xref: /freebsd/sys/netinet/ip_output.c (revision 0bb263df82e129f5f8c82da6deb55dfe10daa677)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipsec.h"
35 #include "opt_mac.h"
36 #include "opt_mbuf_stress_test.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/netisr.h>
51 #include <net/pfil.h>
52 #include <net/route.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/ip.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip_var.h>
60 #include <netinet/ip_options.h>
61 
62 #if defined(IPSEC) || defined(FAST_IPSEC)
63 #include <netinet/ip_ipsec.h>
64 #ifdef IPSEC
65 #include <netinet6/ipsec.h>
66 #endif
67 #ifdef FAST_IPSEC
68 #include <netipsec/ipsec.h>
69 #endif
70 #endif /*IPSEC*/
71 
72 #include <machine/in_cksum.h>
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
77 				x, (ntohl(a.s_addr)>>24)&0xFF,\
78 				  (ntohl(a.s_addr)>>16)&0xFF,\
79 				  (ntohl(a.s_addr)>>8)&0xFF,\
80 				  (ntohl(a.s_addr))&0xFF, y);
81 
82 u_short ip_id;
83 
84 #ifdef MBUF_STRESS_TEST
85 int mbuf_frag_size = 0;
86 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
87 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
88 #endif
89 
90 static void	ip_mloopback
91 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
92 
93 
94 extern	struct protosw inetsw[];
95 
96 /*
97  * IP output.  The packet in mbuf chain m contains a skeletal IP
98  * header (with len, off, ttl, proto, tos, src, dst).
99  * The mbuf chain containing the packet will be freed.
100  * The mbuf opt, if present, will not be freed.
101  * In the IP forwarding case, the packet will arrive with options already
102  * inserted, so must have a NULL opt pointer.
103  */
104 int
105 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
106     struct ip_moptions *imo, struct inpcb *inp)
107 {
108 	struct ip *ip;
109 	struct ifnet *ifp = NULL;	/* keep compiler happy */
110 	struct mbuf *m0;
111 	int hlen = sizeof (struct ip);
112 	int mtu;
113 	int len, error = 0;
114 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
115 	struct in_ifaddr *ia = NULL;
116 	int isbroadcast, sw_csum;
117 	struct route iproute;
118 	struct in_addr odst;
119 #ifdef IPFIREWALL_FORWARD
120 	struct m_tag *fwd_tag = NULL;
121 #endif
122 	M_ASSERTPKTHDR(m);
123 
124 	if (ro == NULL) {
125 		ro = &iproute;
126 		bzero(ro, sizeof (*ro));
127 	}
128 
129 	if (inp != NULL)
130 		INP_LOCK_ASSERT(inp);
131 
132 	if (opt) {
133 		len = 0;
134 		m = ip_insertoptions(m, opt, &len);
135 		if (len != 0)
136 			hlen = len;
137 	}
138 	ip = mtod(m, struct ip *);
139 
140 	/*
141 	 * Fill in IP header.  If we are not allowing fragmentation,
142 	 * then the ip_id field is meaningless, but we don't set it
143 	 * to zero.  Doing so causes various problems when devices along
144 	 * the path (routers, load balancers, firewalls, etc.) illegally
145 	 * disable DF on our packet.  Note that a 16-bit counter
146 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
147 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
148 	 * for Counting NATted Hosts", Proc. IMW'02, available at
149 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
150 	 */
151 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
152 		ip->ip_v = IPVERSION;
153 		ip->ip_hl = hlen >> 2;
154 		ip->ip_id = ip_newid();
155 		ipstat.ips_localout++;
156 	} else {
157 		hlen = ip->ip_hl << 2;
158 	}
159 
160 	dst = (struct sockaddr_in *)&ro->ro_dst;
161 again:
162 	/*
163 	 * If there is a cached route,
164 	 * check that it is to the same destination
165 	 * and is still up.  If not, free it and try again.
166 	 * The address family should also be checked in case of sharing the
167 	 * cache with IPv6.
168 	 */
169 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
170 			  dst->sin_family != AF_INET ||
171 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
172 		RTFREE(ro->ro_rt);
173 		ro->ro_rt = (struct rtentry *)NULL;
174 	}
175 #ifdef IPFIREWALL_FORWARD
176 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
177 #else
178 	if (ro->ro_rt == NULL) {
179 #endif
180 		bzero(dst, sizeof(*dst));
181 		dst->sin_family = AF_INET;
182 		dst->sin_len = sizeof(*dst);
183 		dst->sin_addr = ip->ip_dst;
184 	}
185 	/*
186 	 * If routing to interface only, short circuit routing lookup.
187 	 * The use of an all-ones broadcast address implies this; an
188 	 * interface is specified by the broadcast address of an interface,
189 	 * or the destination address of a ptp interface.
190 	 */
191 	if (flags & IP_SENDONES) {
192 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
193 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
194 			ipstat.ips_noroute++;
195 			error = ENETUNREACH;
196 			goto bad;
197 		}
198 		ip->ip_dst.s_addr = INADDR_BROADCAST;
199 		dst->sin_addr = ip->ip_dst;
200 		ifp = ia->ia_ifp;
201 		ip->ip_ttl = 1;
202 		isbroadcast = 1;
203 	} else if (flags & IP_ROUTETOIF) {
204 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
205 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
206 			ipstat.ips_noroute++;
207 			error = ENETUNREACH;
208 			goto bad;
209 		}
210 		ifp = ia->ia_ifp;
211 		ip->ip_ttl = 1;
212 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
213 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
214 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
215 		/*
216 		 * Bypass the normal routing lookup for multicast
217 		 * packets if the interface is specified.
218 		 */
219 		ifp = imo->imo_multicast_ifp;
220 		IFP_TO_IA(ifp, ia);
221 		isbroadcast = 0;	/* fool gcc */
222 	} else {
223 		/*
224 		 * We want to do any cloning requested by the link layer,
225 		 * as this is probably required in all cases for correct
226 		 * operation (as it is for ARP).
227 		 */
228 		if (ro->ro_rt == NULL)
229 			rtalloc_ign(ro, 0);
230 		if (ro->ro_rt == NULL) {
231 			ipstat.ips_noroute++;
232 			error = EHOSTUNREACH;
233 			goto bad;
234 		}
235 		ia = ifatoia(ro->ro_rt->rt_ifa);
236 		ifp = ro->ro_rt->rt_ifp;
237 		ro->ro_rt->rt_rmx.rmx_pksent++;
238 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
239 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
240 		if (ro->ro_rt->rt_flags & RTF_HOST)
241 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
242 		else
243 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
244 	}
245 	/*
246 	 * Calculate MTU.  If we have a route that is up, use that,
247 	 * otherwise use the interface's MTU.
248 	 */
249 	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
250 		/*
251 		 * This case can happen if the user changed the MTU
252 		 * of an interface after enabling IP on it.  Because
253 		 * most netifs don't keep track of routes pointing to
254 		 * them, there is no way for one to update all its
255 		 * routes when the MTU is changed.
256 		 */
257 		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
258 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
259 		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
260 	} else {
261 		mtu = ifp->if_mtu;
262 	}
263 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
264 		struct in_multi *inm;
265 
266 		m->m_flags |= M_MCAST;
267 		/*
268 		 * IP destination address is multicast.  Make sure "dst"
269 		 * still points to the address in "ro".  (It may have been
270 		 * changed to point to a gateway address, above.)
271 		 */
272 		dst = (struct sockaddr_in *)&ro->ro_dst;
273 		/*
274 		 * See if the caller provided any multicast options
275 		 */
276 		if (imo != NULL) {
277 			ip->ip_ttl = imo->imo_multicast_ttl;
278 			if (imo->imo_multicast_vif != -1)
279 				ip->ip_src.s_addr =
280 				    ip_mcast_src ?
281 				    ip_mcast_src(imo->imo_multicast_vif) :
282 				    INADDR_ANY;
283 		} else
284 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
285 		/*
286 		 * Confirm that the outgoing interface supports multicast.
287 		 */
288 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
289 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
290 				ipstat.ips_noroute++;
291 				error = ENETUNREACH;
292 				goto bad;
293 			}
294 		}
295 		/*
296 		 * If source address not specified yet, use address
297 		 * of outgoing interface.
298 		 */
299 		if (ip->ip_src.s_addr == INADDR_ANY) {
300 			/* Interface may have no addresses. */
301 			if (ia != NULL)
302 				ip->ip_src = IA_SIN(ia)->sin_addr;
303 		}
304 
305 		IN_MULTI_LOCK();
306 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
307 		if (inm != NULL &&
308 		   (imo == NULL || imo->imo_multicast_loop)) {
309 			IN_MULTI_UNLOCK();
310 			/*
311 			 * If we belong to the destination multicast group
312 			 * on the outgoing interface, and the caller did not
313 			 * forbid loopback, loop back a copy.
314 			 */
315 			ip_mloopback(ifp, m, dst, hlen);
316 		}
317 		else {
318 			IN_MULTI_UNLOCK();
319 			/*
320 			 * If we are acting as a multicast router, perform
321 			 * multicast forwarding as if the packet had just
322 			 * arrived on the interface to which we are about
323 			 * to send.  The multicast forwarding function
324 			 * recursively calls this function, using the
325 			 * IP_FORWARDING flag to prevent infinite recursion.
326 			 *
327 			 * Multicasts that are looped back by ip_mloopback(),
328 			 * above, will be forwarded by the ip_input() routine,
329 			 * if necessary.
330 			 */
331 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
332 				/*
333 				 * If rsvp daemon is not running, do not
334 				 * set ip_moptions. This ensures that the packet
335 				 * is multicast and not just sent down one link
336 				 * as prescribed by rsvpd.
337 				 */
338 				if (!rsvp_on)
339 					imo = NULL;
340 				if (ip_mforward &&
341 				    ip_mforward(ip, ifp, m, imo) != 0) {
342 					m_freem(m);
343 					goto done;
344 				}
345 			}
346 		}
347 
348 		/*
349 		 * Multicasts with a time-to-live of zero may be looped-
350 		 * back, above, but must not be transmitted on a network.
351 		 * Also, multicasts addressed to the loopback interface
352 		 * are not sent -- the above call to ip_mloopback() will
353 		 * loop back a copy if this host actually belongs to the
354 		 * destination group on the loopback interface.
355 		 */
356 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
357 			m_freem(m);
358 			goto done;
359 		}
360 
361 		goto sendit;
362 	}
363 
364 	/*
365 	 * If the source address is not specified yet, use the address
366 	 * of the outoing interface.
367 	 */
368 	if (ip->ip_src.s_addr == INADDR_ANY) {
369 		/* Interface may have no addresses. */
370 		if (ia != NULL) {
371 			ip->ip_src = IA_SIN(ia)->sin_addr;
372 		}
373 	}
374 
375 	/*
376 	 * Verify that we have any chance at all of being able to queue the
377 	 * packet or packet fragments, unless ALTQ is enabled on the given
378 	 * interface in which case packetdrop should be done by queueing.
379 	 */
380 #ifdef ALTQ
381 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
382 	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
383 	    ifp->if_snd.ifq_maxlen))
384 #else
385 	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
386 	    ifp->if_snd.ifq_maxlen)
387 #endif /* ALTQ */
388 	{
389 		error = ENOBUFS;
390 		ipstat.ips_odropped++;
391 		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
392 		goto bad;
393 	}
394 
395 	/*
396 	 * Look for broadcast address and
397 	 * verify user is allowed to send
398 	 * such a packet.
399 	 */
400 	if (isbroadcast) {
401 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
402 			error = EADDRNOTAVAIL;
403 			goto bad;
404 		}
405 		if ((flags & IP_ALLOWBROADCAST) == 0) {
406 			error = EACCES;
407 			goto bad;
408 		}
409 		/* don't allow broadcast messages to be fragmented */
410 		if (ip->ip_len > mtu) {
411 			error = EMSGSIZE;
412 			goto bad;
413 		}
414 		m->m_flags |= M_BCAST;
415 	} else {
416 		m->m_flags &= ~M_BCAST;
417 	}
418 
419 sendit:
420 #if defined(IPSEC) || defined(FAST_IPSEC)
421 	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
422 	case 1:
423 		goto bad;
424 	case -1:
425 		goto done;
426 	case 0:
427 	default:
428 		break;	/* Continue with packet processing. */
429 	}
430 	/* Update variables that are affected by ipsec4_output(). */
431 	ip = mtod(m, struct ip *);
432 	hlen = ip->ip_hl << 2;
433 #endif /* IPSEC */
434 
435 	/* Jump over all PFIL processing if hooks are not active. */
436 	if (!PFIL_HOOKED(&inet_pfil_hook))
437 		goto passout;
438 
439 	/* Run through list of hooks for output packets. */
440 	odst.s_addr = ip->ip_dst.s_addr;
441 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
442 	if (error != 0 || m == NULL)
443 		goto done;
444 
445 	ip = mtod(m, struct ip *);
446 
447 	/* See if destination IP address was changed by packet filter. */
448 	if (odst.s_addr != ip->ip_dst.s_addr) {
449 		m->m_flags |= M_SKIP_FIREWALL;
450 		/* If destination is now ourself drop to ip_input(). */
451 		if (in_localip(ip->ip_dst)) {
452 			m->m_flags |= M_FASTFWD_OURS;
453 			if (m->m_pkthdr.rcvif == NULL)
454 				m->m_pkthdr.rcvif = loif;
455 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
456 				m->m_pkthdr.csum_flags |=
457 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
458 				m->m_pkthdr.csum_data = 0xffff;
459 			}
460 			m->m_pkthdr.csum_flags |=
461 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
462 
463 			error = netisr_queue(NETISR_IP, m);
464 			goto done;
465 		} else
466 			goto again;	/* Redo the routing table lookup. */
467 	}
468 
469 #ifdef IPFIREWALL_FORWARD
470 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
471 	if (m->m_flags & M_FASTFWD_OURS) {
472 		if (m->m_pkthdr.rcvif == NULL)
473 			m->m_pkthdr.rcvif = loif;
474 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
475 			m->m_pkthdr.csum_flags |=
476 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
477 			m->m_pkthdr.csum_data = 0xffff;
478 		}
479 		m->m_pkthdr.csum_flags |=
480 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
481 
482 		error = netisr_queue(NETISR_IP, m);
483 		goto done;
484 	}
485 	/* Or forward to some other address? */
486 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
487 	if (fwd_tag) {
488 		dst = (struct sockaddr_in *)&ro->ro_dst;
489 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
490 		m->m_flags |= M_SKIP_FIREWALL;
491 		m_tag_delete(m, fwd_tag);
492 		goto again;
493 	}
494 #endif /* IPFIREWALL_FORWARD */
495 
496 passout:
497 	/* 127/8 must not appear on wire - RFC1122. */
498 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
499 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
500 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
501 			ipstat.ips_badaddr++;
502 			error = EADDRNOTAVAIL;
503 			goto bad;
504 		}
505 	}
506 
507 	m->m_pkthdr.csum_flags |= CSUM_IP;
508 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
509 	if (sw_csum & CSUM_DELAY_DATA) {
510 		in_delayed_cksum(m);
511 		sw_csum &= ~CSUM_DELAY_DATA;
512 	}
513 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
514 
515 	/*
516 	 * If small enough for interface, or the interface will take
517 	 * care of the fragmentation for us, we can just send directly.
518 	 */
519 	if (ip->ip_len <= mtu ||
520 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
521 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
522 		ip->ip_len = htons(ip->ip_len);
523 		ip->ip_off = htons(ip->ip_off);
524 		ip->ip_sum = 0;
525 		if (sw_csum & CSUM_DELAY_IP)
526 			ip->ip_sum = in_cksum(m, hlen);
527 
528 		/*
529 		 * Record statistics for this interface address.
530 		 * With CSUM_TSO the byte/packet count will be slightly
531 		 * incorrect because we count the IP+TCP headers only
532 		 * once instead of for every generated packet.
533 		 */
534 		if (!(flags & IP_FORWARDING) && ia) {
535 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
536 				ia->ia_ifa.if_opackets +=
537 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
538 			else
539 				ia->ia_ifa.if_opackets++;
540 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
541 		}
542 #ifdef IPSEC
543 		/* clean ipsec history once it goes out of the node */
544 		ipsec_delaux(m);
545 #endif
546 #ifdef MBUF_STRESS_TEST
547 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
548 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
549 #endif
550 		/*
551 		 * Reset layer specific mbuf flags
552 		 * to avoid confusing lower layers.
553 		 */
554 		m->m_flags &= ~(M_PROTOFLAGS);
555 
556 		error = (*ifp->if_output)(ifp, m,
557 				(struct sockaddr *)dst, ro->ro_rt);
558 		goto done;
559 	}
560 
561 	/* Balk when DF bit is set or the interface didn't support TSO. */
562 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
563 		error = EMSGSIZE;
564 		ipstat.ips_cantfrag++;
565 		goto bad;
566 	}
567 
568 	/*
569 	 * Too large for interface; fragment if possible. If successful,
570 	 * on return, m will point to a list of packets to be sent.
571 	 */
572 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
573 	if (error)
574 		goto bad;
575 	for (; m; m = m0) {
576 		m0 = m->m_nextpkt;
577 		m->m_nextpkt = 0;
578 #ifdef IPSEC
579 		/* clean ipsec history once it goes out of the node */
580 		ipsec_delaux(m);
581 #endif
582 		if (error == 0) {
583 			/* Record statistics for this interface address. */
584 			if (ia != NULL) {
585 				ia->ia_ifa.if_opackets++;
586 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
587 			}
588 			/*
589 			 * Reset layer specific mbuf flags
590 			 * to avoid confusing upper layers.
591 			 */
592 			m->m_flags &= ~(M_PROTOFLAGS);
593 
594 			error = (*ifp->if_output)(ifp, m,
595 			    (struct sockaddr *)dst, ro->ro_rt);
596 		} else
597 			m_freem(m);
598 	}
599 
600 	if (error == 0)
601 		ipstat.ips_fragmented++;
602 
603 done:
604 	if (ro == &iproute && ro->ro_rt) {
605 		RTFREE(ro->ro_rt);
606 	}
607 	return (error);
608 bad:
609 	m_freem(m);
610 	goto done;
611 }
612 
613 /*
614  * Create a chain of fragments which fit the given mtu. m_frag points to the
615  * mbuf to be fragmented; on return it points to the chain with the fragments.
616  * Return 0 if no error. If error, m_frag may contain a partially built
617  * chain of fragments that should be freed by the caller.
618  *
619  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
620  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
621  */
622 int
623 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
624     u_long if_hwassist_flags, int sw_csum)
625 {
626 	int error = 0;
627 	int hlen = ip->ip_hl << 2;
628 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
629 	int off;
630 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
631 	int firstlen;
632 	struct mbuf **mnext;
633 	int nfrags;
634 
635 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
636 		ipstat.ips_cantfrag++;
637 		return EMSGSIZE;
638 	}
639 
640 	/*
641 	 * Must be able to put at least 8 bytes per fragment.
642 	 */
643 	if (len < 8)
644 		return EMSGSIZE;
645 
646 	/*
647 	 * If the interface will not calculate checksums on
648 	 * fragmented packets, then do it here.
649 	 */
650 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
651 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
652 		in_delayed_cksum(m0);
653 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
654 	}
655 
656 	if (len > PAGE_SIZE) {
657 		/*
658 		 * Fragment large datagrams such that each segment
659 		 * contains a multiple of PAGE_SIZE amount of data,
660 		 * plus headers. This enables a receiver to perform
661 		 * page-flipping zero-copy optimizations.
662 		 *
663 		 * XXX When does this help given that sender and receiver
664 		 * could have different page sizes, and also mtu could
665 		 * be less than the receiver's page size ?
666 		 */
667 		int newlen;
668 		struct mbuf *m;
669 
670 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
671 			off += m->m_len;
672 
673 		/*
674 		 * firstlen (off - hlen) must be aligned on an
675 		 * 8-byte boundary
676 		 */
677 		if (off < hlen)
678 			goto smart_frag_failure;
679 		off = ((off - hlen) & ~7) + hlen;
680 		newlen = (~PAGE_MASK) & mtu;
681 		if ((newlen + sizeof (struct ip)) > mtu) {
682 			/* we failed, go back the default */
683 smart_frag_failure:
684 			newlen = len;
685 			off = hlen + len;
686 		}
687 		len = newlen;
688 
689 	} else {
690 		off = hlen + len;
691 	}
692 
693 	firstlen = off - hlen;
694 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
695 
696 	/*
697 	 * Loop through length of segment after first fragment,
698 	 * make new header and copy data of each part and link onto chain.
699 	 * Here, m0 is the original packet, m is the fragment being created.
700 	 * The fragments are linked off the m_nextpkt of the original
701 	 * packet, which after processing serves as the first fragment.
702 	 */
703 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
704 		struct ip *mhip;	/* ip header on the fragment */
705 		struct mbuf *m;
706 		int mhlen = sizeof (struct ip);
707 
708 		MGETHDR(m, M_DONTWAIT, MT_DATA);
709 		if (m == NULL) {
710 			error = ENOBUFS;
711 			ipstat.ips_odropped++;
712 			goto done;
713 		}
714 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
715 		/*
716 		 * In the first mbuf, leave room for the link header, then
717 		 * copy the original IP header including options. The payload
718 		 * goes into an additional mbuf chain returned by m_copy().
719 		 */
720 		m->m_data += max_linkhdr;
721 		mhip = mtod(m, struct ip *);
722 		*mhip = *ip;
723 		if (hlen > sizeof (struct ip)) {
724 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
725 			mhip->ip_v = IPVERSION;
726 			mhip->ip_hl = mhlen >> 2;
727 		}
728 		m->m_len = mhlen;
729 		/* XXX do we need to add ip->ip_off below ? */
730 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
731 		if (off + len >= ip->ip_len) {	/* last fragment */
732 			len = ip->ip_len - off;
733 			m->m_flags |= M_LASTFRAG;
734 		} else
735 			mhip->ip_off |= IP_MF;
736 		mhip->ip_len = htons((u_short)(len + mhlen));
737 		m->m_next = m_copy(m0, off, len);
738 		if (m->m_next == NULL) {	/* copy failed */
739 			m_free(m);
740 			error = ENOBUFS;	/* ??? */
741 			ipstat.ips_odropped++;
742 			goto done;
743 		}
744 		m->m_pkthdr.len = mhlen + len;
745 		m->m_pkthdr.rcvif = NULL;
746 #ifdef MAC
747 		mac_create_fragment(m0, m);
748 #endif
749 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
750 		mhip->ip_off = htons(mhip->ip_off);
751 		mhip->ip_sum = 0;
752 		if (sw_csum & CSUM_DELAY_IP)
753 			mhip->ip_sum = in_cksum(m, mhlen);
754 		*mnext = m;
755 		mnext = &m->m_nextpkt;
756 	}
757 	ipstat.ips_ofragments += nfrags;
758 
759 	/* set first marker for fragment chain */
760 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
761 	m0->m_pkthdr.csum_data = nfrags;
762 
763 	/*
764 	 * Update first fragment by trimming what's been copied out
765 	 * and updating header.
766 	 */
767 	m_adj(m0, hlen + firstlen - ip->ip_len);
768 	m0->m_pkthdr.len = hlen + firstlen;
769 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
770 	ip->ip_off |= IP_MF;
771 	ip->ip_off = htons(ip->ip_off);
772 	ip->ip_sum = 0;
773 	if (sw_csum & CSUM_DELAY_IP)
774 		ip->ip_sum = in_cksum(m0, hlen);
775 
776 done:
777 	*m_frag = m0;
778 	return error;
779 }
780 
781 void
782 in_delayed_cksum(struct mbuf *m)
783 {
784 	struct ip *ip;
785 	u_short csum, offset;
786 
787 	ip = mtod(m, struct ip *);
788 	offset = ip->ip_hl << 2 ;
789 	csum = in_cksum_skip(m, ip->ip_len, offset);
790 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
791 		csum = 0xffff;
792 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
793 
794 	if (offset + sizeof(u_short) > m->m_len) {
795 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
796 		    m->m_len, offset, ip->ip_p);
797 		/*
798 		 * XXX
799 		 * this shouldn't happen, but if it does, the
800 		 * correct behavior may be to insert the checksum
801 		 * in the appropriate next mbuf in the chain.
802 		 */
803 		return;
804 	}
805 	*(u_short *)(m->m_data + offset) = csum;
806 }
807 
808 /*
809  * IP socket option processing.
810  */
811 int
812 ip_ctloutput(struct socket *so, struct sockopt *sopt)
813 {
814 	struct	inpcb *inp = sotoinpcb(so);
815 	int	error, optval;
816 
817 	error = optval = 0;
818 	if (sopt->sopt_level != IPPROTO_IP) {
819 		return (EINVAL);
820 	}
821 
822 	switch (sopt->sopt_dir) {
823 	case SOPT_SET:
824 		switch (sopt->sopt_name) {
825 		case IP_OPTIONS:
826 #ifdef notyet
827 		case IP_RETOPTS:
828 #endif
829 		{
830 			struct mbuf *m;
831 			if (sopt->sopt_valsize > MLEN) {
832 				error = EMSGSIZE;
833 				break;
834 			}
835 			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
836 			if (m == NULL) {
837 				error = ENOBUFS;
838 				break;
839 			}
840 			m->m_len = sopt->sopt_valsize;
841 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
842 					    m->m_len);
843 			if (error) {
844 				m_free(m);
845 				break;
846 			}
847 			INP_LOCK(inp);
848 			error = ip_pcbopts(inp, sopt->sopt_name, m);
849 			INP_UNLOCK(inp);
850 			return (error);
851 		}
852 
853 		case IP_TOS:
854 		case IP_TTL:
855 		case IP_MINTTL:
856 		case IP_RECVOPTS:
857 		case IP_RECVRETOPTS:
858 		case IP_RECVDSTADDR:
859 		case IP_RECVTTL:
860 		case IP_RECVIF:
861 		case IP_FAITH:
862 		case IP_ONESBCAST:
863 		case IP_DONTFRAG:
864 			error = sooptcopyin(sopt, &optval, sizeof optval,
865 					    sizeof optval);
866 			if (error)
867 				break;
868 
869 			switch (sopt->sopt_name) {
870 			case IP_TOS:
871 				inp->inp_ip_tos = optval;
872 				break;
873 
874 			case IP_TTL:
875 				inp->inp_ip_ttl = optval;
876 				break;
877 
878 			case IP_MINTTL:
879 				if (optval > 0 && optval <= MAXTTL)
880 					inp->inp_ip_minttl = optval;
881 				else
882 					error = EINVAL;
883 				break;
884 
885 #define	OPTSET(bit) do {						\
886 	INP_LOCK(inp);							\
887 	if (optval)							\
888 		inp->inp_flags |= bit;					\
889 	else								\
890 		inp->inp_flags &= ~bit;					\
891 	INP_UNLOCK(inp);						\
892 } while (0)
893 
894 			case IP_RECVOPTS:
895 				OPTSET(INP_RECVOPTS);
896 				break;
897 
898 			case IP_RECVRETOPTS:
899 				OPTSET(INP_RECVRETOPTS);
900 				break;
901 
902 			case IP_RECVDSTADDR:
903 				OPTSET(INP_RECVDSTADDR);
904 				break;
905 
906 			case IP_RECVTTL:
907 				OPTSET(INP_RECVTTL);
908 				break;
909 
910 			case IP_RECVIF:
911 				OPTSET(INP_RECVIF);
912 				break;
913 
914 			case IP_FAITH:
915 				OPTSET(INP_FAITH);
916 				break;
917 
918 			case IP_ONESBCAST:
919 				OPTSET(INP_ONESBCAST);
920 				break;
921 			case IP_DONTFRAG:
922 				OPTSET(INP_DONTFRAG);
923 				break;
924 			}
925 			break;
926 #undef OPTSET
927 
928 		/*
929 		 * Multicast socket options are processed by the in_mcast
930 		 * module.
931 		 */
932 		case IP_MULTICAST_IF:
933 		case IP_MULTICAST_VIF:
934 		case IP_MULTICAST_TTL:
935 		case IP_MULTICAST_LOOP:
936 		case IP_ADD_MEMBERSHIP:
937 		case IP_DROP_MEMBERSHIP:
938 		case IP_ADD_SOURCE_MEMBERSHIP:
939 		case IP_DROP_SOURCE_MEMBERSHIP:
940 		case IP_BLOCK_SOURCE:
941 		case IP_UNBLOCK_SOURCE:
942 		case IP_MSFILTER:
943 		case MCAST_JOIN_GROUP:
944 		case MCAST_LEAVE_GROUP:
945 		case MCAST_JOIN_SOURCE_GROUP:
946 		case MCAST_LEAVE_SOURCE_GROUP:
947 		case MCAST_BLOCK_SOURCE:
948 		case MCAST_UNBLOCK_SOURCE:
949 			error = inp_setmoptions(inp, sopt);
950 			break;
951 
952 		case IP_PORTRANGE:
953 			error = sooptcopyin(sopt, &optval, sizeof optval,
954 					    sizeof optval);
955 			if (error)
956 				break;
957 
958 			INP_LOCK(inp);
959 			switch (optval) {
960 			case IP_PORTRANGE_DEFAULT:
961 				inp->inp_flags &= ~(INP_LOWPORT);
962 				inp->inp_flags &= ~(INP_HIGHPORT);
963 				break;
964 
965 			case IP_PORTRANGE_HIGH:
966 				inp->inp_flags &= ~(INP_LOWPORT);
967 				inp->inp_flags |= INP_HIGHPORT;
968 				break;
969 
970 			case IP_PORTRANGE_LOW:
971 				inp->inp_flags &= ~(INP_HIGHPORT);
972 				inp->inp_flags |= INP_LOWPORT;
973 				break;
974 
975 			default:
976 				error = EINVAL;
977 				break;
978 			}
979 			INP_UNLOCK(inp);
980 			break;
981 
982 #if defined(IPSEC) || defined(FAST_IPSEC)
983 		case IP_IPSEC_POLICY:
984 		{
985 			caddr_t req;
986 			size_t len = 0;
987 			int priv;
988 			struct mbuf *m;
989 			int optname;
990 
991 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
992 				break;
993 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
994 				break;
995 			if (sopt->sopt_td != NULL) {
996 				/*
997 				 * XXXRW: Would be more desirable to do this
998 				 * one layer down so that we only exercise
999 				 * privilege if it is needed.
1000 				 */
1001 				error = priv_check(sopt->sopt_td,
1002 				    PRIV_NETINET_IPSEC);
1003 				if (error)
1004 					priv = 0;
1005 				else
1006 					priv = 1;
1007 			} else
1008 				priv = 1;
1009 			req = mtod(m, caddr_t);
1010 			len = m->m_len;
1011 			optname = sopt->sopt_name;
1012 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1013 			m_freem(m);
1014 			break;
1015 		}
1016 #endif /*IPSEC*/
1017 
1018 		default:
1019 			error = ENOPROTOOPT;
1020 			break;
1021 		}
1022 		break;
1023 
1024 	case SOPT_GET:
1025 		switch (sopt->sopt_name) {
1026 		case IP_OPTIONS:
1027 		case IP_RETOPTS:
1028 			if (inp->inp_options)
1029 				error = sooptcopyout(sopt,
1030 						     mtod(inp->inp_options,
1031 							  char *),
1032 						     inp->inp_options->m_len);
1033 			else
1034 				sopt->sopt_valsize = 0;
1035 			break;
1036 
1037 		case IP_TOS:
1038 		case IP_TTL:
1039 		case IP_MINTTL:
1040 		case IP_RECVOPTS:
1041 		case IP_RECVRETOPTS:
1042 		case IP_RECVDSTADDR:
1043 		case IP_RECVTTL:
1044 		case IP_RECVIF:
1045 		case IP_PORTRANGE:
1046 		case IP_FAITH:
1047 		case IP_ONESBCAST:
1048 		case IP_DONTFRAG:
1049 			switch (sopt->sopt_name) {
1050 
1051 			case IP_TOS:
1052 				optval = inp->inp_ip_tos;
1053 				break;
1054 
1055 			case IP_TTL:
1056 				optval = inp->inp_ip_ttl;
1057 				break;
1058 
1059 			case IP_MINTTL:
1060 				optval = inp->inp_ip_minttl;
1061 				break;
1062 
1063 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1064 
1065 			case IP_RECVOPTS:
1066 				optval = OPTBIT(INP_RECVOPTS);
1067 				break;
1068 
1069 			case IP_RECVRETOPTS:
1070 				optval = OPTBIT(INP_RECVRETOPTS);
1071 				break;
1072 
1073 			case IP_RECVDSTADDR:
1074 				optval = OPTBIT(INP_RECVDSTADDR);
1075 				break;
1076 
1077 			case IP_RECVTTL:
1078 				optval = OPTBIT(INP_RECVTTL);
1079 				break;
1080 
1081 			case IP_RECVIF:
1082 				optval = OPTBIT(INP_RECVIF);
1083 				break;
1084 
1085 			case IP_PORTRANGE:
1086 				if (inp->inp_flags & INP_HIGHPORT)
1087 					optval = IP_PORTRANGE_HIGH;
1088 				else if (inp->inp_flags & INP_LOWPORT)
1089 					optval = IP_PORTRANGE_LOW;
1090 				else
1091 					optval = 0;
1092 				break;
1093 
1094 			case IP_FAITH:
1095 				optval = OPTBIT(INP_FAITH);
1096 				break;
1097 
1098 			case IP_ONESBCAST:
1099 				optval = OPTBIT(INP_ONESBCAST);
1100 				break;
1101 			case IP_DONTFRAG:
1102 				optval = OPTBIT(INP_DONTFRAG);
1103 				break;
1104 			}
1105 			error = sooptcopyout(sopt, &optval, sizeof optval);
1106 			break;
1107 
1108 		/*
1109 		 * Multicast socket options are processed by the in_mcast
1110 		 * module.
1111 		 */
1112 		case IP_MULTICAST_IF:
1113 		case IP_MULTICAST_VIF:
1114 		case IP_MULTICAST_TTL:
1115 		case IP_MULTICAST_LOOP:
1116 		case IP_MSFILTER:
1117 			error = inp_getmoptions(inp, sopt);
1118 			break;
1119 
1120 #if defined(IPSEC) || defined(FAST_IPSEC)
1121 		case IP_IPSEC_POLICY:
1122 		{
1123 			struct mbuf *m = NULL;
1124 			caddr_t req = NULL;
1125 			size_t len = 0;
1126 
1127 			if (m != 0) {
1128 				req = mtod(m, caddr_t);
1129 				len = m->m_len;
1130 			}
1131 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1132 			if (error == 0)
1133 				error = soopt_mcopyout(sopt, m); /* XXX */
1134 			if (error == 0)
1135 				m_freem(m);
1136 			break;
1137 		}
1138 #endif /*IPSEC*/
1139 
1140 		default:
1141 			error = ENOPROTOOPT;
1142 			break;
1143 		}
1144 		break;
1145 	}
1146 	return (error);
1147 }
1148 
1149 /*
1150  * Routine called from ip_output() to loop back a copy of an IP multicast
1151  * packet to the input queue of a specified interface.  Note that this
1152  * calls the output routine of the loopback "driver", but with an interface
1153  * pointer that might NOT be a loopback interface -- evil, but easier than
1154  * replicating that code here.
1155  */
1156 static void
1157 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1158     int hlen)
1159 {
1160 	register struct ip *ip;
1161 	struct mbuf *copym;
1162 
1163 	copym = m_copy(m, 0, M_COPYALL);
1164 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1165 		copym = m_pullup(copym, hlen);
1166 	if (copym != NULL) {
1167 		/* If needed, compute the checksum and mark it as valid. */
1168 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1169 			in_delayed_cksum(copym);
1170 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1171 			copym->m_pkthdr.csum_flags |=
1172 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1173 			copym->m_pkthdr.csum_data = 0xffff;
1174 		}
1175 		/*
1176 		 * We don't bother to fragment if the IP length is greater
1177 		 * than the interface's MTU.  Can this possibly matter?
1178 		 */
1179 		ip = mtod(copym, struct ip *);
1180 		ip->ip_len = htons(ip->ip_len);
1181 		ip->ip_off = htons(ip->ip_off);
1182 		ip->ip_sum = 0;
1183 		ip->ip_sum = in_cksum(copym, hlen);
1184 		/*
1185 		 * NB:
1186 		 * It's not clear whether there are any lingering
1187 		 * reentrancy problems in other areas which might
1188 		 * be exposed by using ip_input directly (in
1189 		 * particular, everything which modifies the packet
1190 		 * in-place).  Yet another option is using the
1191 		 * protosw directly to deliver the looped back
1192 		 * packet.  For the moment, we'll err on the side
1193 		 * of safety by using if_simloop().
1194 		 */
1195 #if 1 /* XXX */
1196 		if (dst->sin_family != AF_INET) {
1197 			printf("ip_mloopback: bad address family %d\n",
1198 						dst->sin_family);
1199 			dst->sin_family = AF_INET;
1200 		}
1201 #endif
1202 
1203 #ifdef notdef
1204 		copym->m_pkthdr.rcvif = ifp;
1205 		ip_input(copym);
1206 #else
1207 		if_simloop(ifp, copym, dst->sin_family, 0);
1208 #endif
1209 	}
1210 }
1211