1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_ipsec.h" 35 #include "opt_kern_tls.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_ratelimit.h" 38 #include "opt_route.h" 39 #include "opt_rss.h" 40 #include "opt_sctp.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/ktls.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/sdt.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/ucred.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_private.h> 61 #include <net/if_vlan_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/ethernet.h> 64 #include <net/netisr.h> 65 #include <net/pfil.h> 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_fib.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 83 #include <netinet/udp.h> 84 #include <netinet/udp_var.h> 85 86 #if defined(SCTP) || defined(SCTP_SUPPORT) 87 #include <netinet/sctp.h> 88 #include <netinet/sctp_crc32.h> 89 #endif 90 91 #include <netipsec/ipsec_support.h> 92 93 #include <machine/in_cksum.h> 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef MBUF_STRESS_TEST 98 static int mbuf_frag_size = 0; 99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 100 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 101 #endif 102 103 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 104 105 extern int in_mcast_loop; 106 107 static inline int 108 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 109 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 110 { 111 struct m_tag *fwd_tag = NULL; 112 struct mbuf *m; 113 struct in_addr odst; 114 struct ip *ip; 115 116 m = *mp; 117 ip = mtod(m, struct ip *); 118 119 /* Run through list of hooks for output packets. */ 120 odst.s_addr = ip->ip_dst.s_addr; 121 switch (pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp)) { 122 case PFIL_DROPPED: 123 *error = EACCES; 124 /* FALLTHROUGH */ 125 case PFIL_CONSUMED: 126 return 1; /* Finished */ 127 case PFIL_PASS: 128 *error = 0; 129 } 130 m = *mp; 131 ip = mtod(m, struct ip *); 132 133 /* See if destination IP address was changed by packet filter. */ 134 if (odst.s_addr != ip->ip_dst.s_addr) { 135 m->m_flags |= M_SKIP_FIREWALL; 136 /* If destination is now ourself drop to ip_input(). */ 137 if (in_localip(ip->ip_dst)) { 138 m->m_flags |= M_FASTFWD_OURS; 139 if (m->m_pkthdr.rcvif == NULL) 140 m->m_pkthdr.rcvif = V_loif; 141 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 142 m->m_pkthdr.csum_flags |= 143 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 144 m->m_pkthdr.csum_data = 0xffff; 145 } 146 m->m_pkthdr.csum_flags |= 147 CSUM_IP_CHECKED | CSUM_IP_VALID; 148 #if defined(SCTP) || defined(SCTP_SUPPORT) 149 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 150 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 151 #endif 152 *error = netisr_queue(NETISR_IP, m); 153 return 1; /* Finished */ 154 } 155 156 bzero(dst, sizeof(*dst)); 157 dst->sin_family = AF_INET; 158 dst->sin_len = sizeof(*dst); 159 dst->sin_addr = ip->ip_dst; 160 161 return -1; /* Reloop */ 162 } 163 /* See if fib was changed by packet filter. */ 164 if ((*fibnum) != M_GETFIB(m)) { 165 m->m_flags |= M_SKIP_FIREWALL; 166 *fibnum = M_GETFIB(m); 167 return -1; /* Reloop for FIB change */ 168 } 169 170 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 171 if (m->m_flags & M_FASTFWD_OURS) { 172 if (m->m_pkthdr.rcvif == NULL) 173 m->m_pkthdr.rcvif = V_loif; 174 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 175 m->m_pkthdr.csum_flags |= 176 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 177 m->m_pkthdr.csum_data = 0xffff; 178 } 179 #if defined(SCTP) || defined(SCTP_SUPPORT) 180 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 181 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 182 #endif 183 m->m_pkthdr.csum_flags |= 184 CSUM_IP_CHECKED | CSUM_IP_VALID; 185 186 *error = netisr_queue(NETISR_IP, m); 187 return 1; /* Finished */ 188 } 189 /* Or forward to some other address? */ 190 if ((m->m_flags & M_IP_NEXTHOP) && 191 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 192 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 193 m->m_flags |= M_SKIP_FIREWALL; 194 m->m_flags &= ~M_IP_NEXTHOP; 195 m_tag_delete(m, fwd_tag); 196 197 return -1; /* Reloop for CHANGE of dst */ 198 } 199 200 return 0; 201 } 202 203 static int 204 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 205 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 206 { 207 #ifdef KERN_TLS 208 struct ktls_session *tls = NULL; 209 #endif 210 struct m_snd_tag *mst; 211 int error; 212 213 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 214 mst = NULL; 215 216 #ifdef KERN_TLS 217 /* 218 * If this is an unencrypted TLS record, save a reference to 219 * the record. This local reference is used to call 220 * ktls_output_eagain after the mbuf has been freed (thus 221 * dropping the mbuf's reference) in if_output. 222 */ 223 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 224 tls = ktls_hold(m->m_next->m_epg_tls); 225 mst = tls->snd_tag; 226 227 /* 228 * If a TLS session doesn't have a valid tag, it must 229 * have had an earlier ifp mismatch, so drop this 230 * packet. 231 */ 232 if (mst == NULL) { 233 m_freem(m); 234 error = EAGAIN; 235 goto done; 236 } 237 /* 238 * Always stamp tags that include NIC ktls. 239 */ 240 stamp_tag = true; 241 } 242 #endif 243 #ifdef RATELIMIT 244 if (inp != NULL && mst == NULL) { 245 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 246 (inp->inp_snd_tag != NULL && 247 inp->inp_snd_tag->ifp != ifp)) 248 in_pcboutput_txrtlmt(inp, ifp, m); 249 250 if (inp->inp_snd_tag != NULL) 251 mst = inp->inp_snd_tag; 252 } 253 #endif 254 if (stamp_tag && mst != NULL) { 255 KASSERT(m->m_pkthdr.rcvif == NULL, 256 ("trying to add a send tag to a forwarded packet")); 257 if (mst->ifp != ifp) { 258 m_freem(m); 259 error = EAGAIN; 260 goto done; 261 } 262 263 /* stamp send tag on mbuf */ 264 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 265 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 266 } 267 268 error = (*ifp->if_output)(ifp, m, gw, ro); 269 270 done: 271 /* Check for route change invalidating send tags. */ 272 #ifdef KERN_TLS 273 if (tls != NULL) { 274 if (error == EAGAIN) 275 error = ktls_output_eagain(inp, tls); 276 ktls_free(tls); 277 } 278 #endif 279 #ifdef RATELIMIT 280 if (error == EAGAIN) 281 in_pcboutput_eagain(inp); 282 #endif 283 return (error); 284 } 285 286 /* rte<>ro_flags translation */ 287 static inline void 288 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 289 { 290 int nh_flags = nh->nh_flags; 291 292 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 293 294 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 295 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 296 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 297 } 298 299 /* 300 * IP output. The packet in mbuf chain m contains a skeletal IP 301 * header (with len, off, ttl, proto, tos, src, dst). 302 * The mbuf chain containing the packet will be freed. 303 * The mbuf opt, if present, will not be freed. 304 * If route ro is present and has ro_rt initialized, route lookup would be 305 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 306 * then result of route lookup is stored in ro->ro_rt. 307 * 308 * In the IP forwarding case, the packet will arrive with options already 309 * inserted, so must have a NULL opt pointer. 310 */ 311 int 312 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 313 struct ip_moptions *imo, struct inpcb *inp) 314 { 315 struct ip *ip; 316 struct ifnet *ifp = NULL; /* keep compiler happy */ 317 struct mbuf *m0; 318 int hlen = sizeof (struct ip); 319 int mtu = 0; 320 int error = 0; 321 int vlan_pcp = -1; 322 struct sockaddr_in *dst; 323 const struct sockaddr *gw; 324 struct in_ifaddr *ia = NULL; 325 struct in_addr src; 326 int isbroadcast; 327 uint16_t ip_len, ip_off; 328 struct route iproute; 329 uint32_t fibnum; 330 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 331 int no_route_but_check_spd = 0; 332 #endif 333 334 M_ASSERTPKTHDR(m); 335 NET_EPOCH_ASSERT(); 336 337 if (inp != NULL) { 338 INP_LOCK_ASSERT(inp); 339 M_SETFIB(m, inp->inp_inc.inc_fibnum); 340 if ((flags & IP_NODEFAULTFLOWID) == 0) { 341 m->m_pkthdr.flowid = inp->inp_flowid; 342 M_HASHTYPE_SET(m, inp->inp_flowtype); 343 } 344 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 345 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 346 INP_2PCP_SHIFT; 347 #ifdef NUMA 348 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 349 #endif 350 } 351 352 if (opt) { 353 int len = 0; 354 m = ip_insertoptions(m, opt, &len); 355 if (len != 0) 356 hlen = len; /* ip->ip_hl is updated above */ 357 } 358 ip = mtod(m, struct ip *); 359 ip_len = ntohs(ip->ip_len); 360 ip_off = ntohs(ip->ip_off); 361 362 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 363 ip->ip_v = IPVERSION; 364 ip->ip_hl = hlen >> 2; 365 ip_fillid(ip); 366 } else { 367 /* Header already set, fetch hlen from there */ 368 hlen = ip->ip_hl << 2; 369 } 370 if ((flags & IP_FORWARDING) == 0) 371 IPSTAT_INC(ips_localout); 372 373 /* 374 * dst/gw handling: 375 * 376 * gw is readonly but can point either to dst OR rt_gateway, 377 * therefore we need restore gw if we're redoing lookup. 378 */ 379 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 380 if (ro == NULL) { 381 ro = &iproute; 382 bzero(ro, sizeof (*ro)); 383 } 384 dst = (struct sockaddr_in *)&ro->ro_dst; 385 if (ro->ro_nh == NULL) { 386 dst->sin_family = AF_INET; 387 dst->sin_len = sizeof(*dst); 388 dst->sin_addr = ip->ip_dst; 389 } 390 gw = (const struct sockaddr *)dst; 391 again: 392 /* 393 * Validate route against routing table additions; 394 * a better/more specific route might have been added. 395 */ 396 if (inp != NULL && ro->ro_nh != NULL) 397 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 398 /* 399 * If there is a cached route, 400 * check that it is to the same destination 401 * and is still up. If not, free it and try again. 402 * The address family should also be checked in case of sharing the 403 * cache with IPv6. 404 * Also check whether routing cache needs invalidation. 405 */ 406 if (ro->ro_nh != NULL && 407 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 408 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 409 RO_INVALIDATE_CACHE(ro); 410 ia = NULL; 411 /* 412 * If routing to interface only, short circuit routing lookup. 413 * The use of an all-ones broadcast address implies this; an 414 * interface is specified by the broadcast address of an interface, 415 * or the destination address of a ptp interface. 416 */ 417 if (flags & IP_SENDONES) { 418 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 419 M_GETFIB(m)))) == NULL && 420 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 421 M_GETFIB(m)))) == NULL) { 422 IPSTAT_INC(ips_noroute); 423 error = ENETUNREACH; 424 goto bad; 425 } 426 ip->ip_dst.s_addr = INADDR_BROADCAST; 427 dst->sin_addr = ip->ip_dst; 428 ifp = ia->ia_ifp; 429 mtu = ifp->if_mtu; 430 ip->ip_ttl = 1; 431 isbroadcast = 1; 432 src = IA_SIN(ia)->sin_addr; 433 } else if (flags & IP_ROUTETOIF) { 434 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 435 M_GETFIB(m)))) == NULL && 436 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 437 M_GETFIB(m)))) == NULL) { 438 IPSTAT_INC(ips_noroute); 439 error = ENETUNREACH; 440 goto bad; 441 } 442 ifp = ia->ia_ifp; 443 mtu = ifp->if_mtu; 444 ip->ip_ttl = 1; 445 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 446 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 447 src = IA_SIN(ia)->sin_addr; 448 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 449 imo != NULL && imo->imo_multicast_ifp != NULL) { 450 /* 451 * Bypass the normal routing lookup for multicast 452 * packets if the interface is specified. 453 */ 454 ifp = imo->imo_multicast_ifp; 455 mtu = ifp->if_mtu; 456 IFP_TO_IA(ifp, ia); 457 isbroadcast = 0; /* fool gcc */ 458 /* Interface may have no addresses. */ 459 if (ia != NULL) 460 src = IA_SIN(ia)->sin_addr; 461 else 462 src.s_addr = INADDR_ANY; 463 } else if (ro != &iproute) { 464 if (ro->ro_nh == NULL) { 465 /* 466 * We want to do any cloning requested by the link 467 * layer, as this is probably required in all cases 468 * for correct operation (as it is for ARP). 469 */ 470 uint32_t flowid; 471 flowid = m->m_pkthdr.flowid; 472 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 473 NHR_REF, flowid); 474 475 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 476 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 477 /* 478 * There is no route for this packet, but it is 479 * possible that a matching SPD entry exists. 480 */ 481 no_route_but_check_spd = 1; 482 goto sendit; 483 #endif 484 IPSTAT_INC(ips_noroute); 485 error = EHOSTUNREACH; 486 goto bad; 487 } 488 } 489 struct nhop_object *nh = ro->ro_nh; 490 491 ia = ifatoia(nh->nh_ifa); 492 ifp = nh->nh_ifp; 493 counter_u64_add(nh->nh_pksent, 1); 494 rt_update_ro_flags(ro, nh); 495 if (nh->nh_flags & NHF_GATEWAY) 496 gw = &nh->gw_sa; 497 if (nh->nh_flags & NHF_HOST) 498 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 499 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 500 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 501 else 502 isbroadcast = 0; 503 mtu = nh->nh_mtu; 504 src = IA_SIN(ia)->sin_addr; 505 } else { 506 struct nhop_object *nh; 507 508 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 509 m->m_pkthdr.flowid); 510 if (nh == NULL) { 511 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 512 /* 513 * There is no route for this packet, but it is 514 * possible that a matching SPD entry exists. 515 */ 516 no_route_but_check_spd = 1; 517 goto sendit; 518 #endif 519 IPSTAT_INC(ips_noroute); 520 error = EHOSTUNREACH; 521 goto bad; 522 } 523 ifp = nh->nh_ifp; 524 mtu = nh->nh_mtu; 525 rt_update_ro_flags(ro, nh); 526 if (nh->nh_flags & NHF_GATEWAY) 527 gw = &nh->gw_sa; 528 ia = ifatoia(nh->nh_ifa); 529 src = IA_SIN(ia)->sin_addr; 530 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 531 (NHF_HOST | NHF_BROADCAST)) || 532 ((ifp->if_flags & IFF_BROADCAST) && 533 (gw->sa_family == AF_INET) && 534 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 535 } 536 537 /* Catch a possible divide by zero later. */ 538 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 539 __func__, mtu, ro, 540 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 541 542 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 543 m->m_flags |= M_MCAST; 544 /* 545 * IP destination address is multicast. Make sure "gw" 546 * still points to the address in "ro". (It may have been 547 * changed to point to a gateway address, above.) 548 */ 549 gw = (const struct sockaddr *)dst; 550 /* 551 * See if the caller provided any multicast options 552 */ 553 if (imo != NULL) { 554 ip->ip_ttl = imo->imo_multicast_ttl; 555 if (imo->imo_multicast_vif != -1) 556 ip->ip_src.s_addr = 557 ip_mcast_src ? 558 ip_mcast_src(imo->imo_multicast_vif) : 559 INADDR_ANY; 560 } else 561 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 562 /* 563 * Confirm that the outgoing interface supports multicast. 564 */ 565 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 566 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 567 IPSTAT_INC(ips_noroute); 568 error = ENETUNREACH; 569 goto bad; 570 } 571 } 572 /* 573 * If source address not specified yet, use address 574 * of outgoing interface. 575 */ 576 if (ip->ip_src.s_addr == INADDR_ANY) 577 ip->ip_src = src; 578 579 if ((imo == NULL && in_mcast_loop) || 580 (imo && imo->imo_multicast_loop)) { 581 /* 582 * Loop back multicast datagram if not expressly 583 * forbidden to do so, even if we are not a member 584 * of the group; ip_input() will filter it later, 585 * thus deferring a hash lookup and mutex acquisition 586 * at the expense of a cheap copy using m_copym(). 587 */ 588 ip_mloopback(ifp, m, hlen); 589 } else { 590 /* 591 * If we are acting as a multicast router, perform 592 * multicast forwarding as if the packet had just 593 * arrived on the interface to which we are about 594 * to send. The multicast forwarding function 595 * recursively calls this function, using the 596 * IP_FORWARDING flag to prevent infinite recursion. 597 * 598 * Multicasts that are looped back by ip_mloopback(), 599 * above, will be forwarded by the ip_input() routine, 600 * if necessary. 601 */ 602 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 603 /* 604 * If rsvp daemon is not running, do not 605 * set ip_moptions. This ensures that the packet 606 * is multicast and not just sent down one link 607 * as prescribed by rsvpd. 608 */ 609 if (!V_rsvp_on) 610 imo = NULL; 611 if (ip_mforward && 612 ip_mforward(ip, ifp, m, imo) != 0) { 613 m_freem(m); 614 goto done; 615 } 616 } 617 } 618 619 /* 620 * Multicasts with a time-to-live of zero may be looped- 621 * back, above, but must not be transmitted on a network. 622 * Also, multicasts addressed to the loopback interface 623 * are not sent -- the above call to ip_mloopback() will 624 * loop back a copy. ip_input() will drop the copy if 625 * this host does not belong to the destination group on 626 * the loopback interface. 627 */ 628 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 629 m_freem(m); 630 goto done; 631 } 632 633 goto sendit; 634 } 635 636 /* 637 * If the source address is not specified yet, use the address 638 * of the outoing interface. 639 */ 640 if (ip->ip_src.s_addr == INADDR_ANY) 641 ip->ip_src = src; 642 643 /* 644 * Look for broadcast address and 645 * verify user is allowed to send 646 * such a packet. 647 */ 648 if (isbroadcast) { 649 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 650 error = EADDRNOTAVAIL; 651 goto bad; 652 } 653 if ((flags & IP_ALLOWBROADCAST) == 0) { 654 error = EACCES; 655 goto bad; 656 } 657 /* don't allow broadcast messages to be fragmented */ 658 if (ip_len > mtu) { 659 error = EMSGSIZE; 660 goto bad; 661 } 662 m->m_flags |= M_BCAST; 663 } else { 664 m->m_flags &= ~M_BCAST; 665 } 666 667 sendit: 668 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 669 if (IPSEC_ENABLED(ipv4)) { 670 struct ip ip_hdr; 671 672 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) { 673 if (error == EINPROGRESS) 674 error = 0; 675 goto done; 676 } 677 678 /* Update variables that are affected by ipsec4_output(). */ 679 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr); 680 hlen = ip_hdr.ip_hl << 2; 681 } 682 683 /* 684 * Check if there was a route for this packet; return error if not. 685 */ 686 if (no_route_but_check_spd) { 687 IPSTAT_INC(ips_noroute); 688 error = EHOSTUNREACH; 689 goto bad; 690 } 691 #endif /* IPSEC */ 692 693 /* Jump over all PFIL processing if hooks are not active. */ 694 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 695 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 696 &error)) { 697 case 1: /* Finished */ 698 goto done; 699 700 case 0: /* Continue normally */ 701 ip = mtod(m, struct ip *); 702 ip_len = ntohs(ip->ip_len); 703 break; 704 705 case -1: /* Need to try again */ 706 /* Reset everything for a new round */ 707 if (ro != NULL) { 708 RO_NHFREE(ro); 709 ro->ro_prepend = NULL; 710 } 711 gw = (const struct sockaddr *)dst; 712 ip = mtod(m, struct ip *); 713 goto again; 714 } 715 } 716 717 if (vlan_pcp > -1) 718 EVL_APPLY_PRI(m, vlan_pcp); 719 720 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 721 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 722 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 723 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 724 IPSTAT_INC(ips_badaddr); 725 error = EADDRNOTAVAIL; 726 goto bad; 727 } 728 } 729 730 /* Ensure the packet data is mapped if the interface requires it. */ 731 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 732 struct mbuf *m1; 733 734 error = mb_unmapped_to_ext(m, &m1); 735 if (error != 0) { 736 if (error == EINVAL) { 737 if_printf(ifp, "TLS packet\n"); 738 /* XXXKIB */ 739 } else if (error == ENOMEM) { 740 error = ENOBUFS; 741 } 742 IPSTAT_INC(ips_odropped); 743 goto bad; 744 } else { 745 m = m1; 746 } 747 } 748 749 m->m_pkthdr.csum_flags |= CSUM_IP; 750 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 751 in_delayed_cksum(m); 752 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 753 } 754 #if defined(SCTP) || defined(SCTP_SUPPORT) 755 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 756 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 757 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 758 } 759 #endif 760 761 /* 762 * If small enough for interface, or the interface will take 763 * care of the fragmentation for us, we can just send directly. 764 * Note that if_vxlan could have requested TSO even though the outer 765 * frame is UDP. It is correct to not fragment such datagrams and 766 * instead just pass them on to the driver. 767 */ 768 if (ip_len <= mtu || 769 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 770 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 771 ip->ip_sum = 0; 772 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 773 ip->ip_sum = in_cksum(m, hlen); 774 m->m_pkthdr.csum_flags &= ~CSUM_IP; 775 } 776 777 /* 778 * Record statistics for this interface address. 779 * With CSUM_TSO the byte/packet count will be slightly 780 * incorrect because we count the IP+TCP headers only 781 * once instead of for every generated packet. 782 */ 783 if (!(flags & IP_FORWARDING) && ia) { 784 if (m->m_pkthdr.csum_flags & 785 (CSUM_TSO | CSUM_INNER_TSO)) 786 counter_u64_add(ia->ia_ifa.ifa_opackets, 787 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 788 else 789 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 790 791 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 792 } 793 #ifdef MBUF_STRESS_TEST 794 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 795 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 796 #endif 797 /* 798 * Reset layer specific mbuf flags 799 * to avoid confusing lower layers. 800 */ 801 m_clrprotoflags(m); 802 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 803 error = ip_output_send(inp, ifp, m, gw, ro, 804 (flags & IP_NO_SND_TAG_RL) ? false : true); 805 goto done; 806 } 807 808 /* Balk when DF bit is set or the interface didn't support TSO. */ 809 if ((ip_off & IP_DF) || 810 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 811 error = EMSGSIZE; 812 IPSTAT_INC(ips_cantfrag); 813 goto bad; 814 } 815 816 /* 817 * Too large for interface; fragment if possible. If successful, 818 * on return, m will point to a list of packets to be sent. 819 */ 820 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 821 if (error) 822 goto bad; 823 for (; m; m = m0) { 824 m0 = m->m_nextpkt; 825 m->m_nextpkt = 0; 826 if (error == 0) { 827 /* Record statistics for this interface address. */ 828 if (ia != NULL) { 829 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 830 counter_u64_add(ia->ia_ifa.ifa_obytes, 831 m->m_pkthdr.len); 832 } 833 /* 834 * Reset layer specific mbuf flags 835 * to avoid confusing upper layers. 836 */ 837 m_clrprotoflags(m); 838 839 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 840 mtod(m, struct ip *), NULL); 841 error = ip_output_send(inp, ifp, m, gw, ro, true); 842 } else 843 m_freem(m); 844 } 845 846 if (error == 0) 847 IPSTAT_INC(ips_fragmented); 848 849 done: 850 return (error); 851 bad: 852 m_freem(m); 853 goto done; 854 } 855 856 /* 857 * Create a chain of fragments which fit the given mtu. m_frag points to the 858 * mbuf to be fragmented; on return it points to the chain with the fragments. 859 * Return 0 if no error. If error, m_frag may contain a partially built 860 * chain of fragments that should be freed by the caller. 861 * 862 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 863 */ 864 int 865 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 866 u_long if_hwassist_flags) 867 { 868 int error = 0; 869 int hlen = ip->ip_hl << 2; 870 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 871 int off; 872 struct mbuf *m0 = *m_frag; /* the original packet */ 873 int firstlen; 874 struct mbuf **mnext; 875 int nfrags; 876 uint16_t ip_len, ip_off; 877 878 ip_len = ntohs(ip->ip_len); 879 ip_off = ntohs(ip->ip_off); 880 881 /* 882 * Packet shall not have "Don't Fragment" flag and have at least 8 883 * bytes of payload. 884 */ 885 if (__predict_false((ip_off & IP_DF) || len < 8)) { 886 IPSTAT_INC(ips_cantfrag); 887 return (EMSGSIZE); 888 } 889 890 /* 891 * If the interface will not calculate checksums on 892 * fragmented packets, then do it here. 893 */ 894 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 895 in_delayed_cksum(m0); 896 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 897 } 898 #if defined(SCTP) || defined(SCTP_SUPPORT) 899 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 900 sctp_delayed_cksum(m0, hlen); 901 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 902 } 903 #endif 904 if (len > PAGE_SIZE) { 905 /* 906 * Fragment large datagrams such that each segment 907 * contains a multiple of PAGE_SIZE amount of data, 908 * plus headers. This enables a receiver to perform 909 * page-flipping zero-copy optimizations. 910 * 911 * XXX When does this help given that sender and receiver 912 * could have different page sizes, and also mtu could 913 * be less than the receiver's page size ? 914 */ 915 int newlen; 916 917 off = MIN(mtu, m0->m_pkthdr.len); 918 919 /* 920 * firstlen (off - hlen) must be aligned on an 921 * 8-byte boundary 922 */ 923 if (off < hlen) 924 goto smart_frag_failure; 925 off = ((off - hlen) & ~7) + hlen; 926 newlen = (~PAGE_MASK) & mtu; 927 if ((newlen + sizeof (struct ip)) > mtu) { 928 /* we failed, go back the default */ 929 smart_frag_failure: 930 newlen = len; 931 off = hlen + len; 932 } 933 len = newlen; 934 935 } else { 936 off = hlen + len; 937 } 938 939 firstlen = off - hlen; 940 mnext = &m0->m_nextpkt; /* pointer to next packet */ 941 942 /* 943 * Loop through length of segment after first fragment, 944 * make new header and copy data of each part and link onto chain. 945 * Here, m0 is the original packet, m is the fragment being created. 946 * The fragments are linked off the m_nextpkt of the original 947 * packet, which after processing serves as the first fragment. 948 */ 949 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 950 struct ip *mhip; /* ip header on the fragment */ 951 struct mbuf *m; 952 int mhlen = sizeof (struct ip); 953 954 m = m_gethdr(M_NOWAIT, MT_DATA); 955 if (m == NULL) { 956 error = ENOBUFS; 957 IPSTAT_INC(ips_odropped); 958 goto done; 959 } 960 /* 961 * Make sure the complete packet header gets copied 962 * from the originating mbuf to the newly created 963 * mbuf. This also ensures that existing firewall 964 * classification(s), VLAN tags and so on get copied 965 * to the resulting fragmented packet(s): 966 */ 967 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 968 m_free(m); 969 error = ENOBUFS; 970 IPSTAT_INC(ips_odropped); 971 goto done; 972 } 973 /* 974 * In the first mbuf, leave room for the link header, then 975 * copy the original IP header including options. The payload 976 * goes into an additional mbuf chain returned by m_copym(). 977 */ 978 m->m_data += max_linkhdr; 979 mhip = mtod(m, struct ip *); 980 *mhip = *ip; 981 if (hlen > sizeof (struct ip)) { 982 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 983 mhip->ip_v = IPVERSION; 984 mhip->ip_hl = mhlen >> 2; 985 } 986 m->m_len = mhlen; 987 /* XXX do we need to add ip_off below ? */ 988 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 989 if (off + len >= ip_len) 990 len = ip_len - off; 991 else 992 mhip->ip_off |= IP_MF; 993 mhip->ip_len = htons((u_short)(len + mhlen)); 994 m->m_next = m_copym(m0, off, len, M_NOWAIT); 995 if (m->m_next == NULL) { /* copy failed */ 996 m_free(m); 997 error = ENOBUFS; /* ??? */ 998 IPSTAT_INC(ips_odropped); 999 goto done; 1000 } 1001 m->m_pkthdr.len = mhlen + len; 1002 #ifdef MAC 1003 mac_netinet_fragment(m0, m); 1004 #endif 1005 mhip->ip_off = htons(mhip->ip_off); 1006 mhip->ip_sum = 0; 1007 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1008 mhip->ip_sum = in_cksum(m, mhlen); 1009 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1010 } 1011 *mnext = m; 1012 mnext = &m->m_nextpkt; 1013 } 1014 IPSTAT_ADD(ips_ofragments, nfrags); 1015 1016 /* 1017 * Update first fragment by trimming what's been copied out 1018 * and updating header. 1019 */ 1020 m_adj(m0, hlen + firstlen - ip_len); 1021 m0->m_pkthdr.len = hlen + firstlen; 1022 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1023 ip->ip_off = htons(ip_off | IP_MF); 1024 ip->ip_sum = 0; 1025 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1026 ip->ip_sum = in_cksum(m0, hlen); 1027 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1028 } 1029 1030 done: 1031 *m_frag = m0; 1032 return error; 1033 } 1034 1035 void 1036 in_delayed_cksum(struct mbuf *m) 1037 { 1038 struct ip *ip; 1039 struct udphdr *uh; 1040 uint16_t cklen, csum, offset; 1041 1042 ip = mtod(m, struct ip *); 1043 offset = ip->ip_hl << 2 ; 1044 1045 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1046 /* if udp header is not in the first mbuf copy udplen */ 1047 if (offset + sizeof(struct udphdr) > m->m_len) { 1048 m_copydata(m, offset + offsetof(struct udphdr, 1049 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1050 cklen = ntohs(cklen); 1051 } else { 1052 uh = (struct udphdr *)mtodo(m, offset); 1053 cklen = ntohs(uh->uh_ulen); 1054 } 1055 csum = in_cksum_skip(m, cklen + offset, offset); 1056 if (csum == 0) 1057 csum = 0xffff; 1058 } else { 1059 cklen = ntohs(ip->ip_len); 1060 csum = in_cksum_skip(m, cklen, offset); 1061 } 1062 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1063 1064 if (offset + sizeof(csum) > m->m_len) 1065 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1066 else 1067 *(u_short *)mtodo(m, offset) = csum; 1068 } 1069 1070 /* 1071 * IP socket option processing. 1072 */ 1073 int 1074 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1075 { 1076 struct inpcb *inp = sotoinpcb(so); 1077 int error, optval; 1078 #ifdef RSS 1079 uint32_t rss_bucket; 1080 int retval; 1081 #endif 1082 1083 error = optval = 0; 1084 if (sopt->sopt_level != IPPROTO_IP) { 1085 error = EINVAL; 1086 1087 if (sopt->sopt_level == SOL_SOCKET && 1088 sopt->sopt_dir == SOPT_SET) { 1089 switch (sopt->sopt_name) { 1090 case SO_SETFIB: 1091 INP_WLOCK(inp); 1092 inp->inp_inc.inc_fibnum = so->so_fibnum; 1093 INP_WUNLOCK(inp); 1094 error = 0; 1095 break; 1096 case SO_MAX_PACING_RATE: 1097 #ifdef RATELIMIT 1098 INP_WLOCK(inp); 1099 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1100 INP_WUNLOCK(inp); 1101 error = 0; 1102 #else 1103 error = EOPNOTSUPP; 1104 #endif 1105 break; 1106 default: 1107 break; 1108 } 1109 } 1110 return (error); 1111 } 1112 1113 switch (sopt->sopt_dir) { 1114 case SOPT_SET: 1115 switch (sopt->sopt_name) { 1116 case IP_OPTIONS: 1117 #ifdef notyet 1118 case IP_RETOPTS: 1119 #endif 1120 { 1121 struct mbuf *m; 1122 if (sopt->sopt_valsize > MLEN) { 1123 error = EMSGSIZE; 1124 break; 1125 } 1126 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1127 if (m == NULL) { 1128 error = ENOBUFS; 1129 break; 1130 } 1131 m->m_len = sopt->sopt_valsize; 1132 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1133 m->m_len); 1134 if (error) { 1135 m_free(m); 1136 break; 1137 } 1138 INP_WLOCK(inp); 1139 error = ip_pcbopts(inp, sopt->sopt_name, m); 1140 INP_WUNLOCK(inp); 1141 return (error); 1142 } 1143 1144 case IP_BINDANY: 1145 if (sopt->sopt_td != NULL) { 1146 error = priv_check(sopt->sopt_td, 1147 PRIV_NETINET_BINDANY); 1148 if (error) 1149 break; 1150 } 1151 /* FALLTHROUGH */ 1152 case IP_TOS: 1153 case IP_TTL: 1154 case IP_MINTTL: 1155 case IP_RECVOPTS: 1156 case IP_RECVRETOPTS: 1157 case IP_ORIGDSTADDR: 1158 case IP_RECVDSTADDR: 1159 case IP_RECVTTL: 1160 case IP_RECVIF: 1161 case IP_ONESBCAST: 1162 case IP_DONTFRAG: 1163 case IP_RECVTOS: 1164 case IP_RECVFLOWID: 1165 #ifdef RSS 1166 case IP_RECVRSSBUCKETID: 1167 #endif 1168 case IP_VLAN_PCP: 1169 error = sooptcopyin(sopt, &optval, sizeof optval, 1170 sizeof optval); 1171 if (error) 1172 break; 1173 1174 switch (sopt->sopt_name) { 1175 case IP_TOS: 1176 inp->inp_ip_tos = optval; 1177 break; 1178 1179 case IP_TTL: 1180 inp->inp_ip_ttl = optval; 1181 break; 1182 1183 case IP_MINTTL: 1184 if (optval >= 0 && optval <= MAXTTL) 1185 inp->inp_ip_minttl = optval; 1186 else 1187 error = EINVAL; 1188 break; 1189 1190 #define OPTSET(bit) do { \ 1191 INP_WLOCK(inp); \ 1192 if (optval) \ 1193 inp->inp_flags |= bit; \ 1194 else \ 1195 inp->inp_flags &= ~bit; \ 1196 INP_WUNLOCK(inp); \ 1197 } while (0) 1198 1199 #define OPTSET2(bit, val) do { \ 1200 INP_WLOCK(inp); \ 1201 if (val) \ 1202 inp->inp_flags2 |= bit; \ 1203 else \ 1204 inp->inp_flags2 &= ~bit; \ 1205 INP_WUNLOCK(inp); \ 1206 } while (0) 1207 1208 case IP_RECVOPTS: 1209 OPTSET(INP_RECVOPTS); 1210 break; 1211 1212 case IP_RECVRETOPTS: 1213 OPTSET(INP_RECVRETOPTS); 1214 break; 1215 1216 case IP_RECVDSTADDR: 1217 OPTSET(INP_RECVDSTADDR); 1218 break; 1219 1220 case IP_ORIGDSTADDR: 1221 OPTSET2(INP_ORIGDSTADDR, optval); 1222 break; 1223 1224 case IP_RECVTTL: 1225 OPTSET(INP_RECVTTL); 1226 break; 1227 1228 case IP_RECVIF: 1229 OPTSET(INP_RECVIF); 1230 break; 1231 1232 case IP_ONESBCAST: 1233 OPTSET(INP_ONESBCAST); 1234 break; 1235 case IP_DONTFRAG: 1236 OPTSET(INP_DONTFRAG); 1237 break; 1238 case IP_BINDANY: 1239 OPTSET(INP_BINDANY); 1240 break; 1241 case IP_RECVTOS: 1242 OPTSET(INP_RECVTOS); 1243 break; 1244 case IP_RECVFLOWID: 1245 OPTSET2(INP_RECVFLOWID, optval); 1246 break; 1247 #ifdef RSS 1248 case IP_RECVRSSBUCKETID: 1249 OPTSET2(INP_RECVRSSBUCKETID, optval); 1250 break; 1251 #endif 1252 case IP_VLAN_PCP: 1253 if ((optval >= -1) && (optval <= 1254 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1255 if (optval == -1) { 1256 INP_WLOCK(inp); 1257 inp->inp_flags2 &= 1258 ~(INP_2PCP_SET | 1259 INP_2PCP_MASK); 1260 INP_WUNLOCK(inp); 1261 } else { 1262 INP_WLOCK(inp); 1263 inp->inp_flags2 |= 1264 INP_2PCP_SET; 1265 inp->inp_flags2 &= 1266 ~INP_2PCP_MASK; 1267 inp->inp_flags2 |= 1268 optval << INP_2PCP_SHIFT; 1269 INP_WUNLOCK(inp); 1270 } 1271 } else 1272 error = EINVAL; 1273 break; 1274 } 1275 break; 1276 #undef OPTSET 1277 #undef OPTSET2 1278 1279 /* 1280 * Multicast socket options are processed by the in_mcast 1281 * module. 1282 */ 1283 case IP_MULTICAST_IF: 1284 case IP_MULTICAST_VIF: 1285 case IP_MULTICAST_TTL: 1286 case IP_MULTICAST_LOOP: 1287 case IP_ADD_MEMBERSHIP: 1288 case IP_DROP_MEMBERSHIP: 1289 case IP_ADD_SOURCE_MEMBERSHIP: 1290 case IP_DROP_SOURCE_MEMBERSHIP: 1291 case IP_BLOCK_SOURCE: 1292 case IP_UNBLOCK_SOURCE: 1293 case IP_MSFILTER: 1294 case MCAST_JOIN_GROUP: 1295 case MCAST_LEAVE_GROUP: 1296 case MCAST_JOIN_SOURCE_GROUP: 1297 case MCAST_LEAVE_SOURCE_GROUP: 1298 case MCAST_BLOCK_SOURCE: 1299 case MCAST_UNBLOCK_SOURCE: 1300 error = inp_setmoptions(inp, sopt); 1301 break; 1302 1303 case IP_PORTRANGE: 1304 error = sooptcopyin(sopt, &optval, sizeof optval, 1305 sizeof optval); 1306 if (error) 1307 break; 1308 1309 INP_WLOCK(inp); 1310 switch (optval) { 1311 case IP_PORTRANGE_DEFAULT: 1312 inp->inp_flags &= ~(INP_LOWPORT); 1313 inp->inp_flags &= ~(INP_HIGHPORT); 1314 break; 1315 1316 case IP_PORTRANGE_HIGH: 1317 inp->inp_flags &= ~(INP_LOWPORT); 1318 inp->inp_flags |= INP_HIGHPORT; 1319 break; 1320 1321 case IP_PORTRANGE_LOW: 1322 inp->inp_flags &= ~(INP_HIGHPORT); 1323 inp->inp_flags |= INP_LOWPORT; 1324 break; 1325 1326 default: 1327 error = EINVAL; 1328 break; 1329 } 1330 INP_WUNLOCK(inp); 1331 break; 1332 1333 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1334 case IP_IPSEC_POLICY: 1335 if (IPSEC_ENABLED(ipv4)) { 1336 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1337 break; 1338 } 1339 /* FALLTHROUGH */ 1340 #endif /* IPSEC */ 1341 1342 default: 1343 error = ENOPROTOOPT; 1344 break; 1345 } 1346 break; 1347 1348 case SOPT_GET: 1349 switch (sopt->sopt_name) { 1350 case IP_OPTIONS: 1351 case IP_RETOPTS: 1352 INP_RLOCK(inp); 1353 if (inp->inp_options) { 1354 struct mbuf *options; 1355 1356 options = m_copym(inp->inp_options, 0, 1357 M_COPYALL, M_NOWAIT); 1358 INP_RUNLOCK(inp); 1359 if (options != NULL) { 1360 error = sooptcopyout(sopt, 1361 mtod(options, char *), 1362 options->m_len); 1363 m_freem(options); 1364 } else 1365 error = ENOMEM; 1366 } else { 1367 INP_RUNLOCK(inp); 1368 sopt->sopt_valsize = 0; 1369 } 1370 break; 1371 1372 case IP_TOS: 1373 case IP_TTL: 1374 case IP_MINTTL: 1375 case IP_RECVOPTS: 1376 case IP_RECVRETOPTS: 1377 case IP_ORIGDSTADDR: 1378 case IP_RECVDSTADDR: 1379 case IP_RECVTTL: 1380 case IP_RECVIF: 1381 case IP_PORTRANGE: 1382 case IP_ONESBCAST: 1383 case IP_DONTFRAG: 1384 case IP_BINDANY: 1385 case IP_RECVTOS: 1386 case IP_FLOWID: 1387 case IP_FLOWTYPE: 1388 case IP_RECVFLOWID: 1389 #ifdef RSS 1390 case IP_RSSBUCKETID: 1391 case IP_RECVRSSBUCKETID: 1392 #endif 1393 case IP_VLAN_PCP: 1394 switch (sopt->sopt_name) { 1395 case IP_TOS: 1396 optval = inp->inp_ip_tos; 1397 break; 1398 1399 case IP_TTL: 1400 optval = inp->inp_ip_ttl; 1401 break; 1402 1403 case IP_MINTTL: 1404 optval = inp->inp_ip_minttl; 1405 break; 1406 1407 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1408 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1409 1410 case IP_RECVOPTS: 1411 optval = OPTBIT(INP_RECVOPTS); 1412 break; 1413 1414 case IP_RECVRETOPTS: 1415 optval = OPTBIT(INP_RECVRETOPTS); 1416 break; 1417 1418 case IP_RECVDSTADDR: 1419 optval = OPTBIT(INP_RECVDSTADDR); 1420 break; 1421 1422 case IP_ORIGDSTADDR: 1423 optval = OPTBIT2(INP_ORIGDSTADDR); 1424 break; 1425 1426 case IP_RECVTTL: 1427 optval = OPTBIT(INP_RECVTTL); 1428 break; 1429 1430 case IP_RECVIF: 1431 optval = OPTBIT(INP_RECVIF); 1432 break; 1433 1434 case IP_PORTRANGE: 1435 if (inp->inp_flags & INP_HIGHPORT) 1436 optval = IP_PORTRANGE_HIGH; 1437 else if (inp->inp_flags & INP_LOWPORT) 1438 optval = IP_PORTRANGE_LOW; 1439 else 1440 optval = 0; 1441 break; 1442 1443 case IP_ONESBCAST: 1444 optval = OPTBIT(INP_ONESBCAST); 1445 break; 1446 case IP_DONTFRAG: 1447 optval = OPTBIT(INP_DONTFRAG); 1448 break; 1449 case IP_BINDANY: 1450 optval = OPTBIT(INP_BINDANY); 1451 break; 1452 case IP_RECVTOS: 1453 optval = OPTBIT(INP_RECVTOS); 1454 break; 1455 case IP_FLOWID: 1456 optval = inp->inp_flowid; 1457 break; 1458 case IP_FLOWTYPE: 1459 optval = inp->inp_flowtype; 1460 break; 1461 case IP_RECVFLOWID: 1462 optval = OPTBIT2(INP_RECVFLOWID); 1463 break; 1464 #ifdef RSS 1465 case IP_RSSBUCKETID: 1466 retval = rss_hash2bucket(inp->inp_flowid, 1467 inp->inp_flowtype, 1468 &rss_bucket); 1469 if (retval == 0) 1470 optval = rss_bucket; 1471 else 1472 error = EINVAL; 1473 break; 1474 case IP_RECVRSSBUCKETID: 1475 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1476 break; 1477 #endif 1478 case IP_VLAN_PCP: 1479 if (OPTBIT2(INP_2PCP_SET)) { 1480 optval = (inp->inp_flags2 & 1481 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1482 } else { 1483 optval = -1; 1484 } 1485 break; 1486 } 1487 error = sooptcopyout(sopt, &optval, sizeof optval); 1488 break; 1489 1490 /* 1491 * Multicast socket options are processed by the in_mcast 1492 * module. 1493 */ 1494 case IP_MULTICAST_IF: 1495 case IP_MULTICAST_VIF: 1496 case IP_MULTICAST_TTL: 1497 case IP_MULTICAST_LOOP: 1498 case IP_MSFILTER: 1499 error = inp_getmoptions(inp, sopt); 1500 break; 1501 1502 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1503 case IP_IPSEC_POLICY: 1504 if (IPSEC_ENABLED(ipv4)) { 1505 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1506 break; 1507 } 1508 /* FALLTHROUGH */ 1509 #endif /* IPSEC */ 1510 1511 default: 1512 error = ENOPROTOOPT; 1513 break; 1514 } 1515 break; 1516 } 1517 return (error); 1518 } 1519 1520 /* 1521 * Routine called from ip_output() to loop back a copy of an IP multicast 1522 * packet to the input queue of a specified interface. Note that this 1523 * calls the output routine of the loopback "driver", but with an interface 1524 * pointer that might NOT be a loopback interface -- evil, but easier than 1525 * replicating that code here. 1526 */ 1527 static void 1528 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1529 { 1530 struct ip *ip; 1531 struct mbuf *copym; 1532 1533 /* 1534 * Make a deep copy of the packet because we're going to 1535 * modify the pack in order to generate checksums. 1536 */ 1537 copym = m_dup(m, M_NOWAIT); 1538 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1539 copym = m_pullup(copym, hlen); 1540 if (copym != NULL) { 1541 /* If needed, compute the checksum and mark it as valid. */ 1542 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1543 in_delayed_cksum(copym); 1544 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1545 copym->m_pkthdr.csum_flags |= 1546 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1547 copym->m_pkthdr.csum_data = 0xffff; 1548 } 1549 /* 1550 * We don't bother to fragment if the IP length is greater 1551 * than the interface's MTU. Can this possibly matter? 1552 */ 1553 ip = mtod(copym, struct ip *); 1554 ip->ip_sum = 0; 1555 ip->ip_sum = in_cksum(copym, hlen); 1556 if_simloop(ifp, copym, AF_INET, 0); 1557 } 1558 } 1559