1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_vlan_var.h> 65 #include <net/if_llatbl.h> 66 #include <net/ethernet.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #if defined(SCTP) || defined(SCTP_SUPPORT) 90 #include <netinet/sctp.h> 91 #include <netinet/sctp_crc32.h> 92 #endif 93 94 #include <netipsec/ipsec_support.h> 95 96 #include <machine/in_cksum.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifdef MBUF_STRESS_TEST 101 static int mbuf_frag_size = 0; 102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 103 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 104 #endif 105 106 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 107 108 extern int in_mcast_loop; 109 extern struct protosw inetsw[]; 110 111 static inline int 112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 113 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 114 { 115 struct m_tag *fwd_tag = NULL; 116 struct mbuf *m; 117 struct in_addr odst; 118 struct ip *ip; 119 int pflags = PFIL_OUT; 120 121 if (flags & IP_FORWARDING) 122 pflags |= PFIL_FWD; 123 124 m = *mp; 125 ip = mtod(m, struct ip *); 126 127 /* Run through list of hooks for output packets. */ 128 odst.s_addr = ip->ip_dst.s_addr; 129 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 130 case PFIL_DROPPED: 131 *error = EACCES; 132 /* FALLTHROUGH */ 133 case PFIL_CONSUMED: 134 return 1; /* Finished */ 135 case PFIL_PASS: 136 *error = 0; 137 } 138 m = *mp; 139 ip = mtod(m, struct ip *); 140 141 /* See if destination IP address was changed by packet filter. */ 142 if (odst.s_addr != ip->ip_dst.s_addr) { 143 m->m_flags |= M_SKIP_FIREWALL; 144 /* If destination is now ourself drop to ip_input(). */ 145 if (in_localip(ip->ip_dst)) { 146 m->m_flags |= M_FASTFWD_OURS; 147 if (m->m_pkthdr.rcvif == NULL) 148 m->m_pkthdr.rcvif = V_loif; 149 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 150 m->m_pkthdr.csum_flags |= 151 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 152 m->m_pkthdr.csum_data = 0xffff; 153 } 154 m->m_pkthdr.csum_flags |= 155 CSUM_IP_CHECKED | CSUM_IP_VALID; 156 #if defined(SCTP) || defined(SCTP_SUPPORT) 157 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 158 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 159 #endif 160 *error = netisr_queue(NETISR_IP, m); 161 return 1; /* Finished */ 162 } 163 164 bzero(dst, sizeof(*dst)); 165 dst->sin_family = AF_INET; 166 dst->sin_len = sizeof(*dst); 167 dst->sin_addr = ip->ip_dst; 168 169 return -1; /* Reloop */ 170 } 171 /* See if fib was changed by packet filter. */ 172 if ((*fibnum) != M_GETFIB(m)) { 173 m->m_flags |= M_SKIP_FIREWALL; 174 *fibnum = M_GETFIB(m); 175 return -1; /* Reloop for FIB change */ 176 } 177 178 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 179 if (m->m_flags & M_FASTFWD_OURS) { 180 if (m->m_pkthdr.rcvif == NULL) 181 m->m_pkthdr.rcvif = V_loif; 182 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 183 m->m_pkthdr.csum_flags |= 184 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 185 m->m_pkthdr.csum_data = 0xffff; 186 } 187 #if defined(SCTP) || defined(SCTP_SUPPORT) 188 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 189 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 190 #endif 191 m->m_pkthdr.csum_flags |= 192 CSUM_IP_CHECKED | CSUM_IP_VALID; 193 194 *error = netisr_queue(NETISR_IP, m); 195 return 1; /* Finished */ 196 } 197 /* Or forward to some other address? */ 198 if ((m->m_flags & M_IP_NEXTHOP) && 199 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 200 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 201 m->m_flags |= M_SKIP_FIREWALL; 202 m->m_flags &= ~M_IP_NEXTHOP; 203 m_tag_delete(m, fwd_tag); 204 205 return -1; /* Reloop for CHANGE of dst */ 206 } 207 208 return 0; 209 } 210 211 static int 212 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 213 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 214 { 215 #ifdef KERN_TLS 216 struct ktls_session *tls = NULL; 217 #endif 218 struct m_snd_tag *mst; 219 int error; 220 221 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 222 mst = NULL; 223 224 #ifdef KERN_TLS 225 /* 226 * If this is an unencrypted TLS record, save a reference to 227 * the record. This local reference is used to call 228 * ktls_output_eagain after the mbuf has been freed (thus 229 * dropping the mbuf's reference) in if_output. 230 */ 231 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 232 tls = ktls_hold(m->m_next->m_epg_tls); 233 mst = tls->snd_tag; 234 235 /* 236 * If a TLS session doesn't have a valid tag, it must 237 * have had an earlier ifp mismatch, so drop this 238 * packet. 239 */ 240 if (mst == NULL) { 241 m_freem(m); 242 error = EAGAIN; 243 goto done; 244 } 245 /* 246 * Always stamp tags that include NIC ktls. 247 */ 248 stamp_tag = true; 249 } 250 #endif 251 #ifdef RATELIMIT 252 if (inp != NULL && mst == NULL) { 253 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 254 (inp->inp_snd_tag != NULL && 255 inp->inp_snd_tag->ifp != ifp)) 256 in_pcboutput_txrtlmt(inp, ifp, m); 257 258 if (inp->inp_snd_tag != NULL) 259 mst = inp->inp_snd_tag; 260 } 261 #endif 262 if (stamp_tag && mst != NULL) { 263 KASSERT(m->m_pkthdr.rcvif == NULL, 264 ("trying to add a send tag to a forwarded packet")); 265 if (mst->ifp != ifp) { 266 m_freem(m); 267 error = EAGAIN; 268 goto done; 269 } 270 271 /* stamp send tag on mbuf */ 272 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 273 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 274 } 275 276 error = (*ifp->if_output)(ifp, m, gw, ro); 277 278 done: 279 /* Check for route change invalidating send tags. */ 280 #ifdef KERN_TLS 281 if (tls != NULL) { 282 if (error == EAGAIN) 283 error = ktls_output_eagain(inp, tls); 284 ktls_free(tls); 285 } 286 #endif 287 #ifdef RATELIMIT 288 if (error == EAGAIN) 289 in_pcboutput_eagain(inp); 290 #endif 291 return (error); 292 } 293 294 /* rte<>ro_flags translation */ 295 static inline void 296 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 297 { 298 int nh_flags = nh->nh_flags; 299 300 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 301 302 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 303 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 304 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 305 } 306 307 /* 308 * IP output. The packet in mbuf chain m contains a skeletal IP 309 * header (with len, off, ttl, proto, tos, src, dst). 310 * The mbuf chain containing the packet will be freed. 311 * The mbuf opt, if present, will not be freed. 312 * If route ro is present and has ro_rt initialized, route lookup would be 313 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 314 * then result of route lookup is stored in ro->ro_rt. 315 * 316 * In the IP forwarding case, the packet will arrive with options already 317 * inserted, so must have a NULL opt pointer. 318 */ 319 int 320 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 321 struct ip_moptions *imo, struct inpcb *inp) 322 { 323 struct ip *ip; 324 struct ifnet *ifp = NULL; /* keep compiler happy */ 325 struct mbuf *m0; 326 int hlen = sizeof (struct ip); 327 int mtu = 0; 328 int error = 0; 329 int vlan_pcp = -1; 330 struct sockaddr_in *dst; 331 const struct sockaddr *gw; 332 struct in_ifaddr *ia = NULL; 333 struct in_addr src; 334 int isbroadcast; 335 uint16_t ip_len, ip_off; 336 struct route iproute; 337 uint32_t fibnum; 338 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 339 int no_route_but_check_spd = 0; 340 #endif 341 342 M_ASSERTPKTHDR(m); 343 NET_EPOCH_ASSERT(); 344 345 if (inp != NULL) { 346 INP_LOCK_ASSERT(inp); 347 M_SETFIB(m, inp->inp_inc.inc_fibnum); 348 if ((flags & IP_NODEFAULTFLOWID) == 0) { 349 m->m_pkthdr.flowid = inp->inp_flowid; 350 M_HASHTYPE_SET(m, inp->inp_flowtype); 351 } 352 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 353 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 354 INP_2PCP_SHIFT; 355 #ifdef NUMA 356 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 357 #endif 358 } 359 360 if (opt) { 361 int len = 0; 362 m = ip_insertoptions(m, opt, &len); 363 if (len != 0) 364 hlen = len; /* ip->ip_hl is updated above */ 365 } 366 ip = mtod(m, struct ip *); 367 ip_len = ntohs(ip->ip_len); 368 ip_off = ntohs(ip->ip_off); 369 370 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 371 ip->ip_v = IPVERSION; 372 ip->ip_hl = hlen >> 2; 373 ip_fillid(ip); 374 } else { 375 /* Header already set, fetch hlen from there */ 376 hlen = ip->ip_hl << 2; 377 } 378 if ((flags & IP_FORWARDING) == 0) 379 IPSTAT_INC(ips_localout); 380 381 /* 382 * dst/gw handling: 383 * 384 * gw is readonly but can point either to dst OR rt_gateway, 385 * therefore we need restore gw if we're redoing lookup. 386 */ 387 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 388 if (ro == NULL) { 389 ro = &iproute; 390 bzero(ro, sizeof (*ro)); 391 } 392 dst = (struct sockaddr_in *)&ro->ro_dst; 393 if (ro->ro_nh == NULL) { 394 dst->sin_family = AF_INET; 395 dst->sin_len = sizeof(*dst); 396 dst->sin_addr = ip->ip_dst; 397 } 398 gw = (const struct sockaddr *)dst; 399 again: 400 /* 401 * Validate route against routing table additions; 402 * a better/more specific route might have been added. 403 */ 404 if (inp != NULL && ro->ro_nh != NULL) 405 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 406 /* 407 * If there is a cached route, 408 * check that it is to the same destination 409 * and is still up. If not, free it and try again. 410 * The address family should also be checked in case of sharing the 411 * cache with IPv6. 412 * Also check whether routing cache needs invalidation. 413 */ 414 if (ro->ro_nh != NULL && 415 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 416 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 417 RO_INVALIDATE_CACHE(ro); 418 ia = NULL; 419 /* 420 * If routing to interface only, short circuit routing lookup. 421 * The use of an all-ones broadcast address implies this; an 422 * interface is specified by the broadcast address of an interface, 423 * or the destination address of a ptp interface. 424 */ 425 if (flags & IP_SENDONES) { 426 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 427 M_GETFIB(m)))) == NULL && 428 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 429 M_GETFIB(m)))) == NULL) { 430 IPSTAT_INC(ips_noroute); 431 error = ENETUNREACH; 432 goto bad; 433 } 434 ip->ip_dst.s_addr = INADDR_BROADCAST; 435 dst->sin_addr = ip->ip_dst; 436 ifp = ia->ia_ifp; 437 mtu = ifp->if_mtu; 438 ip->ip_ttl = 1; 439 isbroadcast = 1; 440 src = IA_SIN(ia)->sin_addr; 441 } else if (flags & IP_ROUTETOIF) { 442 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 443 M_GETFIB(m)))) == NULL && 444 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 445 M_GETFIB(m)))) == NULL) { 446 IPSTAT_INC(ips_noroute); 447 error = ENETUNREACH; 448 goto bad; 449 } 450 ifp = ia->ia_ifp; 451 mtu = ifp->if_mtu; 452 ip->ip_ttl = 1; 453 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 454 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 455 src = IA_SIN(ia)->sin_addr; 456 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 457 imo != NULL && imo->imo_multicast_ifp != NULL) { 458 /* 459 * Bypass the normal routing lookup for multicast 460 * packets if the interface is specified. 461 */ 462 ifp = imo->imo_multicast_ifp; 463 mtu = ifp->if_mtu; 464 IFP_TO_IA(ifp, ia); 465 isbroadcast = 0; /* fool gcc */ 466 /* Interface may have no addresses. */ 467 if (ia != NULL) 468 src = IA_SIN(ia)->sin_addr; 469 else 470 src.s_addr = INADDR_ANY; 471 } else if (ro != &iproute) { 472 if (ro->ro_nh == NULL) { 473 /* 474 * We want to do any cloning requested by the link 475 * layer, as this is probably required in all cases 476 * for correct operation (as it is for ARP). 477 */ 478 uint32_t flowid; 479 flowid = m->m_pkthdr.flowid; 480 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 481 NHR_REF, flowid); 482 483 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 484 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 485 /* 486 * There is no route for this packet, but it is 487 * possible that a matching SPD entry exists. 488 */ 489 no_route_but_check_spd = 1; 490 goto sendit; 491 #endif 492 IPSTAT_INC(ips_noroute); 493 error = EHOSTUNREACH; 494 goto bad; 495 } 496 } 497 struct nhop_object *nh = ro->ro_nh; 498 499 ia = ifatoia(nh->nh_ifa); 500 ifp = nh->nh_ifp; 501 counter_u64_add(nh->nh_pksent, 1); 502 rt_update_ro_flags(ro, nh); 503 if (nh->nh_flags & NHF_GATEWAY) 504 gw = &nh->gw_sa; 505 if (nh->nh_flags & NHF_HOST) 506 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 507 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 508 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 509 else 510 isbroadcast = 0; 511 mtu = nh->nh_mtu; 512 src = IA_SIN(ia)->sin_addr; 513 } else { 514 struct nhop_object *nh; 515 516 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 517 m->m_pkthdr.flowid); 518 if (nh == NULL) { 519 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 520 /* 521 * There is no route for this packet, but it is 522 * possible that a matching SPD entry exists. 523 */ 524 no_route_but_check_spd = 1; 525 goto sendit; 526 #endif 527 IPSTAT_INC(ips_noroute); 528 error = EHOSTUNREACH; 529 goto bad; 530 } 531 ifp = nh->nh_ifp; 532 mtu = nh->nh_mtu; 533 rt_update_ro_flags(ro, nh); 534 if (nh->nh_flags & NHF_GATEWAY) 535 gw = &nh->gw_sa; 536 ia = ifatoia(nh->nh_ifa); 537 src = IA_SIN(ia)->sin_addr; 538 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 539 (NHF_HOST | NHF_BROADCAST)) || 540 ((ifp->if_flags & IFF_BROADCAST) && 541 (gw->sa_family == AF_INET) && 542 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 543 } 544 545 /* Catch a possible divide by zero later. */ 546 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 547 __func__, mtu, ro, 548 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 549 550 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 551 m->m_flags |= M_MCAST; 552 /* 553 * IP destination address is multicast. Make sure "gw" 554 * still points to the address in "ro". (It may have been 555 * changed to point to a gateway address, above.) 556 */ 557 gw = (const struct sockaddr *)dst; 558 /* 559 * See if the caller provided any multicast options 560 */ 561 if (imo != NULL) { 562 ip->ip_ttl = imo->imo_multicast_ttl; 563 if (imo->imo_multicast_vif != -1) 564 ip->ip_src.s_addr = 565 ip_mcast_src ? 566 ip_mcast_src(imo->imo_multicast_vif) : 567 INADDR_ANY; 568 } else 569 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 570 /* 571 * Confirm that the outgoing interface supports multicast. 572 */ 573 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 574 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 575 IPSTAT_INC(ips_noroute); 576 error = ENETUNREACH; 577 goto bad; 578 } 579 } 580 /* 581 * If source address not specified yet, use address 582 * of outgoing interface. 583 */ 584 if (ip->ip_src.s_addr == INADDR_ANY) 585 ip->ip_src = src; 586 587 if ((imo == NULL && in_mcast_loop) || 588 (imo && imo->imo_multicast_loop)) { 589 /* 590 * Loop back multicast datagram if not expressly 591 * forbidden to do so, even if we are not a member 592 * of the group; ip_input() will filter it later, 593 * thus deferring a hash lookup and mutex acquisition 594 * at the expense of a cheap copy using m_copym(). 595 */ 596 ip_mloopback(ifp, m, hlen); 597 } else { 598 /* 599 * If we are acting as a multicast router, perform 600 * multicast forwarding as if the packet had just 601 * arrived on the interface to which we are about 602 * to send. The multicast forwarding function 603 * recursively calls this function, using the 604 * IP_FORWARDING flag to prevent infinite recursion. 605 * 606 * Multicasts that are looped back by ip_mloopback(), 607 * above, will be forwarded by the ip_input() routine, 608 * if necessary. 609 */ 610 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 611 /* 612 * If rsvp daemon is not running, do not 613 * set ip_moptions. This ensures that the packet 614 * is multicast and not just sent down one link 615 * as prescribed by rsvpd. 616 */ 617 if (!V_rsvp_on) 618 imo = NULL; 619 if (ip_mforward && 620 ip_mforward(ip, ifp, m, imo) != 0) { 621 m_freem(m); 622 goto done; 623 } 624 } 625 } 626 627 /* 628 * Multicasts with a time-to-live of zero may be looped- 629 * back, above, but must not be transmitted on a network. 630 * Also, multicasts addressed to the loopback interface 631 * are not sent -- the above call to ip_mloopback() will 632 * loop back a copy. ip_input() will drop the copy if 633 * this host does not belong to the destination group on 634 * the loopback interface. 635 */ 636 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 637 m_freem(m); 638 goto done; 639 } 640 641 goto sendit; 642 } 643 644 /* 645 * If the source address is not specified yet, use the address 646 * of the outoing interface. 647 */ 648 if (ip->ip_src.s_addr == INADDR_ANY) 649 ip->ip_src = src; 650 651 /* 652 * Look for broadcast address and 653 * verify user is allowed to send 654 * such a packet. 655 */ 656 if (isbroadcast) { 657 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 658 error = EADDRNOTAVAIL; 659 goto bad; 660 } 661 if ((flags & IP_ALLOWBROADCAST) == 0) { 662 error = EACCES; 663 goto bad; 664 } 665 /* don't allow broadcast messages to be fragmented */ 666 if (ip_len > mtu) { 667 error = EMSGSIZE; 668 goto bad; 669 } 670 m->m_flags |= M_BCAST; 671 } else { 672 m->m_flags &= ~M_BCAST; 673 } 674 675 sendit: 676 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 677 if (IPSEC_ENABLED(ipv4)) { 678 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 679 if (error == EINPROGRESS) 680 error = 0; 681 goto done; 682 } 683 } 684 /* 685 * Check if there was a route for this packet; return error if not. 686 */ 687 if (no_route_but_check_spd) { 688 IPSTAT_INC(ips_noroute); 689 error = EHOSTUNREACH; 690 goto bad; 691 } 692 /* Update variables that are affected by ipsec4_output(). */ 693 ip = mtod(m, struct ip *); 694 hlen = ip->ip_hl << 2; 695 #endif /* IPSEC */ 696 697 /* Jump over all PFIL processing if hooks are not active. */ 698 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 699 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 700 &error)) { 701 case 1: /* Finished */ 702 goto done; 703 704 case 0: /* Continue normally */ 705 ip = mtod(m, struct ip *); 706 break; 707 708 case -1: /* Need to try again */ 709 /* Reset everything for a new round */ 710 if (ro != NULL) { 711 RO_NHFREE(ro); 712 ro->ro_prepend = NULL; 713 } 714 gw = (const struct sockaddr *)dst; 715 ip = mtod(m, struct ip *); 716 goto again; 717 } 718 } 719 720 if (vlan_pcp > -1) 721 EVL_APPLY_PRI(m, vlan_pcp); 722 723 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 724 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 725 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 726 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 727 IPSTAT_INC(ips_badaddr); 728 error = EADDRNOTAVAIL; 729 goto bad; 730 } 731 } 732 733 /* Ensure the packet data is mapped if the interface requires it. */ 734 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 735 m = mb_unmapped_to_ext(m); 736 if (m == NULL) { 737 IPSTAT_INC(ips_odropped); 738 error = ENOBUFS; 739 goto bad; 740 } 741 } 742 743 m->m_pkthdr.csum_flags |= CSUM_IP; 744 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 745 in_delayed_cksum(m); 746 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 747 } 748 #if defined(SCTP) || defined(SCTP_SUPPORT) 749 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 750 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 751 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 752 } 753 #endif 754 755 /* 756 * If small enough for interface, or the interface will take 757 * care of the fragmentation for us, we can just send directly. 758 * Note that if_vxlan could have requested TSO even though the outer 759 * frame is UDP. It is correct to not fragment such datagrams and 760 * instead just pass them on to the driver. 761 */ 762 if (ip_len <= mtu || 763 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 764 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 765 ip->ip_sum = 0; 766 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 767 ip->ip_sum = in_cksum(m, hlen); 768 m->m_pkthdr.csum_flags &= ~CSUM_IP; 769 } 770 771 /* 772 * Record statistics for this interface address. 773 * With CSUM_TSO the byte/packet count will be slightly 774 * incorrect because we count the IP+TCP headers only 775 * once instead of for every generated packet. 776 */ 777 if (!(flags & IP_FORWARDING) && ia) { 778 if (m->m_pkthdr.csum_flags & 779 (CSUM_TSO | CSUM_INNER_TSO)) 780 counter_u64_add(ia->ia_ifa.ifa_opackets, 781 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 782 else 783 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 784 785 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 786 } 787 #ifdef MBUF_STRESS_TEST 788 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 789 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 790 #endif 791 /* 792 * Reset layer specific mbuf flags 793 * to avoid confusing lower layers. 794 */ 795 m_clrprotoflags(m); 796 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 797 error = ip_output_send(inp, ifp, m, gw, ro, 798 (flags & IP_NO_SND_TAG_RL) ? false : true); 799 goto done; 800 } 801 802 /* Balk when DF bit is set or the interface didn't support TSO. */ 803 if ((ip_off & IP_DF) || 804 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 805 error = EMSGSIZE; 806 IPSTAT_INC(ips_cantfrag); 807 goto bad; 808 } 809 810 /* 811 * Too large for interface; fragment if possible. If successful, 812 * on return, m will point to a list of packets to be sent. 813 */ 814 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 815 if (error) 816 goto bad; 817 for (; m; m = m0) { 818 m0 = m->m_nextpkt; 819 m->m_nextpkt = 0; 820 if (error == 0) { 821 /* Record statistics for this interface address. */ 822 if (ia != NULL) { 823 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 824 counter_u64_add(ia->ia_ifa.ifa_obytes, 825 m->m_pkthdr.len); 826 } 827 /* 828 * Reset layer specific mbuf flags 829 * to avoid confusing upper layers. 830 */ 831 m_clrprotoflags(m); 832 833 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 834 mtod(m, struct ip *), NULL); 835 error = ip_output_send(inp, ifp, m, gw, ro, true); 836 } else 837 m_freem(m); 838 } 839 840 if (error == 0) 841 IPSTAT_INC(ips_fragmented); 842 843 done: 844 return (error); 845 bad: 846 m_freem(m); 847 goto done; 848 } 849 850 /* 851 * Create a chain of fragments which fit the given mtu. m_frag points to the 852 * mbuf to be fragmented; on return it points to the chain with the fragments. 853 * Return 0 if no error. If error, m_frag may contain a partially built 854 * chain of fragments that should be freed by the caller. 855 * 856 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 857 */ 858 int 859 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 860 u_long if_hwassist_flags) 861 { 862 int error = 0; 863 int hlen = ip->ip_hl << 2; 864 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 865 int off; 866 struct mbuf *m0 = *m_frag; /* the original packet */ 867 int firstlen; 868 struct mbuf **mnext; 869 int nfrags; 870 uint16_t ip_len, ip_off; 871 872 ip_len = ntohs(ip->ip_len); 873 ip_off = ntohs(ip->ip_off); 874 875 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 876 IPSTAT_INC(ips_cantfrag); 877 return EMSGSIZE; 878 } 879 880 /* 881 * Must be able to put at least 8 bytes per fragment. 882 */ 883 if (len < 8) 884 return EMSGSIZE; 885 886 /* 887 * If the interface will not calculate checksums on 888 * fragmented packets, then do it here. 889 */ 890 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 891 in_delayed_cksum(m0); 892 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 893 } 894 #if defined(SCTP) || defined(SCTP_SUPPORT) 895 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 896 sctp_delayed_cksum(m0, hlen); 897 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 898 } 899 #endif 900 if (len > PAGE_SIZE) { 901 /* 902 * Fragment large datagrams such that each segment 903 * contains a multiple of PAGE_SIZE amount of data, 904 * plus headers. This enables a receiver to perform 905 * page-flipping zero-copy optimizations. 906 * 907 * XXX When does this help given that sender and receiver 908 * could have different page sizes, and also mtu could 909 * be less than the receiver's page size ? 910 */ 911 int newlen; 912 913 off = MIN(mtu, m0->m_pkthdr.len); 914 915 /* 916 * firstlen (off - hlen) must be aligned on an 917 * 8-byte boundary 918 */ 919 if (off < hlen) 920 goto smart_frag_failure; 921 off = ((off - hlen) & ~7) + hlen; 922 newlen = (~PAGE_MASK) & mtu; 923 if ((newlen + sizeof (struct ip)) > mtu) { 924 /* we failed, go back the default */ 925 smart_frag_failure: 926 newlen = len; 927 off = hlen + len; 928 } 929 len = newlen; 930 931 } else { 932 off = hlen + len; 933 } 934 935 firstlen = off - hlen; 936 mnext = &m0->m_nextpkt; /* pointer to next packet */ 937 938 /* 939 * Loop through length of segment after first fragment, 940 * make new header and copy data of each part and link onto chain. 941 * Here, m0 is the original packet, m is the fragment being created. 942 * The fragments are linked off the m_nextpkt of the original 943 * packet, which after processing serves as the first fragment. 944 */ 945 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 946 struct ip *mhip; /* ip header on the fragment */ 947 struct mbuf *m; 948 int mhlen = sizeof (struct ip); 949 950 m = m_gethdr(M_NOWAIT, MT_DATA); 951 if (m == NULL) { 952 error = ENOBUFS; 953 IPSTAT_INC(ips_odropped); 954 goto done; 955 } 956 /* 957 * Make sure the complete packet header gets copied 958 * from the originating mbuf to the newly created 959 * mbuf. This also ensures that existing firewall 960 * classification(s), VLAN tags and so on get copied 961 * to the resulting fragmented packet(s): 962 */ 963 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 964 m_free(m); 965 error = ENOBUFS; 966 IPSTAT_INC(ips_odropped); 967 goto done; 968 } 969 /* 970 * In the first mbuf, leave room for the link header, then 971 * copy the original IP header including options. The payload 972 * goes into an additional mbuf chain returned by m_copym(). 973 */ 974 m->m_data += max_linkhdr; 975 mhip = mtod(m, struct ip *); 976 *mhip = *ip; 977 if (hlen > sizeof (struct ip)) { 978 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 979 mhip->ip_v = IPVERSION; 980 mhip->ip_hl = mhlen >> 2; 981 } 982 m->m_len = mhlen; 983 /* XXX do we need to add ip_off below ? */ 984 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 985 if (off + len >= ip_len) 986 len = ip_len - off; 987 else 988 mhip->ip_off |= IP_MF; 989 mhip->ip_len = htons((u_short)(len + mhlen)); 990 m->m_next = m_copym(m0, off, len, M_NOWAIT); 991 if (m->m_next == NULL) { /* copy failed */ 992 m_free(m); 993 error = ENOBUFS; /* ??? */ 994 IPSTAT_INC(ips_odropped); 995 goto done; 996 } 997 m->m_pkthdr.len = mhlen + len; 998 #ifdef MAC 999 mac_netinet_fragment(m0, m); 1000 #endif 1001 mhip->ip_off = htons(mhip->ip_off); 1002 mhip->ip_sum = 0; 1003 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1004 mhip->ip_sum = in_cksum(m, mhlen); 1005 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1006 } 1007 *mnext = m; 1008 mnext = &m->m_nextpkt; 1009 } 1010 IPSTAT_ADD(ips_ofragments, nfrags); 1011 1012 /* 1013 * Update first fragment by trimming what's been copied out 1014 * and updating header. 1015 */ 1016 m_adj(m0, hlen + firstlen - ip_len); 1017 m0->m_pkthdr.len = hlen + firstlen; 1018 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1019 ip->ip_off = htons(ip_off | IP_MF); 1020 ip->ip_sum = 0; 1021 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1022 ip->ip_sum = in_cksum(m0, hlen); 1023 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1024 } 1025 1026 done: 1027 *m_frag = m0; 1028 return error; 1029 } 1030 1031 void 1032 in_delayed_cksum(struct mbuf *m) 1033 { 1034 struct ip *ip; 1035 struct udphdr *uh; 1036 uint16_t cklen, csum, offset; 1037 1038 ip = mtod(m, struct ip *); 1039 offset = ip->ip_hl << 2 ; 1040 1041 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1042 /* if udp header is not in the first mbuf copy udplen */ 1043 if (offset + sizeof(struct udphdr) > m->m_len) { 1044 m_copydata(m, offset + offsetof(struct udphdr, 1045 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1046 cklen = ntohs(cklen); 1047 } else { 1048 uh = (struct udphdr *)mtodo(m, offset); 1049 cklen = ntohs(uh->uh_ulen); 1050 } 1051 csum = in_cksum_skip(m, cklen + offset, offset); 1052 if (csum == 0) 1053 csum = 0xffff; 1054 } else { 1055 cklen = ntohs(ip->ip_len); 1056 csum = in_cksum_skip(m, cklen, offset); 1057 } 1058 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1059 1060 if (offset + sizeof(csum) > m->m_len) 1061 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1062 else 1063 *(u_short *)mtodo(m, offset) = csum; 1064 } 1065 1066 /* 1067 * IP socket option processing. 1068 */ 1069 int 1070 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1071 { 1072 struct inpcb *inp = sotoinpcb(so); 1073 int error, optval; 1074 #ifdef RSS 1075 uint32_t rss_bucket; 1076 int retval; 1077 #endif 1078 1079 error = optval = 0; 1080 if (sopt->sopt_level != IPPROTO_IP) { 1081 error = EINVAL; 1082 1083 if (sopt->sopt_level == SOL_SOCKET && 1084 sopt->sopt_dir == SOPT_SET) { 1085 switch (sopt->sopt_name) { 1086 case SO_REUSEADDR: 1087 INP_WLOCK(inp); 1088 if ((so->so_options & SO_REUSEADDR) != 0) 1089 inp->inp_flags2 |= INP_REUSEADDR; 1090 else 1091 inp->inp_flags2 &= ~INP_REUSEADDR; 1092 INP_WUNLOCK(inp); 1093 error = 0; 1094 break; 1095 case SO_REUSEPORT: 1096 INP_WLOCK(inp); 1097 if ((so->so_options & SO_REUSEPORT) != 0) 1098 inp->inp_flags2 |= INP_REUSEPORT; 1099 else 1100 inp->inp_flags2 &= ~INP_REUSEPORT; 1101 INP_WUNLOCK(inp); 1102 error = 0; 1103 break; 1104 case SO_REUSEPORT_LB: 1105 INP_WLOCK(inp); 1106 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1107 inp->inp_flags2 |= INP_REUSEPORT_LB; 1108 else 1109 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1110 INP_WUNLOCK(inp); 1111 error = 0; 1112 break; 1113 case SO_SETFIB: 1114 INP_WLOCK(inp); 1115 inp->inp_inc.inc_fibnum = so->so_fibnum; 1116 INP_WUNLOCK(inp); 1117 error = 0; 1118 break; 1119 case SO_MAX_PACING_RATE: 1120 #ifdef RATELIMIT 1121 INP_WLOCK(inp); 1122 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1123 INP_WUNLOCK(inp); 1124 error = 0; 1125 #else 1126 error = EOPNOTSUPP; 1127 #endif 1128 break; 1129 default: 1130 break; 1131 } 1132 } 1133 return (error); 1134 } 1135 1136 switch (sopt->sopt_dir) { 1137 case SOPT_SET: 1138 switch (sopt->sopt_name) { 1139 case IP_OPTIONS: 1140 #ifdef notyet 1141 case IP_RETOPTS: 1142 #endif 1143 { 1144 struct mbuf *m; 1145 if (sopt->sopt_valsize > MLEN) { 1146 error = EMSGSIZE; 1147 break; 1148 } 1149 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1150 if (m == NULL) { 1151 error = ENOBUFS; 1152 break; 1153 } 1154 m->m_len = sopt->sopt_valsize; 1155 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1156 m->m_len); 1157 if (error) { 1158 m_free(m); 1159 break; 1160 } 1161 INP_WLOCK(inp); 1162 error = ip_pcbopts(inp, sopt->sopt_name, m); 1163 INP_WUNLOCK(inp); 1164 return (error); 1165 } 1166 1167 case IP_BINDANY: 1168 if (sopt->sopt_td != NULL) { 1169 error = priv_check(sopt->sopt_td, 1170 PRIV_NETINET_BINDANY); 1171 if (error) 1172 break; 1173 } 1174 /* FALLTHROUGH */ 1175 case IP_BINDMULTI: 1176 #ifdef RSS 1177 case IP_RSS_LISTEN_BUCKET: 1178 #endif 1179 case IP_TOS: 1180 case IP_TTL: 1181 case IP_MINTTL: 1182 case IP_RECVOPTS: 1183 case IP_RECVRETOPTS: 1184 case IP_ORIGDSTADDR: 1185 case IP_RECVDSTADDR: 1186 case IP_RECVTTL: 1187 case IP_RECVIF: 1188 case IP_ONESBCAST: 1189 case IP_DONTFRAG: 1190 case IP_RECVTOS: 1191 case IP_RECVFLOWID: 1192 #ifdef RSS 1193 case IP_RECVRSSBUCKETID: 1194 #endif 1195 case IP_VLAN_PCP: 1196 error = sooptcopyin(sopt, &optval, sizeof optval, 1197 sizeof optval); 1198 if (error) 1199 break; 1200 1201 switch (sopt->sopt_name) { 1202 case IP_TOS: 1203 inp->inp_ip_tos = optval; 1204 break; 1205 1206 case IP_TTL: 1207 inp->inp_ip_ttl = optval; 1208 break; 1209 1210 case IP_MINTTL: 1211 if (optval >= 0 && optval <= MAXTTL) 1212 inp->inp_ip_minttl = optval; 1213 else 1214 error = EINVAL; 1215 break; 1216 1217 #define OPTSET(bit) do { \ 1218 INP_WLOCK(inp); \ 1219 if (optval) \ 1220 inp->inp_flags |= bit; \ 1221 else \ 1222 inp->inp_flags &= ~bit; \ 1223 INP_WUNLOCK(inp); \ 1224 } while (0) 1225 1226 #define OPTSET2(bit, val) do { \ 1227 INP_WLOCK(inp); \ 1228 if (val) \ 1229 inp->inp_flags2 |= bit; \ 1230 else \ 1231 inp->inp_flags2 &= ~bit; \ 1232 INP_WUNLOCK(inp); \ 1233 } while (0) 1234 1235 case IP_RECVOPTS: 1236 OPTSET(INP_RECVOPTS); 1237 break; 1238 1239 case IP_RECVRETOPTS: 1240 OPTSET(INP_RECVRETOPTS); 1241 break; 1242 1243 case IP_RECVDSTADDR: 1244 OPTSET(INP_RECVDSTADDR); 1245 break; 1246 1247 case IP_ORIGDSTADDR: 1248 OPTSET2(INP_ORIGDSTADDR, optval); 1249 break; 1250 1251 case IP_RECVTTL: 1252 OPTSET(INP_RECVTTL); 1253 break; 1254 1255 case IP_RECVIF: 1256 OPTSET(INP_RECVIF); 1257 break; 1258 1259 case IP_ONESBCAST: 1260 OPTSET(INP_ONESBCAST); 1261 break; 1262 case IP_DONTFRAG: 1263 OPTSET(INP_DONTFRAG); 1264 break; 1265 case IP_BINDANY: 1266 OPTSET(INP_BINDANY); 1267 break; 1268 case IP_RECVTOS: 1269 OPTSET(INP_RECVTOS); 1270 break; 1271 case IP_BINDMULTI: 1272 OPTSET2(INP_BINDMULTI, optval); 1273 break; 1274 case IP_RECVFLOWID: 1275 OPTSET2(INP_RECVFLOWID, optval); 1276 break; 1277 #ifdef RSS 1278 case IP_RSS_LISTEN_BUCKET: 1279 if ((optval >= 0) && 1280 (optval < rss_getnumbuckets())) { 1281 inp->inp_rss_listen_bucket = optval; 1282 OPTSET2(INP_RSS_BUCKET_SET, 1); 1283 } else { 1284 error = EINVAL; 1285 } 1286 break; 1287 case IP_RECVRSSBUCKETID: 1288 OPTSET2(INP_RECVRSSBUCKETID, optval); 1289 break; 1290 #endif 1291 case IP_VLAN_PCP: 1292 if ((optval >= -1) && (optval <= 1293 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1294 if (optval == -1) { 1295 INP_WLOCK(inp); 1296 inp->inp_flags2 &= 1297 ~(INP_2PCP_SET | 1298 INP_2PCP_MASK); 1299 INP_WUNLOCK(inp); 1300 } else { 1301 INP_WLOCK(inp); 1302 inp->inp_flags2 |= 1303 INP_2PCP_SET; 1304 inp->inp_flags2 &= 1305 ~INP_2PCP_MASK; 1306 inp->inp_flags2 |= 1307 optval << INP_2PCP_SHIFT; 1308 INP_WUNLOCK(inp); 1309 } 1310 } else 1311 error = EINVAL; 1312 break; 1313 } 1314 break; 1315 #undef OPTSET 1316 #undef OPTSET2 1317 1318 /* 1319 * Multicast socket options are processed by the in_mcast 1320 * module. 1321 */ 1322 case IP_MULTICAST_IF: 1323 case IP_MULTICAST_VIF: 1324 case IP_MULTICAST_TTL: 1325 case IP_MULTICAST_LOOP: 1326 case IP_ADD_MEMBERSHIP: 1327 case IP_DROP_MEMBERSHIP: 1328 case IP_ADD_SOURCE_MEMBERSHIP: 1329 case IP_DROP_SOURCE_MEMBERSHIP: 1330 case IP_BLOCK_SOURCE: 1331 case IP_UNBLOCK_SOURCE: 1332 case IP_MSFILTER: 1333 case MCAST_JOIN_GROUP: 1334 case MCAST_LEAVE_GROUP: 1335 case MCAST_JOIN_SOURCE_GROUP: 1336 case MCAST_LEAVE_SOURCE_GROUP: 1337 case MCAST_BLOCK_SOURCE: 1338 case MCAST_UNBLOCK_SOURCE: 1339 error = inp_setmoptions(inp, sopt); 1340 break; 1341 1342 case IP_PORTRANGE: 1343 error = sooptcopyin(sopt, &optval, sizeof optval, 1344 sizeof optval); 1345 if (error) 1346 break; 1347 1348 INP_WLOCK(inp); 1349 switch (optval) { 1350 case IP_PORTRANGE_DEFAULT: 1351 inp->inp_flags &= ~(INP_LOWPORT); 1352 inp->inp_flags &= ~(INP_HIGHPORT); 1353 break; 1354 1355 case IP_PORTRANGE_HIGH: 1356 inp->inp_flags &= ~(INP_LOWPORT); 1357 inp->inp_flags |= INP_HIGHPORT; 1358 break; 1359 1360 case IP_PORTRANGE_LOW: 1361 inp->inp_flags &= ~(INP_HIGHPORT); 1362 inp->inp_flags |= INP_LOWPORT; 1363 break; 1364 1365 default: 1366 error = EINVAL; 1367 break; 1368 } 1369 INP_WUNLOCK(inp); 1370 break; 1371 1372 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1373 case IP_IPSEC_POLICY: 1374 if (IPSEC_ENABLED(ipv4)) { 1375 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1376 break; 1377 } 1378 /* FALLTHROUGH */ 1379 #endif /* IPSEC */ 1380 1381 default: 1382 error = ENOPROTOOPT; 1383 break; 1384 } 1385 break; 1386 1387 case SOPT_GET: 1388 switch (sopt->sopt_name) { 1389 case IP_OPTIONS: 1390 case IP_RETOPTS: 1391 INP_RLOCK(inp); 1392 if (inp->inp_options) { 1393 struct mbuf *options; 1394 1395 options = m_copym(inp->inp_options, 0, 1396 M_COPYALL, M_NOWAIT); 1397 INP_RUNLOCK(inp); 1398 if (options != NULL) { 1399 error = sooptcopyout(sopt, 1400 mtod(options, char *), 1401 options->m_len); 1402 m_freem(options); 1403 } else 1404 error = ENOMEM; 1405 } else { 1406 INP_RUNLOCK(inp); 1407 sopt->sopt_valsize = 0; 1408 } 1409 break; 1410 1411 case IP_TOS: 1412 case IP_TTL: 1413 case IP_MINTTL: 1414 case IP_RECVOPTS: 1415 case IP_RECVRETOPTS: 1416 case IP_ORIGDSTADDR: 1417 case IP_RECVDSTADDR: 1418 case IP_RECVTTL: 1419 case IP_RECVIF: 1420 case IP_PORTRANGE: 1421 case IP_ONESBCAST: 1422 case IP_DONTFRAG: 1423 case IP_BINDANY: 1424 case IP_RECVTOS: 1425 case IP_BINDMULTI: 1426 case IP_FLOWID: 1427 case IP_FLOWTYPE: 1428 case IP_RECVFLOWID: 1429 #ifdef RSS 1430 case IP_RSSBUCKETID: 1431 case IP_RECVRSSBUCKETID: 1432 #endif 1433 case IP_VLAN_PCP: 1434 switch (sopt->sopt_name) { 1435 case IP_TOS: 1436 optval = inp->inp_ip_tos; 1437 break; 1438 1439 case IP_TTL: 1440 optval = inp->inp_ip_ttl; 1441 break; 1442 1443 case IP_MINTTL: 1444 optval = inp->inp_ip_minttl; 1445 break; 1446 1447 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1448 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1449 1450 case IP_RECVOPTS: 1451 optval = OPTBIT(INP_RECVOPTS); 1452 break; 1453 1454 case IP_RECVRETOPTS: 1455 optval = OPTBIT(INP_RECVRETOPTS); 1456 break; 1457 1458 case IP_RECVDSTADDR: 1459 optval = OPTBIT(INP_RECVDSTADDR); 1460 break; 1461 1462 case IP_ORIGDSTADDR: 1463 optval = OPTBIT2(INP_ORIGDSTADDR); 1464 break; 1465 1466 case IP_RECVTTL: 1467 optval = OPTBIT(INP_RECVTTL); 1468 break; 1469 1470 case IP_RECVIF: 1471 optval = OPTBIT(INP_RECVIF); 1472 break; 1473 1474 case IP_PORTRANGE: 1475 if (inp->inp_flags & INP_HIGHPORT) 1476 optval = IP_PORTRANGE_HIGH; 1477 else if (inp->inp_flags & INP_LOWPORT) 1478 optval = IP_PORTRANGE_LOW; 1479 else 1480 optval = 0; 1481 break; 1482 1483 case IP_ONESBCAST: 1484 optval = OPTBIT(INP_ONESBCAST); 1485 break; 1486 case IP_DONTFRAG: 1487 optval = OPTBIT(INP_DONTFRAG); 1488 break; 1489 case IP_BINDANY: 1490 optval = OPTBIT(INP_BINDANY); 1491 break; 1492 case IP_RECVTOS: 1493 optval = OPTBIT(INP_RECVTOS); 1494 break; 1495 case IP_FLOWID: 1496 optval = inp->inp_flowid; 1497 break; 1498 case IP_FLOWTYPE: 1499 optval = inp->inp_flowtype; 1500 break; 1501 case IP_RECVFLOWID: 1502 optval = OPTBIT2(INP_RECVFLOWID); 1503 break; 1504 #ifdef RSS 1505 case IP_RSSBUCKETID: 1506 retval = rss_hash2bucket(inp->inp_flowid, 1507 inp->inp_flowtype, 1508 &rss_bucket); 1509 if (retval == 0) 1510 optval = rss_bucket; 1511 else 1512 error = EINVAL; 1513 break; 1514 case IP_RECVRSSBUCKETID: 1515 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1516 break; 1517 #endif 1518 case IP_BINDMULTI: 1519 optval = OPTBIT2(INP_BINDMULTI); 1520 break; 1521 case IP_VLAN_PCP: 1522 if (OPTBIT2(INP_2PCP_SET)) { 1523 optval = (inp->inp_flags2 & 1524 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1525 } else { 1526 optval = -1; 1527 } 1528 break; 1529 } 1530 error = sooptcopyout(sopt, &optval, sizeof optval); 1531 break; 1532 1533 /* 1534 * Multicast socket options are processed by the in_mcast 1535 * module. 1536 */ 1537 case IP_MULTICAST_IF: 1538 case IP_MULTICAST_VIF: 1539 case IP_MULTICAST_TTL: 1540 case IP_MULTICAST_LOOP: 1541 case IP_MSFILTER: 1542 error = inp_getmoptions(inp, sopt); 1543 break; 1544 1545 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1546 case IP_IPSEC_POLICY: 1547 if (IPSEC_ENABLED(ipv4)) { 1548 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1549 break; 1550 } 1551 /* FALLTHROUGH */ 1552 #endif /* IPSEC */ 1553 1554 default: 1555 error = ENOPROTOOPT; 1556 break; 1557 } 1558 break; 1559 } 1560 return (error); 1561 } 1562 1563 /* 1564 * Routine called from ip_output() to loop back a copy of an IP multicast 1565 * packet to the input queue of a specified interface. Note that this 1566 * calls the output routine of the loopback "driver", but with an interface 1567 * pointer that might NOT be a loopback interface -- evil, but easier than 1568 * replicating that code here. 1569 */ 1570 static void 1571 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1572 { 1573 struct ip *ip; 1574 struct mbuf *copym; 1575 1576 /* 1577 * Make a deep copy of the packet because we're going to 1578 * modify the pack in order to generate checksums. 1579 */ 1580 copym = m_dup(m, M_NOWAIT); 1581 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1582 copym = m_pullup(copym, hlen); 1583 if (copym != NULL) { 1584 /* If needed, compute the checksum and mark it as valid. */ 1585 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1586 in_delayed_cksum(copym); 1587 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1588 copym->m_pkthdr.csum_flags |= 1589 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1590 copym->m_pkthdr.csum_data = 0xffff; 1591 } 1592 /* 1593 * We don't bother to fragment if the IP length is greater 1594 * than the interface's MTU. Can this possibly matter? 1595 */ 1596 ip = mtod(copym, struct ip *); 1597 ip->ip_sum = 0; 1598 ip->ip_sum = in_cksum(copym, hlen); 1599 if_simloop(ifp, copym, AF_INET, 0); 1600 } 1601 } 1602