1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 * 55 * $FreeBSD$ 56 */ 57 58 #include "opt_mac.h" 59 #include "opt_mrouting.h" 60 61 #ifdef PIM 62 #define _PIM_VT 1 63 #endif 64 65 #include <sys/param.h> 66 #include <sys/kernel.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mbuf.h> 70 #include <sys/module.h> 71 #include <sys/priv.h> 72 #include <sys/protosw.h> 73 #include <sys/signalvar.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/sockio.h> 77 #include <sys/sx.h> 78 #include <sys/sysctl.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/time.h> 82 #include <net/if.h> 83 #include <net/netisr.h> 84 #include <net/route.h> 85 #include <netinet/in.h> 86 #include <netinet/igmp.h> 87 #include <netinet/in_systm.h> 88 #include <netinet/in_var.h> 89 #include <netinet/ip.h> 90 #include <netinet/ip_encap.h> 91 #include <netinet/ip_mroute.h> 92 #include <netinet/ip_var.h> 93 #include <netinet/ip_options.h> 94 #ifdef PIM 95 #include <netinet/pim.h> 96 #include <netinet/pim_var.h> 97 #endif 98 #include <netinet/udp.h> 99 #include <machine/in_cksum.h> 100 101 #include <security/mac/mac_framework.h> 102 103 /* 104 * Control debugging code for rsvp and multicast routing code. 105 * Can only set them with the debugger. 106 */ 107 static u_int rsvpdebug; /* non-zero enables debugging */ 108 109 static u_int mrtdebug; /* any set of the flags below */ 110 #define DEBUG_MFC 0x02 111 #define DEBUG_FORWARD 0x04 112 #define DEBUG_EXPIRE 0x08 113 #define DEBUG_XMIT 0x10 114 #define DEBUG_PIM 0x20 115 116 #define VIFI_INVALID ((vifi_t) -1) 117 118 #define M_HASCL(m) ((m)->m_flags & M_EXT) 119 120 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); 121 122 /* 123 * Locking. We use two locks: one for the virtual interface table and 124 * one for the forwarding table. These locks may be nested in which case 125 * the VIF lock must always be taken first. Note that each lock is used 126 * to cover not only the specific data structure but also related data 127 * structures. It may be better to add more fine-grained locking later; 128 * it's not clear how performance-critical this code is. 129 * 130 * XXX: This module could particularly benefit from being cleaned 131 * up to use the <sys/queue.h> macros. 132 * 133 */ 134 135 static struct mrtstat mrtstat; 136 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 137 &mrtstat, mrtstat, 138 "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)"); 139 140 static struct mfc *mfctable[MFCTBLSIZ]; 141 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 142 &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]", 143 "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)"); 144 145 static struct mtx mfc_mtx; 146 #define MFC_LOCK() mtx_lock(&mfc_mtx) 147 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 148 #define MFC_LOCK_ASSERT() do { \ 149 mtx_assert(&mfc_mtx, MA_OWNED); \ 150 NET_ASSERT_GIANT(); \ 151 } while (0) 152 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF) 153 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 154 155 static struct vif viftable[MAXVIFS]; 156 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 157 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 158 "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 159 160 static struct mtx vif_mtx; 161 #define VIF_LOCK() mtx_lock(&vif_mtx) 162 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 163 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 164 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF) 165 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 166 167 static u_char nexpire[MFCTBLSIZ]; 168 169 static eventhandler_tag if_detach_event_tag = NULL; 170 171 static struct callout expire_upcalls_ch; 172 173 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 174 #define UPCALL_EXPIRE 6 /* number of timeouts */ 175 176 /* 177 * Define the token bucket filter structures 178 * tbftable -> each vif has one of these for storing info 179 */ 180 181 static struct tbf tbftable[MAXVIFS]; 182 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 183 184 /* 185 * 'Interfaces' associated with decapsulator (so we can tell 186 * packets that went through it from ones that get reflected 187 * by a broken gateway). These interfaces are never linked into 188 * the system ifnet list & no routes point to them. I.e., packets 189 * can't be sent this way. They only exist as a placeholder for 190 * multicast source verification. 191 */ 192 static struct ifnet multicast_decap_if[MAXVIFS]; 193 194 #define ENCAP_TTL 64 195 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 196 197 /* prototype IP hdr for encapsulated packets */ 198 static struct ip multicast_encap_iphdr = { 199 #if BYTE_ORDER == LITTLE_ENDIAN 200 sizeof(struct ip) >> 2, IPVERSION, 201 #else 202 IPVERSION, sizeof(struct ip) >> 2, 203 #endif 204 0, /* tos */ 205 sizeof(struct ip), /* total length */ 206 0, /* id */ 207 0, /* frag offset */ 208 ENCAP_TTL, ENCAP_PROTO, 209 0, /* checksum */ 210 }; 211 212 /* 213 * Bandwidth meter variables and constants 214 */ 215 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 216 /* 217 * Pending timeouts are stored in a hash table, the key being the 218 * expiration time. Periodically, the entries are analysed and processed. 219 */ 220 #define BW_METER_BUCKETS 1024 221 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 222 static struct callout bw_meter_ch; 223 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 224 225 /* 226 * Pending upcalls are stored in a vector which is flushed when 227 * full, or periodically 228 */ 229 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 230 static u_int bw_upcalls_n; /* # of pending upcalls */ 231 static struct callout bw_upcalls_ch; 232 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 233 234 #ifdef PIM 235 static struct pimstat pimstat; 236 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 237 &pimstat, pimstat, 238 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 239 240 /* 241 * Note: the PIM Register encapsulation adds the following in front of a 242 * data packet: 243 * 244 * struct pim_encap_hdr { 245 * struct ip ip; 246 * struct pim_encap_pimhdr pim; 247 * } 248 * 249 */ 250 251 struct pim_encap_pimhdr { 252 struct pim pim; 253 uint32_t flags; 254 }; 255 256 static struct ip pim_encap_iphdr = { 257 #if BYTE_ORDER == LITTLE_ENDIAN 258 sizeof(struct ip) >> 2, 259 IPVERSION, 260 #else 261 IPVERSION, 262 sizeof(struct ip) >> 2, 263 #endif 264 0, /* tos */ 265 sizeof(struct ip), /* total length */ 266 0, /* id */ 267 0, /* frag offset */ 268 ENCAP_TTL, 269 IPPROTO_PIM, 270 0, /* checksum */ 271 }; 272 273 static struct pim_encap_pimhdr pim_encap_pimhdr = { 274 { 275 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 276 0, /* reserved */ 277 0, /* checksum */ 278 }, 279 0 /* flags */ 280 }; 281 282 static struct ifnet multicast_register_if; 283 static vifi_t reg_vif_num = VIFI_INVALID; 284 #endif /* PIM */ 285 286 /* 287 * Private variables. 288 */ 289 static vifi_t numvifs; 290 static const struct encaptab *encap_cookie; 291 292 /* 293 * one-back cache used by mroute_encapcheck to locate a tunnel's vif 294 * given a datagram's src ip address. 295 */ 296 static u_long last_encap_src; 297 static struct vif *last_encap_vif; 298 299 /* 300 * Callout for queue processing. 301 */ 302 static struct callout tbf_reprocess_ch; 303 304 static u_long X_ip_mcast_src(int vifi); 305 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, 306 struct mbuf *m, struct ip_moptions *imo); 307 static int X_ip_mrouter_done(void); 308 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m); 309 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m); 310 static int X_legal_vif_num(int vif); 311 static int X_mrt_ioctl(int cmd, caddr_t data); 312 313 static int get_sg_cnt(struct sioc_sg_req *); 314 static int get_vif_cnt(struct sioc_vif_req *); 315 static void if_detached_event(void *arg __unused, struct ifnet *); 316 static int ip_mrouter_init(struct socket *, int); 317 static int add_vif(struct vifctl *); 318 static int del_vif_locked(vifi_t); 319 static int del_vif(vifi_t); 320 static int add_mfc(struct mfcctl2 *); 321 static int del_mfc(struct mfcctl2 *); 322 static int set_api_config(uint32_t *); /* chose API capabilities */ 323 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 324 static int set_assert(int); 325 static void expire_upcalls(void *); 326 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 327 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 328 static void encap_send(struct ip *, struct vif *, struct mbuf *); 329 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long); 330 static void tbf_queue(struct vif *, struct mbuf *); 331 static void tbf_process_q(struct vif *); 332 static void tbf_reprocess_q(void *); 333 static int tbf_dq_sel(struct vif *, struct ip *); 334 static void tbf_send_packet(struct vif *, struct mbuf *); 335 static void tbf_update_tokens(struct vif *); 336 static int priority(struct vif *, struct ip *); 337 338 /* 339 * Bandwidth monitoring 340 */ 341 static void free_bw_list(struct bw_meter *list); 342 static int add_bw_upcall(struct bw_upcall *); 343 static int del_bw_upcall(struct bw_upcall *); 344 static void bw_meter_receive_packet(struct bw_meter *x, int plen, 345 struct timeval *nowp); 346 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp); 347 static void bw_upcalls_send(void); 348 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp); 349 static void unschedule_bw_meter(struct bw_meter *x); 350 static void bw_meter_process(void); 351 static void expire_bw_upcalls_send(void *); 352 static void expire_bw_meter_process(void *); 353 354 #ifdef PIM 355 static int pim_register_send(struct ip *, struct vif *, 356 struct mbuf *, struct mfc *); 357 static int pim_register_send_rp(struct ip *, struct vif *, 358 struct mbuf *, struct mfc *); 359 static int pim_register_send_upcall(struct ip *, struct vif *, 360 struct mbuf *, struct mfc *); 361 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 362 #endif 363 364 /* 365 * whether or not special PIM assert processing is enabled. 366 */ 367 static int pim_assert; 368 /* 369 * Rate limit for assert notification messages, in usec 370 */ 371 #define ASSERT_MSG_TIME 3000000 372 373 /* 374 * Kernel multicast routing API capabilities and setup. 375 * If more API capabilities are added to the kernel, they should be 376 * recorded in `mrt_api_support'. 377 */ 378 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 379 MRT_MFC_FLAGS_BORDER_VIF | 380 MRT_MFC_RP | 381 MRT_MFC_BW_UPCALL); 382 static uint32_t mrt_api_config = 0; 383 384 /* 385 * Hash function for a source, group entry 386 */ 387 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ 388 ((g) >> 20) ^ ((g) >> 10) ^ (g)) 389 390 /* 391 * Find a route for a given origin IP address and Multicast group address 392 * Type of service parameter to be added in the future!!! 393 * Statistics are updated by the caller if needed 394 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 395 */ 396 static struct mfc * 397 mfc_find(in_addr_t o, in_addr_t g) 398 { 399 struct mfc *rt; 400 401 MFC_LOCK_ASSERT(); 402 403 for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next) 404 if ((rt->mfc_origin.s_addr == o) && 405 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL)) 406 break; 407 return rt; 408 } 409 410 /* 411 * Macros to compute elapsed time efficiently 412 * Borrowed from Van Jacobson's scheduling code 413 */ 414 #define TV_DELTA(a, b, delta) { \ 415 int xxs; \ 416 delta = (a).tv_usec - (b).tv_usec; \ 417 if ((xxs = (a).tv_sec - (b).tv_sec)) { \ 418 switch (xxs) { \ 419 case 2: \ 420 delta += 1000000; \ 421 /* FALLTHROUGH */ \ 422 case 1: \ 423 delta += 1000000; \ 424 break; \ 425 default: \ 426 delta += (1000000 * xxs); \ 427 } \ 428 } \ 429 } 430 431 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ 432 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) 433 434 /* 435 * Handle MRT setsockopt commands to modify the multicast routing tables. 436 */ 437 static int 438 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 439 { 440 int error, optval; 441 vifi_t vifi; 442 struct vifctl vifc; 443 struct mfcctl2 mfc; 444 struct bw_upcall bw_upcall; 445 uint32_t i; 446 447 if (so != ip_mrouter && sopt->sopt_name != MRT_INIT) 448 return EPERM; 449 450 error = 0; 451 switch (sopt->sopt_name) { 452 case MRT_INIT: 453 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 454 if (error) 455 break; 456 error = ip_mrouter_init(so, optval); 457 break; 458 459 case MRT_DONE: 460 error = ip_mrouter_done(); 461 break; 462 463 case MRT_ADD_VIF: 464 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 465 if (error) 466 break; 467 error = add_vif(&vifc); 468 break; 469 470 case MRT_DEL_VIF: 471 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 472 if (error) 473 break; 474 error = del_vif(vifi); 475 break; 476 477 case MRT_ADD_MFC: 478 case MRT_DEL_MFC: 479 /* 480 * select data size depending on API version. 481 */ 482 if (sopt->sopt_name == MRT_ADD_MFC && 483 mrt_api_config & MRT_API_FLAGS_ALL) { 484 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 485 sizeof(struct mfcctl2)); 486 } else { 487 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 488 sizeof(struct mfcctl)); 489 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 490 sizeof(mfc) - sizeof(struct mfcctl)); 491 } 492 if (error) 493 break; 494 if (sopt->sopt_name == MRT_ADD_MFC) 495 error = add_mfc(&mfc); 496 else 497 error = del_mfc(&mfc); 498 break; 499 500 case MRT_ASSERT: 501 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 502 if (error) 503 break; 504 set_assert(optval); 505 break; 506 507 case MRT_API_CONFIG: 508 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 509 if (!error) 510 error = set_api_config(&i); 511 if (!error) 512 error = sooptcopyout(sopt, &i, sizeof i); 513 break; 514 515 case MRT_ADD_BW_UPCALL: 516 case MRT_DEL_BW_UPCALL: 517 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 518 sizeof bw_upcall); 519 if (error) 520 break; 521 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 522 error = add_bw_upcall(&bw_upcall); 523 else 524 error = del_bw_upcall(&bw_upcall); 525 break; 526 527 default: 528 error = EOPNOTSUPP; 529 break; 530 } 531 return error; 532 } 533 534 /* 535 * Handle MRT getsockopt commands 536 */ 537 static int 538 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 539 { 540 int error; 541 static int version = 0x0305; /* !!! why is this here? XXX */ 542 543 switch (sopt->sopt_name) { 544 case MRT_VERSION: 545 error = sooptcopyout(sopt, &version, sizeof version); 546 break; 547 548 case MRT_ASSERT: 549 error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); 550 break; 551 552 case MRT_API_SUPPORT: 553 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 554 break; 555 556 case MRT_API_CONFIG: 557 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 558 break; 559 560 default: 561 error = EOPNOTSUPP; 562 break; 563 } 564 return error; 565 } 566 567 /* 568 * Handle ioctl commands to obtain information from the cache 569 */ 570 static int 571 X_mrt_ioctl(int cmd, caddr_t data) 572 { 573 int error = 0; 574 575 /* 576 * Currently the only function calling this ioctl routine is rtioctl(). 577 * Typically, only root can create the raw socket in order to execute 578 * this ioctl method, however the request might be coming from a prison 579 */ 580 error = priv_check(curthread, PRIV_NETINET_MROUTE); 581 if (error) 582 return (error); 583 switch (cmd) { 584 case (SIOCGETVIFCNT): 585 error = get_vif_cnt((struct sioc_vif_req *)data); 586 break; 587 588 case (SIOCGETSGCNT): 589 error = get_sg_cnt((struct sioc_sg_req *)data); 590 break; 591 592 default: 593 error = EINVAL; 594 break; 595 } 596 return error; 597 } 598 599 /* 600 * returns the packet, byte, rpf-failure count for the source group provided 601 */ 602 static int 603 get_sg_cnt(struct sioc_sg_req *req) 604 { 605 struct mfc *rt; 606 607 MFC_LOCK(); 608 rt = mfc_find(req->src.s_addr, req->grp.s_addr); 609 if (rt == NULL) { 610 MFC_UNLOCK(); 611 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 612 return EADDRNOTAVAIL; 613 } 614 req->pktcnt = rt->mfc_pkt_cnt; 615 req->bytecnt = rt->mfc_byte_cnt; 616 req->wrong_if = rt->mfc_wrong_if; 617 MFC_UNLOCK(); 618 return 0; 619 } 620 621 /* 622 * returns the input and output packet and byte counts on the vif provided 623 */ 624 static int 625 get_vif_cnt(struct sioc_vif_req *req) 626 { 627 vifi_t vifi = req->vifi; 628 629 VIF_LOCK(); 630 if (vifi >= numvifs) { 631 VIF_UNLOCK(); 632 return EINVAL; 633 } 634 635 req->icount = viftable[vifi].v_pkt_in; 636 req->ocount = viftable[vifi].v_pkt_out; 637 req->ibytes = viftable[vifi].v_bytes_in; 638 req->obytes = viftable[vifi].v_bytes_out; 639 VIF_UNLOCK(); 640 641 return 0; 642 } 643 644 static void 645 ip_mrouter_reset(void) 646 { 647 bzero((caddr_t)mfctable, sizeof(mfctable)); 648 bzero((caddr_t)nexpire, sizeof(nexpire)); 649 650 pim_assert = 0; 651 mrt_api_config = 0; 652 653 callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE); 654 655 bw_upcalls_n = 0; 656 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 657 callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE); 658 callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE); 659 660 callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE); 661 } 662 663 static struct mtx mrouter_mtx; /* used to synch init/done work */ 664 665 static void 666 if_detached_event(void *arg __unused, struct ifnet *ifp) 667 { 668 vifi_t vifi; 669 int i; 670 struct mfc *mfc; 671 struct mfc *nmfc; 672 struct mfc **ppmfc; /* Pointer to previous node's next-pointer */ 673 struct rtdetq *pq; 674 struct rtdetq *npq; 675 676 mtx_lock(&mrouter_mtx); 677 if (ip_mrouter == NULL) { 678 mtx_unlock(&mrouter_mtx); 679 } 680 681 /* 682 * Tear down multicast forwarder state associated with this ifnet. 683 * 1. Walk the vif list, matching vifs against this ifnet. 684 * 2. Walk the multicast forwarding cache (mfc) looking for 685 * inner matches with this vif's index. 686 * 3. Free any pending mbufs for this mfc. 687 * 4. Free the associated mfc entry and state associated with this vif. 688 * Be very careful about unlinking from a singly-linked list whose 689 * "head node" is a pointer in a simple array. 690 * 5. Free vif state. This should disable ALLMULTI on the interface. 691 */ 692 VIF_LOCK(); 693 MFC_LOCK(); 694 for (vifi = 0; vifi < numvifs; vifi++) { 695 if (viftable[vifi].v_ifp != ifp) 696 continue; 697 for (i = 0; i < MFCTBLSIZ; i++) { 698 ppmfc = &mfctable[i]; 699 for (mfc = mfctable[i]; mfc != NULL; ) { 700 nmfc = mfc->mfc_next; 701 if (mfc->mfc_parent == vifi) { 702 for (pq = mfc->mfc_stall; pq != NULL; ) { 703 npq = pq->next; 704 m_freem(pq->m); 705 free(pq, M_MRTABLE); 706 pq = npq; 707 } 708 free_bw_list(mfc->mfc_bw_meter); 709 free(mfc, M_MRTABLE); 710 *ppmfc = nmfc; 711 } else { 712 ppmfc = &mfc->mfc_next; 713 } 714 mfc = nmfc; 715 } 716 } 717 del_vif_locked(vifi); 718 } 719 MFC_UNLOCK(); 720 VIF_UNLOCK(); 721 722 mtx_unlock(&mrouter_mtx); 723 } 724 725 /* 726 * Enable multicast routing 727 */ 728 static int 729 ip_mrouter_init(struct socket *so, int version) 730 { 731 if (mrtdebug) 732 log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 733 so->so_type, so->so_proto->pr_protocol); 734 735 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 736 return EOPNOTSUPP; 737 738 if (version != 1) 739 return ENOPROTOOPT; 740 741 mtx_lock(&mrouter_mtx); 742 743 if (ip_mrouter != NULL) { 744 mtx_unlock(&mrouter_mtx); 745 return EADDRINUSE; 746 } 747 748 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 749 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 750 if (if_detach_event_tag == NULL) 751 return (ENOMEM); 752 753 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 754 755 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 756 expire_bw_upcalls_send, NULL); 757 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 758 759 ip_mrouter = so; 760 761 mtx_unlock(&mrouter_mtx); 762 763 if (mrtdebug) 764 log(LOG_DEBUG, "ip_mrouter_init\n"); 765 766 return 0; 767 } 768 769 /* 770 * Disable multicast routing 771 */ 772 static int 773 X_ip_mrouter_done(void) 774 { 775 vifi_t vifi; 776 int i; 777 struct ifnet *ifp; 778 struct ifreq ifr; 779 struct mfc *rt; 780 struct rtdetq *rte; 781 782 mtx_lock(&mrouter_mtx); 783 784 if (ip_mrouter == NULL) { 785 mtx_unlock(&mrouter_mtx); 786 return EINVAL; 787 } 788 789 /* 790 * Detach/disable hooks to the reset of the system. 791 */ 792 ip_mrouter = NULL; 793 mrt_api_config = 0; 794 795 VIF_LOCK(); 796 if (encap_cookie) { 797 const struct encaptab *c = encap_cookie; 798 encap_cookie = NULL; 799 encap_detach(c); 800 } 801 VIF_UNLOCK(); 802 803 callout_stop(&tbf_reprocess_ch); 804 805 VIF_LOCK(); 806 /* 807 * For each phyint in use, disable promiscuous reception of all IP 808 * multicasts. 809 */ 810 for (vifi = 0; vifi < numvifs; vifi++) { 811 if (viftable[vifi].v_lcl_addr.s_addr != 0 && 812 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 813 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 814 815 so->sin_len = sizeof(struct sockaddr_in); 816 so->sin_family = AF_INET; 817 so->sin_addr.s_addr = INADDR_ANY; 818 ifp = viftable[vifi].v_ifp; 819 if_allmulti(ifp, 0); 820 } 821 } 822 bzero((caddr_t)tbftable, sizeof(tbftable)); 823 bzero((caddr_t)viftable, sizeof(viftable)); 824 numvifs = 0; 825 pim_assert = 0; 826 VIF_UNLOCK(); 827 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 828 829 /* 830 * Free all multicast forwarding cache entries. 831 */ 832 callout_stop(&expire_upcalls_ch); 833 callout_stop(&bw_upcalls_ch); 834 callout_stop(&bw_meter_ch); 835 836 MFC_LOCK(); 837 for (i = 0; i < MFCTBLSIZ; i++) { 838 for (rt = mfctable[i]; rt != NULL; ) { 839 struct mfc *nr = rt->mfc_next; 840 841 for (rte = rt->mfc_stall; rte != NULL; ) { 842 struct rtdetq *n = rte->next; 843 844 m_freem(rte->m); 845 free(rte, M_MRTABLE); 846 rte = n; 847 } 848 free_bw_list(rt->mfc_bw_meter); 849 free(rt, M_MRTABLE); 850 rt = nr; 851 } 852 } 853 bzero((caddr_t)mfctable, sizeof(mfctable)); 854 bzero((caddr_t)nexpire, sizeof(nexpire)); 855 bw_upcalls_n = 0; 856 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 857 MFC_UNLOCK(); 858 859 /* 860 * Reset de-encapsulation cache 861 */ 862 last_encap_src = INADDR_ANY; 863 last_encap_vif = NULL; 864 #ifdef PIM 865 reg_vif_num = VIFI_INVALID; 866 #endif 867 868 mtx_unlock(&mrouter_mtx); 869 870 if (mrtdebug) 871 log(LOG_DEBUG, "ip_mrouter_done\n"); 872 873 return 0; 874 } 875 876 /* 877 * Set PIM assert processing global 878 */ 879 static int 880 set_assert(int i) 881 { 882 if ((i != 1) && (i != 0)) 883 return EINVAL; 884 885 pim_assert = i; 886 887 return 0; 888 } 889 890 /* 891 * Configure API capabilities 892 */ 893 int 894 set_api_config(uint32_t *apival) 895 { 896 int i; 897 898 /* 899 * We can set the API capabilities only if it is the first operation 900 * after MRT_INIT. I.e.: 901 * - there are no vifs installed 902 * - pim_assert is not enabled 903 * - the MFC table is empty 904 */ 905 if (numvifs > 0) { 906 *apival = 0; 907 return EPERM; 908 } 909 if (pim_assert) { 910 *apival = 0; 911 return EPERM; 912 } 913 for (i = 0; i < MFCTBLSIZ; i++) { 914 if (mfctable[i] != NULL) { 915 *apival = 0; 916 return EPERM; 917 } 918 } 919 920 mrt_api_config = *apival & mrt_api_support; 921 *apival = mrt_api_config; 922 923 return 0; 924 } 925 926 /* 927 * Decide if a packet is from a tunnelled peer. 928 * Return 0 if not, 64 if so. XXX yuck.. 64 ??? 929 */ 930 static int 931 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 932 { 933 struct ip *ip = mtod(m, struct ip *); 934 int hlen = ip->ip_hl << 2; 935 936 /* 937 * don't claim the packet if it's not to a multicast destination or if 938 * we don't have an encapsulating tunnel with the source. 939 * Note: This code assumes that the remote site IP address 940 * uniquely identifies the tunnel (i.e., that this site has 941 * at most one tunnel with the remote site). 942 */ 943 if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) 944 return 0; 945 if (ip->ip_src.s_addr != last_encap_src) { 946 struct vif *vifp = viftable; 947 struct vif *vife = vifp + numvifs; 948 949 last_encap_src = ip->ip_src.s_addr; 950 last_encap_vif = NULL; 951 for ( ; vifp < vife; ++vifp) 952 if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) { 953 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL) 954 last_encap_vif = vifp; 955 break; 956 } 957 } 958 if (last_encap_vif == NULL) { 959 last_encap_src = INADDR_ANY; 960 return 0; 961 } 962 return 64; 963 } 964 965 /* 966 * De-encapsulate a packet and feed it back through ip input (this 967 * routine is called whenever IP gets a packet that mroute_encap_func() 968 * claimed). 969 */ 970 static void 971 mroute_encap_input(struct mbuf *m, int off) 972 { 973 struct ip *ip = mtod(m, struct ip *); 974 int hlen = ip->ip_hl << 2; 975 976 if (hlen > sizeof(struct ip)) 977 ip_stripoptions(m, (struct mbuf *) 0); 978 m->m_data += sizeof(struct ip); 979 m->m_len -= sizeof(struct ip); 980 m->m_pkthdr.len -= sizeof(struct ip); 981 982 m->m_pkthdr.rcvif = last_encap_vif->v_ifp; 983 984 netisr_queue(NETISR_IP, m); /* mbuf is free'd on failure. */ 985 /* 986 * normally we would need a "schednetisr(NETISR_IP)" 987 * here but we were called by ip_input and it is going 988 * to loop back & try to dequeue the packet we just 989 * queued as soon as we return so we avoid the 990 * unnecessary software interrrupt. 991 * 992 * XXX 993 * This no longer holds - we may have direct-dispatched the packet, 994 * or there may be a queue processing limit. 995 */ 996 } 997 998 extern struct domain inetdomain; 999 static struct protosw mroute_encap_protosw = 1000 { 1001 .pr_type = SOCK_RAW, 1002 .pr_domain = &inetdomain, 1003 .pr_protocol = IPPROTO_IPV4, 1004 .pr_flags = PR_ATOMIC|PR_ADDR, 1005 .pr_input = mroute_encap_input, 1006 .pr_ctloutput = rip_ctloutput, 1007 .pr_usrreqs = &rip_usrreqs 1008 }; 1009 1010 /* 1011 * Add a vif to the vif table 1012 */ 1013 static int 1014 add_vif(struct vifctl *vifcp) 1015 { 1016 struct vif *vifp = viftable + vifcp->vifc_vifi; 1017 struct sockaddr_in sin = {sizeof sin, AF_INET}; 1018 struct ifaddr *ifa; 1019 struct ifnet *ifp; 1020 int error; 1021 struct tbf *v_tbf = tbftable + vifcp->vifc_vifi; 1022 1023 VIF_LOCK(); 1024 if (vifcp->vifc_vifi >= MAXVIFS) { 1025 VIF_UNLOCK(); 1026 return EINVAL; 1027 } 1028 if (vifp->v_lcl_addr.s_addr != INADDR_ANY) { 1029 VIF_UNLOCK(); 1030 return EADDRINUSE; 1031 } 1032 if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) { 1033 VIF_UNLOCK(); 1034 return EADDRNOTAVAIL; 1035 } 1036 1037 /* Find the interface with an address in AF_INET family */ 1038 #ifdef PIM 1039 if (vifcp->vifc_flags & VIFF_REGISTER) { 1040 /* 1041 * XXX: Because VIFF_REGISTER does not really need a valid 1042 * local interface (e.g. it could be 127.0.0.2), we don't 1043 * check its address. 1044 */ 1045 ifp = NULL; 1046 } else 1047 #endif 1048 { 1049 sin.sin_addr = vifcp->vifc_lcl_addr; 1050 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 1051 if (ifa == NULL) { 1052 VIF_UNLOCK(); 1053 return EADDRNOTAVAIL; 1054 } 1055 ifp = ifa->ifa_ifp; 1056 } 1057 1058 if (vifcp->vifc_flags & VIFF_TUNNEL) { 1059 if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) { 1060 /* 1061 * An encapsulating tunnel is wanted. Tell 1062 * mroute_encap_input() to start paying attention 1063 * to encapsulated packets. 1064 */ 1065 if (encap_cookie == NULL) { 1066 int i; 1067 1068 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 1069 mroute_encapcheck, 1070 (struct protosw *)&mroute_encap_protosw, NULL); 1071 1072 if (encap_cookie == NULL) { 1073 printf("ip_mroute: unable to attach encap\n"); 1074 VIF_UNLOCK(); 1075 return EIO; /* XXX */ 1076 } 1077 for (i = 0; i < MAXVIFS; ++i) { 1078 if_initname(&multicast_decap_if[i], "mdecap", i); 1079 } 1080 } 1081 /* 1082 * Set interface to fake encapsulator interface 1083 */ 1084 ifp = &multicast_decap_if[vifcp->vifc_vifi]; 1085 /* 1086 * Prepare cached route entry 1087 */ 1088 bzero(&vifp->v_route, sizeof(vifp->v_route)); 1089 } else { 1090 log(LOG_ERR, "source routed tunnels not supported\n"); 1091 VIF_UNLOCK(); 1092 return EOPNOTSUPP; 1093 } 1094 #ifdef PIM 1095 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 1096 ifp = &multicast_register_if; 1097 if (mrtdebug) 1098 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 1099 (void *)&multicast_register_if); 1100 if (reg_vif_num == VIFI_INVALID) { 1101 if_initname(&multicast_register_if, "register_vif", 0); 1102 multicast_register_if.if_flags = IFF_LOOPBACK; 1103 bzero(&vifp->v_route, sizeof(vifp->v_route)); 1104 reg_vif_num = vifcp->vifc_vifi; 1105 } 1106 #endif 1107 } else { /* Make sure the interface supports multicast */ 1108 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1109 VIF_UNLOCK(); 1110 return EOPNOTSUPP; 1111 } 1112 1113 /* Enable promiscuous reception of all IP multicasts from the if */ 1114 error = if_allmulti(ifp, 1); 1115 if (error) { 1116 VIF_UNLOCK(); 1117 return error; 1118 } 1119 } 1120 1121 /* define parameters for the tbf structure */ 1122 vifp->v_tbf = v_tbf; 1123 GET_TIME(vifp->v_tbf->tbf_last_pkt_t); 1124 vifp->v_tbf->tbf_n_tok = 0; 1125 vifp->v_tbf->tbf_q_len = 0; 1126 vifp->v_tbf->tbf_max_q_len = MAXQSIZE; 1127 vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL; 1128 1129 vifp->v_flags = vifcp->vifc_flags; 1130 vifp->v_threshold = vifcp->vifc_threshold; 1131 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 1132 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 1133 vifp->v_ifp = ifp; 1134 /* scaling up here allows division by 1024 in critical code */ 1135 vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000; 1136 vifp->v_rsvp_on = 0; 1137 vifp->v_rsvpd = NULL; 1138 /* initialize per vif pkt counters */ 1139 vifp->v_pkt_in = 0; 1140 vifp->v_pkt_out = 0; 1141 vifp->v_bytes_in = 0; 1142 vifp->v_bytes_out = 0; 1143 1144 /* Adjust numvifs up if the vifi is higher than numvifs */ 1145 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; 1146 1147 VIF_UNLOCK(); 1148 1149 if (mrtdebug) 1150 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n", 1151 vifcp->vifc_vifi, 1152 (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), 1153 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 1154 (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), 1155 vifcp->vifc_threshold, 1156 vifcp->vifc_rate_limit); 1157 1158 return 0; 1159 } 1160 1161 /* 1162 * Delete a vif from the vif table 1163 */ 1164 static int 1165 del_vif_locked(vifi_t vifi) 1166 { 1167 struct vif *vifp; 1168 1169 VIF_LOCK_ASSERT(); 1170 1171 if (vifi >= numvifs) { 1172 return EINVAL; 1173 } 1174 vifp = &viftable[vifi]; 1175 if (vifp->v_lcl_addr.s_addr == INADDR_ANY) { 1176 return EADDRNOTAVAIL; 1177 } 1178 1179 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1180 if_allmulti(vifp->v_ifp, 0); 1181 1182 if (vifp == last_encap_vif) { 1183 last_encap_vif = NULL; 1184 last_encap_src = INADDR_ANY; 1185 } 1186 1187 /* 1188 * Free packets queued at the interface 1189 */ 1190 while (vifp->v_tbf->tbf_q) { 1191 struct mbuf *m = vifp->v_tbf->tbf_q; 1192 1193 vifp->v_tbf->tbf_q = m->m_act; 1194 m_freem(m); 1195 } 1196 1197 #ifdef PIM 1198 if (vifp->v_flags & VIFF_REGISTER) 1199 reg_vif_num = VIFI_INVALID; 1200 #endif 1201 1202 bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf))); 1203 bzero((caddr_t)vifp, sizeof (*vifp)); 1204 1205 if (mrtdebug) 1206 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); 1207 1208 /* Adjust numvifs down */ 1209 for (vifi = numvifs; vifi > 0; vifi--) 1210 if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY) 1211 break; 1212 numvifs = vifi; 1213 1214 return 0; 1215 } 1216 1217 static int 1218 del_vif(vifi_t vifi) 1219 { 1220 int cc; 1221 1222 VIF_LOCK(); 1223 cc = del_vif_locked(vifi); 1224 VIF_UNLOCK(); 1225 1226 return cc; 1227 } 1228 1229 /* 1230 * update an mfc entry without resetting counters and S,G addresses. 1231 */ 1232 static void 1233 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1234 { 1235 int i; 1236 1237 rt->mfc_parent = mfccp->mfcc_parent; 1238 for (i = 0; i < numvifs; i++) { 1239 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1240 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1241 MRT_MFC_FLAGS_ALL; 1242 } 1243 /* set the RP address */ 1244 if (mrt_api_config & MRT_MFC_RP) 1245 rt->mfc_rp = mfccp->mfcc_rp; 1246 else 1247 rt->mfc_rp.s_addr = INADDR_ANY; 1248 } 1249 1250 /* 1251 * fully initialize an mfc entry from the parameter. 1252 */ 1253 static void 1254 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1255 { 1256 rt->mfc_origin = mfccp->mfcc_origin; 1257 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1258 1259 update_mfc_params(rt, mfccp); 1260 1261 /* initialize pkt counters per src-grp */ 1262 rt->mfc_pkt_cnt = 0; 1263 rt->mfc_byte_cnt = 0; 1264 rt->mfc_wrong_if = 0; 1265 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; 1266 } 1267 1268 1269 /* 1270 * Add an mfc entry 1271 */ 1272 static int 1273 add_mfc(struct mfcctl2 *mfccp) 1274 { 1275 struct mfc *rt; 1276 u_long hash; 1277 struct rtdetq *rte; 1278 u_short nstl; 1279 1280 VIF_LOCK(); 1281 MFC_LOCK(); 1282 1283 rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1284 1285 /* If an entry already exists, just update the fields */ 1286 if (rt) { 1287 if (mrtdebug & DEBUG_MFC) 1288 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", 1289 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1290 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1291 mfccp->mfcc_parent); 1292 1293 update_mfc_params(rt, mfccp); 1294 MFC_UNLOCK(); 1295 VIF_UNLOCK(); 1296 return 0; 1297 } 1298 1299 /* 1300 * Find the entry for which the upcall was made and update 1301 */ 1302 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1303 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { 1304 1305 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1306 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && 1307 (rt->mfc_stall != NULL)) { 1308 1309 if (nstl++) 1310 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", 1311 "multiple kernel entries", 1312 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1313 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1314 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1315 1316 if (mrtdebug & DEBUG_MFC) 1317 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", 1318 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1319 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1320 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1321 1322 init_mfc_params(rt, mfccp); 1323 1324 rt->mfc_expire = 0; /* Don't clean this guy up */ 1325 nexpire[hash]--; 1326 1327 /* free packets Qed at the end of this entry */ 1328 for (rte = rt->mfc_stall; rte != NULL; ) { 1329 struct rtdetq *n = rte->next; 1330 1331 ip_mdq(rte->m, rte->ifp, rt, -1); 1332 m_freem(rte->m); 1333 free(rte, M_MRTABLE); 1334 rte = n; 1335 } 1336 rt->mfc_stall = NULL; 1337 } 1338 } 1339 1340 /* 1341 * It is possible that an entry is being inserted without an upcall 1342 */ 1343 if (nstl == 0) { 1344 if (mrtdebug & DEBUG_MFC) 1345 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", 1346 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1347 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1348 mfccp->mfcc_parent); 1349 1350 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { 1351 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1352 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { 1353 init_mfc_params(rt, mfccp); 1354 if (rt->mfc_expire) 1355 nexpire[hash]--; 1356 rt->mfc_expire = 0; 1357 break; /* XXX */ 1358 } 1359 } 1360 if (rt == NULL) { /* no upcall, so make a new entry */ 1361 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1362 if (rt == NULL) { 1363 MFC_UNLOCK(); 1364 VIF_UNLOCK(); 1365 return ENOBUFS; 1366 } 1367 1368 init_mfc_params(rt, mfccp); 1369 rt->mfc_expire = 0; 1370 rt->mfc_stall = NULL; 1371 1372 rt->mfc_bw_meter = NULL; 1373 /* insert new entry at head of hash chain */ 1374 rt->mfc_next = mfctable[hash]; 1375 mfctable[hash] = rt; 1376 } 1377 } 1378 MFC_UNLOCK(); 1379 VIF_UNLOCK(); 1380 return 0; 1381 } 1382 1383 /* 1384 * Delete an mfc entry 1385 */ 1386 static int 1387 del_mfc(struct mfcctl2 *mfccp) 1388 { 1389 struct in_addr origin; 1390 struct in_addr mcastgrp; 1391 struct mfc *rt; 1392 struct mfc **nptr; 1393 u_long hash; 1394 struct bw_meter *list; 1395 1396 origin = mfccp->mfcc_origin; 1397 mcastgrp = mfccp->mfcc_mcastgrp; 1398 1399 if (mrtdebug & DEBUG_MFC) 1400 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", 1401 (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1402 1403 MFC_LOCK(); 1404 1405 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); 1406 for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next) 1407 if (origin.s_addr == rt->mfc_origin.s_addr && 1408 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && 1409 rt->mfc_stall == NULL) 1410 break; 1411 if (rt == NULL) { 1412 MFC_UNLOCK(); 1413 return EADDRNOTAVAIL; 1414 } 1415 1416 *nptr = rt->mfc_next; 1417 1418 /* 1419 * free the bw_meter entries 1420 */ 1421 list = rt->mfc_bw_meter; 1422 rt->mfc_bw_meter = NULL; 1423 1424 free(rt, M_MRTABLE); 1425 1426 free_bw_list(list); 1427 1428 MFC_UNLOCK(); 1429 1430 return 0; 1431 } 1432 1433 /* 1434 * Send a message to the routing daemon on the multicast routing socket 1435 */ 1436 static int 1437 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1438 { 1439 if (s) { 1440 SOCKBUF_LOCK(&s->so_rcv); 1441 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1442 NULL) != 0) { 1443 sorwakeup_locked(s); 1444 return 0; 1445 } 1446 SOCKBUF_UNLOCK(&s->so_rcv); 1447 } 1448 m_freem(mm); 1449 return -1; 1450 } 1451 1452 /* 1453 * IP multicast forwarding function. This function assumes that the packet 1454 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1455 * pointed to by "ifp", and the packet is to be relayed to other networks 1456 * that have members of the packet's destination IP multicast group. 1457 * 1458 * The packet is returned unscathed to the caller, unless it is 1459 * erroneous, in which case a non-zero return value tells the caller to 1460 * discard it. 1461 */ 1462 1463 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1464 1465 static int 1466 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1467 struct ip_moptions *imo) 1468 { 1469 struct mfc *rt; 1470 int error; 1471 vifi_t vifi; 1472 1473 if (mrtdebug & DEBUG_FORWARD) 1474 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", 1475 (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), 1476 (void *)ifp); 1477 1478 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1479 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1480 /* 1481 * Packet arrived via a physical interface or 1482 * an encapsulated tunnel or a register_vif. 1483 */ 1484 } else { 1485 /* 1486 * Packet arrived through a source-route tunnel. 1487 * Source-route tunnels are no longer supported. 1488 */ 1489 static int last_log; 1490 if (last_log != time_uptime) { 1491 last_log = time_uptime; 1492 log(LOG_ERR, 1493 "ip_mforward: received source-routed packet from %lx\n", 1494 (u_long)ntohl(ip->ip_src.s_addr)); 1495 } 1496 return 1; 1497 } 1498 1499 VIF_LOCK(); 1500 MFC_LOCK(); 1501 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1502 if (ip->ip_ttl < 255) 1503 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1504 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1505 struct vif *vifp = viftable + vifi; 1506 1507 printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n", 1508 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr), 1509 vifi, 1510 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1511 vifp->v_ifp->if_xname); 1512 } 1513 error = ip_mdq(m, ifp, NULL, vifi); 1514 MFC_UNLOCK(); 1515 VIF_UNLOCK(); 1516 return error; 1517 } 1518 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1519 printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", 1520 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr)); 1521 if (!imo) 1522 printf("In fact, no options were specified at all\n"); 1523 } 1524 1525 /* 1526 * Don't forward a packet with time-to-live of zero or one, 1527 * or a packet destined to a local-only group. 1528 */ 1529 if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) { 1530 MFC_UNLOCK(); 1531 VIF_UNLOCK(); 1532 return 0; 1533 } 1534 1535 /* 1536 * Determine forwarding vifs from the forwarding cache table 1537 */ 1538 ++mrtstat.mrts_mfc_lookups; 1539 rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1540 1541 /* Entry exists, so forward if necessary */ 1542 if (rt != NULL) { 1543 error = ip_mdq(m, ifp, rt, -1); 1544 MFC_UNLOCK(); 1545 VIF_UNLOCK(); 1546 return error; 1547 } else { 1548 /* 1549 * If we don't have a route for packet's origin, 1550 * Make a copy of the packet & send message to routing daemon 1551 */ 1552 1553 struct mbuf *mb0; 1554 struct rtdetq *rte; 1555 u_long hash; 1556 int hlen = ip->ip_hl << 2; 1557 1558 ++mrtstat.mrts_mfc_misses; 1559 1560 mrtstat.mrts_no_route++; 1561 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1562 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", 1563 (u_long)ntohl(ip->ip_src.s_addr), 1564 (u_long)ntohl(ip->ip_dst.s_addr)); 1565 1566 /* 1567 * Allocate mbufs early so that we don't do extra work if we are 1568 * just going to fail anyway. Make sure to pullup the header so 1569 * that other people can't step on it. 1570 */ 1571 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); 1572 if (rte == NULL) { 1573 MFC_UNLOCK(); 1574 VIF_UNLOCK(); 1575 return ENOBUFS; 1576 } 1577 mb0 = m_copypacket(m, M_DONTWAIT); 1578 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1579 mb0 = m_pullup(mb0, hlen); 1580 if (mb0 == NULL) { 1581 free(rte, M_MRTABLE); 1582 MFC_UNLOCK(); 1583 VIF_UNLOCK(); 1584 return ENOBUFS; 1585 } 1586 1587 /* is there an upcall waiting for this flow ? */ 1588 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1589 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { 1590 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && 1591 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && 1592 (rt->mfc_stall != NULL)) 1593 break; 1594 } 1595 1596 if (rt == NULL) { 1597 int i; 1598 struct igmpmsg *im; 1599 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1600 struct mbuf *mm; 1601 1602 /* 1603 * Locate the vifi for the incoming interface for this packet. 1604 * If none found, drop packet. 1605 */ 1606 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1607 ; 1608 if (vifi >= numvifs) /* vif not found, drop packet */ 1609 goto non_fatal; 1610 1611 /* no upcall, so make a new entry */ 1612 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1613 if (rt == NULL) 1614 goto fail; 1615 /* Make a copy of the header to send to the user level process */ 1616 mm = m_copy(mb0, 0, hlen); 1617 if (mm == NULL) 1618 goto fail1; 1619 1620 /* 1621 * Send message to routing daemon to install 1622 * a route into the kernel table 1623 */ 1624 1625 im = mtod(mm, struct igmpmsg *); 1626 im->im_msgtype = IGMPMSG_NOCACHE; 1627 im->im_mbz = 0; 1628 im->im_vif = vifi; 1629 1630 mrtstat.mrts_upcalls++; 1631 1632 k_igmpsrc.sin_addr = ip->ip_src; 1633 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { 1634 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); 1635 ++mrtstat.mrts_upq_sockfull; 1636 fail1: 1637 free(rt, M_MRTABLE); 1638 fail: 1639 free(rte, M_MRTABLE); 1640 m_freem(mb0); 1641 MFC_UNLOCK(); 1642 VIF_UNLOCK(); 1643 return ENOBUFS; 1644 } 1645 1646 /* insert new entry at head of hash chain */ 1647 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1648 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1649 rt->mfc_expire = UPCALL_EXPIRE; 1650 nexpire[hash]++; 1651 for (i = 0; i < numvifs; i++) { 1652 rt->mfc_ttls[i] = 0; 1653 rt->mfc_flags[i] = 0; 1654 } 1655 rt->mfc_parent = -1; 1656 1657 rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */ 1658 1659 rt->mfc_bw_meter = NULL; 1660 1661 /* link into table */ 1662 rt->mfc_next = mfctable[hash]; 1663 mfctable[hash] = rt; 1664 rt->mfc_stall = rte; 1665 1666 } else { 1667 /* determine if q has overflowed */ 1668 int npkts = 0; 1669 struct rtdetq **p; 1670 1671 /* 1672 * XXX ouch! we need to append to the list, but we 1673 * only have a pointer to the front, so we have to 1674 * scan the entire list every time. 1675 */ 1676 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1677 npkts++; 1678 1679 if (npkts > MAX_UPQ) { 1680 mrtstat.mrts_upq_ovflw++; 1681 non_fatal: 1682 free(rte, M_MRTABLE); 1683 m_freem(mb0); 1684 MFC_UNLOCK(); 1685 VIF_UNLOCK(); 1686 return 0; 1687 } 1688 1689 /* Add this entry to the end of the queue */ 1690 *p = rte; 1691 } 1692 1693 rte->m = mb0; 1694 rte->ifp = ifp; 1695 rte->next = NULL; 1696 1697 MFC_UNLOCK(); 1698 VIF_UNLOCK(); 1699 1700 return 0; 1701 } 1702 } 1703 1704 /* 1705 * Clean up the cache entry if upcall is not serviced 1706 */ 1707 static void 1708 expire_upcalls(void *unused) 1709 { 1710 struct rtdetq *rte; 1711 struct mfc *mfc, **nptr; 1712 int i; 1713 1714 MFC_LOCK(); 1715 for (i = 0; i < MFCTBLSIZ; i++) { 1716 if (nexpire[i] == 0) 1717 continue; 1718 nptr = &mfctable[i]; 1719 for (mfc = *nptr; mfc != NULL; mfc = *nptr) { 1720 /* 1721 * Skip real cache entries 1722 * Make sure it wasn't marked to not expire (shouldn't happen) 1723 * If it expires now 1724 */ 1725 if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && 1726 --mfc->mfc_expire == 0) { 1727 if (mrtdebug & DEBUG_EXPIRE) 1728 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", 1729 (u_long)ntohl(mfc->mfc_origin.s_addr), 1730 (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); 1731 /* 1732 * drop all the packets 1733 * free the mbuf with the pkt, if, timing info 1734 */ 1735 for (rte = mfc->mfc_stall; rte; ) { 1736 struct rtdetq *n = rte->next; 1737 1738 m_freem(rte->m); 1739 free(rte, M_MRTABLE); 1740 rte = n; 1741 } 1742 ++mrtstat.mrts_cache_cleanups; 1743 nexpire[i]--; 1744 1745 /* 1746 * free the bw_meter entries 1747 */ 1748 while (mfc->mfc_bw_meter != NULL) { 1749 struct bw_meter *x = mfc->mfc_bw_meter; 1750 1751 mfc->mfc_bw_meter = x->bm_mfc_next; 1752 free(x, M_BWMETER); 1753 } 1754 1755 *nptr = mfc->mfc_next; 1756 free(mfc, M_MRTABLE); 1757 } else { 1758 nptr = &mfc->mfc_next; 1759 } 1760 } 1761 } 1762 MFC_UNLOCK(); 1763 1764 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1765 } 1766 1767 /* 1768 * Packet forwarding routine once entry in the cache is made 1769 */ 1770 static int 1771 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1772 { 1773 struct ip *ip = mtod(m, struct ip *); 1774 vifi_t vifi; 1775 int plen = ip->ip_len; 1776 1777 VIF_LOCK_ASSERT(); 1778 /* 1779 * Macro to send packet on vif. Since RSVP packets don't get counted on 1780 * input, they shouldn't get counted on output, so statistics keeping is 1781 * separate. 1782 */ 1783 #define MC_SEND(ip,vifp,m) { \ 1784 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1785 encap_send((ip), (vifp), (m)); \ 1786 else \ 1787 phyint_send((ip), (vifp), (m)); \ 1788 } 1789 1790 /* 1791 * If xmt_vif is not -1, send on only the requested vif. 1792 * 1793 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1794 */ 1795 if (xmt_vif < numvifs) { 1796 #ifdef PIM 1797 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1798 pim_register_send(ip, viftable + xmt_vif, m, rt); 1799 else 1800 #endif 1801 MC_SEND(ip, viftable + xmt_vif, m); 1802 return 1; 1803 } 1804 1805 /* 1806 * Don't forward if it didn't arrive from the parent vif for its origin. 1807 */ 1808 vifi = rt->mfc_parent; 1809 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1810 /* came in the wrong interface */ 1811 if (mrtdebug & DEBUG_FORWARD) 1812 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1813 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); 1814 ++mrtstat.mrts_wrong_if; 1815 ++rt->mfc_wrong_if; 1816 /* 1817 * If we are doing PIM assert processing, send a message 1818 * to the routing daemon. 1819 * 1820 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1821 * can complete the SPT switch, regardless of the type 1822 * of the iif (broadcast media, GRE tunnel, etc). 1823 */ 1824 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1825 struct timeval now; 1826 u_long delta; 1827 1828 #ifdef PIM 1829 if (ifp == &multicast_register_if) 1830 pimstat.pims_rcv_registers_wrongiif++; 1831 #endif 1832 1833 /* Get vifi for the incoming packet */ 1834 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1835 ; 1836 if (vifi >= numvifs) 1837 return 0; /* The iif is not found: ignore the packet. */ 1838 1839 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1840 return 0; /* WRONGVIF disabled: ignore the packet */ 1841 1842 GET_TIME(now); 1843 1844 TV_DELTA(now, rt->mfc_last_assert, delta); 1845 1846 if (delta > ASSERT_MSG_TIME) { 1847 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1848 struct igmpmsg *im; 1849 int hlen = ip->ip_hl << 2; 1850 struct mbuf *mm = m_copy(m, 0, hlen); 1851 1852 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1853 mm = m_pullup(mm, hlen); 1854 if (mm == NULL) 1855 return ENOBUFS; 1856 1857 rt->mfc_last_assert = now; 1858 1859 im = mtod(mm, struct igmpmsg *); 1860 im->im_msgtype = IGMPMSG_WRONGVIF; 1861 im->im_mbz = 0; 1862 im->im_vif = vifi; 1863 1864 mrtstat.mrts_upcalls++; 1865 1866 k_igmpsrc.sin_addr = im->im_src; 1867 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { 1868 log(LOG_WARNING, 1869 "ip_mforward: ip_mrouter socket queue full\n"); 1870 ++mrtstat.mrts_upq_sockfull; 1871 return ENOBUFS; 1872 } 1873 } 1874 } 1875 return 0; 1876 } 1877 1878 /* If I sourced this packet, it counts as output, else it was input. */ 1879 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { 1880 viftable[vifi].v_pkt_out++; 1881 viftable[vifi].v_bytes_out += plen; 1882 } else { 1883 viftable[vifi].v_pkt_in++; 1884 viftable[vifi].v_bytes_in += plen; 1885 } 1886 rt->mfc_pkt_cnt++; 1887 rt->mfc_byte_cnt += plen; 1888 1889 /* 1890 * For each vif, decide if a copy of the packet should be forwarded. 1891 * Forward if: 1892 * - the ttl exceeds the vif's threshold 1893 * - there are group members downstream on interface 1894 */ 1895 for (vifi = 0; vifi < numvifs; vifi++) 1896 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1897 viftable[vifi].v_pkt_out++; 1898 viftable[vifi].v_bytes_out += plen; 1899 #ifdef PIM 1900 if (viftable[vifi].v_flags & VIFF_REGISTER) 1901 pim_register_send(ip, viftable + vifi, m, rt); 1902 else 1903 #endif 1904 MC_SEND(ip, viftable+vifi, m); 1905 } 1906 1907 /* 1908 * Perform upcall-related bw measuring. 1909 */ 1910 if (rt->mfc_bw_meter != NULL) { 1911 struct bw_meter *x; 1912 struct timeval now; 1913 1914 GET_TIME(now); 1915 MFC_LOCK_ASSERT(); 1916 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1917 bw_meter_receive_packet(x, plen, &now); 1918 } 1919 1920 return 0; 1921 } 1922 1923 /* 1924 * check if a vif number is legal/ok. This is used by ip_output. 1925 */ 1926 static int 1927 X_legal_vif_num(int vif) 1928 { 1929 /* XXX unlocked, matter? */ 1930 return (vif >= 0 && vif < numvifs); 1931 } 1932 1933 /* 1934 * Return the local address used by this vif 1935 */ 1936 static u_long 1937 X_ip_mcast_src(int vifi) 1938 { 1939 /* XXX unlocked, matter? */ 1940 if (vifi >= 0 && vifi < numvifs) 1941 return viftable[vifi].v_lcl_addr.s_addr; 1942 else 1943 return INADDR_ANY; 1944 } 1945 1946 static void 1947 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1948 { 1949 struct mbuf *mb_copy; 1950 int hlen = ip->ip_hl << 2; 1951 1952 VIF_LOCK_ASSERT(); 1953 1954 /* 1955 * Make a new reference to the packet; make sure that 1956 * the IP header is actually copied, not just referenced, 1957 * so that ip_output() only scribbles on the copy. 1958 */ 1959 mb_copy = m_copypacket(m, M_DONTWAIT); 1960 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1961 mb_copy = m_pullup(mb_copy, hlen); 1962 if (mb_copy == NULL) 1963 return; 1964 1965 if (vifp->v_rate_limit == 0) 1966 tbf_send_packet(vifp, mb_copy); 1967 else 1968 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len); 1969 } 1970 1971 static void 1972 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1973 { 1974 struct mbuf *mb_copy; 1975 struct ip *ip_copy; 1976 int i, len = ip->ip_len; 1977 1978 VIF_LOCK_ASSERT(); 1979 1980 /* Take care of delayed checksums */ 1981 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1982 in_delayed_cksum(m); 1983 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1984 } 1985 1986 /* 1987 * copy the old packet & pullup its IP header into the 1988 * new mbuf so we can modify it. Try to fill the new 1989 * mbuf since if we don't the ethernet driver will. 1990 */ 1991 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1992 if (mb_copy == NULL) 1993 return; 1994 #ifdef MAC 1995 mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy); 1996 #endif 1997 mb_copy->m_data += max_linkhdr; 1998 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1999 2000 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 2001 m_freem(mb_copy); 2002 return; 2003 } 2004 i = MHLEN - M_LEADINGSPACE(mb_copy); 2005 if (i > len) 2006 i = len; 2007 mb_copy = m_pullup(mb_copy, i); 2008 if (mb_copy == NULL) 2009 return; 2010 mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr); 2011 2012 /* 2013 * fill in the encapsulating IP header. 2014 */ 2015 ip_copy = mtod(mb_copy, struct ip *); 2016 *ip_copy = multicast_encap_iphdr; 2017 ip_copy->ip_id = ip_newid(); 2018 ip_copy->ip_len += len; 2019 ip_copy->ip_src = vifp->v_lcl_addr; 2020 ip_copy->ip_dst = vifp->v_rmt_addr; 2021 2022 /* 2023 * turn the encapsulated IP header back into a valid one. 2024 */ 2025 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); 2026 --ip->ip_ttl; 2027 ip->ip_len = htons(ip->ip_len); 2028 ip->ip_off = htons(ip->ip_off); 2029 ip->ip_sum = 0; 2030 mb_copy->m_data += sizeof(multicast_encap_iphdr); 2031 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2032 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 2033 2034 if (vifp->v_rate_limit == 0) 2035 tbf_send_packet(vifp, mb_copy); 2036 else 2037 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len); 2038 } 2039 2040 /* 2041 * Token bucket filter module 2042 */ 2043 2044 static void 2045 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len) 2046 { 2047 struct tbf *t = vifp->v_tbf; 2048 2049 VIF_LOCK_ASSERT(); 2050 2051 if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */ 2052 mrtstat.mrts_pkt2large++; 2053 m_freem(m); 2054 return; 2055 } 2056 2057 tbf_update_tokens(vifp); 2058 2059 if (t->tbf_q_len == 0) { /* queue empty... */ 2060 if (p_len <= t->tbf_n_tok) { /* send packet if enough tokens */ 2061 t->tbf_n_tok -= p_len; 2062 tbf_send_packet(vifp, m); 2063 } else { /* no, queue packet and try later */ 2064 tbf_queue(vifp, m); 2065 callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, 2066 tbf_reprocess_q, vifp); 2067 } 2068 } else if (t->tbf_q_len < t->tbf_max_q_len) { 2069 /* finite queue length, so queue pkts and process queue */ 2070 tbf_queue(vifp, m); 2071 tbf_process_q(vifp); 2072 } else { 2073 /* queue full, try to dq and queue and process */ 2074 if (!tbf_dq_sel(vifp, ip)) { 2075 mrtstat.mrts_q_overflow++; 2076 m_freem(m); 2077 } else { 2078 tbf_queue(vifp, m); 2079 tbf_process_q(vifp); 2080 } 2081 } 2082 } 2083 2084 /* 2085 * adds a packet to the queue at the interface 2086 */ 2087 static void 2088 tbf_queue(struct vif *vifp, struct mbuf *m) 2089 { 2090 struct tbf *t = vifp->v_tbf; 2091 2092 VIF_LOCK_ASSERT(); 2093 2094 if (t->tbf_t == NULL) /* Queue was empty */ 2095 t->tbf_q = m; 2096 else /* Insert at tail */ 2097 t->tbf_t->m_act = m; 2098 2099 t->tbf_t = m; /* Set new tail pointer */ 2100 2101 #ifdef DIAGNOSTIC 2102 /* Make sure we didn't get fed a bogus mbuf */ 2103 if (m->m_act) 2104 panic("tbf_queue: m_act"); 2105 #endif 2106 m->m_act = NULL; 2107 2108 t->tbf_q_len++; 2109 } 2110 2111 /* 2112 * processes the queue at the interface 2113 */ 2114 static void 2115 tbf_process_q(struct vif *vifp) 2116 { 2117 struct tbf *t = vifp->v_tbf; 2118 2119 VIF_LOCK_ASSERT(); 2120 2121 /* loop through the queue at the interface and send as many packets 2122 * as possible 2123 */ 2124 while (t->tbf_q_len > 0) { 2125 struct mbuf *m = t->tbf_q; 2126 int len = mtod(m, struct ip *)->ip_len; 2127 2128 /* determine if the packet can be sent */ 2129 if (len > t->tbf_n_tok) /* not enough tokens, we are done */ 2130 break; 2131 /* ok, reduce no of tokens, dequeue and send the packet. */ 2132 t->tbf_n_tok -= len; 2133 2134 t->tbf_q = m->m_act; 2135 if (--t->tbf_q_len == 0) 2136 t->tbf_t = NULL; 2137 2138 m->m_act = NULL; 2139 tbf_send_packet(vifp, m); 2140 } 2141 } 2142 2143 static void 2144 tbf_reprocess_q(void *xvifp) 2145 { 2146 struct vif *vifp = xvifp; 2147 2148 if (ip_mrouter == NULL) 2149 return; 2150 VIF_LOCK(); 2151 tbf_update_tokens(vifp); 2152 tbf_process_q(vifp); 2153 if (vifp->v_tbf->tbf_q_len) 2154 callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp); 2155 VIF_UNLOCK(); 2156 } 2157 2158 /* function that will selectively discard a member of the queue 2159 * based on the precedence value and the priority 2160 */ 2161 static int 2162 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2163 { 2164 u_int p; 2165 struct mbuf *m, *last; 2166 struct mbuf **np; 2167 struct tbf *t = vifp->v_tbf; 2168 2169 VIF_LOCK_ASSERT(); 2170 2171 p = priority(vifp, ip); 2172 2173 np = &t->tbf_q; 2174 last = NULL; 2175 while ((m = *np) != NULL) { 2176 if (p > priority(vifp, mtod(m, struct ip *))) { 2177 *np = m->m_act; 2178 /* If we're removing the last packet, fix the tail pointer */ 2179 if (m == t->tbf_t) 2180 t->tbf_t = last; 2181 m_freem(m); 2182 /* It's impossible for the queue to be empty, but check anyways. */ 2183 if (--t->tbf_q_len == 0) 2184 t->tbf_t = NULL; 2185 mrtstat.mrts_drop_sel++; 2186 return 1; 2187 } 2188 np = &m->m_act; 2189 last = m; 2190 } 2191 return 0; 2192 } 2193 2194 static void 2195 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2196 { 2197 VIF_LOCK_ASSERT(); 2198 2199 if (vifp->v_flags & VIFF_TUNNEL) /* If tunnel options */ 2200 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL); 2201 else { 2202 struct ip_moptions imo; 2203 struct in_multi *imm[2]; 2204 int error; 2205 static struct route ro; /* XXX check this */ 2206 2207 imo.imo_multicast_ifp = vifp->v_ifp; 2208 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2209 imo.imo_multicast_loop = 1; 2210 imo.imo_multicast_vif = -1; 2211 imo.imo_num_memberships = 0; 2212 imo.imo_max_memberships = 2; 2213 imo.imo_membership = &imm[0]; 2214 2215 /* 2216 * Re-entrancy should not be a problem here, because 2217 * the packets that we send out and are looped back at us 2218 * should get rejected because they appear to come from 2219 * the loopback interface, thus preventing looping. 2220 */ 2221 error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL); 2222 2223 if (mrtdebug & DEBUG_XMIT) 2224 log(LOG_DEBUG, "phyint_send on vif %td err %d\n", 2225 vifp - viftable, error); 2226 } 2227 } 2228 2229 /* determine the current time and then 2230 * the elapsed time (between the last time and time now) 2231 * in milliseconds & update the no. of tokens in the bucket 2232 */ 2233 static void 2234 tbf_update_tokens(struct vif *vifp) 2235 { 2236 struct timeval tp; 2237 u_long tm; 2238 struct tbf *t = vifp->v_tbf; 2239 2240 VIF_LOCK_ASSERT(); 2241 2242 GET_TIME(tp); 2243 2244 TV_DELTA(tp, t->tbf_last_pkt_t, tm); 2245 2246 /* 2247 * This formula is actually 2248 * "time in seconds" * "bytes/second". 2249 * 2250 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2251 * 2252 * The (1000/1024) was introduced in add_vif to optimize 2253 * this divide into a shift. 2254 */ 2255 t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8; 2256 t->tbf_last_pkt_t = tp; 2257 2258 if (t->tbf_n_tok > MAX_BKT_SIZE) 2259 t->tbf_n_tok = MAX_BKT_SIZE; 2260 } 2261 2262 static int 2263 priority(struct vif *vifp, struct ip *ip) 2264 { 2265 int prio = 50; /* the lowest priority -- default case */ 2266 2267 /* temporary hack; may add general packet classifier some day */ 2268 2269 /* 2270 * The UDP port space is divided up into four priority ranges: 2271 * [0, 16384) : unclassified - lowest priority 2272 * [16384, 32768) : audio - highest priority 2273 * [32768, 49152) : whiteboard - medium priority 2274 * [49152, 65536) : video - low priority 2275 * 2276 * Everything else gets lowest priority. 2277 */ 2278 if (ip->ip_p == IPPROTO_UDP) { 2279 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2280 switch (ntohs(udp->uh_dport) & 0xc000) { 2281 case 0x4000: 2282 prio = 70; 2283 break; 2284 case 0x8000: 2285 prio = 60; 2286 break; 2287 case 0xc000: 2288 prio = 55; 2289 break; 2290 } 2291 } 2292 return prio; 2293 } 2294 2295 /* 2296 * End of token bucket filter modifications 2297 */ 2298 2299 static int 2300 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt) 2301 { 2302 int error, vifi; 2303 2304 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 2305 return EOPNOTSUPP; 2306 2307 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 2308 if (error) 2309 return error; 2310 2311 VIF_LOCK(); 2312 2313 if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */ 2314 VIF_UNLOCK(); 2315 return EADDRNOTAVAIL; 2316 } 2317 2318 if (sopt->sopt_name == IP_RSVP_VIF_ON) { 2319 /* Check if socket is available. */ 2320 if (viftable[vifi].v_rsvpd != NULL) { 2321 VIF_UNLOCK(); 2322 return EADDRINUSE; 2323 } 2324 2325 viftable[vifi].v_rsvpd = so; 2326 /* This may seem silly, but we need to be sure we don't over-increment 2327 * the RSVP counter, in case something slips up. 2328 */ 2329 if (!viftable[vifi].v_rsvp_on) { 2330 viftable[vifi].v_rsvp_on = 1; 2331 rsvp_on++; 2332 } 2333 } else { /* must be VIF_OFF */ 2334 /* 2335 * XXX as an additional consistency check, one could make sure 2336 * that viftable[vifi].v_rsvpd == so, otherwise passing so as 2337 * first parameter is pretty useless. 2338 */ 2339 viftable[vifi].v_rsvpd = NULL; 2340 /* 2341 * This may seem silly, but we need to be sure we don't over-decrement 2342 * the RSVP counter, in case something slips up. 2343 */ 2344 if (viftable[vifi].v_rsvp_on) { 2345 viftable[vifi].v_rsvp_on = 0; 2346 rsvp_on--; 2347 } 2348 } 2349 VIF_UNLOCK(); 2350 return 0; 2351 } 2352 2353 static void 2354 X_ip_rsvp_force_done(struct socket *so) 2355 { 2356 int vifi; 2357 2358 /* Don't bother if it is not the right type of socket. */ 2359 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 2360 return; 2361 2362 VIF_LOCK(); 2363 2364 /* The socket may be attached to more than one vif...this 2365 * is perfectly legal. 2366 */ 2367 for (vifi = 0; vifi < numvifs; vifi++) { 2368 if (viftable[vifi].v_rsvpd == so) { 2369 viftable[vifi].v_rsvpd = NULL; 2370 /* This may seem silly, but we need to be sure we don't 2371 * over-decrement the RSVP counter, in case something slips up. 2372 */ 2373 if (viftable[vifi].v_rsvp_on) { 2374 viftable[vifi].v_rsvp_on = 0; 2375 rsvp_on--; 2376 } 2377 } 2378 } 2379 2380 VIF_UNLOCK(); 2381 } 2382 2383 static void 2384 X_rsvp_input(struct mbuf *m, int off) 2385 { 2386 int vifi; 2387 struct ip *ip = mtod(m, struct ip *); 2388 struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; 2389 struct ifnet *ifp; 2390 2391 if (rsvpdebug) 2392 printf("rsvp_input: rsvp_on %d\n",rsvp_on); 2393 2394 /* Can still get packets with rsvp_on = 0 if there is a local member 2395 * of the group to which the RSVP packet is addressed. But in this 2396 * case we want to throw the packet away. 2397 */ 2398 if (!rsvp_on) { 2399 m_freem(m); 2400 return; 2401 } 2402 2403 if (rsvpdebug) 2404 printf("rsvp_input: check vifs\n"); 2405 2406 #ifdef DIAGNOSTIC 2407 M_ASSERTPKTHDR(m); 2408 #endif 2409 2410 ifp = m->m_pkthdr.rcvif; 2411 2412 VIF_LOCK(); 2413 /* Find which vif the packet arrived on. */ 2414 for (vifi = 0; vifi < numvifs; vifi++) 2415 if (viftable[vifi].v_ifp == ifp) 2416 break; 2417 2418 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) { 2419 /* 2420 * Drop the lock here to avoid holding it across rip_input. 2421 * This could make rsvpdebug printfs wrong. If you care, 2422 * record the state of stuff before dropping the lock. 2423 */ 2424 VIF_UNLOCK(); 2425 /* 2426 * If the old-style non-vif-associated socket is set, 2427 * then use it. Otherwise, drop packet since there 2428 * is no specific socket for this vif. 2429 */ 2430 if (ip_rsvpd != NULL) { 2431 if (rsvpdebug) 2432 printf("rsvp_input: Sending packet up old-style socket\n"); 2433 rip_input(m, off); /* xxx */ 2434 } else { 2435 if (rsvpdebug && vifi == numvifs) 2436 printf("rsvp_input: Can't find vif for packet.\n"); 2437 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL) 2438 printf("rsvp_input: No socket defined for vif %d\n",vifi); 2439 m_freem(m); 2440 } 2441 return; 2442 } 2443 rsvp_src.sin_addr = ip->ip_src; 2444 2445 if (rsvpdebug && m) 2446 printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", 2447 m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); 2448 2449 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { 2450 if (rsvpdebug) 2451 printf("rsvp_input: Failed to append to socket\n"); 2452 } else { 2453 if (rsvpdebug) 2454 printf("rsvp_input: send packet up\n"); 2455 } 2456 VIF_UNLOCK(); 2457 } 2458 2459 /* 2460 * Code for bandwidth monitors 2461 */ 2462 2463 /* 2464 * Define common interface for timeval-related methods 2465 */ 2466 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 2467 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 2468 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 2469 2470 static uint32_t 2471 compute_bw_meter_flags(struct bw_upcall *req) 2472 { 2473 uint32_t flags = 0; 2474 2475 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2476 flags |= BW_METER_UNIT_PACKETS; 2477 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2478 flags |= BW_METER_UNIT_BYTES; 2479 if (req->bu_flags & BW_UPCALL_GEQ) 2480 flags |= BW_METER_GEQ; 2481 if (req->bu_flags & BW_UPCALL_LEQ) 2482 flags |= BW_METER_LEQ; 2483 2484 return flags; 2485 } 2486 2487 /* 2488 * Add a bw_meter entry 2489 */ 2490 static int 2491 add_bw_upcall(struct bw_upcall *req) 2492 { 2493 struct mfc *mfc; 2494 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2495 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2496 struct timeval now; 2497 struct bw_meter *x; 2498 uint32_t flags; 2499 2500 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2501 return EOPNOTSUPP; 2502 2503 /* Test if the flags are valid */ 2504 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2505 return EINVAL; 2506 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2507 return EINVAL; 2508 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2509 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2510 return EINVAL; 2511 2512 /* Test if the threshold time interval is valid */ 2513 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2514 return EINVAL; 2515 2516 flags = compute_bw_meter_flags(req); 2517 2518 /* 2519 * Find if we have already same bw_meter entry 2520 */ 2521 MFC_LOCK(); 2522 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2523 if (mfc == NULL) { 2524 MFC_UNLOCK(); 2525 return EADDRNOTAVAIL; 2526 } 2527 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2528 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2529 &req->bu_threshold.b_time, ==)) && 2530 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2531 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2532 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2533 MFC_UNLOCK(); 2534 return 0; /* XXX Already installed */ 2535 } 2536 } 2537 2538 /* Allocate the new bw_meter entry */ 2539 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2540 if (x == NULL) { 2541 MFC_UNLOCK(); 2542 return ENOBUFS; 2543 } 2544 2545 /* Set the new bw_meter entry */ 2546 x->bm_threshold.b_time = req->bu_threshold.b_time; 2547 GET_TIME(now); 2548 x->bm_start_time = now; 2549 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2550 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2551 x->bm_measured.b_packets = 0; 2552 x->bm_measured.b_bytes = 0; 2553 x->bm_flags = flags; 2554 x->bm_time_next = NULL; 2555 x->bm_time_hash = BW_METER_BUCKETS; 2556 2557 /* Add the new bw_meter entry to the front of entries for this MFC */ 2558 x->bm_mfc = mfc; 2559 x->bm_mfc_next = mfc->mfc_bw_meter; 2560 mfc->mfc_bw_meter = x; 2561 schedule_bw_meter(x, &now); 2562 MFC_UNLOCK(); 2563 2564 return 0; 2565 } 2566 2567 static void 2568 free_bw_list(struct bw_meter *list) 2569 { 2570 while (list != NULL) { 2571 struct bw_meter *x = list; 2572 2573 list = list->bm_mfc_next; 2574 unschedule_bw_meter(x); 2575 free(x, M_BWMETER); 2576 } 2577 } 2578 2579 /* 2580 * Delete one or multiple bw_meter entries 2581 */ 2582 static int 2583 del_bw_upcall(struct bw_upcall *req) 2584 { 2585 struct mfc *mfc; 2586 struct bw_meter *x; 2587 2588 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2589 return EOPNOTSUPP; 2590 2591 MFC_LOCK(); 2592 /* Find the corresponding MFC entry */ 2593 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2594 if (mfc == NULL) { 2595 MFC_UNLOCK(); 2596 return EADDRNOTAVAIL; 2597 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2598 /* 2599 * Delete all bw_meter entries for this mfc 2600 */ 2601 struct bw_meter *list; 2602 2603 list = mfc->mfc_bw_meter; 2604 mfc->mfc_bw_meter = NULL; 2605 free_bw_list(list); 2606 MFC_UNLOCK(); 2607 return 0; 2608 } else { /* Delete a single bw_meter entry */ 2609 struct bw_meter *prev; 2610 uint32_t flags = 0; 2611 2612 flags = compute_bw_meter_flags(req); 2613 2614 /* Find the bw_meter entry to delete */ 2615 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2616 prev = x, x = x->bm_mfc_next) { 2617 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2618 &req->bu_threshold.b_time, ==)) && 2619 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2620 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2621 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2622 break; 2623 } 2624 if (x != NULL) { /* Delete entry from the list for this MFC */ 2625 if (prev != NULL) 2626 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2627 else 2628 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2629 2630 unschedule_bw_meter(x); 2631 MFC_UNLOCK(); 2632 /* Free the bw_meter entry */ 2633 free(x, M_BWMETER); 2634 return 0; 2635 } else { 2636 MFC_UNLOCK(); 2637 return EINVAL; 2638 } 2639 } 2640 /* NOTREACHED */ 2641 } 2642 2643 /* 2644 * Perform bandwidth measurement processing that may result in an upcall 2645 */ 2646 static void 2647 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2648 { 2649 struct timeval delta; 2650 2651 MFC_LOCK_ASSERT(); 2652 2653 delta = *nowp; 2654 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2655 2656 if (x->bm_flags & BW_METER_GEQ) { 2657 /* 2658 * Processing for ">=" type of bw_meter entry 2659 */ 2660 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2661 /* Reset the bw_meter entry */ 2662 x->bm_start_time = *nowp; 2663 x->bm_measured.b_packets = 0; 2664 x->bm_measured.b_bytes = 0; 2665 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2666 } 2667 2668 /* Record that a packet is received */ 2669 x->bm_measured.b_packets++; 2670 x->bm_measured.b_bytes += plen; 2671 2672 /* 2673 * Test if we should deliver an upcall 2674 */ 2675 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2676 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2677 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2678 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2679 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2680 /* Prepare an upcall for delivery */ 2681 bw_meter_prepare_upcall(x, nowp); 2682 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2683 } 2684 } 2685 } else if (x->bm_flags & BW_METER_LEQ) { 2686 /* 2687 * Processing for "<=" type of bw_meter entry 2688 */ 2689 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2690 /* 2691 * We are behind time with the multicast forwarding table 2692 * scanning for "<=" type of bw_meter entries, so test now 2693 * if we should deliver an upcall. 2694 */ 2695 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2696 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2697 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2698 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2699 /* Prepare an upcall for delivery */ 2700 bw_meter_prepare_upcall(x, nowp); 2701 } 2702 /* Reschedule the bw_meter entry */ 2703 unschedule_bw_meter(x); 2704 schedule_bw_meter(x, nowp); 2705 } 2706 2707 /* Record that a packet is received */ 2708 x->bm_measured.b_packets++; 2709 x->bm_measured.b_bytes += plen; 2710 2711 /* 2712 * Test if we should restart the measuring interval 2713 */ 2714 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2715 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2716 (x->bm_flags & BW_METER_UNIT_BYTES && 2717 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2718 /* Don't restart the measuring interval */ 2719 } else { 2720 /* Do restart the measuring interval */ 2721 /* 2722 * XXX: note that we don't unschedule and schedule, because this 2723 * might be too much overhead per packet. Instead, when we process 2724 * all entries for a given timer hash bin, we check whether it is 2725 * really a timeout. If not, we reschedule at that time. 2726 */ 2727 x->bm_start_time = *nowp; 2728 x->bm_measured.b_packets = 0; 2729 x->bm_measured.b_bytes = 0; 2730 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2731 } 2732 } 2733 } 2734 2735 /* 2736 * Prepare a bandwidth-related upcall 2737 */ 2738 static void 2739 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2740 { 2741 struct timeval delta; 2742 struct bw_upcall *u; 2743 2744 MFC_LOCK_ASSERT(); 2745 2746 /* 2747 * Compute the measured time interval 2748 */ 2749 delta = *nowp; 2750 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2751 2752 /* 2753 * If there are too many pending upcalls, deliver them now 2754 */ 2755 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2756 bw_upcalls_send(); 2757 2758 /* 2759 * Set the bw_upcall entry 2760 */ 2761 u = &bw_upcalls[bw_upcalls_n++]; 2762 u->bu_src = x->bm_mfc->mfc_origin; 2763 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2764 u->bu_threshold.b_time = x->bm_threshold.b_time; 2765 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2766 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2767 u->bu_measured.b_time = delta; 2768 u->bu_measured.b_packets = x->bm_measured.b_packets; 2769 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2770 u->bu_flags = 0; 2771 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2772 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2773 if (x->bm_flags & BW_METER_UNIT_BYTES) 2774 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2775 if (x->bm_flags & BW_METER_GEQ) 2776 u->bu_flags |= BW_UPCALL_GEQ; 2777 if (x->bm_flags & BW_METER_LEQ) 2778 u->bu_flags |= BW_UPCALL_LEQ; 2779 } 2780 2781 /* 2782 * Send the pending bandwidth-related upcalls 2783 */ 2784 static void 2785 bw_upcalls_send(void) 2786 { 2787 struct mbuf *m; 2788 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2789 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2790 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2791 0, /* unused2 */ 2792 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2793 0, /* im_mbz */ 2794 0, /* im_vif */ 2795 0, /* unused3 */ 2796 { 0 }, /* im_src */ 2797 { 0 } }; /* im_dst */ 2798 2799 MFC_LOCK_ASSERT(); 2800 2801 if (bw_upcalls_n == 0) 2802 return; /* No pending upcalls */ 2803 2804 bw_upcalls_n = 0; 2805 2806 /* 2807 * Allocate a new mbuf, initialize it with the header and 2808 * the payload for the pending calls. 2809 */ 2810 MGETHDR(m, M_DONTWAIT, MT_DATA); 2811 if (m == NULL) { 2812 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2813 return; 2814 } 2815 2816 m->m_len = m->m_pkthdr.len = 0; 2817 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2818 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2819 2820 /* 2821 * Send the upcalls 2822 * XXX do we need to set the address in k_igmpsrc ? 2823 */ 2824 mrtstat.mrts_upcalls++; 2825 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2826 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2827 ++mrtstat.mrts_upq_sockfull; 2828 } 2829 } 2830 2831 /* 2832 * Compute the timeout hash value for the bw_meter entries 2833 */ 2834 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2835 do { \ 2836 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2837 \ 2838 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2839 (hash) = next_timeval.tv_sec; \ 2840 if (next_timeval.tv_usec) \ 2841 (hash)++; /* XXX: make sure we don't timeout early */ \ 2842 (hash) %= BW_METER_BUCKETS; \ 2843 } while (0) 2844 2845 /* 2846 * Schedule a timer to process periodically bw_meter entry of type "<=" 2847 * by linking the entry in the proper hash bucket. 2848 */ 2849 static void 2850 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2851 { 2852 int time_hash; 2853 2854 MFC_LOCK_ASSERT(); 2855 2856 if (!(x->bm_flags & BW_METER_LEQ)) 2857 return; /* XXX: we schedule timers only for "<=" entries */ 2858 2859 /* 2860 * Reset the bw_meter entry 2861 */ 2862 x->bm_start_time = *nowp; 2863 x->bm_measured.b_packets = 0; 2864 x->bm_measured.b_bytes = 0; 2865 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2866 2867 /* 2868 * Compute the timeout hash value and insert the entry 2869 */ 2870 BW_METER_TIMEHASH(x, time_hash); 2871 x->bm_time_next = bw_meter_timers[time_hash]; 2872 bw_meter_timers[time_hash] = x; 2873 x->bm_time_hash = time_hash; 2874 } 2875 2876 /* 2877 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2878 * by removing the entry from the proper hash bucket. 2879 */ 2880 static void 2881 unschedule_bw_meter(struct bw_meter *x) 2882 { 2883 int time_hash; 2884 struct bw_meter *prev, *tmp; 2885 2886 MFC_LOCK_ASSERT(); 2887 2888 if (!(x->bm_flags & BW_METER_LEQ)) 2889 return; /* XXX: we schedule timers only for "<=" entries */ 2890 2891 /* 2892 * Compute the timeout hash value and delete the entry 2893 */ 2894 time_hash = x->bm_time_hash; 2895 if (time_hash >= BW_METER_BUCKETS) 2896 return; /* Entry was not scheduled */ 2897 2898 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2899 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2900 if (tmp == x) 2901 break; 2902 2903 if (tmp == NULL) 2904 panic("unschedule_bw_meter: bw_meter entry not found"); 2905 2906 if (prev != NULL) 2907 prev->bm_time_next = x->bm_time_next; 2908 else 2909 bw_meter_timers[time_hash] = x->bm_time_next; 2910 2911 x->bm_time_next = NULL; 2912 x->bm_time_hash = BW_METER_BUCKETS; 2913 } 2914 2915 2916 /* 2917 * Process all "<=" type of bw_meter that should be processed now, 2918 * and for each entry prepare an upcall if necessary. Each processed 2919 * entry is rescheduled again for the (periodic) processing. 2920 * 2921 * This is run periodically (once per second normally). On each round, 2922 * all the potentially matching entries are in the hash slot that we are 2923 * looking at. 2924 */ 2925 static void 2926 bw_meter_process() 2927 { 2928 static uint32_t last_tv_sec; /* last time we processed this */ 2929 2930 uint32_t loops; 2931 int i; 2932 struct timeval now, process_endtime; 2933 2934 GET_TIME(now); 2935 if (last_tv_sec == now.tv_sec) 2936 return; /* nothing to do */ 2937 2938 loops = now.tv_sec - last_tv_sec; 2939 last_tv_sec = now.tv_sec; 2940 if (loops > BW_METER_BUCKETS) 2941 loops = BW_METER_BUCKETS; 2942 2943 MFC_LOCK(); 2944 /* 2945 * Process all bins of bw_meter entries from the one after the last 2946 * processed to the current one. On entry, i points to the last bucket 2947 * visited, so we need to increment i at the beginning of the loop. 2948 */ 2949 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2950 struct bw_meter *x, *tmp_list; 2951 2952 if (++i >= BW_METER_BUCKETS) 2953 i = 0; 2954 2955 /* Disconnect the list of bw_meter entries from the bin */ 2956 tmp_list = bw_meter_timers[i]; 2957 bw_meter_timers[i] = NULL; 2958 2959 /* Process the list of bw_meter entries */ 2960 while (tmp_list != NULL) { 2961 x = tmp_list; 2962 tmp_list = tmp_list->bm_time_next; 2963 2964 /* Test if the time interval is over */ 2965 process_endtime = x->bm_start_time; 2966 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2967 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2968 /* Not yet: reschedule, but don't reset */ 2969 int time_hash; 2970 2971 BW_METER_TIMEHASH(x, time_hash); 2972 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2973 /* 2974 * XXX: somehow the bin processing is a bit ahead of time. 2975 * Put the entry in the next bin. 2976 */ 2977 if (++time_hash >= BW_METER_BUCKETS) 2978 time_hash = 0; 2979 } 2980 x->bm_time_next = bw_meter_timers[time_hash]; 2981 bw_meter_timers[time_hash] = x; 2982 x->bm_time_hash = time_hash; 2983 2984 continue; 2985 } 2986 2987 /* 2988 * Test if we should deliver an upcall 2989 */ 2990 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2991 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2992 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2993 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2994 /* Prepare an upcall for delivery */ 2995 bw_meter_prepare_upcall(x, &now); 2996 } 2997 2998 /* 2999 * Reschedule for next processing 3000 */ 3001 schedule_bw_meter(x, &now); 3002 } 3003 } 3004 3005 /* Send all upcalls that are pending delivery */ 3006 bw_upcalls_send(); 3007 3008 MFC_UNLOCK(); 3009 } 3010 3011 /* 3012 * A periodic function for sending all upcalls that are pending delivery 3013 */ 3014 static void 3015 expire_bw_upcalls_send(void *unused) 3016 { 3017 MFC_LOCK(); 3018 bw_upcalls_send(); 3019 MFC_UNLOCK(); 3020 3021 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 3022 expire_bw_upcalls_send, NULL); 3023 } 3024 3025 /* 3026 * A periodic function for periodic scanning of the multicast forwarding 3027 * table for processing all "<=" bw_meter entries. 3028 */ 3029 static void 3030 expire_bw_meter_process(void *unused) 3031 { 3032 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3033 bw_meter_process(); 3034 3035 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 3036 } 3037 3038 /* 3039 * End of bandwidth monitoring code 3040 */ 3041 3042 #ifdef PIM 3043 /* 3044 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3045 * 3046 */ 3047 static int 3048 pim_register_send(struct ip *ip, struct vif *vifp, 3049 struct mbuf *m, struct mfc *rt) 3050 { 3051 struct mbuf *mb_copy, *mm; 3052 3053 if (mrtdebug & DEBUG_PIM) 3054 log(LOG_DEBUG, "pim_register_send: "); 3055 3056 mb_copy = pim_register_prepare(ip, m); 3057 if (mb_copy == NULL) 3058 return ENOBUFS; 3059 3060 /* 3061 * Send all the fragments. Note that the mbuf for each fragment 3062 * is freed by the sending machinery. 3063 */ 3064 for (mm = mb_copy; mm; mm = mb_copy) { 3065 mb_copy = mm->m_nextpkt; 3066 mm->m_nextpkt = 0; 3067 mm = m_pullup(mm, sizeof(struct ip)); 3068 if (mm != NULL) { 3069 ip = mtod(mm, struct ip *); 3070 if ((mrt_api_config & MRT_MFC_RP) && 3071 (rt->mfc_rp.s_addr != INADDR_ANY)) { 3072 pim_register_send_rp(ip, vifp, mm, rt); 3073 } else { 3074 pim_register_send_upcall(ip, vifp, mm, rt); 3075 } 3076 } 3077 } 3078 3079 return 0; 3080 } 3081 3082 /* 3083 * Return a copy of the data packet that is ready for PIM Register 3084 * encapsulation. 3085 * XXX: Note that in the returned copy the IP header is a valid one. 3086 */ 3087 static struct mbuf * 3088 pim_register_prepare(struct ip *ip, struct mbuf *m) 3089 { 3090 struct mbuf *mb_copy = NULL; 3091 int mtu; 3092 3093 /* Take care of delayed checksums */ 3094 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 3095 in_delayed_cksum(m); 3096 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 3097 } 3098 3099 /* 3100 * Copy the old packet & pullup its IP header into the 3101 * new mbuf so we can modify it. 3102 */ 3103 mb_copy = m_copypacket(m, M_DONTWAIT); 3104 if (mb_copy == NULL) 3105 return NULL; 3106 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3107 if (mb_copy == NULL) 3108 return NULL; 3109 3110 /* take care of the TTL */ 3111 ip = mtod(mb_copy, struct ip *); 3112 --ip->ip_ttl; 3113 3114 /* Compute the MTU after the PIM Register encapsulation */ 3115 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3116 3117 if (ip->ip_len <= mtu) { 3118 /* Turn the IP header into a valid one */ 3119 ip->ip_len = htons(ip->ip_len); 3120 ip->ip_off = htons(ip->ip_off); 3121 ip->ip_sum = 0; 3122 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3123 } else { 3124 /* Fragment the packet */ 3125 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 3126 m_freem(mb_copy); 3127 return NULL; 3128 } 3129 } 3130 return mb_copy; 3131 } 3132 3133 /* 3134 * Send an upcall with the data packet to the user-level process. 3135 */ 3136 static int 3137 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3138 struct mbuf *mb_copy, struct mfc *rt) 3139 { 3140 struct mbuf *mb_first; 3141 int len = ntohs(ip->ip_len); 3142 struct igmpmsg *im; 3143 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 3144 3145 VIF_LOCK_ASSERT(); 3146 3147 /* 3148 * Add a new mbuf with an upcall header 3149 */ 3150 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 3151 if (mb_first == NULL) { 3152 m_freem(mb_copy); 3153 return ENOBUFS; 3154 } 3155 mb_first->m_data += max_linkhdr; 3156 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3157 mb_first->m_len = sizeof(struct igmpmsg); 3158 mb_first->m_next = mb_copy; 3159 3160 /* Send message to routing daemon */ 3161 im = mtod(mb_first, struct igmpmsg *); 3162 im->im_msgtype = IGMPMSG_WHOLEPKT; 3163 im->im_mbz = 0; 3164 im->im_vif = vifp - viftable; 3165 im->im_src = ip->ip_src; 3166 im->im_dst = ip->ip_dst; 3167 3168 k_igmpsrc.sin_addr = ip->ip_src; 3169 3170 mrtstat.mrts_upcalls++; 3171 3172 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3173 if (mrtdebug & DEBUG_PIM) 3174 log(LOG_WARNING, 3175 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3176 ++mrtstat.mrts_upq_sockfull; 3177 return ENOBUFS; 3178 } 3179 3180 /* Keep statistics */ 3181 pimstat.pims_snd_registers_msgs++; 3182 pimstat.pims_snd_registers_bytes += len; 3183 3184 return 0; 3185 } 3186 3187 /* 3188 * Encapsulate the data packet in PIM Register message and send it to the RP. 3189 */ 3190 static int 3191 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3192 struct mbuf *mb_copy, struct mfc *rt) 3193 { 3194 struct mbuf *mb_first; 3195 struct ip *ip_outer; 3196 struct pim_encap_pimhdr *pimhdr; 3197 int len = ntohs(ip->ip_len); 3198 vifi_t vifi = rt->mfc_parent; 3199 3200 VIF_LOCK_ASSERT(); 3201 3202 if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) { 3203 m_freem(mb_copy); 3204 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3205 } 3206 3207 /* 3208 * Add a new mbuf with the encapsulating header 3209 */ 3210 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 3211 if (mb_first == NULL) { 3212 m_freem(mb_copy); 3213 return ENOBUFS; 3214 } 3215 mb_first->m_data += max_linkhdr; 3216 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3217 mb_first->m_next = mb_copy; 3218 3219 mb_first->m_pkthdr.len = len + mb_first->m_len; 3220 3221 /* 3222 * Fill in the encapsulating IP and PIM header 3223 */ 3224 ip_outer = mtod(mb_first, struct ip *); 3225 *ip_outer = pim_encap_iphdr; 3226 ip_outer->ip_id = ip_newid(); 3227 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3228 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3229 ip_outer->ip_dst = rt->mfc_rp; 3230 /* 3231 * Copy the inner header TOS to the outer header, and take care of the 3232 * IP_DF bit. 3233 */ 3234 ip_outer->ip_tos = ip->ip_tos; 3235 if (ntohs(ip->ip_off) & IP_DF) 3236 ip_outer->ip_off |= IP_DF; 3237 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 3238 + sizeof(pim_encap_iphdr)); 3239 *pimhdr = pim_encap_pimhdr; 3240 /* If the iif crosses a border, set the Border-bit */ 3241 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3242 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3243 3244 mb_first->m_data += sizeof(pim_encap_iphdr); 3245 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3246 mb_first->m_data -= sizeof(pim_encap_iphdr); 3247 3248 if (vifp->v_rate_limit == 0) 3249 tbf_send_packet(vifp, mb_first); 3250 else 3251 tbf_control(vifp, mb_first, ip, ip_outer->ip_len); 3252 3253 /* Keep statistics */ 3254 pimstat.pims_snd_registers_msgs++; 3255 pimstat.pims_snd_registers_bytes += len; 3256 3257 return 0; 3258 } 3259 3260 /* 3261 * PIM-SMv2 and PIM-DM messages processing. 3262 * Receives and verifies the PIM control messages, and passes them 3263 * up to the listening socket, using rip_input(). 3264 * The only message with special processing is the PIM_REGISTER message 3265 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3266 * is passed to if_simloop(). 3267 */ 3268 void 3269 pim_input(struct mbuf *m, int off) 3270 { 3271 struct ip *ip = mtod(m, struct ip *); 3272 struct pim *pim; 3273 int minlen; 3274 int datalen = ip->ip_len; 3275 int ip_tos; 3276 int iphlen = off; 3277 3278 /* Keep statistics */ 3279 pimstat.pims_rcv_total_msgs++; 3280 pimstat.pims_rcv_total_bytes += datalen; 3281 3282 /* 3283 * Validate lengths 3284 */ 3285 if (datalen < PIM_MINLEN) { 3286 pimstat.pims_rcv_tooshort++; 3287 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3288 datalen, (u_long)ip->ip_src.s_addr); 3289 m_freem(m); 3290 return; 3291 } 3292 3293 /* 3294 * If the packet is at least as big as a REGISTER, go agead 3295 * and grab the PIM REGISTER header size, to avoid another 3296 * possible m_pullup() later. 3297 * 3298 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3299 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3300 */ 3301 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3302 /* 3303 * Get the IP and PIM headers in contiguous memory, and 3304 * possibly the PIM REGISTER header. 3305 */ 3306 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3307 (m = m_pullup(m, minlen)) == 0) { 3308 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3309 return; 3310 } 3311 /* m_pullup() may have given us a new mbuf so reset ip. */ 3312 ip = mtod(m, struct ip *); 3313 ip_tos = ip->ip_tos; 3314 3315 /* adjust mbuf to point to the PIM header */ 3316 m->m_data += iphlen; 3317 m->m_len -= iphlen; 3318 pim = mtod(m, struct pim *); 3319 3320 /* 3321 * Validate checksum. If PIM REGISTER, exclude the data packet. 3322 * 3323 * XXX: some older PIMv2 implementations don't make this distinction, 3324 * so for compatibility reason perform the checksum over part of the 3325 * message, and if error, then over the whole message. 3326 */ 3327 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3328 /* do nothing, checksum okay */ 3329 } else if (in_cksum(m, datalen)) { 3330 pimstat.pims_rcv_badsum++; 3331 if (mrtdebug & DEBUG_PIM) 3332 log(LOG_DEBUG, "pim_input: invalid checksum"); 3333 m_freem(m); 3334 return; 3335 } 3336 3337 /* PIM version check */ 3338 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3339 pimstat.pims_rcv_badversion++; 3340 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3341 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3342 m_freem(m); 3343 return; 3344 } 3345 3346 /* restore mbuf back to the outer IP */ 3347 m->m_data -= iphlen; 3348 m->m_len += iphlen; 3349 3350 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3351 /* 3352 * Since this is a REGISTER, we'll make a copy of the register 3353 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3354 * routing daemon. 3355 */ 3356 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 3357 struct mbuf *mcp; 3358 struct ip *encap_ip; 3359 u_int32_t *reghdr; 3360 struct ifnet *vifp; 3361 3362 VIF_LOCK(); 3363 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3364 VIF_UNLOCK(); 3365 if (mrtdebug & DEBUG_PIM) 3366 log(LOG_DEBUG, 3367 "pim_input: register vif not set: %d\n", reg_vif_num); 3368 m_freem(m); 3369 return; 3370 } 3371 /* XXX need refcnt? */ 3372 vifp = viftable[reg_vif_num].v_ifp; 3373 VIF_UNLOCK(); 3374 3375 /* 3376 * Validate length 3377 */ 3378 if (datalen < PIM_REG_MINLEN) { 3379 pimstat.pims_rcv_tooshort++; 3380 pimstat.pims_rcv_badregisters++; 3381 log(LOG_ERR, 3382 "pim_input: register packet size too small %d from %lx\n", 3383 datalen, (u_long)ip->ip_src.s_addr); 3384 m_freem(m); 3385 return; 3386 } 3387 3388 reghdr = (u_int32_t *)(pim + 1); 3389 encap_ip = (struct ip *)(reghdr + 1); 3390 3391 if (mrtdebug & DEBUG_PIM) { 3392 log(LOG_DEBUG, 3393 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3394 (u_long)ntohl(encap_ip->ip_src.s_addr), 3395 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3396 ntohs(encap_ip->ip_len)); 3397 } 3398 3399 /* verify the version number of the inner packet */ 3400 if (encap_ip->ip_v != IPVERSION) { 3401 pimstat.pims_rcv_badregisters++; 3402 if (mrtdebug & DEBUG_PIM) { 3403 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3404 "of the inner packet\n", encap_ip->ip_v); 3405 } 3406 m_freem(m); 3407 return; 3408 } 3409 3410 /* verify the inner packet is destined to a mcast group */ 3411 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 3412 pimstat.pims_rcv_badregisters++; 3413 if (mrtdebug & DEBUG_PIM) 3414 log(LOG_DEBUG, 3415 "pim_input: inner packet of register is not " 3416 "multicast %lx\n", 3417 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3418 m_freem(m); 3419 return; 3420 } 3421 3422 /* If a NULL_REGISTER, pass it to the daemon */ 3423 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3424 goto pim_input_to_daemon; 3425 3426 /* 3427 * Copy the TOS from the outer IP header to the inner IP header. 3428 */ 3429 if (encap_ip->ip_tos != ip_tos) { 3430 /* Outer TOS -> inner TOS */ 3431 encap_ip->ip_tos = ip_tos; 3432 /* Recompute the inner header checksum. Sigh... */ 3433 3434 /* adjust mbuf to point to the inner IP header */ 3435 m->m_data += (iphlen + PIM_MINLEN); 3436 m->m_len -= (iphlen + PIM_MINLEN); 3437 3438 encap_ip->ip_sum = 0; 3439 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3440 3441 /* restore mbuf to point back to the outer IP header */ 3442 m->m_data -= (iphlen + PIM_MINLEN); 3443 m->m_len += (iphlen + PIM_MINLEN); 3444 } 3445 3446 /* 3447 * Decapsulate the inner IP packet and loopback to forward it 3448 * as a normal multicast packet. Also, make a copy of the 3449 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3450 * to pass to the daemon later, so it can take the appropriate 3451 * actions (e.g., send back PIM_REGISTER_STOP). 3452 * XXX: here m->m_data points to the outer IP header. 3453 */ 3454 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 3455 if (mcp == NULL) { 3456 log(LOG_ERR, 3457 "pim_input: pim register: could not copy register head\n"); 3458 m_freem(m); 3459 return; 3460 } 3461 3462 /* Keep statistics */ 3463 /* XXX: registers_bytes include only the encap. mcast pkt */ 3464 pimstat.pims_rcv_registers_msgs++; 3465 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3466 3467 /* 3468 * forward the inner ip packet; point m_data at the inner ip. 3469 */ 3470 m_adj(m, iphlen + PIM_MINLEN); 3471 3472 if (mrtdebug & DEBUG_PIM) { 3473 log(LOG_DEBUG, 3474 "pim_input: forwarding decapsulated register: " 3475 "src %lx, dst %lx, vif %d\n", 3476 (u_long)ntohl(encap_ip->ip_src.s_addr), 3477 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3478 reg_vif_num); 3479 } 3480 /* NB: vifp was collected above; can it change on us? */ 3481 if_simloop(vifp, m, dst.sin_family, 0); 3482 3483 /* prepare the register head to send to the mrouting daemon */ 3484 m = mcp; 3485 } 3486 3487 pim_input_to_daemon: 3488 /* 3489 * Pass the PIM message up to the daemon; if it is a Register message, 3490 * pass the 'head' only up to the daemon. This includes the 3491 * outer IP header, PIM header, PIM-Register header and the 3492 * inner IP header. 3493 * XXX: the outer IP header pkt size of a Register is not adjust to 3494 * reflect the fact that the inner multicast data is truncated. 3495 */ 3496 rip_input(m, iphlen); 3497 3498 return; 3499 } 3500 #endif /* PIM */ 3501 3502 static int 3503 ip_mroute_modevent(module_t mod, int type, void *unused) 3504 { 3505 switch (type) { 3506 case MOD_LOAD: 3507 mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF); 3508 MFC_LOCK_INIT(); 3509 VIF_LOCK_INIT(); 3510 ip_mrouter_reset(); 3511 ip_mcast_src = X_ip_mcast_src; 3512 ip_mforward = X_ip_mforward; 3513 ip_mrouter_done = X_ip_mrouter_done; 3514 ip_mrouter_get = X_ip_mrouter_get; 3515 ip_mrouter_set = X_ip_mrouter_set; 3516 ip_rsvp_force_done = X_ip_rsvp_force_done; 3517 ip_rsvp_vif = X_ip_rsvp_vif; 3518 legal_vif_num = X_legal_vif_num; 3519 mrt_ioctl = X_mrt_ioctl; 3520 rsvp_input_p = X_rsvp_input; 3521 break; 3522 3523 case MOD_UNLOAD: 3524 /* 3525 * Typically module unload happens after the user-level 3526 * process has shutdown the kernel services (the check 3527 * below insures someone can't just yank the module out 3528 * from under a running process). But if the module is 3529 * just loaded and then unloaded w/o starting up a user 3530 * process we still need to cleanup. 3531 */ 3532 if (ip_mrouter) 3533 return EINVAL; 3534 3535 X_ip_mrouter_done(); 3536 ip_mcast_src = NULL; 3537 ip_mforward = NULL; 3538 ip_mrouter_done = NULL; 3539 ip_mrouter_get = NULL; 3540 ip_mrouter_set = NULL; 3541 ip_rsvp_force_done = NULL; 3542 ip_rsvp_vif = NULL; 3543 legal_vif_num = NULL; 3544 mrt_ioctl = NULL; 3545 rsvp_input_p = NULL; 3546 VIF_LOCK_DESTROY(); 3547 MFC_LOCK_DESTROY(); 3548 mtx_destroy(&mrouter_mtx); 3549 break; 3550 default: 3551 return EOPNOTSUPP; 3552 } 3553 return 0; 3554 } 3555 3556 static moduledata_t ip_mroutemod = { 3557 "ip_mroute", 3558 ip_mroute_modevent, 3559 0 3560 }; 3561 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3562