1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_ratelimit.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/ktls.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #ifdef RADIX_MPATH 71 #include <net/radix_mpath.h> 72 #endif 73 #include <net/rss_config.h> 74 #include <net/vnet.h> 75 76 #include <netinet/in.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/in_kdtrace.h> 79 #include <netinet/in_systm.h> 80 #include <netinet/ip.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #ifdef SCTP 91 #include <netinet/sctp.h> 92 #include <netinet/sctp_crc32.h> 93 #endif 94 95 #include <netipsec/ipsec_support.h> 96 97 #include <machine/in_cksum.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifdef MBUF_STRESS_TEST 102 static int mbuf_frag_size = 0; 103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 105 #endif 106 107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 108 109 110 extern int in_mcast_loop; 111 extern struct protosw inetsw[]; 112 113 static inline int 114 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 115 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 116 { 117 struct m_tag *fwd_tag = NULL; 118 struct mbuf *m; 119 struct in_addr odst; 120 struct ip *ip; 121 int pflags = PFIL_OUT; 122 123 if (flags & IP_FORWARDING) 124 pflags |= PFIL_FWD; 125 126 m = *mp; 127 ip = mtod(m, struct ip *); 128 129 /* Run through list of hooks for output packets. */ 130 odst.s_addr = ip->ip_dst.s_addr; 131 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 132 case PFIL_DROPPED: 133 *error = EPERM; 134 /* FALLTHROUGH */ 135 case PFIL_CONSUMED: 136 return 1; /* Finished */ 137 case PFIL_PASS: 138 *error = 0; 139 } 140 m = *mp; 141 ip = mtod(m, struct ip *); 142 143 /* See if destination IP address was changed by packet filter. */ 144 if (odst.s_addr != ip->ip_dst.s_addr) { 145 m->m_flags |= M_SKIP_FIREWALL; 146 /* If destination is now ourself drop to ip_input(). */ 147 if (in_localip(ip->ip_dst)) { 148 m->m_flags |= M_FASTFWD_OURS; 149 if (m->m_pkthdr.rcvif == NULL) 150 m->m_pkthdr.rcvif = V_loif; 151 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 152 m->m_pkthdr.csum_flags |= 153 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 154 m->m_pkthdr.csum_data = 0xffff; 155 } 156 m->m_pkthdr.csum_flags |= 157 CSUM_IP_CHECKED | CSUM_IP_VALID; 158 #ifdef SCTP 159 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 160 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 161 #endif 162 *error = netisr_queue(NETISR_IP, m); 163 return 1; /* Finished */ 164 } 165 166 bzero(dst, sizeof(*dst)); 167 dst->sin_family = AF_INET; 168 dst->sin_len = sizeof(*dst); 169 dst->sin_addr = ip->ip_dst; 170 171 return -1; /* Reloop */ 172 } 173 /* See if fib was changed by packet filter. */ 174 if ((*fibnum) != M_GETFIB(m)) { 175 m->m_flags |= M_SKIP_FIREWALL; 176 *fibnum = M_GETFIB(m); 177 return -1; /* Reloop for FIB change */ 178 } 179 180 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 181 if (m->m_flags & M_FASTFWD_OURS) { 182 if (m->m_pkthdr.rcvif == NULL) 183 m->m_pkthdr.rcvif = V_loif; 184 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 185 m->m_pkthdr.csum_flags |= 186 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 187 m->m_pkthdr.csum_data = 0xffff; 188 } 189 #ifdef SCTP 190 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 191 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 192 #endif 193 m->m_pkthdr.csum_flags |= 194 CSUM_IP_CHECKED | CSUM_IP_VALID; 195 196 *error = netisr_queue(NETISR_IP, m); 197 return 1; /* Finished */ 198 } 199 /* Or forward to some other address? */ 200 if ((m->m_flags & M_IP_NEXTHOP) && 201 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 202 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 203 m->m_flags |= M_SKIP_FIREWALL; 204 m->m_flags &= ~M_IP_NEXTHOP; 205 m_tag_delete(m, fwd_tag); 206 207 return -1; /* Reloop for CHANGE of dst */ 208 } 209 210 return 0; 211 } 212 213 static int 214 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 215 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 216 { 217 #ifdef KERN_TLS 218 struct ktls_session *tls = NULL; 219 #endif 220 struct m_snd_tag *mst; 221 int error; 222 223 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 224 mst = NULL; 225 226 #ifdef KERN_TLS 227 /* 228 * If this is an unencrypted TLS record, save a reference to 229 * the record. This local reference is used to call 230 * ktls_output_eagain after the mbuf has been freed (thus 231 * dropping the mbuf's reference) in if_output. 232 */ 233 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 234 tls = ktls_hold(m->m_next->m_ext.ext_pgs->tls); 235 mst = tls->snd_tag; 236 237 /* 238 * If a TLS session doesn't have a valid tag, it must 239 * have had an earlier ifp mismatch, so drop this 240 * packet. 241 */ 242 if (mst == NULL) { 243 error = EAGAIN; 244 goto done; 245 } 246 } 247 #endif 248 #ifdef RATELIMIT 249 if (inp != NULL && mst == NULL) { 250 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 251 (inp->inp_snd_tag != NULL && 252 inp->inp_snd_tag->ifp != ifp)) 253 in_pcboutput_txrtlmt(inp, ifp, m); 254 255 if (inp->inp_snd_tag != NULL) 256 mst = inp->inp_snd_tag; 257 } 258 #endif 259 if (stamp_tag && mst != NULL) { 260 KASSERT(m->m_pkthdr.rcvif == NULL, 261 ("trying to add a send tag to a forwarded packet")); 262 if (mst->ifp != ifp) { 263 error = EAGAIN; 264 goto done; 265 } 266 267 /* stamp send tag on mbuf */ 268 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 269 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 270 } 271 272 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 273 274 done: 275 /* Check for route change invalidating send tags. */ 276 #ifdef KERN_TLS 277 if (tls != NULL) { 278 if (error == EAGAIN) 279 error = ktls_output_eagain(inp, tls); 280 ktls_free(tls); 281 } 282 #endif 283 #ifdef RATELIMIT 284 if (error == EAGAIN) 285 in_pcboutput_eagain(inp); 286 #endif 287 return (error); 288 } 289 290 /* 291 * IP output. The packet in mbuf chain m contains a skeletal IP 292 * header (with len, off, ttl, proto, tos, src, dst). 293 * The mbuf chain containing the packet will be freed. 294 * The mbuf opt, if present, will not be freed. 295 * If route ro is present and has ro_rt initialized, route lookup would be 296 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 297 * then result of route lookup is stored in ro->ro_rt. 298 * 299 * In the IP forwarding case, the packet will arrive with options already 300 * inserted, so must have a NULL opt pointer. 301 */ 302 int 303 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 304 struct ip_moptions *imo, struct inpcb *inp) 305 { 306 struct rm_priotracker in_ifa_tracker; 307 struct epoch_tracker et; 308 struct ip *ip; 309 struct ifnet *ifp = NULL; /* keep compiler happy */ 310 struct mbuf *m0; 311 int hlen = sizeof (struct ip); 312 int mtu; 313 int error = 0; 314 struct sockaddr_in *dst, sin; 315 const struct sockaddr_in *gw; 316 struct in_ifaddr *ia; 317 struct in_addr src; 318 int isbroadcast; 319 uint16_t ip_len, ip_off; 320 uint32_t fibnum; 321 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 322 int no_route_but_check_spd = 0; 323 #endif 324 325 M_ASSERTPKTHDR(m); 326 327 if (inp != NULL) { 328 INP_LOCK_ASSERT(inp); 329 M_SETFIB(m, inp->inp_inc.inc_fibnum); 330 if ((flags & IP_NODEFAULTFLOWID) == 0) { 331 m->m_pkthdr.flowid = inp->inp_flowid; 332 M_HASHTYPE_SET(m, inp->inp_flowtype); 333 } 334 #ifdef NUMA 335 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 336 #endif 337 } 338 339 if (opt) { 340 int len = 0; 341 m = ip_insertoptions(m, opt, &len); 342 if (len != 0) 343 hlen = len; /* ip->ip_hl is updated above */ 344 } 345 ip = mtod(m, struct ip *); 346 ip_len = ntohs(ip->ip_len); 347 ip_off = ntohs(ip->ip_off); 348 349 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 350 ip->ip_v = IPVERSION; 351 ip->ip_hl = hlen >> 2; 352 ip_fillid(ip); 353 } else { 354 /* Header already set, fetch hlen from there */ 355 hlen = ip->ip_hl << 2; 356 } 357 if ((flags & IP_FORWARDING) == 0) 358 IPSTAT_INC(ips_localout); 359 360 /* 361 * dst/gw handling: 362 * 363 * gw is readonly but can point either to dst OR rt_gateway, 364 * therefore we need restore gw if we're redoing lookup. 365 */ 366 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 367 if (ro != NULL) 368 dst = (struct sockaddr_in *)&ro->ro_dst; 369 else 370 dst = &sin; 371 if (ro == NULL || ro->ro_rt == NULL) { 372 bzero(dst, sizeof(*dst)); 373 dst->sin_family = AF_INET; 374 dst->sin_len = sizeof(*dst); 375 dst->sin_addr = ip->ip_dst; 376 } 377 gw = dst; 378 NET_EPOCH_ENTER(et); 379 again: 380 /* 381 * Validate route against routing table additions; 382 * a better/more specific route might have been added. 383 */ 384 if (inp != NULL && ro != NULL && ro->ro_rt != NULL) 385 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 386 /* 387 * If there is a cached route, 388 * check that it is to the same destination 389 * and is still up. If not, free it and try again. 390 * The address family should also be checked in case of sharing the 391 * cache with IPv6. 392 * Also check whether routing cache needs invalidation. 393 */ 394 if (ro != NULL && ro->ro_rt != NULL && 395 ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 396 ro->ro_rt->rt_ifp == NULL || !RT_LINK_IS_UP(ro->ro_rt->rt_ifp) || 397 dst->sin_family != AF_INET || 398 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 399 RO_INVALIDATE_CACHE(ro); 400 ia = NULL; 401 /* 402 * If routing to interface only, short circuit routing lookup. 403 * The use of an all-ones broadcast address implies this; an 404 * interface is specified by the broadcast address of an interface, 405 * or the destination address of a ptp interface. 406 */ 407 if (flags & IP_SENDONES) { 408 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 409 M_GETFIB(m)))) == NULL && 410 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 411 M_GETFIB(m)))) == NULL) { 412 IPSTAT_INC(ips_noroute); 413 error = ENETUNREACH; 414 goto bad; 415 } 416 ip->ip_dst.s_addr = INADDR_BROADCAST; 417 dst->sin_addr = ip->ip_dst; 418 ifp = ia->ia_ifp; 419 mtu = ifp->if_mtu; 420 ip->ip_ttl = 1; 421 isbroadcast = 1; 422 src = IA_SIN(ia)->sin_addr; 423 } else if (flags & IP_ROUTETOIF) { 424 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 425 M_GETFIB(m)))) == NULL && 426 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 427 M_GETFIB(m)))) == NULL) { 428 IPSTAT_INC(ips_noroute); 429 error = ENETUNREACH; 430 goto bad; 431 } 432 ifp = ia->ia_ifp; 433 mtu = ifp->if_mtu; 434 ip->ip_ttl = 1; 435 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 436 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 437 src = IA_SIN(ia)->sin_addr; 438 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 439 imo != NULL && imo->imo_multicast_ifp != NULL) { 440 /* 441 * Bypass the normal routing lookup for multicast 442 * packets if the interface is specified. 443 */ 444 ifp = imo->imo_multicast_ifp; 445 mtu = ifp->if_mtu; 446 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 447 isbroadcast = 0; /* fool gcc */ 448 /* Interface may have no addresses. */ 449 if (ia != NULL) 450 src = IA_SIN(ia)->sin_addr; 451 else 452 src.s_addr = INADDR_ANY; 453 } else if (ro != NULL) { 454 if (ro->ro_rt == NULL) { 455 /* 456 * We want to do any cloning requested by the link 457 * layer, as this is probably required in all cases 458 * for correct operation (as it is for ARP). 459 */ 460 #ifdef RADIX_MPATH 461 rtalloc_mpath_fib(ro, 462 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 463 fibnum); 464 #else 465 in_rtalloc_ign(ro, 0, fibnum); 466 #endif 467 if (ro->ro_rt == NULL || 468 (ro->ro_rt->rt_flags & RTF_UP) == 0 || 469 ro->ro_rt->rt_ifp == NULL || 470 !RT_LINK_IS_UP(ro->ro_rt->rt_ifp)) { 471 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 472 /* 473 * There is no route for this packet, but it is 474 * possible that a matching SPD entry exists. 475 */ 476 no_route_but_check_spd = 1; 477 mtu = 0; /* Silence GCC warning. */ 478 goto sendit; 479 #endif 480 IPSTAT_INC(ips_noroute); 481 error = EHOSTUNREACH; 482 goto bad; 483 } 484 } 485 ia = ifatoia(ro->ro_rt->rt_ifa); 486 ifp = ro->ro_rt->rt_ifp; 487 counter_u64_add(ro->ro_rt->rt_pksent, 1); 488 rt_update_ro_flags(ro); 489 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 490 gw = (struct sockaddr_in *)ro->ro_rt->rt_gateway; 491 if (ro->ro_rt->rt_flags & RTF_HOST) 492 isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST); 493 else if (ifp->if_flags & IFF_BROADCAST) 494 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 495 else 496 isbroadcast = 0; 497 if (ro->ro_rt->rt_flags & RTF_HOST) 498 mtu = ro->ro_rt->rt_mtu; 499 else 500 mtu = ifp->if_mtu; 501 src = IA_SIN(ia)->sin_addr; 502 } else { 503 struct nhop4_extended nh; 504 505 bzero(&nh, sizeof(nh)); 506 if (fib4_lookup_nh_ext(M_GETFIB(m), ip->ip_dst, 0, 0, &nh) != 507 0) { 508 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 509 /* 510 * There is no route for this packet, but it is 511 * possible that a matching SPD entry exists. 512 */ 513 no_route_but_check_spd = 1; 514 mtu = 0; /* Silence GCC warning. */ 515 goto sendit; 516 #endif 517 IPSTAT_INC(ips_noroute); 518 error = EHOSTUNREACH; 519 goto bad; 520 } 521 ifp = nh.nh_ifp; 522 mtu = nh.nh_mtu; 523 /* 524 * We are rewriting here dst to be gw actually, contradicting 525 * comment at the beginning of the function. However, in this 526 * case we are always dealing with on stack dst. 527 * In case if pfil(9) sends us back to beginning of the 528 * function, the dst would be rewritten by ip_output_pfil(). 529 */ 530 MPASS(dst == &sin); 531 dst->sin_addr = nh.nh_addr; 532 ia = nh.nh_ia; 533 src = nh.nh_src; 534 isbroadcast = (((nh.nh_flags & (NHF_HOST | NHF_BROADCAST)) == 535 (NHF_HOST | NHF_BROADCAST)) || 536 ((ifp->if_flags & IFF_BROADCAST) && 537 in_ifaddr_broadcast(dst->sin_addr, ia))); 538 } 539 540 /* Catch a possible divide by zero later. */ 541 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (rt_flags=0x%08x) ifp=%p", 542 __func__, mtu, ro, 543 (ro != NULL && ro->ro_rt != NULL) ? ro->ro_rt->rt_flags : 0, ifp)); 544 545 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 546 m->m_flags |= M_MCAST; 547 /* 548 * IP destination address is multicast. Make sure "gw" 549 * still points to the address in "ro". (It may have been 550 * changed to point to a gateway address, above.) 551 */ 552 gw = dst; 553 /* 554 * See if the caller provided any multicast options 555 */ 556 if (imo != NULL) { 557 ip->ip_ttl = imo->imo_multicast_ttl; 558 if (imo->imo_multicast_vif != -1) 559 ip->ip_src.s_addr = 560 ip_mcast_src ? 561 ip_mcast_src(imo->imo_multicast_vif) : 562 INADDR_ANY; 563 } else 564 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 565 /* 566 * Confirm that the outgoing interface supports multicast. 567 */ 568 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 569 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 570 IPSTAT_INC(ips_noroute); 571 error = ENETUNREACH; 572 goto bad; 573 } 574 } 575 /* 576 * If source address not specified yet, use address 577 * of outgoing interface. 578 */ 579 if (ip->ip_src.s_addr == INADDR_ANY) 580 ip->ip_src = src; 581 582 if ((imo == NULL && in_mcast_loop) || 583 (imo && imo->imo_multicast_loop)) { 584 /* 585 * Loop back multicast datagram if not expressly 586 * forbidden to do so, even if we are not a member 587 * of the group; ip_input() will filter it later, 588 * thus deferring a hash lookup and mutex acquisition 589 * at the expense of a cheap copy using m_copym(). 590 */ 591 ip_mloopback(ifp, m, hlen); 592 } else { 593 /* 594 * If we are acting as a multicast router, perform 595 * multicast forwarding as if the packet had just 596 * arrived on the interface to which we are about 597 * to send. The multicast forwarding function 598 * recursively calls this function, using the 599 * IP_FORWARDING flag to prevent infinite recursion. 600 * 601 * Multicasts that are looped back by ip_mloopback(), 602 * above, will be forwarded by the ip_input() routine, 603 * if necessary. 604 */ 605 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 606 /* 607 * If rsvp daemon is not running, do not 608 * set ip_moptions. This ensures that the packet 609 * is multicast and not just sent down one link 610 * as prescribed by rsvpd. 611 */ 612 if (!V_rsvp_on) 613 imo = NULL; 614 if (ip_mforward && 615 ip_mforward(ip, ifp, m, imo) != 0) { 616 m_freem(m); 617 goto done; 618 } 619 } 620 } 621 622 /* 623 * Multicasts with a time-to-live of zero may be looped- 624 * back, above, but must not be transmitted on a network. 625 * Also, multicasts addressed to the loopback interface 626 * are not sent -- the above call to ip_mloopback() will 627 * loop back a copy. ip_input() will drop the copy if 628 * this host does not belong to the destination group on 629 * the loopback interface. 630 */ 631 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 632 m_freem(m); 633 goto done; 634 } 635 636 goto sendit; 637 } 638 639 /* 640 * If the source address is not specified yet, use the address 641 * of the outoing interface. 642 */ 643 if (ip->ip_src.s_addr == INADDR_ANY) 644 ip->ip_src = src; 645 646 /* 647 * Look for broadcast address and 648 * verify user is allowed to send 649 * such a packet. 650 */ 651 if (isbroadcast) { 652 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 653 error = EADDRNOTAVAIL; 654 goto bad; 655 } 656 if ((flags & IP_ALLOWBROADCAST) == 0) { 657 error = EACCES; 658 goto bad; 659 } 660 /* don't allow broadcast messages to be fragmented */ 661 if (ip_len > mtu) { 662 error = EMSGSIZE; 663 goto bad; 664 } 665 m->m_flags |= M_BCAST; 666 } else { 667 m->m_flags &= ~M_BCAST; 668 } 669 670 sendit: 671 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 672 if (IPSEC_ENABLED(ipv4)) { 673 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 674 if (error == EINPROGRESS) 675 error = 0; 676 goto done; 677 } 678 } 679 /* 680 * Check if there was a route for this packet; return error if not. 681 */ 682 if (no_route_but_check_spd) { 683 IPSTAT_INC(ips_noroute); 684 error = EHOSTUNREACH; 685 goto bad; 686 } 687 /* Update variables that are affected by ipsec4_output(). */ 688 ip = mtod(m, struct ip *); 689 hlen = ip->ip_hl << 2; 690 #endif /* IPSEC */ 691 692 /* Jump over all PFIL processing if hooks are not active. */ 693 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 694 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 695 &error)) { 696 case 1: /* Finished */ 697 goto done; 698 699 case 0: /* Continue normally */ 700 ip = mtod(m, struct ip *); 701 break; 702 703 case -1: /* Need to try again */ 704 /* Reset everything for a new round */ 705 if (ro != NULL) { 706 RO_RTFREE(ro); 707 ro->ro_prepend = NULL; 708 } 709 gw = dst; 710 ip = mtod(m, struct ip *); 711 goto again; 712 713 } 714 } 715 716 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 717 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 718 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 719 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 720 IPSTAT_INC(ips_badaddr); 721 error = EADDRNOTAVAIL; 722 goto bad; 723 } 724 } 725 726 m->m_pkthdr.csum_flags |= CSUM_IP; 727 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 728 m = mb_unmapped_to_ext(m); 729 if (m == NULL) { 730 IPSTAT_INC(ips_odropped); 731 error = ENOBUFS; 732 goto bad; 733 } 734 in_delayed_cksum(m); 735 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 736 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 737 m = mb_unmapped_to_ext(m); 738 if (m == NULL) { 739 IPSTAT_INC(ips_odropped); 740 error = ENOBUFS; 741 goto bad; 742 } 743 } 744 #ifdef SCTP 745 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 746 m = mb_unmapped_to_ext(m); 747 if (m == NULL) { 748 IPSTAT_INC(ips_odropped); 749 error = ENOBUFS; 750 goto bad; 751 } 752 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 753 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 754 } 755 #endif 756 757 /* 758 * If small enough for interface, or the interface will take 759 * care of the fragmentation for us, we can just send directly. 760 */ 761 if (ip_len <= mtu || 762 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 763 ip->ip_sum = 0; 764 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 765 ip->ip_sum = in_cksum(m, hlen); 766 m->m_pkthdr.csum_flags &= ~CSUM_IP; 767 } 768 769 /* 770 * Record statistics for this interface address. 771 * With CSUM_TSO the byte/packet count will be slightly 772 * incorrect because we count the IP+TCP headers only 773 * once instead of for every generated packet. 774 */ 775 if (!(flags & IP_FORWARDING) && ia) { 776 if (m->m_pkthdr.csum_flags & CSUM_TSO) 777 counter_u64_add(ia->ia_ifa.ifa_opackets, 778 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 779 else 780 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 781 782 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 783 } 784 #ifdef MBUF_STRESS_TEST 785 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 786 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 787 #endif 788 /* 789 * Reset layer specific mbuf flags 790 * to avoid confusing lower layers. 791 */ 792 m_clrprotoflags(m); 793 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 794 error = ip_output_send(inp, ifp, m, gw, ro, 795 (flags & IP_NO_SND_TAG_RL) ? false : true); 796 goto done; 797 } 798 799 /* Balk when DF bit is set or the interface didn't support TSO. */ 800 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 801 error = EMSGSIZE; 802 IPSTAT_INC(ips_cantfrag); 803 goto bad; 804 } 805 806 /* 807 * Too large for interface; fragment if possible. If successful, 808 * on return, m will point to a list of packets to be sent. 809 */ 810 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 811 if (error) 812 goto bad; 813 for (; m; m = m0) { 814 m0 = m->m_nextpkt; 815 m->m_nextpkt = 0; 816 if (error == 0) { 817 /* Record statistics for this interface address. */ 818 if (ia != NULL) { 819 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 820 counter_u64_add(ia->ia_ifa.ifa_obytes, 821 m->m_pkthdr.len); 822 } 823 /* 824 * Reset layer specific mbuf flags 825 * to avoid confusing upper layers. 826 */ 827 m_clrprotoflags(m); 828 829 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 830 mtod(m, struct ip *), NULL); 831 error = ip_output_send(inp, ifp, m, gw, ro, true); 832 } else 833 m_freem(m); 834 } 835 836 if (error == 0) 837 IPSTAT_INC(ips_fragmented); 838 839 done: 840 NET_EPOCH_EXIT(et); 841 return (error); 842 bad: 843 m_freem(m); 844 goto done; 845 } 846 847 /* 848 * Create a chain of fragments which fit the given mtu. m_frag points to the 849 * mbuf to be fragmented; on return it points to the chain with the fragments. 850 * Return 0 if no error. If error, m_frag may contain a partially built 851 * chain of fragments that should be freed by the caller. 852 * 853 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 854 */ 855 int 856 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 857 u_long if_hwassist_flags) 858 { 859 int error = 0; 860 int hlen = ip->ip_hl << 2; 861 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 862 int off; 863 struct mbuf *m0 = *m_frag; /* the original packet */ 864 int firstlen; 865 struct mbuf **mnext; 866 int nfrags; 867 uint16_t ip_len, ip_off; 868 869 ip_len = ntohs(ip->ip_len); 870 ip_off = ntohs(ip->ip_off); 871 872 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 873 IPSTAT_INC(ips_cantfrag); 874 return EMSGSIZE; 875 } 876 877 /* 878 * Must be able to put at least 8 bytes per fragment. 879 */ 880 if (len < 8) 881 return EMSGSIZE; 882 883 /* 884 * If the interface will not calculate checksums on 885 * fragmented packets, then do it here. 886 */ 887 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 888 m0 = mb_unmapped_to_ext(m0); 889 if (m0 == NULL) { 890 error = ENOBUFS; 891 IPSTAT_INC(ips_odropped); 892 goto done; 893 } 894 in_delayed_cksum(m0); 895 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 896 } 897 #ifdef SCTP 898 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 899 m0 = mb_unmapped_to_ext(m0); 900 if (m0 == NULL) { 901 error = ENOBUFS; 902 IPSTAT_INC(ips_odropped); 903 goto done; 904 } 905 sctp_delayed_cksum(m0, hlen); 906 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 907 } 908 #endif 909 if (len > PAGE_SIZE) { 910 /* 911 * Fragment large datagrams such that each segment 912 * contains a multiple of PAGE_SIZE amount of data, 913 * plus headers. This enables a receiver to perform 914 * page-flipping zero-copy optimizations. 915 * 916 * XXX When does this help given that sender and receiver 917 * could have different page sizes, and also mtu could 918 * be less than the receiver's page size ? 919 */ 920 int newlen; 921 922 off = MIN(mtu, m0->m_pkthdr.len); 923 924 /* 925 * firstlen (off - hlen) must be aligned on an 926 * 8-byte boundary 927 */ 928 if (off < hlen) 929 goto smart_frag_failure; 930 off = ((off - hlen) & ~7) + hlen; 931 newlen = (~PAGE_MASK) & mtu; 932 if ((newlen + sizeof (struct ip)) > mtu) { 933 /* we failed, go back the default */ 934 smart_frag_failure: 935 newlen = len; 936 off = hlen + len; 937 } 938 len = newlen; 939 940 } else { 941 off = hlen + len; 942 } 943 944 firstlen = off - hlen; 945 mnext = &m0->m_nextpkt; /* pointer to next packet */ 946 947 /* 948 * Loop through length of segment after first fragment, 949 * make new header and copy data of each part and link onto chain. 950 * Here, m0 is the original packet, m is the fragment being created. 951 * The fragments are linked off the m_nextpkt of the original 952 * packet, which after processing serves as the first fragment. 953 */ 954 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 955 struct ip *mhip; /* ip header on the fragment */ 956 struct mbuf *m; 957 int mhlen = sizeof (struct ip); 958 959 m = m_gethdr(M_NOWAIT, MT_DATA); 960 if (m == NULL) { 961 error = ENOBUFS; 962 IPSTAT_INC(ips_odropped); 963 goto done; 964 } 965 /* 966 * Make sure the complete packet header gets copied 967 * from the originating mbuf to the newly created 968 * mbuf. This also ensures that existing firewall 969 * classification(s), VLAN tags and so on get copied 970 * to the resulting fragmented packet(s): 971 */ 972 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 973 m_free(m); 974 error = ENOBUFS; 975 IPSTAT_INC(ips_odropped); 976 goto done; 977 } 978 /* 979 * In the first mbuf, leave room for the link header, then 980 * copy the original IP header including options. The payload 981 * goes into an additional mbuf chain returned by m_copym(). 982 */ 983 m->m_data += max_linkhdr; 984 mhip = mtod(m, struct ip *); 985 *mhip = *ip; 986 if (hlen > sizeof (struct ip)) { 987 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 988 mhip->ip_v = IPVERSION; 989 mhip->ip_hl = mhlen >> 2; 990 } 991 m->m_len = mhlen; 992 /* XXX do we need to add ip_off below ? */ 993 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 994 if (off + len >= ip_len) 995 len = ip_len - off; 996 else 997 mhip->ip_off |= IP_MF; 998 mhip->ip_len = htons((u_short)(len + mhlen)); 999 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1000 if (m->m_next == NULL) { /* copy failed */ 1001 m_free(m); 1002 error = ENOBUFS; /* ??? */ 1003 IPSTAT_INC(ips_odropped); 1004 goto done; 1005 } 1006 m->m_pkthdr.len = mhlen + len; 1007 #ifdef MAC 1008 mac_netinet_fragment(m0, m); 1009 #endif 1010 mhip->ip_off = htons(mhip->ip_off); 1011 mhip->ip_sum = 0; 1012 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1013 mhip->ip_sum = in_cksum(m, mhlen); 1014 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1015 } 1016 *mnext = m; 1017 mnext = &m->m_nextpkt; 1018 } 1019 IPSTAT_ADD(ips_ofragments, nfrags); 1020 1021 /* 1022 * Update first fragment by trimming what's been copied out 1023 * and updating header. 1024 */ 1025 m_adj(m0, hlen + firstlen - ip_len); 1026 m0->m_pkthdr.len = hlen + firstlen; 1027 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1028 ip->ip_off = htons(ip_off | IP_MF); 1029 ip->ip_sum = 0; 1030 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1031 ip->ip_sum = in_cksum(m0, hlen); 1032 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1033 } 1034 1035 done: 1036 *m_frag = m0; 1037 return error; 1038 } 1039 1040 void 1041 in_delayed_cksum(struct mbuf *m) 1042 { 1043 struct ip *ip; 1044 struct udphdr *uh; 1045 uint16_t cklen, csum, offset; 1046 1047 ip = mtod(m, struct ip *); 1048 offset = ip->ip_hl << 2 ; 1049 1050 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1051 /* if udp header is not in the first mbuf copy udplen */ 1052 if (offset + sizeof(struct udphdr) > m->m_len) { 1053 m_copydata(m, offset + offsetof(struct udphdr, 1054 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1055 cklen = ntohs(cklen); 1056 } else { 1057 uh = (struct udphdr *)mtodo(m, offset); 1058 cklen = ntohs(uh->uh_ulen); 1059 } 1060 csum = in_cksum_skip(m, cklen + offset, offset); 1061 if (csum == 0) 1062 csum = 0xffff; 1063 } else { 1064 cklen = ntohs(ip->ip_len); 1065 csum = in_cksum_skip(m, cklen, offset); 1066 } 1067 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1068 1069 if (offset + sizeof(csum) > m->m_len) 1070 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1071 else 1072 *(u_short *)mtodo(m, offset) = csum; 1073 } 1074 1075 /* 1076 * IP socket option processing. 1077 */ 1078 int 1079 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1080 { 1081 struct inpcb *inp = sotoinpcb(so); 1082 int error, optval; 1083 #ifdef RSS 1084 uint32_t rss_bucket; 1085 int retval; 1086 #endif 1087 1088 error = optval = 0; 1089 if (sopt->sopt_level != IPPROTO_IP) { 1090 error = EINVAL; 1091 1092 if (sopt->sopt_level == SOL_SOCKET && 1093 sopt->sopt_dir == SOPT_SET) { 1094 switch (sopt->sopt_name) { 1095 case SO_REUSEADDR: 1096 INP_WLOCK(inp); 1097 if ((so->so_options & SO_REUSEADDR) != 0) 1098 inp->inp_flags2 |= INP_REUSEADDR; 1099 else 1100 inp->inp_flags2 &= ~INP_REUSEADDR; 1101 INP_WUNLOCK(inp); 1102 error = 0; 1103 break; 1104 case SO_REUSEPORT: 1105 INP_WLOCK(inp); 1106 if ((so->so_options & SO_REUSEPORT) != 0) 1107 inp->inp_flags2 |= INP_REUSEPORT; 1108 else 1109 inp->inp_flags2 &= ~INP_REUSEPORT; 1110 INP_WUNLOCK(inp); 1111 error = 0; 1112 break; 1113 case SO_REUSEPORT_LB: 1114 INP_WLOCK(inp); 1115 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1116 inp->inp_flags2 |= INP_REUSEPORT_LB; 1117 else 1118 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1119 INP_WUNLOCK(inp); 1120 error = 0; 1121 break; 1122 case SO_SETFIB: 1123 INP_WLOCK(inp); 1124 inp->inp_inc.inc_fibnum = so->so_fibnum; 1125 INP_WUNLOCK(inp); 1126 error = 0; 1127 break; 1128 case SO_MAX_PACING_RATE: 1129 #ifdef RATELIMIT 1130 INP_WLOCK(inp); 1131 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1132 INP_WUNLOCK(inp); 1133 error = 0; 1134 #else 1135 error = EOPNOTSUPP; 1136 #endif 1137 break; 1138 default: 1139 break; 1140 } 1141 } 1142 return (error); 1143 } 1144 1145 switch (sopt->sopt_dir) { 1146 case SOPT_SET: 1147 switch (sopt->sopt_name) { 1148 case IP_OPTIONS: 1149 #ifdef notyet 1150 case IP_RETOPTS: 1151 #endif 1152 { 1153 struct mbuf *m; 1154 if (sopt->sopt_valsize > MLEN) { 1155 error = EMSGSIZE; 1156 break; 1157 } 1158 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1159 if (m == NULL) { 1160 error = ENOBUFS; 1161 break; 1162 } 1163 m->m_len = sopt->sopt_valsize; 1164 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1165 m->m_len); 1166 if (error) { 1167 m_free(m); 1168 break; 1169 } 1170 INP_WLOCK(inp); 1171 error = ip_pcbopts(inp, sopt->sopt_name, m); 1172 INP_WUNLOCK(inp); 1173 return (error); 1174 } 1175 1176 case IP_BINDANY: 1177 if (sopt->sopt_td != NULL) { 1178 error = priv_check(sopt->sopt_td, 1179 PRIV_NETINET_BINDANY); 1180 if (error) 1181 break; 1182 } 1183 /* FALLTHROUGH */ 1184 case IP_BINDMULTI: 1185 #ifdef RSS 1186 case IP_RSS_LISTEN_BUCKET: 1187 #endif 1188 case IP_TOS: 1189 case IP_TTL: 1190 case IP_MINTTL: 1191 case IP_RECVOPTS: 1192 case IP_RECVRETOPTS: 1193 case IP_ORIGDSTADDR: 1194 case IP_RECVDSTADDR: 1195 case IP_RECVTTL: 1196 case IP_RECVIF: 1197 case IP_ONESBCAST: 1198 case IP_DONTFRAG: 1199 case IP_RECVTOS: 1200 case IP_RECVFLOWID: 1201 #ifdef RSS 1202 case IP_RECVRSSBUCKETID: 1203 #endif 1204 error = sooptcopyin(sopt, &optval, sizeof optval, 1205 sizeof optval); 1206 if (error) 1207 break; 1208 1209 switch (sopt->sopt_name) { 1210 case IP_TOS: 1211 inp->inp_ip_tos = optval; 1212 break; 1213 1214 case IP_TTL: 1215 inp->inp_ip_ttl = optval; 1216 break; 1217 1218 case IP_MINTTL: 1219 if (optval >= 0 && optval <= MAXTTL) 1220 inp->inp_ip_minttl = optval; 1221 else 1222 error = EINVAL; 1223 break; 1224 1225 #define OPTSET(bit) do { \ 1226 INP_WLOCK(inp); \ 1227 if (optval) \ 1228 inp->inp_flags |= bit; \ 1229 else \ 1230 inp->inp_flags &= ~bit; \ 1231 INP_WUNLOCK(inp); \ 1232 } while (0) 1233 1234 #define OPTSET2(bit, val) do { \ 1235 INP_WLOCK(inp); \ 1236 if (val) \ 1237 inp->inp_flags2 |= bit; \ 1238 else \ 1239 inp->inp_flags2 &= ~bit; \ 1240 INP_WUNLOCK(inp); \ 1241 } while (0) 1242 1243 case IP_RECVOPTS: 1244 OPTSET(INP_RECVOPTS); 1245 break; 1246 1247 case IP_RECVRETOPTS: 1248 OPTSET(INP_RECVRETOPTS); 1249 break; 1250 1251 case IP_RECVDSTADDR: 1252 OPTSET(INP_RECVDSTADDR); 1253 break; 1254 1255 case IP_ORIGDSTADDR: 1256 OPTSET2(INP_ORIGDSTADDR, optval); 1257 break; 1258 1259 case IP_RECVTTL: 1260 OPTSET(INP_RECVTTL); 1261 break; 1262 1263 case IP_RECVIF: 1264 OPTSET(INP_RECVIF); 1265 break; 1266 1267 case IP_ONESBCAST: 1268 OPTSET(INP_ONESBCAST); 1269 break; 1270 case IP_DONTFRAG: 1271 OPTSET(INP_DONTFRAG); 1272 break; 1273 case IP_BINDANY: 1274 OPTSET(INP_BINDANY); 1275 break; 1276 case IP_RECVTOS: 1277 OPTSET(INP_RECVTOS); 1278 break; 1279 case IP_BINDMULTI: 1280 OPTSET2(INP_BINDMULTI, optval); 1281 break; 1282 case IP_RECVFLOWID: 1283 OPTSET2(INP_RECVFLOWID, optval); 1284 break; 1285 #ifdef RSS 1286 case IP_RSS_LISTEN_BUCKET: 1287 if ((optval >= 0) && 1288 (optval < rss_getnumbuckets())) { 1289 inp->inp_rss_listen_bucket = optval; 1290 OPTSET2(INP_RSS_BUCKET_SET, 1); 1291 } else { 1292 error = EINVAL; 1293 } 1294 break; 1295 case IP_RECVRSSBUCKETID: 1296 OPTSET2(INP_RECVRSSBUCKETID, optval); 1297 break; 1298 #endif 1299 } 1300 break; 1301 #undef OPTSET 1302 #undef OPTSET2 1303 1304 /* 1305 * Multicast socket options are processed by the in_mcast 1306 * module. 1307 */ 1308 case IP_MULTICAST_IF: 1309 case IP_MULTICAST_VIF: 1310 case IP_MULTICAST_TTL: 1311 case IP_MULTICAST_LOOP: 1312 case IP_ADD_MEMBERSHIP: 1313 case IP_DROP_MEMBERSHIP: 1314 case IP_ADD_SOURCE_MEMBERSHIP: 1315 case IP_DROP_SOURCE_MEMBERSHIP: 1316 case IP_BLOCK_SOURCE: 1317 case IP_UNBLOCK_SOURCE: 1318 case IP_MSFILTER: 1319 case MCAST_JOIN_GROUP: 1320 case MCAST_LEAVE_GROUP: 1321 case MCAST_JOIN_SOURCE_GROUP: 1322 case MCAST_LEAVE_SOURCE_GROUP: 1323 case MCAST_BLOCK_SOURCE: 1324 case MCAST_UNBLOCK_SOURCE: 1325 error = inp_setmoptions(inp, sopt); 1326 break; 1327 1328 case IP_PORTRANGE: 1329 error = sooptcopyin(sopt, &optval, sizeof optval, 1330 sizeof optval); 1331 if (error) 1332 break; 1333 1334 INP_WLOCK(inp); 1335 switch (optval) { 1336 case IP_PORTRANGE_DEFAULT: 1337 inp->inp_flags &= ~(INP_LOWPORT); 1338 inp->inp_flags &= ~(INP_HIGHPORT); 1339 break; 1340 1341 case IP_PORTRANGE_HIGH: 1342 inp->inp_flags &= ~(INP_LOWPORT); 1343 inp->inp_flags |= INP_HIGHPORT; 1344 break; 1345 1346 case IP_PORTRANGE_LOW: 1347 inp->inp_flags &= ~(INP_HIGHPORT); 1348 inp->inp_flags |= INP_LOWPORT; 1349 break; 1350 1351 default: 1352 error = EINVAL; 1353 break; 1354 } 1355 INP_WUNLOCK(inp); 1356 break; 1357 1358 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1359 case IP_IPSEC_POLICY: 1360 if (IPSEC_ENABLED(ipv4)) { 1361 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1362 break; 1363 } 1364 /* FALLTHROUGH */ 1365 #endif /* IPSEC */ 1366 1367 default: 1368 error = ENOPROTOOPT; 1369 break; 1370 } 1371 break; 1372 1373 case SOPT_GET: 1374 switch (sopt->sopt_name) { 1375 case IP_OPTIONS: 1376 case IP_RETOPTS: 1377 INP_RLOCK(inp); 1378 if (inp->inp_options) { 1379 struct mbuf *options; 1380 1381 options = m_copym(inp->inp_options, 0, 1382 M_COPYALL, M_NOWAIT); 1383 INP_RUNLOCK(inp); 1384 if (options != NULL) { 1385 error = sooptcopyout(sopt, 1386 mtod(options, char *), 1387 options->m_len); 1388 m_freem(options); 1389 } else 1390 error = ENOMEM; 1391 } else { 1392 INP_RUNLOCK(inp); 1393 sopt->sopt_valsize = 0; 1394 } 1395 break; 1396 1397 case IP_TOS: 1398 case IP_TTL: 1399 case IP_MINTTL: 1400 case IP_RECVOPTS: 1401 case IP_RECVRETOPTS: 1402 case IP_ORIGDSTADDR: 1403 case IP_RECVDSTADDR: 1404 case IP_RECVTTL: 1405 case IP_RECVIF: 1406 case IP_PORTRANGE: 1407 case IP_ONESBCAST: 1408 case IP_DONTFRAG: 1409 case IP_BINDANY: 1410 case IP_RECVTOS: 1411 case IP_BINDMULTI: 1412 case IP_FLOWID: 1413 case IP_FLOWTYPE: 1414 case IP_RECVFLOWID: 1415 #ifdef RSS 1416 case IP_RSSBUCKETID: 1417 case IP_RECVRSSBUCKETID: 1418 #endif 1419 switch (sopt->sopt_name) { 1420 1421 case IP_TOS: 1422 optval = inp->inp_ip_tos; 1423 break; 1424 1425 case IP_TTL: 1426 optval = inp->inp_ip_ttl; 1427 break; 1428 1429 case IP_MINTTL: 1430 optval = inp->inp_ip_minttl; 1431 break; 1432 1433 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1434 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1435 1436 case IP_RECVOPTS: 1437 optval = OPTBIT(INP_RECVOPTS); 1438 break; 1439 1440 case IP_RECVRETOPTS: 1441 optval = OPTBIT(INP_RECVRETOPTS); 1442 break; 1443 1444 case IP_RECVDSTADDR: 1445 optval = OPTBIT(INP_RECVDSTADDR); 1446 break; 1447 1448 case IP_ORIGDSTADDR: 1449 optval = OPTBIT2(INP_ORIGDSTADDR); 1450 break; 1451 1452 case IP_RECVTTL: 1453 optval = OPTBIT(INP_RECVTTL); 1454 break; 1455 1456 case IP_RECVIF: 1457 optval = OPTBIT(INP_RECVIF); 1458 break; 1459 1460 case IP_PORTRANGE: 1461 if (inp->inp_flags & INP_HIGHPORT) 1462 optval = IP_PORTRANGE_HIGH; 1463 else if (inp->inp_flags & INP_LOWPORT) 1464 optval = IP_PORTRANGE_LOW; 1465 else 1466 optval = 0; 1467 break; 1468 1469 case IP_ONESBCAST: 1470 optval = OPTBIT(INP_ONESBCAST); 1471 break; 1472 case IP_DONTFRAG: 1473 optval = OPTBIT(INP_DONTFRAG); 1474 break; 1475 case IP_BINDANY: 1476 optval = OPTBIT(INP_BINDANY); 1477 break; 1478 case IP_RECVTOS: 1479 optval = OPTBIT(INP_RECVTOS); 1480 break; 1481 case IP_FLOWID: 1482 optval = inp->inp_flowid; 1483 break; 1484 case IP_FLOWTYPE: 1485 optval = inp->inp_flowtype; 1486 break; 1487 case IP_RECVFLOWID: 1488 optval = OPTBIT2(INP_RECVFLOWID); 1489 break; 1490 #ifdef RSS 1491 case IP_RSSBUCKETID: 1492 retval = rss_hash2bucket(inp->inp_flowid, 1493 inp->inp_flowtype, 1494 &rss_bucket); 1495 if (retval == 0) 1496 optval = rss_bucket; 1497 else 1498 error = EINVAL; 1499 break; 1500 case IP_RECVRSSBUCKETID: 1501 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1502 break; 1503 #endif 1504 case IP_BINDMULTI: 1505 optval = OPTBIT2(INP_BINDMULTI); 1506 break; 1507 } 1508 error = sooptcopyout(sopt, &optval, sizeof optval); 1509 break; 1510 1511 /* 1512 * Multicast socket options are processed by the in_mcast 1513 * module. 1514 */ 1515 case IP_MULTICAST_IF: 1516 case IP_MULTICAST_VIF: 1517 case IP_MULTICAST_TTL: 1518 case IP_MULTICAST_LOOP: 1519 case IP_MSFILTER: 1520 error = inp_getmoptions(inp, sopt); 1521 break; 1522 1523 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1524 case IP_IPSEC_POLICY: 1525 if (IPSEC_ENABLED(ipv4)) { 1526 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1527 break; 1528 } 1529 /* FALLTHROUGH */ 1530 #endif /* IPSEC */ 1531 1532 default: 1533 error = ENOPROTOOPT; 1534 break; 1535 } 1536 break; 1537 } 1538 return (error); 1539 } 1540 1541 /* 1542 * Routine called from ip_output() to loop back a copy of an IP multicast 1543 * packet to the input queue of a specified interface. Note that this 1544 * calls the output routine of the loopback "driver", but with an interface 1545 * pointer that might NOT be a loopback interface -- evil, but easier than 1546 * replicating that code here. 1547 */ 1548 static void 1549 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1550 { 1551 struct ip *ip; 1552 struct mbuf *copym; 1553 1554 /* 1555 * Make a deep copy of the packet because we're going to 1556 * modify the pack in order to generate checksums. 1557 */ 1558 copym = m_dup(m, M_NOWAIT); 1559 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1560 copym = m_pullup(copym, hlen); 1561 if (copym != NULL) { 1562 /* If needed, compute the checksum and mark it as valid. */ 1563 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1564 in_delayed_cksum(copym); 1565 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1566 copym->m_pkthdr.csum_flags |= 1567 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1568 copym->m_pkthdr.csum_data = 0xffff; 1569 } 1570 /* 1571 * We don't bother to fragment if the IP length is greater 1572 * than the interface's MTU. Can this possibly matter? 1573 */ 1574 ip = mtod(copym, struct ip *); 1575 ip->ip_sum = 0; 1576 ip->ip_sum = in_cksum(copym, hlen); 1577 if_simloop(ifp, copym, AF_INET, 0); 1578 } 1579 } 1580