1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_types.h> 110 #include <net/netisr.h> 111 #include <net/route.h> 112 #include <net/vnet.h> 113 114 #include <netinet/in.h> 115 #include <netinet/igmp.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/ip_encap.h> 120 #include <netinet/ip_mroute.h> 121 #include <netinet/ip_var.h> 122 #include <netinet/ip_options.h> 123 #include <netinet/pim.h> 124 #include <netinet/pim_var.h> 125 #include <netinet/udp.h> 126 127 #include <machine/in_cksum.h> 128 129 #ifndef KTR_IPMF 130 #define KTR_IPMF KTR_INET 131 #endif 132 133 #define VIFI_INVALID ((vifi_t) -1) 134 135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 136 137 /* 138 * Locking. We use two locks: one for the virtual interface table and 139 * one for the forwarding table. These locks may be nested in which case 140 * the VIF lock must always be taken first. Note that each lock is used 141 * to cover not only the specific data structure but also related data 142 * structures. 143 */ 144 145 static struct rwlock mrouter_mtx; 146 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 147 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 148 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 149 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 150 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 151 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 152 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 153 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 154 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 155 #define MRW_LOCK_INIT() \ 156 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 157 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 158 159 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 161 162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 163 VNET_PCPUSTAT_SYSINIT(mrtstat); 164 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 166 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 167 "netinet/ip_mroute.h)"); 168 169 VNET_DEFINE_STATIC(u_long, mfchash); 170 #define V_mfchash VNET(mfchash) 171 #define MFCHASH(a, g) \ 172 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 173 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 174 #define MFCHASHSIZE 256 175 176 static u_long mfchashsize; /* Hash size */ 177 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 178 #define V_nexpire VNET(nexpire) 179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 180 #define V_mfchashtbl VNET(mfchashtbl) 181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 182 #define V_task_queue VNET(task_queue) 183 VNET_DEFINE_STATIC(struct task, task); 184 #define V_task VNET(task) 185 186 VNET_DEFINE_STATIC(vifi_t, numvifs); 187 #define V_numvifs VNET(numvifs) 188 VNET_DEFINE_STATIC(struct vif *, viftable); 189 #define V_viftable VNET(viftable) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 197 #define V_buf_ring_mtx VNET(buf_ring_mtx) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 207 /* 208 * Pending upcalls are stored in a ring which is flushed when 209 * full, or periodically 210 */ 211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 212 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 214 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 216 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 217 218 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 219 220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 221 VNET_PCPUSTAT_SYSINIT(pimstat); 222 VNET_PCPUSTAT_SYSUNINIT(pimstat); 223 224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 225 "PIM"); 226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 227 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 228 229 static u_long pim_squelch_wholepkt = 0; 230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 231 &pim_squelch_wholepkt, 0, 232 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t, struct ifnet **); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i, vifi_cnt = 0; 625 struct ifnet *free_ptr; 626 627 MRW_WLOCK(); 628 629 if (V_ip_mrouter == NULL) { 630 MRW_WUNLOCK(); 631 return; 632 } 633 634 /* 635 * Tear down multicast forwarder state associated with this ifnet. 636 * 1. Walk the vif list, matching vifs against this ifnet. 637 * 2. Walk the multicast forwarding cache (mfc) looking for 638 * inner matches with this vif's index. 639 * 3. Expire any matching multicast forwarding cache entries. 640 * 4. Free vif state. This should disable ALLMULTI on the interface. 641 */ 642 for (vifi = 0; vifi < V_numvifs; vifi++) { 643 if (V_viftable[vifi].v_ifp != ifp) 644 continue; 645 for (i = 0; i < mfchashsize; i++) { 646 struct mfc *rt, *nrt; 647 648 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 649 if (rt->mfc_parent == vifi) { 650 expire_mfc(rt); 651 } 652 } 653 } 654 del_vif_locked(vifi, &free_ptr); 655 if (free_ptr != NULL) 656 vifi_cnt++; 657 } 658 659 MRW_WUNLOCK(); 660 661 /* 662 * Free IFP. We don't have to use free_ptr here as it is the same 663 * that ifp. Perform free as many times as required in case 664 * refcount is greater than 1. 665 */ 666 for (i = 0; i < vifi_cnt; i++) 667 if_free(ifp); 668 } 669 670 static void 671 ip_mrouter_upcall_thread(void *arg, int pending __unused) 672 { 673 CURVNET_SET((struct vnet *) arg); 674 675 MRW_WLOCK(); 676 bw_upcalls_send(); 677 MRW_WUNLOCK(); 678 679 CURVNET_RESTORE(); 680 } 681 682 /* 683 * Enable multicast forwarding. 684 */ 685 static int 686 ip_mrouter_init(struct socket *so, int version) 687 { 688 689 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 690 691 if (version != 1) 692 return ENOPROTOOPT; 693 694 MRW_WLOCK(); 695 696 if (ip_mrouter_unloading) { 697 MRW_WUNLOCK(); 698 return ENOPROTOOPT; 699 } 700 701 if (V_ip_mrouter != NULL) { 702 MRW_WUNLOCK(); 703 return EADDRINUSE; 704 } 705 706 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 707 HASH_NOWAIT); 708 709 /* Create upcall ring */ 710 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 711 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 712 M_NOWAIT, &V_bw_upcalls_ring_mtx); 713 if (!V_bw_upcalls_ring) { 714 MRW_WUNLOCK(); 715 return (ENOMEM); 716 } 717 718 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 719 taskqueue_cancel(V_task_queue, &V_task, NULL); 720 taskqueue_unblock(V_task_queue); 721 722 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 723 curvnet); 724 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 725 curvnet); 726 727 V_ip_mrouter = so; 728 atomic_add_int(&ip_mrouter_cnt, 1); 729 730 /* This is a mutex required by buf_ring init, but not used internally */ 731 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 732 733 MRW_WUNLOCK(); 734 735 CTR1(KTR_IPMF, "%s: done", __func__); 736 737 return 0; 738 } 739 740 /* 741 * Disable multicast forwarding. 742 */ 743 static int 744 X_ip_mrouter_done(void) 745 { 746 struct ifnet **ifps; 747 int nifp; 748 u_long i; 749 vifi_t vifi; 750 struct bw_upcall *bu; 751 752 if (V_ip_mrouter == NULL) 753 return (EINVAL); 754 755 /* 756 * Detach/disable hooks to the reset of the system. 757 */ 758 V_ip_mrouter = NULL; 759 atomic_subtract_int(&ip_mrouter_cnt, 1); 760 V_mrt_api_config = 0; 761 762 /* 763 * Wait for all epoch sections to complete to ensure 764 * V_ip_mrouter = NULL is visible to others. 765 */ 766 epoch_wait_preempt(net_epoch_preempt); 767 768 /* Stop and drain task queue */ 769 taskqueue_block(V_task_queue); 770 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 771 taskqueue_drain(V_task_queue, &V_task); 772 } 773 774 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 775 776 MRW_WLOCK(); 777 taskqueue_cancel(V_task_queue, &V_task, NULL); 778 779 /* Destroy upcall ring */ 780 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 781 free(bu, M_MRTABLE); 782 } 783 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 784 mtx_destroy(&V_bw_upcalls_ring_mtx); 785 786 /* 787 * For each phyint in use, prepare to disable promiscuous reception 788 * of all IP multicasts. Defer the actual call until the lock is released; 789 * just record the list of interfaces while locked. Some interfaces use 790 * sx locks in their ioctl routines, which is not allowed while holding 791 * a non-sleepable lock. 792 */ 793 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 794 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 795 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 796 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 797 ifps[nifp++] = V_viftable[vifi].v_ifp; 798 } 799 } 800 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 801 V_numvifs = 0; 802 V_pim_assert_enabled = 0; 803 804 callout_stop(&V_expire_upcalls_ch); 805 callout_stop(&V_bw_upcalls_ch); 806 807 /* 808 * Free all multicast forwarding cache entries. 809 * Do not use hashdestroy(), as we must perform other cleanup. 810 */ 811 for (i = 0; i < mfchashsize; i++) { 812 struct mfc *rt, *nrt; 813 814 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 815 expire_mfc(rt); 816 } 817 } 818 free(V_mfchashtbl, M_MRTABLE); 819 V_mfchashtbl = NULL; 820 821 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 822 823 V_reg_vif_num = VIFI_INVALID; 824 825 mtx_destroy(&V_buf_ring_mtx); 826 827 MRW_WUNLOCK(); 828 829 /* 830 * Now drop our claim on promiscuous multicast on the interfaces recorded 831 * above. This is safe to do now because ALLMULTI is reference counted. 832 */ 833 for (vifi = 0; vifi < nifp; vifi++) 834 if_allmulti(ifps[vifi], 0); 835 free(ifps, M_TEMP); 836 837 CTR1(KTR_IPMF, "%s: done", __func__); 838 839 return 0; 840 } 841 842 /* 843 * Set PIM assert processing global 844 */ 845 static int 846 set_assert(int i) 847 { 848 if ((i != 1) && (i != 0)) 849 return EINVAL; 850 851 V_pim_assert_enabled = i; 852 853 return 0; 854 } 855 856 /* 857 * Configure API capabilities 858 */ 859 int 860 set_api_config(uint32_t *apival) 861 { 862 u_long i; 863 864 /* 865 * We can set the API capabilities only if it is the first operation 866 * after MRT_INIT. I.e.: 867 * - there are no vifs installed 868 * - pim_assert is not enabled 869 * - the MFC table is empty 870 */ 871 if (V_numvifs > 0) { 872 *apival = 0; 873 return EPERM; 874 } 875 if (V_pim_assert_enabled) { 876 *apival = 0; 877 return EPERM; 878 } 879 880 MRW_RLOCK(); 881 882 for (i = 0; i < mfchashsize; i++) { 883 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 884 MRW_RUNLOCK(); 885 *apival = 0; 886 return EPERM; 887 } 888 } 889 890 MRW_RUNLOCK(); 891 892 V_mrt_api_config = *apival & mrt_api_support; 893 *apival = V_mrt_api_config; 894 895 return 0; 896 } 897 898 /* 899 * Add a vif to the vif table 900 */ 901 static int 902 add_vif(struct vifctl *vifcp) 903 { 904 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 905 struct sockaddr_in sin = {sizeof sin, AF_INET}; 906 struct ifaddr *ifa; 907 struct ifnet *ifp; 908 int error; 909 910 911 if (vifcp->vifc_vifi >= MAXVIFS) 912 return EINVAL; 913 /* rate limiting is no longer supported by this code */ 914 if (vifcp->vifc_rate_limit != 0) { 915 log(LOG_ERR, "rate limiting is no longer supported\n"); 916 return EINVAL; 917 } 918 919 if (in_nullhost(vifcp->vifc_lcl_addr)) 920 return EADDRNOTAVAIL; 921 922 /* Find the interface with an address in AF_INET family */ 923 if (vifcp->vifc_flags & VIFF_REGISTER) { 924 /* 925 * XXX: Because VIFF_REGISTER does not really need a valid 926 * local interface (e.g. it could be 127.0.0.2), we don't 927 * check its address. 928 */ 929 ifp = NULL; 930 } else { 931 struct epoch_tracker et; 932 933 sin.sin_addr = vifcp->vifc_lcl_addr; 934 NET_EPOCH_ENTER(et); 935 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 936 if (ifa == NULL) { 937 NET_EPOCH_EXIT(et); 938 return EADDRNOTAVAIL; 939 } 940 ifp = ifa->ifa_ifp; 941 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 942 NET_EPOCH_EXIT(et); 943 } 944 945 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 946 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 947 return EOPNOTSUPP; 948 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 949 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 950 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 951 if (V_reg_vif_num == VIFI_INVALID) { 952 if_initname(V_multicast_register_if, "register_vif", 0); 953 V_reg_vif_num = vifcp->vifc_vifi; 954 } 955 } else { /* Make sure the interface supports multicast */ 956 if ((ifp->if_flags & IFF_MULTICAST) == 0) 957 return EOPNOTSUPP; 958 959 /* Enable promiscuous reception of all IP multicasts from the if */ 960 error = if_allmulti(ifp, 1); 961 if (error) 962 return error; 963 } 964 965 MRW_WLOCK(); 966 967 if (!in_nullhost(vifp->v_lcl_addr)) { 968 if (ifp) 969 V_multicast_register_if = NULL; 970 MRW_WUNLOCK(); 971 if (ifp) 972 if_free(ifp); 973 return EADDRINUSE; 974 } 975 976 vifp->v_flags = vifcp->vifc_flags; 977 vifp->v_threshold = vifcp->vifc_threshold; 978 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 979 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 980 vifp->v_ifp = ifp; 981 /* initialize per vif pkt counters */ 982 vifp->v_pkt_in = 0; 983 vifp->v_pkt_out = 0; 984 vifp->v_bytes_in = 0; 985 vifp->v_bytes_out = 0; 986 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 987 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 988 989 /* Adjust numvifs up if the vifi is higher than numvifs */ 990 if (V_numvifs <= vifcp->vifc_vifi) 991 V_numvifs = vifcp->vifc_vifi + 1; 992 993 MRW_WUNLOCK(); 994 995 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 996 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 997 (int)vifcp->vifc_threshold); 998 999 return 0; 1000 } 1001 1002 /* 1003 * Delete a vif from the vif table 1004 */ 1005 static int 1006 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) 1007 { 1008 struct vif *vifp; 1009 1010 *ifp_free = NULL; 1011 1012 MRW_WLOCK_ASSERT(); 1013 1014 if (vifi >= V_numvifs) { 1015 return EINVAL; 1016 } 1017 vifp = &V_viftable[vifi]; 1018 if (in_nullhost(vifp->v_lcl_addr)) { 1019 return EADDRNOTAVAIL; 1020 } 1021 1022 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1023 if_allmulti(vifp->v_ifp, 0); 1024 1025 if (vifp->v_flags & VIFF_REGISTER) { 1026 V_reg_vif_num = VIFI_INVALID; 1027 if (vifp->v_ifp) { 1028 if (vifp->v_ifp == V_multicast_register_if) 1029 V_multicast_register_if = NULL; 1030 *ifp_free = vifp->v_ifp; 1031 } 1032 } 1033 1034 mtx_destroy(&vifp->v_spin); 1035 1036 bzero((caddr_t)vifp, sizeof (*vifp)); 1037 1038 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1039 1040 /* Adjust numvifs down */ 1041 for (vifi = V_numvifs; vifi > 0; vifi--) 1042 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1043 break; 1044 V_numvifs = vifi; 1045 1046 return 0; 1047 } 1048 1049 static int 1050 del_vif(vifi_t vifi) 1051 { 1052 int cc; 1053 struct ifnet *free_ptr; 1054 1055 MRW_WLOCK(); 1056 cc = del_vif_locked(vifi, &free_ptr); 1057 MRW_WUNLOCK(); 1058 1059 if (free_ptr) 1060 if_free(free_ptr); 1061 1062 return cc; 1063 } 1064 1065 /* 1066 * update an mfc entry without resetting counters and S,G addresses. 1067 */ 1068 static void 1069 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1070 { 1071 int i; 1072 1073 rt->mfc_parent = mfccp->mfcc_parent; 1074 for (i = 0; i < V_numvifs; i++) { 1075 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1076 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1077 MRT_MFC_FLAGS_ALL; 1078 } 1079 /* set the RP address */ 1080 if (V_mrt_api_config & MRT_MFC_RP) 1081 rt->mfc_rp = mfccp->mfcc_rp; 1082 else 1083 rt->mfc_rp.s_addr = INADDR_ANY; 1084 } 1085 1086 /* 1087 * fully initialize an mfc entry from the parameter. 1088 */ 1089 static void 1090 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1091 { 1092 rt->mfc_origin = mfccp->mfcc_origin; 1093 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1094 1095 update_mfc_params(rt, mfccp); 1096 1097 /* initialize pkt counters per src-grp */ 1098 rt->mfc_pkt_cnt = 0; 1099 rt->mfc_byte_cnt = 0; 1100 rt->mfc_wrong_if = 0; 1101 timevalclear(&rt->mfc_last_assert); 1102 } 1103 1104 static void 1105 expire_mfc(struct mfc *rt) 1106 { 1107 struct rtdetq *rte; 1108 1109 MRW_WLOCK_ASSERT(); 1110 1111 free_bw_list(rt->mfc_bw_meter_leq); 1112 free_bw_list(rt->mfc_bw_meter_geq); 1113 1114 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1115 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1116 if (rte) { 1117 m_freem(rte->m); 1118 free(rte, M_MRTABLE); 1119 } 1120 } 1121 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1122 1123 LIST_REMOVE(rt, mfc_hash); 1124 free(rt, M_MRTABLE); 1125 } 1126 1127 /* 1128 * Add an mfc entry 1129 */ 1130 static int 1131 add_mfc(struct mfcctl2 *mfccp) 1132 { 1133 struct mfc *rt; 1134 struct rtdetq *rte; 1135 u_long hash = 0; 1136 u_short nstl; 1137 struct epoch_tracker et; 1138 1139 MRW_WLOCK(); 1140 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1141 1142 /* If an entry already exists, just update the fields */ 1143 if (rt) { 1144 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1145 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1146 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1147 mfccp->mfcc_parent); 1148 update_mfc_params(rt, mfccp); 1149 MRW_WUNLOCK(); 1150 return (0); 1151 } 1152 1153 /* 1154 * Find the entry for which the upcall was made and update 1155 */ 1156 nstl = 0; 1157 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1158 NET_EPOCH_ENTER(et); 1159 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1160 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1161 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1162 !buf_ring_empty(rt->mfc_stall_ring)) { 1163 CTR5(KTR_IPMF, 1164 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1165 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1166 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1167 mfccp->mfcc_parent, 1168 rt->mfc_stall_ring); 1169 if (nstl++) 1170 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1171 1172 init_mfc_params(rt, mfccp); 1173 rt->mfc_expire = 0; /* Don't clean this guy up */ 1174 V_nexpire[hash]--; 1175 1176 /* Free queued packets, but attempt to forward them first. */ 1177 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1178 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1179 if (rte->ifp != NULL) 1180 ip_mdq(rte->m, rte->ifp, rt, -1); 1181 m_freem(rte->m); 1182 free(rte, M_MRTABLE); 1183 } 1184 } 1185 } 1186 NET_EPOCH_EXIT(et); 1187 1188 /* 1189 * It is possible that an entry is being inserted without an upcall 1190 */ 1191 if (nstl == 0) { 1192 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1193 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1194 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1195 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1196 init_mfc_params(rt, mfccp); 1197 if (rt->mfc_expire) 1198 V_nexpire[hash]--; 1199 rt->mfc_expire = 0; 1200 break; /* XXX */ 1201 } 1202 } 1203 1204 if (rt == NULL) { /* no upcall, so make a new entry */ 1205 rt = mfc_alloc(); 1206 if (rt == NULL) { 1207 MRW_WUNLOCK(); 1208 return (ENOBUFS); 1209 } 1210 1211 init_mfc_params(rt, mfccp); 1212 1213 rt->mfc_expire = 0; 1214 rt->mfc_bw_meter_leq = NULL; 1215 rt->mfc_bw_meter_geq = NULL; 1216 1217 /* insert new entry at head of hash chain */ 1218 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1219 } 1220 } 1221 1222 MRW_WUNLOCK(); 1223 1224 return (0); 1225 } 1226 1227 /* 1228 * Delete an mfc entry 1229 */ 1230 static int 1231 del_mfc(struct mfcctl2 *mfccp) 1232 { 1233 struct in_addr origin; 1234 struct in_addr mcastgrp; 1235 struct mfc *rt; 1236 1237 origin = mfccp->mfcc_origin; 1238 mcastgrp = mfccp->mfcc_mcastgrp; 1239 1240 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1241 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1242 1243 MRW_WLOCK(); 1244 1245 rt = mfc_find(&origin, &mcastgrp); 1246 if (rt == NULL) { 1247 MRW_WUNLOCK(); 1248 return EADDRNOTAVAIL; 1249 } 1250 1251 /* 1252 * free the bw_meter entries 1253 */ 1254 free_bw_list(rt->mfc_bw_meter_leq); 1255 rt->mfc_bw_meter_leq = NULL; 1256 free_bw_list(rt->mfc_bw_meter_geq); 1257 rt->mfc_bw_meter_geq = NULL; 1258 1259 LIST_REMOVE(rt, mfc_hash); 1260 free(rt, M_MRTABLE); 1261 1262 MRW_WUNLOCK(); 1263 1264 return (0); 1265 } 1266 1267 /* 1268 * Send a message to the routing daemon on the multicast routing socket. 1269 */ 1270 static int 1271 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1272 { 1273 if (s) { 1274 SOCKBUF_LOCK(&s->so_rcv); 1275 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1276 NULL) != 0) { 1277 sorwakeup_locked(s); 1278 return 0; 1279 } 1280 soroverflow_locked(s); 1281 } 1282 m_freem(mm); 1283 return -1; 1284 } 1285 1286 /* 1287 * IP multicast forwarding function. This function assumes that the packet 1288 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1289 * pointed to by "ifp", and the packet is to be relayed to other networks 1290 * that have members of the packet's destination IP multicast group. 1291 * 1292 * The packet is returned unscathed to the caller, unless it is 1293 * erroneous, in which case a non-zero return value tells the caller to 1294 * discard it. 1295 */ 1296 1297 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1298 1299 static int 1300 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1301 struct ip_moptions *imo) 1302 { 1303 struct mfc *rt; 1304 int error; 1305 vifi_t vifi; 1306 struct mbuf *mb0; 1307 struct rtdetq *rte; 1308 u_long hash; 1309 int hlen; 1310 1311 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1312 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1313 1314 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1315 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1316 /* 1317 * Packet arrived via a physical interface or 1318 * an encapsulated tunnel or a register_vif. 1319 */ 1320 } else { 1321 /* 1322 * Packet arrived through a source-route tunnel. 1323 * Source-route tunnels are no longer supported. 1324 */ 1325 return (1); 1326 } 1327 1328 /* 1329 * BEGIN: MCAST ROUTING HOT PATH 1330 */ 1331 MRW_RLOCK(); 1332 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1333 if (ip->ip_ttl < MAXTTL) 1334 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1335 error = ip_mdq(m, ifp, NULL, vifi); 1336 MRW_RUNLOCK(); 1337 return error; 1338 } 1339 1340 /* 1341 * Don't forward a packet with time-to-live of zero or one, 1342 * or a packet destined to a local-only group. 1343 */ 1344 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1345 MRW_RUNLOCK(); 1346 return 0; 1347 } 1348 1349 mfc_find_retry: 1350 /* 1351 * Determine forwarding vifs from the forwarding cache table 1352 */ 1353 MRTSTAT_INC(mrts_mfc_lookups); 1354 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1355 1356 /* Entry exists, so forward if necessary */ 1357 if (rt != NULL) { 1358 error = ip_mdq(m, ifp, rt, -1); 1359 /* Generic unlock here as we might release R or W lock */ 1360 MRW_UNLOCK(); 1361 return error; 1362 } 1363 1364 /* 1365 * END: MCAST ROUTING HOT PATH 1366 */ 1367 1368 /* Further processing must be done with WLOCK taken */ 1369 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1370 MRW_RUNLOCK(); 1371 MRW_WLOCK(); 1372 goto mfc_find_retry; 1373 } 1374 1375 /* 1376 * If we don't have a route for packet's origin, 1377 * Make a copy of the packet & send message to routing daemon 1378 */ 1379 hlen = ip->ip_hl << 2; 1380 1381 MRTSTAT_INC(mrts_mfc_misses); 1382 MRTSTAT_INC(mrts_no_route); 1383 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1384 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1385 1386 /* 1387 * Allocate mbufs early so that we don't do extra work if we are 1388 * just going to fail anyway. Make sure to pullup the header so 1389 * that other people can't step on it. 1390 */ 1391 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1392 M_NOWAIT|M_ZERO); 1393 if (rte == NULL) { 1394 MRW_WUNLOCK(); 1395 return ENOBUFS; 1396 } 1397 1398 mb0 = m_copypacket(m, M_NOWAIT); 1399 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1400 mb0 = m_pullup(mb0, hlen); 1401 if (mb0 == NULL) { 1402 free(rte, M_MRTABLE); 1403 MRW_WUNLOCK(); 1404 return ENOBUFS; 1405 } 1406 1407 /* is there an upcall waiting for this flow ? */ 1408 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1409 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1410 { 1411 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1412 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1413 !buf_ring_empty(rt->mfc_stall_ring)) 1414 break; 1415 } 1416 1417 if (rt == NULL) { 1418 int i; 1419 struct igmpmsg *im; 1420 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1421 struct mbuf *mm; 1422 1423 /* 1424 * Locate the vifi for the incoming interface for this packet. 1425 * If none found, drop packet. 1426 */ 1427 for (vifi = 0; vifi < V_numvifs && 1428 V_viftable[vifi].v_ifp != ifp; vifi++) 1429 ; 1430 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1431 goto non_fatal; 1432 1433 /* no upcall, so make a new entry */ 1434 rt = mfc_alloc(); 1435 if (rt == NULL) 1436 goto fail; 1437 1438 /* Make a copy of the header to send to the user level process */ 1439 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1440 if (mm == NULL) 1441 goto fail1; 1442 1443 /* 1444 * Send message to routing daemon to install 1445 * a route into the kernel table 1446 */ 1447 1448 im = mtod(mm, struct igmpmsg*); 1449 im->im_msgtype = IGMPMSG_NOCACHE; 1450 im->im_mbz = 0; 1451 im->im_vif = vifi; 1452 1453 MRTSTAT_INC(mrts_upcalls); 1454 1455 k_igmpsrc.sin_addr = ip->ip_src; 1456 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1457 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1458 MRTSTAT_INC(mrts_upq_sockfull); 1459 fail1: free(rt, M_MRTABLE); 1460 fail: free(rte, M_MRTABLE); 1461 m_freem(mb0); 1462 MRW_WUNLOCK(); 1463 return ENOBUFS; 1464 } 1465 1466 /* insert new entry at head of hash chain */ 1467 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1468 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1469 rt->mfc_expire = UPCALL_EXPIRE; 1470 V_nexpire[hash]++; 1471 for (i = 0; i < V_numvifs; i++) { 1472 rt->mfc_ttls[i] = 0; 1473 rt->mfc_flags[i] = 0; 1474 } 1475 rt->mfc_parent = -1; 1476 1477 /* clear the RP address */ 1478 rt->mfc_rp.s_addr = INADDR_ANY; 1479 rt->mfc_bw_meter_leq = NULL; 1480 rt->mfc_bw_meter_geq = NULL; 1481 1482 /* initialize pkt counters per src-grp */ 1483 rt->mfc_pkt_cnt = 0; 1484 rt->mfc_byte_cnt = 0; 1485 rt->mfc_wrong_if = 0; 1486 timevalclear(&rt->mfc_last_assert); 1487 1488 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1489 1490 /* Add RT to hashtable as it didn't exist before */ 1491 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1492 } else { 1493 /* determine if queue has overflowed */ 1494 if (buf_ring_full(rt->mfc_stall_ring)) { 1495 MRTSTAT_INC(mrts_upq_ovflw); 1496 non_fatal: free(rte, M_MRTABLE); 1497 m_freem(mb0); 1498 MRW_WUNLOCK(); 1499 return (0); 1500 } 1501 1502 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1503 } 1504 1505 rte->m = mb0; 1506 rte->ifp = ifp; 1507 1508 MRW_WUNLOCK(); 1509 1510 return 0; 1511 } 1512 1513 /* 1514 * Clean up the cache entry if upcall is not serviced 1515 */ 1516 static void 1517 expire_upcalls(void *arg) 1518 { 1519 u_long i; 1520 1521 CURVNET_SET((struct vnet *) arg); 1522 1523 /*This callout is always run with MRW_WLOCK taken. */ 1524 1525 for (i = 0; i < mfchashsize; i++) { 1526 struct mfc *rt, *nrt; 1527 1528 if (V_nexpire[i] == 0) 1529 continue; 1530 1531 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1532 if (buf_ring_empty(rt->mfc_stall_ring)) 1533 continue; 1534 1535 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1536 continue; 1537 1538 MRTSTAT_INC(mrts_cache_cleanups); 1539 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1540 (u_long)ntohl(rt->mfc_origin.s_addr), 1541 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1542 1543 expire_mfc(rt); 1544 } 1545 } 1546 1547 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1548 curvnet); 1549 1550 CURVNET_RESTORE(); 1551 } 1552 1553 /* 1554 * Packet forwarding routine once entry in the cache is made 1555 */ 1556 static int 1557 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1558 { 1559 struct ip *ip = mtod(m, struct ip *); 1560 vifi_t vifi; 1561 int plen = ntohs(ip->ip_len); 1562 1563 MRW_LOCK_ASSERT(); 1564 NET_EPOCH_ASSERT(); 1565 1566 /* 1567 * If xmt_vif is not -1, send on only the requested vif. 1568 * 1569 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1570 */ 1571 if (xmt_vif < V_numvifs) { 1572 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1573 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1574 else 1575 phyint_send(ip, V_viftable + xmt_vif, m); 1576 return 1; 1577 } 1578 1579 /* 1580 * Don't forward if it didn't arrive from the parent vif for its origin. 1581 */ 1582 vifi = rt->mfc_parent; 1583 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1584 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1585 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1586 MRTSTAT_INC(mrts_wrong_if); 1587 ++rt->mfc_wrong_if; 1588 /* 1589 * If we are doing PIM assert processing, send a message 1590 * to the routing daemon. 1591 * 1592 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1593 * can complete the SPT switch, regardless of the type 1594 * of the iif (broadcast media, GRE tunnel, etc). 1595 */ 1596 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1597 V_viftable[vifi].v_ifp) { 1598 if (ifp == V_multicast_register_if) 1599 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1600 1601 /* Get vifi for the incoming packet */ 1602 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1603 vifi++) 1604 ; 1605 if (vifi >= V_numvifs) 1606 return 0; /* The iif is not found: ignore the packet. */ 1607 1608 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1609 return 0; /* WRONGVIF disabled: ignore the packet */ 1610 1611 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1612 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1613 struct igmpmsg *im; 1614 int hlen = ip->ip_hl << 2; 1615 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1616 1617 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1618 mm = m_pullup(mm, hlen); 1619 if (mm == NULL) 1620 return ENOBUFS; 1621 1622 im = mtod(mm, struct igmpmsg *); 1623 im->im_msgtype = IGMPMSG_WRONGVIF; 1624 im->im_mbz = 0; 1625 im->im_vif = vifi; 1626 1627 MRTSTAT_INC(mrts_upcalls); 1628 1629 k_igmpsrc.sin_addr = im->im_src; 1630 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1631 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1632 MRTSTAT_INC(mrts_upq_sockfull); 1633 return ENOBUFS; 1634 } 1635 } 1636 } 1637 return 0; 1638 } 1639 1640 /* If I sourced this packet, it counts as output, else it was input. */ 1641 mtx_lock_spin(&V_viftable[vifi].v_spin); 1642 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1643 V_viftable[vifi].v_pkt_out++; 1644 V_viftable[vifi].v_bytes_out += plen; 1645 } else { 1646 V_viftable[vifi].v_pkt_in++; 1647 V_viftable[vifi].v_bytes_in += plen; 1648 } 1649 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1650 1651 rt->mfc_pkt_cnt++; 1652 rt->mfc_byte_cnt += plen; 1653 1654 /* 1655 * For each vif, decide if a copy of the packet should be forwarded. 1656 * Forward if: 1657 * - the ttl exceeds the vif's threshold 1658 * - there are group members downstream on interface 1659 */ 1660 for (vifi = 0; vifi < V_numvifs; vifi++) 1661 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1662 V_viftable[vifi].v_pkt_out++; 1663 V_viftable[vifi].v_bytes_out += plen; 1664 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1665 pim_register_send(ip, V_viftable + vifi, m, rt); 1666 else 1667 phyint_send(ip, V_viftable + vifi, m); 1668 } 1669 1670 /* 1671 * Perform upcall-related bw measuring. 1672 */ 1673 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1674 struct bw_meter *x; 1675 struct timeval now; 1676 1677 microtime(&now); 1678 /* Process meters for Greater-or-EQual case */ 1679 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1680 bw_meter_geq_receive_packet(x, plen, &now); 1681 1682 /* Process meters for Lower-or-EQual case */ 1683 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1684 /* 1685 * Record that a packet is received. 1686 * Spin lock has to be taken as callout context 1687 * (expire_bw_meter_leq) might modify these fields 1688 * as well 1689 */ 1690 mtx_lock_spin(&x->bm_spin); 1691 x->bm_measured.b_packets++; 1692 x->bm_measured.b_bytes += plen; 1693 mtx_unlock_spin(&x->bm_spin); 1694 } 1695 } 1696 1697 return 0; 1698 } 1699 1700 /* 1701 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1702 */ 1703 static int 1704 X_legal_vif_num(int vif) 1705 { 1706 int ret; 1707 1708 ret = 0; 1709 if (vif < 0) 1710 return (ret); 1711 1712 MRW_RLOCK(); 1713 if (vif < V_numvifs) 1714 ret = 1; 1715 MRW_RUNLOCK(); 1716 1717 return (ret); 1718 } 1719 1720 /* 1721 * Return the local address used by this vif 1722 */ 1723 static u_long 1724 X_ip_mcast_src(int vifi) 1725 { 1726 in_addr_t addr; 1727 1728 addr = INADDR_ANY; 1729 if (vifi < 0) 1730 return (addr); 1731 1732 MRW_RLOCK(); 1733 if (vifi < V_numvifs) 1734 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1735 MRW_RUNLOCK(); 1736 1737 return (addr); 1738 } 1739 1740 static void 1741 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1742 { 1743 struct mbuf *mb_copy; 1744 int hlen = ip->ip_hl << 2; 1745 1746 MRW_LOCK_ASSERT(); 1747 1748 /* 1749 * Make a new reference to the packet; make sure that 1750 * the IP header is actually copied, not just referenced, 1751 * so that ip_output() only scribbles on the copy. 1752 */ 1753 mb_copy = m_copypacket(m, M_NOWAIT); 1754 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1755 mb_copy = m_pullup(mb_copy, hlen); 1756 if (mb_copy == NULL) 1757 return; 1758 1759 send_packet(vifp, mb_copy); 1760 } 1761 1762 static void 1763 send_packet(struct vif *vifp, struct mbuf *m) 1764 { 1765 struct ip_moptions imo; 1766 int error __unused; 1767 1768 MRW_LOCK_ASSERT(); 1769 NET_EPOCH_ASSERT(); 1770 1771 imo.imo_multicast_ifp = vifp->v_ifp; 1772 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1773 imo.imo_multicast_loop = !!in_mcast_loop; 1774 imo.imo_multicast_vif = -1; 1775 STAILQ_INIT(&imo.imo_head); 1776 1777 /* 1778 * Re-entrancy should not be a problem here, because 1779 * the packets that we send out and are looped back at us 1780 * should get rejected because they appear to come from 1781 * the loopback interface, thus preventing looping. 1782 */ 1783 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1784 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1785 (ptrdiff_t)(vifp - V_viftable), error); 1786 } 1787 1788 /* 1789 * Stubs for old RSVP socket shim implementation. 1790 */ 1791 1792 static int 1793 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1794 { 1795 1796 return (EOPNOTSUPP); 1797 } 1798 1799 static void 1800 X_ip_rsvp_force_done(struct socket *so __unused) 1801 { 1802 1803 } 1804 1805 static int 1806 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1807 { 1808 struct mbuf *m; 1809 1810 m = *mp; 1811 *mp = NULL; 1812 if (!V_rsvp_on) 1813 m_freem(m); 1814 return (IPPROTO_DONE); 1815 } 1816 1817 /* 1818 * Code for bandwidth monitors 1819 */ 1820 1821 /* 1822 * Define common interface for timeval-related methods 1823 */ 1824 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1825 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1826 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1827 1828 static uint32_t 1829 compute_bw_meter_flags(struct bw_upcall *req) 1830 { 1831 uint32_t flags = 0; 1832 1833 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1834 flags |= BW_METER_UNIT_PACKETS; 1835 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1836 flags |= BW_METER_UNIT_BYTES; 1837 if (req->bu_flags & BW_UPCALL_GEQ) 1838 flags |= BW_METER_GEQ; 1839 if (req->bu_flags & BW_UPCALL_LEQ) 1840 flags |= BW_METER_LEQ; 1841 1842 return flags; 1843 } 1844 1845 static void 1846 expire_bw_meter_leq(void *arg) 1847 { 1848 struct bw_meter *x = arg; 1849 struct timeval now; 1850 /* 1851 * INFO: 1852 * callout is always executed with MRW_WLOCK taken 1853 */ 1854 1855 CURVNET_SET((struct vnet *)x->arg); 1856 1857 microtime(&now); 1858 1859 /* 1860 * Test if we should deliver an upcall 1861 */ 1862 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1863 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1864 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1865 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1866 /* Prepare an upcall for delivery */ 1867 bw_meter_prepare_upcall(x, &now); 1868 } 1869 1870 /* Send all upcalls that are pending delivery */ 1871 taskqueue_enqueue(V_task_queue, &V_task); 1872 1873 /* Reset counters */ 1874 x->bm_start_time = now; 1875 /* Spin lock has to be taken as ip_forward context 1876 * might modify these fields as well 1877 */ 1878 mtx_lock_spin(&x->bm_spin); 1879 x->bm_measured.b_bytes = 0; 1880 x->bm_measured.b_packets = 0; 1881 mtx_unlock_spin(&x->bm_spin); 1882 1883 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1884 1885 CURVNET_RESTORE(); 1886 } 1887 1888 /* 1889 * Add a bw_meter entry 1890 */ 1891 static int 1892 add_bw_upcall(struct bw_upcall *req) 1893 { 1894 struct mfc *mfc; 1895 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1896 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1897 struct timeval now; 1898 struct bw_meter *x, **bwm_ptr; 1899 uint32_t flags; 1900 1901 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1902 return EOPNOTSUPP; 1903 1904 /* Test if the flags are valid */ 1905 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1906 return EINVAL; 1907 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1908 return EINVAL; 1909 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1910 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1911 return EINVAL; 1912 1913 /* Test if the threshold time interval is valid */ 1914 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1915 return EINVAL; 1916 1917 flags = compute_bw_meter_flags(req); 1918 1919 /* 1920 * Find if we have already same bw_meter entry 1921 */ 1922 MRW_WLOCK(); 1923 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1924 if (mfc == NULL) { 1925 MRW_WUNLOCK(); 1926 return EADDRNOTAVAIL; 1927 } 1928 1929 /* Choose an appropriate bw_meter list */ 1930 if (req->bu_flags & BW_UPCALL_GEQ) 1931 bwm_ptr = &mfc->mfc_bw_meter_geq; 1932 else 1933 bwm_ptr = &mfc->mfc_bw_meter_leq; 1934 1935 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1936 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1937 &req->bu_threshold.b_time, ==)) 1938 && (x->bm_threshold.b_packets 1939 == req->bu_threshold.b_packets) 1940 && (x->bm_threshold.b_bytes 1941 == req->bu_threshold.b_bytes) 1942 && (x->bm_flags & BW_METER_USER_FLAGS) 1943 == flags) { 1944 MRW_WUNLOCK(); 1945 return 0; /* XXX Already installed */ 1946 } 1947 } 1948 1949 /* Allocate the new bw_meter entry */ 1950 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1951 M_ZERO | M_NOWAIT); 1952 if (x == NULL) { 1953 MRW_WUNLOCK(); 1954 return ENOBUFS; 1955 } 1956 1957 /* Set the new bw_meter entry */ 1958 x->bm_threshold.b_time = req->bu_threshold.b_time; 1959 microtime(&now); 1960 x->bm_start_time = now; 1961 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1962 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1963 x->bm_measured.b_packets = 0; 1964 x->bm_measured.b_bytes = 0; 1965 x->bm_flags = flags; 1966 x->bm_time_next = NULL; 1967 x->bm_mfc = mfc; 1968 x->arg = curvnet; 1969 sprintf(x->bm_spin_name, "BM spin %p", x); 1970 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1971 1972 /* For LEQ case create periodic callout */ 1973 if (req->bu_flags & BW_UPCALL_LEQ) { 1974 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1975 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1976 expire_bw_meter_leq, x); 1977 } 1978 1979 /* Add the new bw_meter entry to the front of entries for this MFC */ 1980 x->bm_mfc_next = *bwm_ptr; 1981 *bwm_ptr = x; 1982 1983 MRW_WUNLOCK(); 1984 1985 return 0; 1986 } 1987 1988 static void 1989 free_bw_list(struct bw_meter *list) 1990 { 1991 while (list != NULL) { 1992 struct bw_meter *x = list; 1993 1994 /* MRW_WLOCK must be held here */ 1995 if (x->bm_flags & BW_METER_LEQ) { 1996 callout_drain(&x->bm_meter_callout); 1997 mtx_destroy(&x->bm_spin); 1998 } 1999 2000 list = list->bm_mfc_next; 2001 free(x, M_BWMETER); 2002 } 2003 } 2004 2005 /* 2006 * Delete one or multiple bw_meter entries 2007 */ 2008 static int 2009 del_bw_upcall(struct bw_upcall *req) 2010 { 2011 struct mfc *mfc; 2012 struct bw_meter *x, **bwm_ptr; 2013 2014 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2015 return EOPNOTSUPP; 2016 2017 MRW_WLOCK(); 2018 2019 /* Find the corresponding MFC entry */ 2020 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2021 if (mfc == NULL) { 2022 MRW_WUNLOCK(); 2023 return EADDRNOTAVAIL; 2024 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2025 /* 2026 * Delete all bw_meter entries for this mfc 2027 */ 2028 struct bw_meter *list; 2029 2030 /* Free LEQ list */ 2031 list = mfc->mfc_bw_meter_leq; 2032 mfc->mfc_bw_meter_leq = NULL; 2033 free_bw_list(list); 2034 2035 /* Free GEQ list */ 2036 list = mfc->mfc_bw_meter_geq; 2037 mfc->mfc_bw_meter_geq = NULL; 2038 free_bw_list(list); 2039 MRW_WUNLOCK(); 2040 return 0; 2041 } else { /* Delete a single bw_meter entry */ 2042 struct bw_meter *prev; 2043 uint32_t flags = 0; 2044 2045 flags = compute_bw_meter_flags(req); 2046 2047 /* Choose an appropriate bw_meter list */ 2048 if (req->bu_flags & BW_UPCALL_GEQ) 2049 bwm_ptr = &mfc->mfc_bw_meter_geq; 2050 else 2051 bwm_ptr = &mfc->mfc_bw_meter_leq; 2052 2053 /* Find the bw_meter entry to delete */ 2054 for (prev = NULL, x = *bwm_ptr; x != NULL; 2055 prev = x, x = x->bm_mfc_next) { 2056 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2057 &req->bu_threshold.b_time, ==)) && 2058 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2059 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2060 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2061 break; 2062 } 2063 if (x != NULL) { /* Delete entry from the list for this MFC */ 2064 if (prev != NULL) 2065 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2066 else 2067 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2068 2069 if (req->bu_flags & BW_UPCALL_LEQ) 2070 callout_stop(&x->bm_meter_callout); 2071 2072 MRW_WUNLOCK(); 2073 /* Free the bw_meter entry */ 2074 free(x, M_BWMETER); 2075 return 0; 2076 } else { 2077 MRW_WUNLOCK(); 2078 return EINVAL; 2079 } 2080 } 2081 /* NOTREACHED */ 2082 } 2083 2084 /* 2085 * Perform bandwidth measurement processing that may result in an upcall 2086 */ 2087 static void 2088 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2089 { 2090 struct timeval delta; 2091 2092 MRW_LOCK_ASSERT(); 2093 2094 delta = *nowp; 2095 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2096 2097 /* 2098 * Processing for ">=" type of bw_meter entry. 2099 * bm_spin does not have to be hold here as in GEQ 2100 * case this is the only context accessing bm_measured. 2101 */ 2102 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2103 /* Reset the bw_meter entry */ 2104 x->bm_start_time = *nowp; 2105 x->bm_measured.b_packets = 0; 2106 x->bm_measured.b_bytes = 0; 2107 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2108 } 2109 2110 /* Record that a packet is received */ 2111 x->bm_measured.b_packets++; 2112 x->bm_measured.b_bytes += plen; 2113 2114 /* 2115 * Test if we should deliver an upcall 2116 */ 2117 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2118 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2119 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2120 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2121 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2122 /* Prepare an upcall for delivery */ 2123 bw_meter_prepare_upcall(x, nowp); 2124 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2125 } 2126 } 2127 } 2128 2129 /* 2130 * Prepare a bandwidth-related upcall 2131 */ 2132 static void 2133 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2134 { 2135 struct timeval delta; 2136 struct bw_upcall *u; 2137 2138 MRW_LOCK_ASSERT(); 2139 2140 /* 2141 * Compute the measured time interval 2142 */ 2143 delta = *nowp; 2144 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2145 2146 /* 2147 * Set the bw_upcall entry 2148 */ 2149 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2150 if (!u) { 2151 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2152 return; 2153 } 2154 u->bu_src = x->bm_mfc->mfc_origin; 2155 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2156 u->bu_threshold.b_time = x->bm_threshold.b_time; 2157 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2158 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2159 u->bu_measured.b_time = delta; 2160 u->bu_measured.b_packets = x->bm_measured.b_packets; 2161 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2162 u->bu_flags = 0; 2163 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2164 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2165 if (x->bm_flags & BW_METER_UNIT_BYTES) 2166 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2167 if (x->bm_flags & BW_METER_GEQ) 2168 u->bu_flags |= BW_UPCALL_GEQ; 2169 if (x->bm_flags & BW_METER_LEQ) 2170 u->bu_flags |= BW_UPCALL_LEQ; 2171 2172 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2173 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2174 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2175 taskqueue_enqueue(V_task_queue, &V_task); 2176 } 2177 } 2178 /* 2179 * Send the pending bandwidth-related upcalls 2180 */ 2181 static void 2182 bw_upcalls_send(void) 2183 { 2184 struct mbuf *m; 2185 int len = 0; 2186 struct bw_upcall *bu; 2187 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2188 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2189 0, /* unused2 */ 2190 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2191 0, /* im_mbz */ 2192 0, /* im_vif */ 2193 0, /* unused3 */ 2194 { 0 }, /* im_src */ 2195 { 0 } }; /* im_dst */ 2196 2197 MRW_LOCK_ASSERT(); 2198 2199 if (buf_ring_empty(V_bw_upcalls_ring)) 2200 return; 2201 2202 /* 2203 * Allocate a new mbuf, initialize it with the header and 2204 * the payload for the pending calls. 2205 */ 2206 m = m_gethdr(M_NOWAIT, MT_DATA); 2207 if (m == NULL) { 2208 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2209 return; 2210 } 2211 2212 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2213 len += sizeof(struct igmpmsg); 2214 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2215 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2216 len += sizeof(struct bw_upcall); 2217 free(bu, M_MRTABLE); 2218 } 2219 2220 /* 2221 * Send the upcalls 2222 * XXX do we need to set the address in k_igmpsrc ? 2223 */ 2224 MRTSTAT_INC(mrts_upcalls); 2225 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2226 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2227 MRTSTAT_INC(mrts_upq_sockfull); 2228 } 2229 } 2230 2231 /* 2232 * A periodic function for sending all upcalls that are pending delivery 2233 */ 2234 static void 2235 expire_bw_upcalls_send(void *arg) 2236 { 2237 CURVNET_SET((struct vnet *) arg); 2238 2239 /* This callout is run with MRW_RLOCK taken */ 2240 2241 bw_upcalls_send(); 2242 2243 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2244 curvnet); 2245 CURVNET_RESTORE(); 2246 } 2247 2248 /* 2249 * End of bandwidth monitoring code 2250 */ 2251 2252 /* 2253 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2254 * 2255 */ 2256 static int 2257 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2258 struct mfc *rt) 2259 { 2260 struct mbuf *mb_copy, *mm; 2261 2262 /* 2263 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2264 * rendezvous point was unspecified, and we were told not to. 2265 */ 2266 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2267 in_nullhost(rt->mfc_rp)) 2268 return 0; 2269 2270 mb_copy = pim_register_prepare(ip, m); 2271 if (mb_copy == NULL) 2272 return ENOBUFS; 2273 2274 /* 2275 * Send all the fragments. Note that the mbuf for each fragment 2276 * is freed by the sending machinery. 2277 */ 2278 for (mm = mb_copy; mm; mm = mb_copy) { 2279 mb_copy = mm->m_nextpkt; 2280 mm->m_nextpkt = 0; 2281 mm = m_pullup(mm, sizeof(struct ip)); 2282 if (mm != NULL) { 2283 ip = mtod(mm, struct ip *); 2284 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2285 pim_register_send_rp(ip, vifp, mm, rt); 2286 } else { 2287 pim_register_send_upcall(ip, vifp, mm, rt); 2288 } 2289 } 2290 } 2291 2292 return 0; 2293 } 2294 2295 /* 2296 * Return a copy of the data packet that is ready for PIM Register 2297 * encapsulation. 2298 * XXX: Note that in the returned copy the IP header is a valid one. 2299 */ 2300 static struct mbuf * 2301 pim_register_prepare(struct ip *ip, struct mbuf *m) 2302 { 2303 struct mbuf *mb_copy = NULL; 2304 int mtu; 2305 2306 /* Take care of delayed checksums */ 2307 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2308 in_delayed_cksum(m); 2309 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2310 } 2311 2312 /* 2313 * Copy the old packet & pullup its IP header into the 2314 * new mbuf so we can modify it. 2315 */ 2316 mb_copy = m_copypacket(m, M_NOWAIT); 2317 if (mb_copy == NULL) 2318 return NULL; 2319 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2320 if (mb_copy == NULL) 2321 return NULL; 2322 2323 /* take care of the TTL */ 2324 ip = mtod(mb_copy, struct ip *); 2325 --ip->ip_ttl; 2326 2327 /* Compute the MTU after the PIM Register encapsulation */ 2328 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2329 2330 if (ntohs(ip->ip_len) <= mtu) { 2331 /* Turn the IP header into a valid one */ 2332 ip->ip_sum = 0; 2333 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2334 } else { 2335 /* Fragment the packet */ 2336 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2337 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2338 m_freem(mb_copy); 2339 return NULL; 2340 } 2341 } 2342 return mb_copy; 2343 } 2344 2345 /* 2346 * Send an upcall with the data packet to the user-level process. 2347 */ 2348 static int 2349 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2350 struct mbuf *mb_copy, struct mfc *rt) 2351 { 2352 struct mbuf *mb_first; 2353 int len = ntohs(ip->ip_len); 2354 struct igmpmsg *im; 2355 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2356 2357 MRW_LOCK_ASSERT(); 2358 2359 /* 2360 * Add a new mbuf with an upcall header 2361 */ 2362 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2363 if (mb_first == NULL) { 2364 m_freem(mb_copy); 2365 return ENOBUFS; 2366 } 2367 mb_first->m_data += max_linkhdr; 2368 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2369 mb_first->m_len = sizeof(struct igmpmsg); 2370 mb_first->m_next = mb_copy; 2371 2372 /* Send message to routing daemon */ 2373 im = mtod(mb_first, struct igmpmsg *); 2374 im->im_msgtype = IGMPMSG_WHOLEPKT; 2375 im->im_mbz = 0; 2376 im->im_vif = vifp - V_viftable; 2377 im->im_src = ip->ip_src; 2378 im->im_dst = ip->ip_dst; 2379 2380 k_igmpsrc.sin_addr = ip->ip_src; 2381 2382 MRTSTAT_INC(mrts_upcalls); 2383 2384 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2385 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2386 MRTSTAT_INC(mrts_upq_sockfull); 2387 return ENOBUFS; 2388 } 2389 2390 /* Keep statistics */ 2391 PIMSTAT_INC(pims_snd_registers_msgs); 2392 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2393 2394 return 0; 2395 } 2396 2397 /* 2398 * Encapsulate the data packet in PIM Register message and send it to the RP. 2399 */ 2400 static int 2401 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2402 struct mfc *rt) 2403 { 2404 struct mbuf *mb_first; 2405 struct ip *ip_outer; 2406 struct pim_encap_pimhdr *pimhdr; 2407 int len = ntohs(ip->ip_len); 2408 vifi_t vifi = rt->mfc_parent; 2409 2410 MRW_LOCK_ASSERT(); 2411 2412 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2413 m_freem(mb_copy); 2414 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2415 } 2416 2417 /* 2418 * Add a new mbuf with the encapsulating header 2419 */ 2420 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2421 if (mb_first == NULL) { 2422 m_freem(mb_copy); 2423 return ENOBUFS; 2424 } 2425 mb_first->m_data += max_linkhdr; 2426 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2427 mb_first->m_next = mb_copy; 2428 2429 mb_first->m_pkthdr.len = len + mb_first->m_len; 2430 2431 /* 2432 * Fill in the encapsulating IP and PIM header 2433 */ 2434 ip_outer = mtod(mb_first, struct ip *); 2435 *ip_outer = pim_encap_iphdr; 2436 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2437 sizeof(pim_encap_pimhdr)); 2438 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2439 ip_outer->ip_dst = rt->mfc_rp; 2440 /* 2441 * Copy the inner header TOS to the outer header, and take care of the 2442 * IP_DF bit. 2443 */ 2444 ip_outer->ip_tos = ip->ip_tos; 2445 if (ip->ip_off & htons(IP_DF)) 2446 ip_outer->ip_off |= htons(IP_DF); 2447 ip_fillid(ip_outer); 2448 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2449 + sizeof(pim_encap_iphdr)); 2450 *pimhdr = pim_encap_pimhdr; 2451 /* If the iif crosses a border, set the Border-bit */ 2452 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2453 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2454 2455 mb_first->m_data += sizeof(pim_encap_iphdr); 2456 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2457 mb_first->m_data -= sizeof(pim_encap_iphdr); 2458 2459 send_packet(vifp, mb_first); 2460 2461 /* Keep statistics */ 2462 PIMSTAT_INC(pims_snd_registers_msgs); 2463 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2464 2465 return 0; 2466 } 2467 2468 /* 2469 * pim_encapcheck() is called by the encap4_input() path at runtime to 2470 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2471 * into the kernel. 2472 */ 2473 static int 2474 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2475 int proto __unused, void *arg __unused) 2476 { 2477 2478 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2479 return (8); /* claim the datagram. */ 2480 } 2481 2482 /* 2483 * PIM-SMv2 and PIM-DM messages processing. 2484 * Receives and verifies the PIM control messages, and passes them 2485 * up to the listening socket, using rip_input(). 2486 * The only message with special processing is the PIM_REGISTER message 2487 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2488 * is passed to if_simloop(). 2489 */ 2490 static int 2491 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2492 { 2493 struct ip *ip = mtod(m, struct ip *); 2494 struct pim *pim; 2495 int iphlen = off; 2496 int minlen; 2497 int datalen = ntohs(ip->ip_len) - iphlen; 2498 int ip_tos; 2499 2500 /* Keep statistics */ 2501 PIMSTAT_INC(pims_rcv_total_msgs); 2502 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2503 2504 /* 2505 * Validate lengths 2506 */ 2507 if (datalen < PIM_MINLEN) { 2508 PIMSTAT_INC(pims_rcv_tooshort); 2509 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2510 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2511 m_freem(m); 2512 return (IPPROTO_DONE); 2513 } 2514 2515 /* 2516 * If the packet is at least as big as a REGISTER, go agead 2517 * and grab the PIM REGISTER header size, to avoid another 2518 * possible m_pullup() later. 2519 * 2520 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2521 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2522 */ 2523 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2524 /* 2525 * Get the IP and PIM headers in contiguous memory, and 2526 * possibly the PIM REGISTER header. 2527 */ 2528 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2529 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2530 return (IPPROTO_DONE); 2531 } 2532 2533 /* m_pullup() may have given us a new mbuf so reset ip. */ 2534 ip = mtod(m, struct ip *); 2535 ip_tos = ip->ip_tos; 2536 2537 /* adjust mbuf to point to the PIM header */ 2538 m->m_data += iphlen; 2539 m->m_len -= iphlen; 2540 pim = mtod(m, struct pim *); 2541 2542 /* 2543 * Validate checksum. If PIM REGISTER, exclude the data packet. 2544 * 2545 * XXX: some older PIMv2 implementations don't make this distinction, 2546 * so for compatibility reason perform the checksum over part of the 2547 * message, and if error, then over the whole message. 2548 */ 2549 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2550 /* do nothing, checksum okay */ 2551 } else if (in_cksum(m, datalen)) { 2552 PIMSTAT_INC(pims_rcv_badsum); 2553 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2554 m_freem(m); 2555 return (IPPROTO_DONE); 2556 } 2557 2558 /* PIM version check */ 2559 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2560 PIMSTAT_INC(pims_rcv_badversion); 2561 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2562 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2563 m_freem(m); 2564 return (IPPROTO_DONE); 2565 } 2566 2567 /* restore mbuf back to the outer IP */ 2568 m->m_data -= iphlen; 2569 m->m_len += iphlen; 2570 2571 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2572 /* 2573 * Since this is a REGISTER, we'll make a copy of the register 2574 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2575 * routing daemon. 2576 */ 2577 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2578 struct mbuf *mcp; 2579 struct ip *encap_ip; 2580 u_int32_t *reghdr; 2581 struct ifnet *vifp; 2582 2583 MRW_RLOCK(); 2584 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2585 MRW_RUNLOCK(); 2586 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2587 (int)V_reg_vif_num); 2588 m_freem(m); 2589 return (IPPROTO_DONE); 2590 } 2591 /* XXX need refcnt? */ 2592 vifp = V_viftable[V_reg_vif_num].v_ifp; 2593 MRW_RUNLOCK(); 2594 2595 /* 2596 * Validate length 2597 */ 2598 if (datalen < PIM_REG_MINLEN) { 2599 PIMSTAT_INC(pims_rcv_tooshort); 2600 PIMSTAT_INC(pims_rcv_badregisters); 2601 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2602 m_freem(m); 2603 return (IPPROTO_DONE); 2604 } 2605 2606 reghdr = (u_int32_t *)(pim + 1); 2607 encap_ip = (struct ip *)(reghdr + 1); 2608 2609 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2610 __func__, ntohl(encap_ip->ip_src.s_addr), 2611 ntohs(encap_ip->ip_len)); 2612 2613 /* verify the version number of the inner packet */ 2614 if (encap_ip->ip_v != IPVERSION) { 2615 PIMSTAT_INC(pims_rcv_badregisters); 2616 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2617 m_freem(m); 2618 return (IPPROTO_DONE); 2619 } 2620 2621 /* verify the inner packet is destined to a mcast group */ 2622 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2623 PIMSTAT_INC(pims_rcv_badregisters); 2624 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2625 ntohl(encap_ip->ip_dst.s_addr)); 2626 m_freem(m); 2627 return (IPPROTO_DONE); 2628 } 2629 2630 /* If a NULL_REGISTER, pass it to the daemon */ 2631 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2632 goto pim_input_to_daemon; 2633 2634 /* 2635 * Copy the TOS from the outer IP header to the inner IP header. 2636 */ 2637 if (encap_ip->ip_tos != ip_tos) { 2638 /* Outer TOS -> inner TOS */ 2639 encap_ip->ip_tos = ip_tos; 2640 /* Recompute the inner header checksum. Sigh... */ 2641 2642 /* adjust mbuf to point to the inner IP header */ 2643 m->m_data += (iphlen + PIM_MINLEN); 2644 m->m_len -= (iphlen + PIM_MINLEN); 2645 2646 encap_ip->ip_sum = 0; 2647 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2648 2649 /* restore mbuf to point back to the outer IP header */ 2650 m->m_data -= (iphlen + PIM_MINLEN); 2651 m->m_len += (iphlen + PIM_MINLEN); 2652 } 2653 2654 /* 2655 * Decapsulate the inner IP packet and loopback to forward it 2656 * as a normal multicast packet. Also, make a copy of the 2657 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2658 * to pass to the daemon later, so it can take the appropriate 2659 * actions (e.g., send back PIM_REGISTER_STOP). 2660 * XXX: here m->m_data points to the outer IP header. 2661 */ 2662 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2663 if (mcp == NULL) { 2664 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2665 m_freem(m); 2666 return (IPPROTO_DONE); 2667 } 2668 2669 /* Keep statistics */ 2670 /* XXX: registers_bytes include only the encap. mcast pkt */ 2671 PIMSTAT_INC(pims_rcv_registers_msgs); 2672 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2673 2674 /* 2675 * forward the inner ip packet; point m_data at the inner ip. 2676 */ 2677 m_adj(m, iphlen + PIM_MINLEN); 2678 2679 CTR4(KTR_IPMF, 2680 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2681 __func__, 2682 (u_long)ntohl(encap_ip->ip_src.s_addr), 2683 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2684 (int)V_reg_vif_num); 2685 2686 /* NB: vifp was collected above; can it change on us? */ 2687 if_simloop(vifp, m, dst.sin_family, 0); 2688 2689 /* prepare the register head to send to the mrouting daemon */ 2690 m = mcp; 2691 } 2692 2693 pim_input_to_daemon: 2694 /* 2695 * Pass the PIM message up to the daemon; if it is a Register message, 2696 * pass the 'head' only up to the daemon. This includes the 2697 * outer IP header, PIM header, PIM-Register header and the 2698 * inner IP header. 2699 * XXX: the outer IP header pkt size of a Register is not adjust to 2700 * reflect the fact that the inner multicast data is truncated. 2701 */ 2702 return (rip_input(&m, &off, proto)); 2703 } 2704 2705 static int 2706 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2707 { 2708 struct mfc *rt; 2709 int error, i; 2710 2711 if (req->newptr) 2712 return (EPERM); 2713 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2714 return (0); 2715 error = sysctl_wire_old_buffer(req, 0); 2716 if (error) 2717 return (error); 2718 2719 MRW_RLOCK(); 2720 for (i = 0; i < mfchashsize; i++) { 2721 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2722 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2723 if (error) 2724 goto out_locked; 2725 } 2726 } 2727 out_locked: 2728 MRW_RUNLOCK(); 2729 return (error); 2730 } 2731 2732 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2733 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2734 "IPv4 Multicast Forwarding Table " 2735 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2736 2737 static int 2738 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2739 { 2740 int error, i; 2741 2742 if (req->newptr) 2743 return (EPERM); 2744 if (V_viftable == NULL) /* XXX unlocked */ 2745 return (0); 2746 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2747 if (error) 2748 return (error); 2749 2750 MRW_RLOCK(); 2751 /* Copy out user-visible portion of vif entry. */ 2752 for (i = 0; i < MAXVIFS; i++) { 2753 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2754 if (error) 2755 break; 2756 } 2757 MRW_RUNLOCK(); 2758 return (error); 2759 } 2760 2761 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2762 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2763 sysctl_viflist, "S,vif[MAXVIFS]", 2764 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2765 2766 static void 2767 vnet_mroute_init(const void *unused __unused) 2768 { 2769 2770 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2771 2772 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2773 M_MRTABLE, M_WAITOK|M_ZERO); 2774 2775 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2776 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2777 2778 /* Prepare taskqueue */ 2779 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2780 taskqueue_thread_enqueue, &V_task_queue); 2781 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2782 } 2783 2784 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2785 NULL); 2786 2787 static void 2788 vnet_mroute_uninit(const void *unused __unused) 2789 { 2790 2791 /* Taskqueue should be cancelled and drained before freeing */ 2792 taskqueue_free(V_task_queue); 2793 2794 free(V_viftable, M_MRTABLE); 2795 free(V_nexpire, M_MRTABLE); 2796 V_nexpire = NULL; 2797 } 2798 2799 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2800 vnet_mroute_uninit, NULL); 2801 2802 static int 2803 ip_mroute_modevent(module_t mod, int type, void *unused) 2804 { 2805 2806 switch (type) { 2807 case MOD_LOAD: 2808 MRW_LOCK_INIT(); 2809 2810 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2811 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2812 if (if_detach_event_tag == NULL) { 2813 printf("ip_mroute: unable to register " 2814 "ifnet_departure_event handler\n"); 2815 MRW_LOCK_DESTROY(); 2816 return (EINVAL); 2817 } 2818 2819 mfchashsize = MFCHASHSIZE; 2820 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2821 !powerof2(mfchashsize)) { 2822 printf("WARNING: %s not a power of 2; using default\n", 2823 "net.inet.ip.mfchashsize"); 2824 mfchashsize = MFCHASHSIZE; 2825 } 2826 2827 pim_squelch_wholepkt = 0; 2828 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2829 &pim_squelch_wholepkt); 2830 2831 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2832 if (pim_encap_cookie == NULL) { 2833 printf("ip_mroute: unable to attach pim encap\n"); 2834 MRW_LOCK_DESTROY(); 2835 return (EINVAL); 2836 } 2837 2838 ip_mcast_src = X_ip_mcast_src; 2839 ip_mforward = X_ip_mforward; 2840 ip_mrouter_done = X_ip_mrouter_done; 2841 ip_mrouter_get = X_ip_mrouter_get; 2842 ip_mrouter_set = X_ip_mrouter_set; 2843 2844 ip_rsvp_force_done = X_ip_rsvp_force_done; 2845 ip_rsvp_vif = X_ip_rsvp_vif; 2846 2847 legal_vif_num = X_legal_vif_num; 2848 mrt_ioctl = X_mrt_ioctl; 2849 rsvp_input_p = X_rsvp_input; 2850 break; 2851 2852 case MOD_UNLOAD: 2853 /* 2854 * Typically module unload happens after the user-level 2855 * process has shutdown the kernel services (the check 2856 * below insures someone can't just yank the module out 2857 * from under a running process). But if the module is 2858 * just loaded and then unloaded w/o starting up a user 2859 * process we still need to cleanup. 2860 */ 2861 MRW_WLOCK(); 2862 if (ip_mrouter_cnt != 0) { 2863 MRW_WUNLOCK(); 2864 return (EINVAL); 2865 } 2866 ip_mrouter_unloading = 1; 2867 MRW_WUNLOCK(); 2868 2869 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2870 2871 if (pim_encap_cookie) { 2872 ip_encap_detach(pim_encap_cookie); 2873 pim_encap_cookie = NULL; 2874 } 2875 2876 ip_mcast_src = NULL; 2877 ip_mforward = NULL; 2878 ip_mrouter_done = NULL; 2879 ip_mrouter_get = NULL; 2880 ip_mrouter_set = NULL; 2881 2882 ip_rsvp_force_done = NULL; 2883 ip_rsvp_vif = NULL; 2884 2885 legal_vif_num = NULL; 2886 mrt_ioctl = NULL; 2887 rsvp_input_p = NULL; 2888 2889 MRW_LOCK_DESTROY(); 2890 break; 2891 2892 default: 2893 return EOPNOTSUPP; 2894 } 2895 return 0; 2896 } 2897 2898 static moduledata_t ip_mroutemod = { 2899 "ip_mroute", 2900 ip_mroute_modevent, 2901 0 2902 }; 2903 2904 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2905