1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/sysctl.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_llatbl.h> 66 #include <net/netisr.h> 67 #include <net/pfil.h> 68 #include <net/route.h> 69 #include <net/route/nhop.h> 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_fib.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_fib.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_rss.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/ip_options.h> 84 85 #include <netinet/udp.h> 86 #include <netinet/udp_var.h> 87 88 #if defined(SCTP) || defined(SCTP_SUPPORT) 89 #include <netinet/sctp.h> 90 #include <netinet/sctp_crc32.h> 91 #endif 92 93 #include <netipsec/ipsec_support.h> 94 95 #include <machine/in_cksum.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #ifdef MBUF_STRESS_TEST 100 static int mbuf_frag_size = 0; 101 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 102 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 103 #endif 104 105 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 106 107 extern int in_mcast_loop; 108 extern struct protosw inetsw[]; 109 110 static inline int 111 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 112 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 113 { 114 struct m_tag *fwd_tag = NULL; 115 struct mbuf *m; 116 struct in_addr odst; 117 struct ip *ip; 118 int pflags = PFIL_OUT; 119 120 if (flags & IP_FORWARDING) 121 pflags |= PFIL_FWD; 122 123 m = *mp; 124 ip = mtod(m, struct ip *); 125 126 /* Run through list of hooks for output packets. */ 127 odst.s_addr = ip->ip_dst.s_addr; 128 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 129 case PFIL_DROPPED: 130 *error = EACCES; 131 /* FALLTHROUGH */ 132 case PFIL_CONSUMED: 133 return 1; /* Finished */ 134 case PFIL_PASS: 135 *error = 0; 136 } 137 m = *mp; 138 ip = mtod(m, struct ip *); 139 140 /* See if destination IP address was changed by packet filter. */ 141 if (odst.s_addr != ip->ip_dst.s_addr) { 142 m->m_flags |= M_SKIP_FIREWALL; 143 /* If destination is now ourself drop to ip_input(). */ 144 if (in_localip(ip->ip_dst)) { 145 m->m_flags |= M_FASTFWD_OURS; 146 if (m->m_pkthdr.rcvif == NULL) 147 m->m_pkthdr.rcvif = V_loif; 148 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 149 m->m_pkthdr.csum_flags |= 150 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 151 m->m_pkthdr.csum_data = 0xffff; 152 } 153 m->m_pkthdr.csum_flags |= 154 CSUM_IP_CHECKED | CSUM_IP_VALID; 155 #if defined(SCTP) || defined(SCTP_SUPPORT) 156 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 157 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 158 #endif 159 *error = netisr_queue(NETISR_IP, m); 160 return 1; /* Finished */ 161 } 162 163 bzero(dst, sizeof(*dst)); 164 dst->sin_family = AF_INET; 165 dst->sin_len = sizeof(*dst); 166 dst->sin_addr = ip->ip_dst; 167 168 return -1; /* Reloop */ 169 } 170 /* See if fib was changed by packet filter. */ 171 if ((*fibnum) != M_GETFIB(m)) { 172 m->m_flags |= M_SKIP_FIREWALL; 173 *fibnum = M_GETFIB(m); 174 return -1; /* Reloop for FIB change */ 175 } 176 177 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 178 if (m->m_flags & M_FASTFWD_OURS) { 179 if (m->m_pkthdr.rcvif == NULL) 180 m->m_pkthdr.rcvif = V_loif; 181 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 182 m->m_pkthdr.csum_flags |= 183 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 184 m->m_pkthdr.csum_data = 0xffff; 185 } 186 #if defined(SCTP) || defined(SCTP_SUPPORT) 187 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 188 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 189 #endif 190 m->m_pkthdr.csum_flags |= 191 CSUM_IP_CHECKED | CSUM_IP_VALID; 192 193 *error = netisr_queue(NETISR_IP, m); 194 return 1; /* Finished */ 195 } 196 /* Or forward to some other address? */ 197 if ((m->m_flags & M_IP_NEXTHOP) && 198 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 199 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 200 m->m_flags |= M_SKIP_FIREWALL; 201 m->m_flags &= ~M_IP_NEXTHOP; 202 m_tag_delete(m, fwd_tag); 203 204 return -1; /* Reloop for CHANGE of dst */ 205 } 206 207 return 0; 208 } 209 210 static int 211 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 212 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 213 { 214 #ifdef KERN_TLS 215 struct ktls_session *tls = NULL; 216 #endif 217 struct m_snd_tag *mst; 218 int error; 219 220 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 221 mst = NULL; 222 223 #ifdef KERN_TLS 224 /* 225 * If this is an unencrypted TLS record, save a reference to 226 * the record. This local reference is used to call 227 * ktls_output_eagain after the mbuf has been freed (thus 228 * dropping the mbuf's reference) in if_output. 229 */ 230 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 231 tls = ktls_hold(m->m_next->m_epg_tls); 232 mst = tls->snd_tag; 233 234 /* 235 * If a TLS session doesn't have a valid tag, it must 236 * have had an earlier ifp mismatch, so drop this 237 * packet. 238 */ 239 if (mst == NULL) { 240 error = EAGAIN; 241 goto done; 242 } 243 /* 244 * Always stamp tags that include NIC ktls. 245 */ 246 stamp_tag = true; 247 } 248 #endif 249 #ifdef RATELIMIT 250 if (inp != NULL && mst == NULL) { 251 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 252 (inp->inp_snd_tag != NULL && 253 inp->inp_snd_tag->ifp != ifp)) 254 in_pcboutput_txrtlmt(inp, ifp, m); 255 256 if (inp->inp_snd_tag != NULL) 257 mst = inp->inp_snd_tag; 258 } 259 #endif 260 if (stamp_tag && mst != NULL) { 261 KASSERT(m->m_pkthdr.rcvif == NULL, 262 ("trying to add a send tag to a forwarded packet")); 263 if (mst->ifp != ifp) { 264 error = EAGAIN; 265 goto done; 266 } 267 268 /* stamp send tag on mbuf */ 269 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 270 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 271 } 272 273 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 274 275 done: 276 /* Check for route change invalidating send tags. */ 277 #ifdef KERN_TLS 278 if (tls != NULL) { 279 if (error == EAGAIN) 280 error = ktls_output_eagain(inp, tls); 281 ktls_free(tls); 282 } 283 #endif 284 #ifdef RATELIMIT 285 if (error == EAGAIN) 286 in_pcboutput_eagain(inp); 287 #endif 288 return (error); 289 } 290 291 /* rte<>ro_flags translation */ 292 static inline void 293 rt_update_ro_flags(struct route *ro) 294 { 295 int nh_flags = ro->ro_nh->nh_flags; 296 297 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 298 299 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 300 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 301 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 302 } 303 304 /* 305 * IP output. The packet in mbuf chain m contains a skeletal IP 306 * header (with len, off, ttl, proto, tos, src, dst). 307 * The mbuf chain containing the packet will be freed. 308 * The mbuf opt, if present, will not be freed. 309 * If route ro is present and has ro_rt initialized, route lookup would be 310 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 311 * then result of route lookup is stored in ro->ro_rt. 312 * 313 * In the IP forwarding case, the packet will arrive with options already 314 * inserted, so must have a NULL opt pointer. 315 */ 316 int 317 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 318 struct ip_moptions *imo, struct inpcb *inp) 319 { 320 struct rm_priotracker in_ifa_tracker; 321 struct ip *ip; 322 struct ifnet *ifp = NULL; /* keep compiler happy */ 323 struct mbuf *m0; 324 int hlen = sizeof (struct ip); 325 int mtu = 0; 326 int error = 0; 327 struct sockaddr_in *dst, sin; 328 const struct sockaddr_in *gw; 329 struct in_ifaddr *ia = NULL; 330 struct in_addr src; 331 int isbroadcast; 332 uint16_t ip_len, ip_off; 333 uint32_t fibnum; 334 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 335 int no_route_but_check_spd = 0; 336 #endif 337 338 M_ASSERTPKTHDR(m); 339 NET_EPOCH_ASSERT(); 340 341 if (inp != NULL) { 342 INP_LOCK_ASSERT(inp); 343 M_SETFIB(m, inp->inp_inc.inc_fibnum); 344 if ((flags & IP_NODEFAULTFLOWID) == 0) { 345 m->m_pkthdr.flowid = inp->inp_flowid; 346 M_HASHTYPE_SET(m, inp->inp_flowtype); 347 } 348 #ifdef NUMA 349 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 350 #endif 351 } 352 353 if (opt) { 354 int len = 0; 355 m = ip_insertoptions(m, opt, &len); 356 if (len != 0) 357 hlen = len; /* ip->ip_hl is updated above */ 358 } 359 ip = mtod(m, struct ip *); 360 ip_len = ntohs(ip->ip_len); 361 ip_off = ntohs(ip->ip_off); 362 363 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 364 ip->ip_v = IPVERSION; 365 ip->ip_hl = hlen >> 2; 366 ip_fillid(ip); 367 } else { 368 /* Header already set, fetch hlen from there */ 369 hlen = ip->ip_hl << 2; 370 } 371 if ((flags & IP_FORWARDING) == 0) 372 IPSTAT_INC(ips_localout); 373 374 /* 375 * dst/gw handling: 376 * 377 * gw is readonly but can point either to dst OR rt_gateway, 378 * therefore we need restore gw if we're redoing lookup. 379 */ 380 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 381 if (ro != NULL) 382 dst = (struct sockaddr_in *)&ro->ro_dst; 383 else 384 dst = &sin; 385 if (ro == NULL || ro->ro_nh == NULL) { 386 bzero(dst, sizeof(*dst)); 387 dst->sin_family = AF_INET; 388 dst->sin_len = sizeof(*dst); 389 dst->sin_addr = ip->ip_dst; 390 } 391 gw = dst; 392 again: 393 /* 394 * Validate route against routing table additions; 395 * a better/more specific route might have been added. 396 */ 397 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 398 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 399 /* 400 * If there is a cached route, 401 * check that it is to the same destination 402 * and is still up. If not, free it and try again. 403 * The address family should also be checked in case of sharing the 404 * cache with IPv6. 405 * Also check whether routing cache needs invalidation. 406 */ 407 if (ro != NULL && ro->ro_nh != NULL && 408 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 409 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 410 RO_INVALIDATE_CACHE(ro); 411 ia = NULL; 412 /* 413 * If routing to interface only, short circuit routing lookup. 414 * The use of an all-ones broadcast address implies this; an 415 * interface is specified by the broadcast address of an interface, 416 * or the destination address of a ptp interface. 417 */ 418 if (flags & IP_SENDONES) { 419 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 420 M_GETFIB(m)))) == NULL && 421 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 422 M_GETFIB(m)))) == NULL) { 423 IPSTAT_INC(ips_noroute); 424 error = ENETUNREACH; 425 goto bad; 426 } 427 ip->ip_dst.s_addr = INADDR_BROADCAST; 428 dst->sin_addr = ip->ip_dst; 429 ifp = ia->ia_ifp; 430 mtu = ifp->if_mtu; 431 ip->ip_ttl = 1; 432 isbroadcast = 1; 433 src = IA_SIN(ia)->sin_addr; 434 } else if (flags & IP_ROUTETOIF) { 435 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 436 M_GETFIB(m)))) == NULL && 437 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 438 M_GETFIB(m)))) == NULL) { 439 IPSTAT_INC(ips_noroute); 440 error = ENETUNREACH; 441 goto bad; 442 } 443 ifp = ia->ia_ifp; 444 mtu = ifp->if_mtu; 445 ip->ip_ttl = 1; 446 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 447 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 448 src = IA_SIN(ia)->sin_addr; 449 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 450 imo != NULL && imo->imo_multicast_ifp != NULL) { 451 /* 452 * Bypass the normal routing lookup for multicast 453 * packets if the interface is specified. 454 */ 455 ifp = imo->imo_multicast_ifp; 456 mtu = ifp->if_mtu; 457 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 458 isbroadcast = 0; /* fool gcc */ 459 /* Interface may have no addresses. */ 460 if (ia != NULL) 461 src = IA_SIN(ia)->sin_addr; 462 else 463 src.s_addr = INADDR_ANY; 464 } else if (ro != NULL) { 465 if (ro->ro_nh == NULL) { 466 /* 467 * We want to do any cloning requested by the link 468 * layer, as this is probably required in all cases 469 * for correct operation (as it is for ARP). 470 */ 471 uint32_t flowid; 472 flowid = m->m_pkthdr.flowid; 473 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 474 NHR_REF, flowid); 475 476 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 477 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 478 /* 479 * There is no route for this packet, but it is 480 * possible that a matching SPD entry exists. 481 */ 482 no_route_but_check_spd = 1; 483 goto sendit; 484 #endif 485 IPSTAT_INC(ips_noroute); 486 error = EHOSTUNREACH; 487 goto bad; 488 } 489 } 490 ia = ifatoia(ro->ro_nh->nh_ifa); 491 ifp = ro->ro_nh->nh_ifp; 492 counter_u64_add(ro->ro_nh->nh_pksent, 1); 493 rt_update_ro_flags(ro); 494 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 495 gw = &ro->ro_nh->gw4_sa; 496 if (ro->ro_nh->nh_flags & NHF_HOST) 497 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 498 else if (ifp->if_flags & IFF_BROADCAST) 499 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 500 else 501 isbroadcast = 0; 502 if (ro->ro_nh->nh_flags & NHF_HOST) 503 mtu = ro->ro_nh->nh_mtu; 504 else 505 mtu = ifp->if_mtu; 506 src = IA_SIN(ia)->sin_addr; 507 } else { 508 struct nhop_object *nh; 509 510 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 511 m->m_pkthdr.flowid); 512 if (nh == NULL) { 513 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 514 /* 515 * There is no route for this packet, but it is 516 * possible that a matching SPD entry exists. 517 */ 518 no_route_but_check_spd = 1; 519 goto sendit; 520 #endif 521 IPSTAT_INC(ips_noroute); 522 error = EHOSTUNREACH; 523 goto bad; 524 } 525 ifp = nh->nh_ifp; 526 mtu = nh->nh_mtu; 527 /* 528 * We are rewriting here dst to be gw actually, contradicting 529 * comment at the beginning of the function. However, in this 530 * case we are always dealing with on stack dst. 531 * In case if pfil(9) sends us back to beginning of the 532 * function, the dst would be rewritten by ip_output_pfil(). 533 */ 534 MPASS(dst == &sin); 535 if (nh->nh_flags & NHF_GATEWAY) 536 dst->sin_addr = nh->gw4_sa.sin_addr; 537 ia = ifatoia(nh->nh_ifa); 538 src = IA_SIN(ia)->sin_addr; 539 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 540 (NHF_HOST | NHF_BROADCAST)) || 541 ((ifp->if_flags & IFF_BROADCAST) && 542 in_ifaddr_broadcast(dst->sin_addr, ia))); 543 } 544 545 /* Catch a possible divide by zero later. */ 546 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 547 __func__, mtu, ro, 548 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 549 550 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 551 m->m_flags |= M_MCAST; 552 /* 553 * IP destination address is multicast. Make sure "gw" 554 * still points to the address in "ro". (It may have been 555 * changed to point to a gateway address, above.) 556 */ 557 gw = dst; 558 /* 559 * See if the caller provided any multicast options 560 */ 561 if (imo != NULL) { 562 ip->ip_ttl = imo->imo_multicast_ttl; 563 if (imo->imo_multicast_vif != -1) 564 ip->ip_src.s_addr = 565 ip_mcast_src ? 566 ip_mcast_src(imo->imo_multicast_vif) : 567 INADDR_ANY; 568 } else 569 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 570 /* 571 * Confirm that the outgoing interface supports multicast. 572 */ 573 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 574 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 575 IPSTAT_INC(ips_noroute); 576 error = ENETUNREACH; 577 goto bad; 578 } 579 } 580 /* 581 * If source address not specified yet, use address 582 * of outgoing interface. 583 */ 584 if (ip->ip_src.s_addr == INADDR_ANY) 585 ip->ip_src = src; 586 587 if ((imo == NULL && in_mcast_loop) || 588 (imo && imo->imo_multicast_loop)) { 589 /* 590 * Loop back multicast datagram if not expressly 591 * forbidden to do so, even if we are not a member 592 * of the group; ip_input() will filter it later, 593 * thus deferring a hash lookup and mutex acquisition 594 * at the expense of a cheap copy using m_copym(). 595 */ 596 ip_mloopback(ifp, m, hlen); 597 } else { 598 /* 599 * If we are acting as a multicast router, perform 600 * multicast forwarding as if the packet had just 601 * arrived on the interface to which we are about 602 * to send. The multicast forwarding function 603 * recursively calls this function, using the 604 * IP_FORWARDING flag to prevent infinite recursion. 605 * 606 * Multicasts that are looped back by ip_mloopback(), 607 * above, will be forwarded by the ip_input() routine, 608 * if necessary. 609 */ 610 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 611 /* 612 * If rsvp daemon is not running, do not 613 * set ip_moptions. This ensures that the packet 614 * is multicast and not just sent down one link 615 * as prescribed by rsvpd. 616 */ 617 if (!V_rsvp_on) 618 imo = NULL; 619 if (ip_mforward && 620 ip_mforward(ip, ifp, m, imo) != 0) { 621 m_freem(m); 622 goto done; 623 } 624 } 625 } 626 627 /* 628 * Multicasts with a time-to-live of zero may be looped- 629 * back, above, but must not be transmitted on a network. 630 * Also, multicasts addressed to the loopback interface 631 * are not sent -- the above call to ip_mloopback() will 632 * loop back a copy. ip_input() will drop the copy if 633 * this host does not belong to the destination group on 634 * the loopback interface. 635 */ 636 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 637 m_freem(m); 638 goto done; 639 } 640 641 goto sendit; 642 } 643 644 /* 645 * If the source address is not specified yet, use the address 646 * of the outoing interface. 647 */ 648 if (ip->ip_src.s_addr == INADDR_ANY) 649 ip->ip_src = src; 650 651 /* 652 * Look for broadcast address and 653 * verify user is allowed to send 654 * such a packet. 655 */ 656 if (isbroadcast) { 657 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 658 error = EADDRNOTAVAIL; 659 goto bad; 660 } 661 if ((flags & IP_ALLOWBROADCAST) == 0) { 662 error = EACCES; 663 goto bad; 664 } 665 /* don't allow broadcast messages to be fragmented */ 666 if (ip_len > mtu) { 667 error = EMSGSIZE; 668 goto bad; 669 } 670 m->m_flags |= M_BCAST; 671 } else { 672 m->m_flags &= ~M_BCAST; 673 } 674 675 sendit: 676 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 677 if (IPSEC_ENABLED(ipv4)) { 678 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 679 if (error == EINPROGRESS) 680 error = 0; 681 goto done; 682 } 683 } 684 /* 685 * Check if there was a route for this packet; return error if not. 686 */ 687 if (no_route_but_check_spd) { 688 IPSTAT_INC(ips_noroute); 689 error = EHOSTUNREACH; 690 goto bad; 691 } 692 /* Update variables that are affected by ipsec4_output(). */ 693 ip = mtod(m, struct ip *); 694 hlen = ip->ip_hl << 2; 695 #endif /* IPSEC */ 696 697 /* Jump over all PFIL processing if hooks are not active. */ 698 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 699 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 700 &error)) { 701 case 1: /* Finished */ 702 goto done; 703 704 case 0: /* Continue normally */ 705 ip = mtod(m, struct ip *); 706 break; 707 708 case -1: /* Need to try again */ 709 /* Reset everything for a new round */ 710 if (ro != NULL) { 711 RO_NHFREE(ro); 712 ro->ro_prepend = NULL; 713 } 714 gw = dst; 715 ip = mtod(m, struct ip *); 716 goto again; 717 } 718 } 719 720 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 721 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 722 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 723 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 724 IPSTAT_INC(ips_badaddr); 725 error = EADDRNOTAVAIL; 726 goto bad; 727 } 728 } 729 730 m->m_pkthdr.csum_flags |= CSUM_IP; 731 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 732 m = mb_unmapped_to_ext(m); 733 if (m == NULL) { 734 IPSTAT_INC(ips_odropped); 735 error = ENOBUFS; 736 goto bad; 737 } 738 in_delayed_cksum(m); 739 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 740 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 741 m = mb_unmapped_to_ext(m); 742 if (m == NULL) { 743 IPSTAT_INC(ips_odropped); 744 error = ENOBUFS; 745 goto bad; 746 } 747 } 748 #if defined(SCTP) || defined(SCTP_SUPPORT) 749 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 750 m = mb_unmapped_to_ext(m); 751 if (m == NULL) { 752 IPSTAT_INC(ips_odropped); 753 error = ENOBUFS; 754 goto bad; 755 } 756 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 757 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 758 } 759 #endif 760 761 /* 762 * If small enough for interface, or the interface will take 763 * care of the fragmentation for us, we can just send directly. 764 * Note that if_vxlan could have requested TSO even though the outer 765 * frame is UDP. It is correct to not fragment such datagrams and 766 * instead just pass them on to the driver. 767 */ 768 if (ip_len <= mtu || 769 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 770 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 771 ip->ip_sum = 0; 772 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 773 ip->ip_sum = in_cksum(m, hlen); 774 m->m_pkthdr.csum_flags &= ~CSUM_IP; 775 } 776 777 /* 778 * Record statistics for this interface address. 779 * With CSUM_TSO the byte/packet count will be slightly 780 * incorrect because we count the IP+TCP headers only 781 * once instead of for every generated packet. 782 */ 783 if (!(flags & IP_FORWARDING) && ia) { 784 if (m->m_pkthdr.csum_flags & 785 (CSUM_TSO | CSUM_INNER_TSO)) 786 counter_u64_add(ia->ia_ifa.ifa_opackets, 787 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 788 else 789 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 790 791 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 792 } 793 #ifdef MBUF_STRESS_TEST 794 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 795 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 796 #endif 797 /* 798 * Reset layer specific mbuf flags 799 * to avoid confusing lower layers. 800 */ 801 m_clrprotoflags(m); 802 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 803 error = ip_output_send(inp, ifp, m, gw, ro, 804 (flags & IP_NO_SND_TAG_RL) ? false : true); 805 goto done; 806 } 807 808 /* Balk when DF bit is set or the interface didn't support TSO. */ 809 if ((ip_off & IP_DF) || 810 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 811 error = EMSGSIZE; 812 IPSTAT_INC(ips_cantfrag); 813 goto bad; 814 } 815 816 /* 817 * Too large for interface; fragment if possible. If successful, 818 * on return, m will point to a list of packets to be sent. 819 */ 820 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 821 if (error) 822 goto bad; 823 for (; m; m = m0) { 824 m0 = m->m_nextpkt; 825 m->m_nextpkt = 0; 826 if (error == 0) { 827 /* Record statistics for this interface address. */ 828 if (ia != NULL) { 829 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 830 counter_u64_add(ia->ia_ifa.ifa_obytes, 831 m->m_pkthdr.len); 832 } 833 /* 834 * Reset layer specific mbuf flags 835 * to avoid confusing upper layers. 836 */ 837 m_clrprotoflags(m); 838 839 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 840 mtod(m, struct ip *), NULL); 841 error = ip_output_send(inp, ifp, m, gw, ro, true); 842 } else 843 m_freem(m); 844 } 845 846 if (error == 0) 847 IPSTAT_INC(ips_fragmented); 848 849 done: 850 return (error); 851 bad: 852 m_freem(m); 853 goto done; 854 } 855 856 /* 857 * Create a chain of fragments which fit the given mtu. m_frag points to the 858 * mbuf to be fragmented; on return it points to the chain with the fragments. 859 * Return 0 if no error. If error, m_frag may contain a partially built 860 * chain of fragments that should be freed by the caller. 861 * 862 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 863 */ 864 int 865 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 866 u_long if_hwassist_flags) 867 { 868 int error = 0; 869 int hlen = ip->ip_hl << 2; 870 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 871 int off; 872 struct mbuf *m0 = *m_frag; /* the original packet */ 873 int firstlen; 874 struct mbuf **mnext; 875 int nfrags; 876 uint16_t ip_len, ip_off; 877 878 ip_len = ntohs(ip->ip_len); 879 ip_off = ntohs(ip->ip_off); 880 881 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 882 IPSTAT_INC(ips_cantfrag); 883 return EMSGSIZE; 884 } 885 886 /* 887 * Must be able to put at least 8 bytes per fragment. 888 */ 889 if (len < 8) 890 return EMSGSIZE; 891 892 /* 893 * If the interface will not calculate checksums on 894 * fragmented packets, then do it here. 895 */ 896 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 897 m0 = mb_unmapped_to_ext(m0); 898 if (m0 == NULL) { 899 error = ENOBUFS; 900 IPSTAT_INC(ips_odropped); 901 goto done; 902 } 903 in_delayed_cksum(m0); 904 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 905 } 906 #if defined(SCTP) || defined(SCTP_SUPPORT) 907 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 908 m0 = mb_unmapped_to_ext(m0); 909 if (m0 == NULL) { 910 error = ENOBUFS; 911 IPSTAT_INC(ips_odropped); 912 goto done; 913 } 914 sctp_delayed_cksum(m0, hlen); 915 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 916 } 917 #endif 918 if (len > PAGE_SIZE) { 919 /* 920 * Fragment large datagrams such that each segment 921 * contains a multiple of PAGE_SIZE amount of data, 922 * plus headers. This enables a receiver to perform 923 * page-flipping zero-copy optimizations. 924 * 925 * XXX When does this help given that sender and receiver 926 * could have different page sizes, and also mtu could 927 * be less than the receiver's page size ? 928 */ 929 int newlen; 930 931 off = MIN(mtu, m0->m_pkthdr.len); 932 933 /* 934 * firstlen (off - hlen) must be aligned on an 935 * 8-byte boundary 936 */ 937 if (off < hlen) 938 goto smart_frag_failure; 939 off = ((off - hlen) & ~7) + hlen; 940 newlen = (~PAGE_MASK) & mtu; 941 if ((newlen + sizeof (struct ip)) > mtu) { 942 /* we failed, go back the default */ 943 smart_frag_failure: 944 newlen = len; 945 off = hlen + len; 946 } 947 len = newlen; 948 949 } else { 950 off = hlen + len; 951 } 952 953 firstlen = off - hlen; 954 mnext = &m0->m_nextpkt; /* pointer to next packet */ 955 956 /* 957 * Loop through length of segment after first fragment, 958 * make new header and copy data of each part and link onto chain. 959 * Here, m0 is the original packet, m is the fragment being created. 960 * The fragments are linked off the m_nextpkt of the original 961 * packet, which after processing serves as the first fragment. 962 */ 963 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 964 struct ip *mhip; /* ip header on the fragment */ 965 struct mbuf *m; 966 int mhlen = sizeof (struct ip); 967 968 m = m_gethdr(M_NOWAIT, MT_DATA); 969 if (m == NULL) { 970 error = ENOBUFS; 971 IPSTAT_INC(ips_odropped); 972 goto done; 973 } 974 /* 975 * Make sure the complete packet header gets copied 976 * from the originating mbuf to the newly created 977 * mbuf. This also ensures that existing firewall 978 * classification(s), VLAN tags and so on get copied 979 * to the resulting fragmented packet(s): 980 */ 981 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 982 m_free(m); 983 error = ENOBUFS; 984 IPSTAT_INC(ips_odropped); 985 goto done; 986 } 987 /* 988 * In the first mbuf, leave room for the link header, then 989 * copy the original IP header including options. The payload 990 * goes into an additional mbuf chain returned by m_copym(). 991 */ 992 m->m_data += max_linkhdr; 993 mhip = mtod(m, struct ip *); 994 *mhip = *ip; 995 if (hlen > sizeof (struct ip)) { 996 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 997 mhip->ip_v = IPVERSION; 998 mhip->ip_hl = mhlen >> 2; 999 } 1000 m->m_len = mhlen; 1001 /* XXX do we need to add ip_off below ? */ 1002 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1003 if (off + len >= ip_len) 1004 len = ip_len - off; 1005 else 1006 mhip->ip_off |= IP_MF; 1007 mhip->ip_len = htons((u_short)(len + mhlen)); 1008 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1009 if (m->m_next == NULL) { /* copy failed */ 1010 m_free(m); 1011 error = ENOBUFS; /* ??? */ 1012 IPSTAT_INC(ips_odropped); 1013 goto done; 1014 } 1015 m->m_pkthdr.len = mhlen + len; 1016 #ifdef MAC 1017 mac_netinet_fragment(m0, m); 1018 #endif 1019 mhip->ip_off = htons(mhip->ip_off); 1020 mhip->ip_sum = 0; 1021 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1022 mhip->ip_sum = in_cksum(m, mhlen); 1023 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1024 } 1025 *mnext = m; 1026 mnext = &m->m_nextpkt; 1027 } 1028 IPSTAT_ADD(ips_ofragments, nfrags); 1029 1030 /* 1031 * Update first fragment by trimming what's been copied out 1032 * and updating header. 1033 */ 1034 m_adj(m0, hlen + firstlen - ip_len); 1035 m0->m_pkthdr.len = hlen + firstlen; 1036 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1037 ip->ip_off = htons(ip_off | IP_MF); 1038 ip->ip_sum = 0; 1039 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1040 ip->ip_sum = in_cksum(m0, hlen); 1041 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1042 } 1043 1044 done: 1045 *m_frag = m0; 1046 return error; 1047 } 1048 1049 void 1050 in_delayed_cksum(struct mbuf *m) 1051 { 1052 struct ip *ip; 1053 struct udphdr *uh; 1054 uint16_t cklen, csum, offset; 1055 1056 ip = mtod(m, struct ip *); 1057 offset = ip->ip_hl << 2 ; 1058 1059 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1060 /* if udp header is not in the first mbuf copy udplen */ 1061 if (offset + sizeof(struct udphdr) > m->m_len) { 1062 m_copydata(m, offset + offsetof(struct udphdr, 1063 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1064 cklen = ntohs(cklen); 1065 } else { 1066 uh = (struct udphdr *)mtodo(m, offset); 1067 cklen = ntohs(uh->uh_ulen); 1068 } 1069 csum = in_cksum_skip(m, cklen + offset, offset); 1070 if (csum == 0) 1071 csum = 0xffff; 1072 } else { 1073 cklen = ntohs(ip->ip_len); 1074 csum = in_cksum_skip(m, cklen, offset); 1075 } 1076 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1077 1078 if (offset + sizeof(csum) > m->m_len) 1079 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1080 else 1081 *(u_short *)mtodo(m, offset) = csum; 1082 } 1083 1084 /* 1085 * IP socket option processing. 1086 */ 1087 int 1088 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1089 { 1090 struct inpcb *inp = sotoinpcb(so); 1091 int error, optval; 1092 #ifdef RSS 1093 uint32_t rss_bucket; 1094 int retval; 1095 #endif 1096 1097 error = optval = 0; 1098 if (sopt->sopt_level != IPPROTO_IP) { 1099 error = EINVAL; 1100 1101 if (sopt->sopt_level == SOL_SOCKET && 1102 sopt->sopt_dir == SOPT_SET) { 1103 switch (sopt->sopt_name) { 1104 case SO_REUSEADDR: 1105 INP_WLOCK(inp); 1106 if ((so->so_options & SO_REUSEADDR) != 0) 1107 inp->inp_flags2 |= INP_REUSEADDR; 1108 else 1109 inp->inp_flags2 &= ~INP_REUSEADDR; 1110 INP_WUNLOCK(inp); 1111 error = 0; 1112 break; 1113 case SO_REUSEPORT: 1114 INP_WLOCK(inp); 1115 if ((so->so_options & SO_REUSEPORT) != 0) 1116 inp->inp_flags2 |= INP_REUSEPORT; 1117 else 1118 inp->inp_flags2 &= ~INP_REUSEPORT; 1119 INP_WUNLOCK(inp); 1120 error = 0; 1121 break; 1122 case SO_REUSEPORT_LB: 1123 INP_WLOCK(inp); 1124 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1125 inp->inp_flags2 |= INP_REUSEPORT_LB; 1126 else 1127 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1128 INP_WUNLOCK(inp); 1129 error = 0; 1130 break; 1131 case SO_SETFIB: 1132 INP_WLOCK(inp); 1133 inp->inp_inc.inc_fibnum = so->so_fibnum; 1134 INP_WUNLOCK(inp); 1135 error = 0; 1136 break; 1137 case SO_MAX_PACING_RATE: 1138 #ifdef RATELIMIT 1139 INP_WLOCK(inp); 1140 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1141 INP_WUNLOCK(inp); 1142 error = 0; 1143 #else 1144 error = EOPNOTSUPP; 1145 #endif 1146 break; 1147 default: 1148 break; 1149 } 1150 } 1151 return (error); 1152 } 1153 1154 switch (sopt->sopt_dir) { 1155 case SOPT_SET: 1156 switch (sopt->sopt_name) { 1157 case IP_OPTIONS: 1158 #ifdef notyet 1159 case IP_RETOPTS: 1160 #endif 1161 { 1162 struct mbuf *m; 1163 if (sopt->sopt_valsize > MLEN) { 1164 error = EMSGSIZE; 1165 break; 1166 } 1167 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1168 if (m == NULL) { 1169 error = ENOBUFS; 1170 break; 1171 } 1172 m->m_len = sopt->sopt_valsize; 1173 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1174 m->m_len); 1175 if (error) { 1176 m_free(m); 1177 break; 1178 } 1179 INP_WLOCK(inp); 1180 error = ip_pcbopts(inp, sopt->sopt_name, m); 1181 INP_WUNLOCK(inp); 1182 return (error); 1183 } 1184 1185 case IP_BINDANY: 1186 if (sopt->sopt_td != NULL) { 1187 error = priv_check(sopt->sopt_td, 1188 PRIV_NETINET_BINDANY); 1189 if (error) 1190 break; 1191 } 1192 /* FALLTHROUGH */ 1193 case IP_BINDMULTI: 1194 #ifdef RSS 1195 case IP_RSS_LISTEN_BUCKET: 1196 #endif 1197 case IP_TOS: 1198 case IP_TTL: 1199 case IP_MINTTL: 1200 case IP_RECVOPTS: 1201 case IP_RECVRETOPTS: 1202 case IP_ORIGDSTADDR: 1203 case IP_RECVDSTADDR: 1204 case IP_RECVTTL: 1205 case IP_RECVIF: 1206 case IP_ONESBCAST: 1207 case IP_DONTFRAG: 1208 case IP_RECVTOS: 1209 case IP_RECVFLOWID: 1210 #ifdef RSS 1211 case IP_RECVRSSBUCKETID: 1212 #endif 1213 error = sooptcopyin(sopt, &optval, sizeof optval, 1214 sizeof optval); 1215 if (error) 1216 break; 1217 1218 switch (sopt->sopt_name) { 1219 case IP_TOS: 1220 inp->inp_ip_tos = optval; 1221 break; 1222 1223 case IP_TTL: 1224 inp->inp_ip_ttl = optval; 1225 break; 1226 1227 case IP_MINTTL: 1228 if (optval >= 0 && optval <= MAXTTL) 1229 inp->inp_ip_minttl = optval; 1230 else 1231 error = EINVAL; 1232 break; 1233 1234 #define OPTSET(bit) do { \ 1235 INP_WLOCK(inp); \ 1236 if (optval) \ 1237 inp->inp_flags |= bit; \ 1238 else \ 1239 inp->inp_flags &= ~bit; \ 1240 INP_WUNLOCK(inp); \ 1241 } while (0) 1242 1243 #define OPTSET2(bit, val) do { \ 1244 INP_WLOCK(inp); \ 1245 if (val) \ 1246 inp->inp_flags2 |= bit; \ 1247 else \ 1248 inp->inp_flags2 &= ~bit; \ 1249 INP_WUNLOCK(inp); \ 1250 } while (0) 1251 1252 case IP_RECVOPTS: 1253 OPTSET(INP_RECVOPTS); 1254 break; 1255 1256 case IP_RECVRETOPTS: 1257 OPTSET(INP_RECVRETOPTS); 1258 break; 1259 1260 case IP_RECVDSTADDR: 1261 OPTSET(INP_RECVDSTADDR); 1262 break; 1263 1264 case IP_ORIGDSTADDR: 1265 OPTSET2(INP_ORIGDSTADDR, optval); 1266 break; 1267 1268 case IP_RECVTTL: 1269 OPTSET(INP_RECVTTL); 1270 break; 1271 1272 case IP_RECVIF: 1273 OPTSET(INP_RECVIF); 1274 break; 1275 1276 case IP_ONESBCAST: 1277 OPTSET(INP_ONESBCAST); 1278 break; 1279 case IP_DONTFRAG: 1280 OPTSET(INP_DONTFRAG); 1281 break; 1282 case IP_BINDANY: 1283 OPTSET(INP_BINDANY); 1284 break; 1285 case IP_RECVTOS: 1286 OPTSET(INP_RECVTOS); 1287 break; 1288 case IP_BINDMULTI: 1289 OPTSET2(INP_BINDMULTI, optval); 1290 break; 1291 case IP_RECVFLOWID: 1292 OPTSET2(INP_RECVFLOWID, optval); 1293 break; 1294 #ifdef RSS 1295 case IP_RSS_LISTEN_BUCKET: 1296 if ((optval >= 0) && 1297 (optval < rss_getnumbuckets())) { 1298 inp->inp_rss_listen_bucket = optval; 1299 OPTSET2(INP_RSS_BUCKET_SET, 1); 1300 } else { 1301 error = EINVAL; 1302 } 1303 break; 1304 case IP_RECVRSSBUCKETID: 1305 OPTSET2(INP_RECVRSSBUCKETID, optval); 1306 break; 1307 #endif 1308 } 1309 break; 1310 #undef OPTSET 1311 #undef OPTSET2 1312 1313 /* 1314 * Multicast socket options are processed by the in_mcast 1315 * module. 1316 */ 1317 case IP_MULTICAST_IF: 1318 case IP_MULTICAST_VIF: 1319 case IP_MULTICAST_TTL: 1320 case IP_MULTICAST_LOOP: 1321 case IP_ADD_MEMBERSHIP: 1322 case IP_DROP_MEMBERSHIP: 1323 case IP_ADD_SOURCE_MEMBERSHIP: 1324 case IP_DROP_SOURCE_MEMBERSHIP: 1325 case IP_BLOCK_SOURCE: 1326 case IP_UNBLOCK_SOURCE: 1327 case IP_MSFILTER: 1328 case MCAST_JOIN_GROUP: 1329 case MCAST_LEAVE_GROUP: 1330 case MCAST_JOIN_SOURCE_GROUP: 1331 case MCAST_LEAVE_SOURCE_GROUP: 1332 case MCAST_BLOCK_SOURCE: 1333 case MCAST_UNBLOCK_SOURCE: 1334 error = inp_setmoptions(inp, sopt); 1335 break; 1336 1337 case IP_PORTRANGE: 1338 error = sooptcopyin(sopt, &optval, sizeof optval, 1339 sizeof optval); 1340 if (error) 1341 break; 1342 1343 INP_WLOCK(inp); 1344 switch (optval) { 1345 case IP_PORTRANGE_DEFAULT: 1346 inp->inp_flags &= ~(INP_LOWPORT); 1347 inp->inp_flags &= ~(INP_HIGHPORT); 1348 break; 1349 1350 case IP_PORTRANGE_HIGH: 1351 inp->inp_flags &= ~(INP_LOWPORT); 1352 inp->inp_flags |= INP_HIGHPORT; 1353 break; 1354 1355 case IP_PORTRANGE_LOW: 1356 inp->inp_flags &= ~(INP_HIGHPORT); 1357 inp->inp_flags |= INP_LOWPORT; 1358 break; 1359 1360 default: 1361 error = EINVAL; 1362 break; 1363 } 1364 INP_WUNLOCK(inp); 1365 break; 1366 1367 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1368 case IP_IPSEC_POLICY: 1369 if (IPSEC_ENABLED(ipv4)) { 1370 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1371 break; 1372 } 1373 /* FALLTHROUGH */ 1374 #endif /* IPSEC */ 1375 1376 default: 1377 error = ENOPROTOOPT; 1378 break; 1379 } 1380 break; 1381 1382 case SOPT_GET: 1383 switch (sopt->sopt_name) { 1384 case IP_OPTIONS: 1385 case IP_RETOPTS: 1386 INP_RLOCK(inp); 1387 if (inp->inp_options) { 1388 struct mbuf *options; 1389 1390 options = m_copym(inp->inp_options, 0, 1391 M_COPYALL, M_NOWAIT); 1392 INP_RUNLOCK(inp); 1393 if (options != NULL) { 1394 error = sooptcopyout(sopt, 1395 mtod(options, char *), 1396 options->m_len); 1397 m_freem(options); 1398 } else 1399 error = ENOMEM; 1400 } else { 1401 INP_RUNLOCK(inp); 1402 sopt->sopt_valsize = 0; 1403 } 1404 break; 1405 1406 case IP_TOS: 1407 case IP_TTL: 1408 case IP_MINTTL: 1409 case IP_RECVOPTS: 1410 case IP_RECVRETOPTS: 1411 case IP_ORIGDSTADDR: 1412 case IP_RECVDSTADDR: 1413 case IP_RECVTTL: 1414 case IP_RECVIF: 1415 case IP_PORTRANGE: 1416 case IP_ONESBCAST: 1417 case IP_DONTFRAG: 1418 case IP_BINDANY: 1419 case IP_RECVTOS: 1420 case IP_BINDMULTI: 1421 case IP_FLOWID: 1422 case IP_FLOWTYPE: 1423 case IP_RECVFLOWID: 1424 #ifdef RSS 1425 case IP_RSSBUCKETID: 1426 case IP_RECVRSSBUCKETID: 1427 #endif 1428 switch (sopt->sopt_name) { 1429 case IP_TOS: 1430 optval = inp->inp_ip_tos; 1431 break; 1432 1433 case IP_TTL: 1434 optval = inp->inp_ip_ttl; 1435 break; 1436 1437 case IP_MINTTL: 1438 optval = inp->inp_ip_minttl; 1439 break; 1440 1441 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1442 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1443 1444 case IP_RECVOPTS: 1445 optval = OPTBIT(INP_RECVOPTS); 1446 break; 1447 1448 case IP_RECVRETOPTS: 1449 optval = OPTBIT(INP_RECVRETOPTS); 1450 break; 1451 1452 case IP_RECVDSTADDR: 1453 optval = OPTBIT(INP_RECVDSTADDR); 1454 break; 1455 1456 case IP_ORIGDSTADDR: 1457 optval = OPTBIT2(INP_ORIGDSTADDR); 1458 break; 1459 1460 case IP_RECVTTL: 1461 optval = OPTBIT(INP_RECVTTL); 1462 break; 1463 1464 case IP_RECVIF: 1465 optval = OPTBIT(INP_RECVIF); 1466 break; 1467 1468 case IP_PORTRANGE: 1469 if (inp->inp_flags & INP_HIGHPORT) 1470 optval = IP_PORTRANGE_HIGH; 1471 else if (inp->inp_flags & INP_LOWPORT) 1472 optval = IP_PORTRANGE_LOW; 1473 else 1474 optval = 0; 1475 break; 1476 1477 case IP_ONESBCAST: 1478 optval = OPTBIT(INP_ONESBCAST); 1479 break; 1480 case IP_DONTFRAG: 1481 optval = OPTBIT(INP_DONTFRAG); 1482 break; 1483 case IP_BINDANY: 1484 optval = OPTBIT(INP_BINDANY); 1485 break; 1486 case IP_RECVTOS: 1487 optval = OPTBIT(INP_RECVTOS); 1488 break; 1489 case IP_FLOWID: 1490 optval = inp->inp_flowid; 1491 break; 1492 case IP_FLOWTYPE: 1493 optval = inp->inp_flowtype; 1494 break; 1495 case IP_RECVFLOWID: 1496 optval = OPTBIT2(INP_RECVFLOWID); 1497 break; 1498 #ifdef RSS 1499 case IP_RSSBUCKETID: 1500 retval = rss_hash2bucket(inp->inp_flowid, 1501 inp->inp_flowtype, 1502 &rss_bucket); 1503 if (retval == 0) 1504 optval = rss_bucket; 1505 else 1506 error = EINVAL; 1507 break; 1508 case IP_RECVRSSBUCKETID: 1509 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1510 break; 1511 #endif 1512 case IP_BINDMULTI: 1513 optval = OPTBIT2(INP_BINDMULTI); 1514 break; 1515 } 1516 error = sooptcopyout(sopt, &optval, sizeof optval); 1517 break; 1518 1519 /* 1520 * Multicast socket options are processed by the in_mcast 1521 * module. 1522 */ 1523 case IP_MULTICAST_IF: 1524 case IP_MULTICAST_VIF: 1525 case IP_MULTICAST_TTL: 1526 case IP_MULTICAST_LOOP: 1527 case IP_MSFILTER: 1528 error = inp_getmoptions(inp, sopt); 1529 break; 1530 1531 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1532 case IP_IPSEC_POLICY: 1533 if (IPSEC_ENABLED(ipv4)) { 1534 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1535 break; 1536 } 1537 /* FALLTHROUGH */ 1538 #endif /* IPSEC */ 1539 1540 default: 1541 error = ENOPROTOOPT; 1542 break; 1543 } 1544 break; 1545 } 1546 return (error); 1547 } 1548 1549 /* 1550 * Routine called from ip_output() to loop back a copy of an IP multicast 1551 * packet to the input queue of a specified interface. Note that this 1552 * calls the output routine of the loopback "driver", but with an interface 1553 * pointer that might NOT be a loopback interface -- evil, but easier than 1554 * replicating that code here. 1555 */ 1556 static void 1557 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1558 { 1559 struct ip *ip; 1560 struct mbuf *copym; 1561 1562 /* 1563 * Make a deep copy of the packet because we're going to 1564 * modify the pack in order to generate checksums. 1565 */ 1566 copym = m_dup(m, M_NOWAIT); 1567 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1568 copym = m_pullup(copym, hlen); 1569 if (copym != NULL) { 1570 /* If needed, compute the checksum and mark it as valid. */ 1571 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1572 in_delayed_cksum(copym); 1573 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1574 copym->m_pkthdr.csum_flags |= 1575 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1576 copym->m_pkthdr.csum_data = 0xffff; 1577 } 1578 /* 1579 * We don't bother to fragment if the IP length is greater 1580 * than the interface's MTU. Can this possibly matter? 1581 */ 1582 ip = mtod(copym, struct ip *); 1583 ip->ip_sum = 0; 1584 ip->ip_sum = in_cksum(copym, hlen); 1585 if_simloop(ifp, copym, AF_INET, 0); 1586 } 1587 } 1588