been 428 * changed to point to a gateway address, above.) 429 */ 430 gw = dst; 431 /* 432 * See if the caller provided any multicast options 433 */ 434 if (imo != NULL) { 435 ip->ip_ttl = imo->imo_multicast_ttl; 436 if (imo->imo_multicast_vif != -1) 437 ip->ip_src.s_addr = 438 ip_mcast_src ? 439 ip_mcast_src(imo->imo_multicast_vif) : 440 INADDR_ANY; 441 } else 442 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 443 /* 444 * Confirm that the outgoing interface supports multicast. 445 */ 446 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 447 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 448 IPSTAT_INC(ips_noroute); 449 error = ENETUNREACH; 450 goto bad; 451 } 452 } 453 /* 454 * If source address not specified yet, use address 455 * of outgoing interface. 456 */ 457 if (ip->ip_src.s_addr == INADDR_ANY) { 458 /* Interface may have no addresses. */ 459 if (ia != NULL) 460 ip->ip_src = IA_SIN(ia)->sin_addr; 461 } 462 463 if ((imo == NULL && in_mcast_loop) || 464 (imo && imo->imo_multicast_loop)) { 465 /* 466 * Loop back multicast datagram if not expressly 467 * forbidden to do so, even if we are not a member 468 * of the group; ip_input() will filter it later, 469 * thus deferring a hash lookup and mutex acquisition 470 * at the expense of a cheap copy using m_copym(). 471 */ 472 ip_mloopback(ifp, m, hlen); 473 } else { 474 /* 475 * If we are acting as a multicast router, perform 476 * multicast forwarding as if the packet had just 477 * arrived on the interface to which we are about 478 * to send. The multicast forwarding function 479 * recursively calls this function, using the 480 * IP_FORWARDING flag to prevent infinite recursion. 481 * 482 * Multicasts that are looped back by ip_mloopback(), 483 * above, will be forwarded by the ip_input() routine, 484 * if necessary. 485 */ 486 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 487 /* 488 * If rsvp daemon is not running, do not 489 * set ip_moptions. This ensures that the packet 490 * is multicast and not just sent down one link 491 * as prescribed by rsvpd. 492 */ 493 if (!V_rsvp_on) 494 imo = NULL; 495 if (ip_mforward && 496 ip_mforward(ip, ifp, m, imo) != 0) { 497 m_freem(m); 498 goto done; 499 } 500 } 501 } 502 503 /* 504 * Multicasts with a time-to-live of zero may be looped- 505 * back, above, but must not be transmitted on a network. 506 * Also, multicasts addressed to the loopback interface 507 * are not sent -- the above call to ip_mloopback() will 508 * loop back a copy. ip_input() will drop the copy if 509 * this host does not belong to the destination group on 510 * the loopback interface. 511 */ 512 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 513 m_freem(m); 514 goto done; 515 } 516 517 goto sendit; 518 } 519 520 /* 521 * If the source address is not specified yet, use the address 522 * of the outoing interface. 523 */ 524 if (ip->ip_src.s_addr == INADDR_ANY) { 525 /* Interface may have no addresses. */ 526 if (ia != NULL) { 527 ip->ip_src = IA_SIN(ia)->sin_addr; 528 } 529 } 530 531 /* 532 * Look for broadcast address and 533 * verify user is allowed to send 534 * such a packet. 535 */ 536 if (isbroadcast) { 537 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 538 error = EADDRNOTAVAIL; 539 goto bad; 540 } 541 if ((flags & IP_ALLOWBROADCAST) == 0) { 542 error = EACCES; 543 goto bad; 544 } 545 /* don't allow broadcast messages to be fragmented */ 546 if (ip_len > mtu) { 547 error = EMSGSIZE; 548 goto bad; 549 } 550 m->m_flags |= M_BCAST; 551 } else { 552 m->m_flags &= ~M_BCAST; 553 } 554 555 sendit: 556 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 557 if (IPSEC_ENABLED(ipv4)) { 558 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 559 if (error == EINPROGRESS) 560 error = 0; 561 goto done; 562 } 563 } 564 /* 565 * Check if there was a route for this packet; return error if not. 566 */ 567 if (no_route_but_check_spd) { 568 IPSTAT_INC(ips_noroute); 569 error = EHOSTUNREACH; 570 goto bad; 571 } 572 /* Update variables that are affected by ipsec4_output(). */ 573 ip = mtod(m, struct ip *); 574 hlen = ip->ip_hl << 2; 575 #endif /* IPSEC */ 576 577 /* Jump over all PFIL processing if hooks are not active. */ 578 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 579 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 580 case 1: /* Finished */ 581 goto done; 582 583 case 0: /* Continue normally */ 584 ip = mtod(m, struct ip *); 585 break; 586 587 case -1: /* Need to try again */ 588 /* Reset everything for a new round */ 589 RO_RTFREE(ro); 590 if (have_ia_ref) 591 ifa_free(&ia->ia_ifa); 592 ro->ro_prepend = NULL; 593 rte = NULL; 594 gw = dst; 595 ip = mtod(m, struct ip *); 596 goto again; 597 598 } 599 } 600 601 /* 127/8 must not appear on wire - RFC1122. */ 602 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 603 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 604 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 605 IPSTAT_INC(ips_badaddr); 606 error = EADDRNOTAVAIL; 607 goto bad; 608 } 609 } 610 611 m->m_pkthdr.csum_flags |= CSUM_IP; 612 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 613 in_delayed_cksum(m); 614 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 615 } 616 #ifdef SCTP 617 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 618 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 619 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 620 } 621 #endif 622 623 /* 624 * If small enough for interface, or the interface will take 625 * care of the fragmentation for us, we can just send directly. 626 */ 627 if (ip_len <= mtu || 628 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 629 ip->ip_sum = 0; 630 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 631 ip->ip_sum = in_cksum(m, hlen); 632 m->m_pkthdr.csum_flags &= ~CSUM_IP; 633 } 634 635 /* 636 * Record statistics for this interface address. 637 * With CSUM_TSO the byte/packet count will be slightly 638 * incorrect because we count the IP+TCP headers only 639 * once instead of for every generated packet. 640 */ 641 if (!(flags & IP_FORWARDING) && ia) { 642 if (m->m_pkthdr.csum_flags & CSUM_TSO) 643 counter_u64_add(ia->ia_ifa.ifa_opackets, 644 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 645 else 646 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 647 648 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 649 } 650 #ifdef MBUF_STRESS_TEST 651 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 652 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 653 #endif 654 /* 655 * Reset layer specific mbuf flags 656 * to avoid confusing lower layers. 657 */ 658 m_clrprotoflags(m); 659 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 660 #ifdef RATELIMIT 661 if (inp != NULL) { 662 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 663 in_pcboutput_txrtlmt(inp, ifp, m); 664 /* stamp send tag on mbuf */ 665 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 666 } else { 667 m->m_pkthdr.snd_tag = NULL; 668 } 669 #endif 670 error = (*ifp->if_output)(ifp, m, 671 (const struct sockaddr *)gw, ro); 672 #ifdef RATELIMIT 673 /* check for route change */ 674 if (error == EAGAIN) 675 in_pcboutput_eagain(inp); 676 #endif 677 goto done; 678 } 679 680 /* Balk when DF bit is set or the interface didn't support TSO. */ 681 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 682 error = EMSGSIZE; 683 IPSTAT_INC(ips_cantfrag); 684 goto bad; 685 } 686 687 /* 688 * Too large for interface; fragment if possible. If successful, 689 * on return, m will point to a list of packets to be sent. 690 */ 691 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 692 if (error) 693 goto bad; 694 for (; m; m = m0) { 695 m0 = m->m_nextpkt; 696 m->m_nextpkt = 0; 697 if (error == 0) { 698 /* Record statistics for this interface address. */ 699 if (ia != NULL) { 700 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 701 counter_u64_add(ia->ia_ifa.ifa_obytes, 702 m->m_pkthdr.len); 703 } 704 /* 705 * Reset layer specific mbuf flags 706 * to avoid confusing upper layers. 707 */ 708 m_clrprotoflags(m); 709 710 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 711 mtod(m, struct ip *), NULL); 712 #ifdef RATELIMIT 713 if (inp != NULL) { 714 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 715 in_pcboutput_txrtlmt(inp, ifp, m); 716 /* stamp send tag on mbuf */ 717 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 718 } else { 719 m->m_pkthdr.snd_tag = NULL; 720 } 721 #endif 722 error = (*ifp->if_output)(ifp, m, 723 (const struct sockaddr *)gw, ro); 724 #ifdef RATELIMIT 725 /* check for route change */ 726 if (error == EAGAIN) 727 in_pcboutput_eagain(inp); 728 #endif 729 } else 730 m_freem(m); 731 } 732 733 if (error == 0) 734 IPSTAT_INC(ips_fragmented); 735 736 done: 737 if (ro == &iproute) 738 RO_RTFREE(ro); 739 else if (rte == NULL) 740 /* 741 * If the caller supplied a route but somehow the reference 742 * to it has been released need to prevent the caller 743 * calling RTFREE on it again. 744 */ 745 ro->ro_rt = NULL; 746 if (have_ia_ref) 747 ifa_free(&ia->ia_ifa); 748 return (error); 749 bad: 750 m_freem(m); 751 goto done; 752 } 753 754 /* 755 * Create a chain of fragments which fit the given mtu. m_frag points to the 756 * mbuf to be fragmented; on return it points to the chain with the fragments. 757 * Return 0 if no error. If error, m_frag may contain a partially built 758 * chain of fragments that should be freed by the caller. 759 * 760 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 761 */ 762 int 763 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 764 u_long if_hwassist_flags) 765 { 766 int error = 0; 767 int hlen = ip->ip_hl << 2; 768 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 769 int off; 770 struct mbuf *m0 = *m_frag; /* the original packet */ 771 int firstlen; 772 struct mbuf **mnext; 773 int nfrags; 774 uint16_t ip_len, ip_off; 775 776 ip_len = ntohs(ip->ip_len); 777 ip_off = ntohs(ip->ip_off); 778 779 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 780 IPSTAT_INC(ips_cantfrag); 781 return EMSGSIZE; 782 } 783 784 /* 785 * Must be able to put at least 8 bytes per fragment. 786 */ 787 if (len < 8) 788 return EMSGSIZE; 789 790 /* 791 * If the interface will not calculate checksums on 792 * fragmented packets, then do it here. 793 */ 794 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 795 in_delayed_cksum(m0); 796 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 797 } 798 #ifdef SCTP 799 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 800 sctp_delayed_cksum(m0, hlen); 801 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 802 } 803 #endif 804 if (len > PAGE_SIZE) { 805 /* 806 * Fragment large datagrams such that each segment 807 * contains a multiple of PAGE_SIZE amount of data, 808 * plus headers. This enables a receiver to perform 809 * page-flipping zero-copy optimizations. 810 * 811 * XXX When does this help given that sender and receiver 812 * could have different page sizes, and also mtu could 813 * be less than the receiver's page size ? 814 */ 815 int newlen; 816 817 off = MIN(mtu, m0->m_pkthdr.len); 818 819 /* 820 * firstlen (off - hlen) must be aligned on an 821 * 8-byte boundary 822 */ 823 if (off < hlen) 824 goto smart_frag_failure; 825 off = ((off - hlen) & ~7) + hlen; 826 newlen = (~PAGE_MASK) & mtu; 827 if ((newlen + sizeof (struct ip)) > mtu) { 828 /* we failed, go back the default */ 829 smart_frag_failure: 830 newlen = len; 831 off = hlen + len; 832 } 833 len = newlen; 834 835 } else { 836 off = hlen + len; 837 } 838 839 firstlen = off - hlen; 840 mnext = &m0->m_nextpkt; /* pointer to next packet */ 841 842 /* 843 * Loop through length of segment after first fragment, 844 * make new header and copy data of each part and link onto chain. 845 * Here, m0 is the original packet, m is the fragment being created. 846 * The fragments are linked off the m_nextpkt of the original 847 * packet, which after processing serves as the first fragment. 848 */ 849 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 850 struct ip *mhip; /* ip header on the fragment */ 851 struct mbuf *m; 852 int mhlen = sizeof (struct ip); 853 854 m = m_gethdr(M_NOWAIT, MT_DATA); 855 if (m == NULL) { 856 error = ENOBUFS; 857 IPSTAT_INC(ips_odropped); 858 goto done; 859 } 860 /* 861 * Make sure the complete packet header gets copied 862 * from the originating mbuf to the newly created 863 * mbuf. This also ensures that existing firewall 864 * classification(s), VLAN tags and so on get copied 865 * to the resulting fragmented packet(s): 866 */ 867 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 868 m_free(m); 869 error = ENOBUFS; 870 IPSTAT_INC(ips_odropped); 871 goto done; 872 } 873 /* 874 * In the first mbuf, leave room for the link header, then 875 * copy the original IP header including options. The payload 876 * goes into an additional mbuf chain returned by m_copym(). 877 */ 878 m->m_data += max_linkhdr; 879 mhip = mtod(m, struct ip *); 880 *mhip = *ip; 881 if (hlen > sizeof (struct ip)) { 882 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 883 mhip->ip_v = IPVERSION; 884 mhip->ip_hl = mhlen >> 2; 885 } 886 m->m_len = mhlen; 887 /* XXX do we need to add ip_off below ? */ 888 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 889 if (off + len >= ip_len) 890 len = ip_len - off; 891 else 892 mhip->ip_off |= IP_MF; 893 mhip->ip_len = htons((u_short)(len + mhlen)); 894 m->m_next = m_copym(m0, off, len, M_NOWAIT); 895 if (m->m_next == NULL) { /* copy failed */ 896 m_free(m); 897 error = ENOBUFS; /* ??? */ 898 IPSTAT_INC(ips_odropped); 899 goto done; 900 } 901 m->m_pkthdr.len = mhlen + len; 902 #ifdef MAC 903 mac_netinet_fragment(m0, m); 904 #endif 905 mhip->ip_off = htons(mhip->ip_off); 906 mhip->ip_sum = 0; 907 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 908 mhip->ip_sum = in_cksum(m, mhlen); 909 m->m_pkthdr.csum_flags &= ~CSUM_IP; 910 } 911 *mnext = m; 912 mnext = &m->m_nextpkt; 913 } 914 IPSTAT_ADD(ips_ofragments, nfrags); 915 916 /* 917 * Update first fragment by trimming what's been copied out 918 * and updating header. 919 */ 920 m_adj(m0, hlen + firstlen - ip_len); 921 m0->m_pkthdr.len = hlen + firstlen; 922 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 923 ip->ip_off = htons(ip_off | IP_MF); 924 ip->ip_sum = 0; 925 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 926 ip->ip_sum = in_cksum(m0, hlen); 927 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 928 } 929 930 done: 931 *m_frag = m0; 932 return error; 933 } 934 935 void 936 in_delayed_cksum(struct mbuf *m) 937 { 938 struct ip *ip; 939 uint16_t csum, offset, ip_len; 940 941 ip = mtod(m, struct ip *); 942 offset = ip->ip_hl << 2 ; 943 ip_len = ntohs(ip->ip_len); 944 csum = in_cksum_skip(m, ip_len, offset); 945 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 946 csum = 0xffff; 947 offset += m->m_pkthdr.csum_data; /* checksum offset */ 948 949 /* find the mbuf in the chain where the checksum starts*/ 950 while ((m != NULL) && (offset >= m->m_len)) { 951 offset -= m->m_len; 952 m = m->m_next; 953 } 954 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 955 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 956 *(u_short *)(m->m_data + offset) = csum; 957 } 958 959 /* 960 * IP socket option processing. 961 */ 962 int 963 ip_ctloutput(struct socket *so, struct sockopt *sopt) 964 { 965 struct inpcb *inp = sotoinpcb(so); 966 int error, optval; 967 #ifdef RSS 968 uint32_t rss_bucket; 969 int retval; 970 #endif 971 972 error = optval = 0; 973 if (sopt->sopt_level != IPPROTO_IP) { 974 error = EINVAL; 975 976 if (sopt->sopt_level == SOL_SOCKET && 977 sopt->sopt_dir == SOPT_SET) { 978 switch (sopt->sopt_name) { 979 case SO_REUSEADDR: 980 INP_WLOCK(inp); 981 if ((so->so_options & SO_REUSEADDR) != 0) 982 inp->inp_flags2 |= INP_REUSEADDR; 983 else 984 inp->inp_flags2 &= ~INP_REUSEADDR; 985 INP_WUNLOCK(inp); 986 error = 0; 987 break; 988 case SO_REUSEPORT: 989 INP_WLOCK(inp); 990 if ((so->so_options & SO_REUSEPORT) != 0) 991 inp->inp_flags2 |= INP_REUSEPORT; 992 else 993 inp->inp_flags2 &= ~INP_REUSEPORT; 994 INP_WUNLOCK(inp); 995 error = 0; 996 break; 997 case SO_SETFIB: 998 INP_WLOCK(inp); 999 inp->inp_inc.inc_fibnum = so->so_fibnum; 1000 INP_WUNLOCK(inp); 1001 error = 0; 1002 break; 1003 case SO_MAX_PACING_RATE: 1004 #ifdef RATELIMIT 1005 INP_WLOCK(inp); 1006 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1007 INP_WUNLOCK(inp); 1008 error = 0; 1009 #else 1010 error = EOPNOTSUPP; 1011 #endif 1012 break; 1013 default: 1014 break; 1015 } 1016 } 1017 return (error); 1018 } 1019 1020 switch (sopt->sopt_dir) { 1021 case SOPT_SET: 1022 switch (sopt->sopt_name) { 1023 case IP_OPTIONS: 1024 #ifdef notyet 1025 case IP_RETOPTS: 1026 #endif 1027 { 1028 struct mbuf *m; 1029 if (sopt->sopt_valsize > MLEN) { 1030 error = EMSGSIZE; 1031 break; 1032 } 1033 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1034 if (m == NULL) { 1035 error = ENOBUFS; 1036 break; 1037 } 1038 m->m_len = sopt->sopt_valsize; 1039 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1040 m->m_len); 1041 if (error) { 1042 m_free(m); 1043 break; 1044 } 1045 INP_WLOCK(inp); 1046 error = ip_pcbopts(inp, sopt->sopt_name, m); 1047 INP_WUNLOCK(inp); 1048 return (error); 1049 } 1050 1051 case IP_BINDANY: 1052 if (sopt->sopt_td != NULL) { 1053 error = priv_check(sopt->sopt_td, 1054 PRIV_NETINET_BINDANY); 1055 if (error) 1056 break; 1057 } 1058 /* FALLTHROUGH */ 1059 case IP_BINDMULTI: 1060 #ifdef RSS 1061 case IP_RSS_LISTEN_BUCKET: 1062 #endif 1063 case IP_TOS: 1064 case IP_TTL: 1065 case IP_MINTTL: 1066 case IP_RECVOPTS: 1067 case IP_RECVRETOPTS: 1068 case IP_RECVDSTADDR: 1069 case IP_RECVTTL: 1070 case IP_RECVIF: 1071 case IP_ONESBCAST: 1072 case IP_DONTFRAG: 1073 case IP_RECVTOS: 1074 case IP_RECVFLOWID: 1075 #ifdef RSS 1076 case IP_RECVRSSBUCKETID: 1077 #endif 1078 error = sooptcopyin(sopt, &optval, sizeof optval, 1079 sizeof optval); 1080 if (error) 1081 break; 1082 1083 switch (sopt->sopt_name) { 1084 case IP_TOS: 1085 inp->inp_ip_tos = optval; 1086 break; 1087 1088 case IP_TTL: 1089 inp->inp_ip_ttl = optval; 1090 break; 1091 1092 case IP_MINTTL: 1093 if (optval >= 0 && optval <= MAXTTL) 1094 inp->inp_ip_minttl = optval; 1095 else 1096 error = EINVAL; 1097 break; 1098 1099 #define OPTSET(bit) do { \ 1100 INP_WLOCK(inp); \ 1101 if (optval) \ 1102 inp->inp_flags |= bit; \ 1103 else \ 1104 inp->inp_flags &= ~bit; \ 1105 INP_WUNLOCK(inp); \ 1106 } while (0) 1107 1108 #define OPTSET2(bit, val) do { \ 1109 INP_WLOCK(inp); \ 1110 if (val) \ 1111 inp->inp_flags2 |= bit; \ 1112 else \ 1113 inp->inp_flags2 &= ~bit; \ 1114 INP_WUNLOCK(inp); \ 1115 } while (0) 1116 1117 case IP_RECVOPTS: 1118 OPTSET(INP_RECVOPTS); 1119 break; 1120 1121 case IP_RECVRETOPTS: 1122 OPTSET(INP_RECVRETOPTS); 1123 break; 1124 1125 case IP_RECVDSTADDR: 1126 OPTSET(INP_RECVDSTADDR); 1127 break; 1128 1129 case IP_RECVTTL: 1130 OPTSET(INP_RECVTTL); 1131 break; 1132 1133 case IP_RECVIF: 1134 OPTSET(INP_RECVIF); 1135 break; 1136 1137 case IP_ONESBCAST: 1138 OPTSET(INP_ONESBCAST); 1139 break; 1140 case IP_DONTFRAG: 1141 OPTSET(INP_DONTFRAG); 1142 break; 1143 case IP_BINDANY: 1144 OPTSET(INP_BINDANY); 1145 break; 1146 case IP_RECVTOS: 1147 OPTSET(INP_RECVTOS); 1148 break; 1149 case IP_BINDMULTI: 1150 OPTSET2(INP_BINDMULTI, optval); 1151 break; 1152 case IP_RECVFLOWID: 1153 OPTSET2(INP_RECVFLOWID, optval); 1154 break; 1155 #ifdef RSS 1156 case IP_RSS_LISTEN_BUCKET: 1157 if ((optval >= 0) && 1158 (optval < rss_getnumbuckets())) { 1159 inp->inp_rss_listen_bucket = optval; 1160 OPTSET2(INP_RSS_BUCKET_SET, 1); 1161 } else { 1162 error = EINVAL; 1163 } 1164 break; 1165 case IP_RECVRSSBUCKETID: 1166 OPTSET2(INP_RECVRSSBUCKETID, optval); 1167 break; 1168 #endif 1169 } 1170 break; 1171 #undef OPTSET 1172 #undef OPTSET2 1173 1174 /* 1175 * Multicast socket options are processed by the in_mcast 1176 * module. 1177 */ 1178 case IP_MULTICAST_IF: 1179 case IP_MULTICAST_VIF: 1180 case IP_MULTICAST_TTL: 1181 case IP_MULTICAST_LOOP: 1182 case IP_ADD_MEMBERSHIP: 1183 case IP_DROP_MEMBERSHIP: 1184 case IP_ADD_SOURCE_MEMBERSHIP: 1185 case IP_DROP_SOURCE_MEMBERSHIP: 1186 case IP_BLOCK_SOURCE: 1187 case IP_UNBLOCK_SOURCE: 1188 case IP_MSFILTER: 1189 case MCAST_JOIN_GROUP: 1190 case MCAST_LEAVE_GROUP: 1191 case MCAST_JOIN_SOURCE_GROUP: 1192 case MCAST_LEAVE_SOURCE_GROUP: 1193 case MCAST_BLOCK_SOURCE: 1194 case MCAST_UNBLOCK_SOURCE: 1195 error = inp_setmoptions(inp, sopt); 1196 break; 1197 1198 case IP_PORTRANGE: 1199 error = sooptcopyin(sopt, &optval, sizeof optval, 1200 sizeof optval); 1201 if (error) 1202 break; 1203 1204 INP_WLOCK(inp); 1205 switch (optval) { 1206 case IP_PORTRANGE_DEFAULT: 1207 inp->inp_flags &= ~(INP_LOWPORT); 1208 inp->inp_flags &= ~(INP_HIGHPORT); 1209 break; 1210 1211 case IP_PORTRANGE_HIGH: 1212 inp->inp_flags &= ~(INP_LOWPORT); 1213 inp->inp_flags |= INP_HIGHPORT; 1214 break; 1215 1216 case IP_PORTRANGE_LOW: 1217 inp->inp_flags &= ~(INP_HIGHPORT); 1218 inp->inp_flags |= INP_LOWPORT; 1219 break; 1220 1221 default: 1222 error = EINVAL; 1223 break; 1224 } 1225 INP_WUNLOCK(inp); 1226 break; 1227 1228 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1229 case IP_IPSEC_POLICY: 1230 if (IPSEC_ENABLED(ipv4)) { 1231 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1232 break; 1233 } 1234 /* FALLTHROUGH */ 1235 #endif /* IPSEC */ 1236 1237 default: 1238 error = ENOPROTOOPT; 1239 break; 1240 } 1241 break; 1242 1243 case SOPT_GET: 1244 switch (sopt->sopt_name) { 1245 case IP_OPTIONS: 1246 case IP_RETOPTS: 1247 if (inp->inp_options) 1248 error = sooptcopyout(sopt, 1249 mtod(inp->inp_options, 1250 char *), 1251 inp->inp_options->m_len); 1252 else 1253 sopt->sopt_valsize = 0; 1254 break; 1255 1256 case IP_TOS: 1257 case IP_TTL: 1258 case IP_MINTTL: 1259 case IP_RECVOPTS: 1260 case IP_RECVRETOPTS: 1261 case IP_RECVDSTADDR: 1262 case IP_RECVTTL: 1263 case IP_RECVIF: 1264 case IP_PORTRANGE: 1265 case IP_ONESBCAST: 1266 case IP_DONTFRAG: 1267 case IP_BINDANY: 1268 case IP_RECVTOS: 1269 case IP_BINDMULTI: 1270 case IP_FLOWID: 1271 case IP_FLOWTYPE: 1272 case IP_RECVFLOWID: 1273 #ifdef RSS 1274 case IP_RSSBUCKETID: 1275 case IP_RECVRSSBUCKETID: 1276 #endif 1277 switch (sopt->sopt_name) { 1278 1279 case IP_TOS: 1280 optval = inp->inp_ip_tos; 1281 break; 1282 1283 case IP_TTL: 1284 optval = inp->inp_ip_ttl; 1285 break; 1286 1287 case IP_MINTTL: 1288 optval = inp->inp_ip_minttl; 1289 break; 1290 1291 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1292 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1293 1294 case IP_RECVOPTS: 1295 optval = OPTBIT(INP_RECVOPTS); 1296 break; 1297 1298 case IP_RECVRETOPTS: 1299 optval = OPTBIT(INP_RECVRETOPTS); 1300 break; 1301 1302 case IP_RECVDSTADDR: 1303 optval = OPTBIT(INP_RECVDSTADDR); 1304 break; 1305 1306 case IP_RECVTTL: 1307 optval = OPTBIT(INP_RECVTTL); 1308 break; 1309 1310 case IP_RECVIF: 1311 optval = OPTBIT(INP_RECVIF); 1312 break; 1313 1314 case IP_PORTRANGE: 1315 if (inp->inp_flags & INP_HIGHPORT) 1316 optval = IP_PORTRANGE_HIGH; 1317 else if (inp->inp_flags & INP_LOWPORT) 1318 optval = IP_PORTRANGE_LOW; 1319 else 1320 optval = 0; 1321 break; 1322 1323 case IP_ONESBCAST: 1324 optval = OPTBIT(INP_ONESBCAST); 1325 break; 1326 case IP_DONTFRAG: 1327 optval = OPTBIT(INP_DONTFRAG); 1328 break; 1329 case IP_BINDANY: 1330 optval = OPTBIT(INP_BINDANY); 1331 break; 1332 case IP_RECVTOS: 1333 optval = OPTBIT(INP_RECVTOS); 1334 break; 1335 case IP_FLOWID: 1336 optval = inp->inp_flowid; 1337 break; 1338 case IP_FLOWTYPE: 1339 optval = inp->inp_flowtype; 1340 break; 1341 case IP_RECVFLOWID: 1342 optval = OPTBIT2(INP_RECVFLOWID); 1343 break; 1344 #ifdef RSS 1345 case IP_RSSBUCKETID: 1346 retval = rss_hash2bucket(inp->inp_flowid, 1347 inp->inp_flowtype, 1348 &rss_bucket); 1349 if (retval == 0) 1350 optval = rss_bucket; 1351 else 1352 error = EINVAL; 1353 break; 1354 case IP_RECVRSSBUCKETID: 1355 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1356 break; 1357 #endif 1358 case IP_BINDMULTI: 1359 optval = OPTBIT2(INP_BINDMULTI); 1360 break; 1361 } 1362 error = sooptcopyout(sopt, &optval, sizeof optval); 1363 break; 1364 1365 /* 1366 * Multicast socket options are processed by the in_mcast 1367 * module. 1368 */ 1369 case IP_MULTICAST_IF: 1370 case IP_MULTICAST_VIF: 1371 case IP_MULTICAST_TTL: 1372 case IP_MULTICAST_LOOP: 1373 case IP_MSFILTER: 1374 error = inp_getmoptions(inp, sopt); 1375 break; 1376 1377 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1378 case IP_IPSEC_POLICY: 1379 if (IPSEC_ENABLED(ipv4)) { 1380 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1381 break; 1382 } 1383 /* FALLTHROUGH */ 1384 #endif /* IPSEC */ 1385 1386 default: 1387 error = ENOPROTOOPT; 1388 break; 1389 } 1390 break; 1391 } 1392 return (error); 1393 } 1394 1395 /* 1396 * Routine called from ip_output() to loop back a copy of an IP multicast 1397 * packet to the input queue of a specified interface. Note that this 1398 * calls the output routine of the loopback "driver", but with an interface 1399 * pointer that might NOT be a loopback interface -- evil, but easier than 1400 * replicating that code here. 1401 */ 1402 static void 1403 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1404 { 1405 struct ip *ip; 1406 struct mbuf *copym; 1407 1408 /* 1409 * Make a deep copy of the packet because we're going to 1410 * modify the pack in order to generate checksums. 1411 */ 1412 copym = m_dup(m, M_NOWAIT); 1413 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1414 copym = m_pullup(copym, hlen); 1415 if (copym != NULL) { 1416 /* If needed, compute the checksum and mark it as valid. */ 1417 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1418 in_delayed_cksum(copym); 1419 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1420 copym->m_pkthdr.csum_flags |= 1421 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1422 copym->m_pkthdr.csum_data = 0xffff; 1423 } 1424 /* 1425 * We don't bother to fragment if the IP length is greater 1426 * than the interface's MTU. Can this possibly matter? 1427 */ 1428 ip = mtod(copym, struct ip *); 1429 ip->ip_sum = 0; 1430 ip->ip_sum = in_cksum(copym, hlen); 1431 if_simloop(ifp, copym, AF_INET, 0); 1432 } 1433 } 1434