1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/time.h> 103 #include <sys/counter.h> 104 #include <machine/atomic.h> 105 106 #include <net/if.h> 107 #include <net/if_var.h> 108 #include <net/if_types.h> 109 #include <net/netisr.h> 110 #include <net/route.h> 111 #include <net/vnet.h> 112 113 #include <netinet/in.h> 114 #include <netinet/igmp.h> 115 #include <netinet/in_systm.h> 116 #include <netinet/in_var.h> 117 #include <netinet/ip.h> 118 #include <netinet/ip_encap.h> 119 #include <netinet/ip_mroute.h> 120 #include <netinet/ip_var.h> 121 #include <netinet/ip_options.h> 122 #include <netinet/pim.h> 123 #include <netinet/pim_var.h> 124 #include <netinet/udp.h> 125 126 #include <machine/in_cksum.h> 127 128 #ifndef KTR_IPMF 129 #define KTR_IPMF KTR_INET 130 #endif 131 132 #define VIFI_INVALID ((vifi_t) -1) 133 134 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 135 136 /* 137 * Locking. We use two locks: one for the virtual interface table and 138 * one for the forwarding table. These locks may be nested in which case 139 * the VIF lock must always be taken first. Note that each lock is used 140 * to cover not only the specific data structure but also related data 141 * structures. 142 */ 143 144 static struct rwlock mrouter_mtx; 145 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 146 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 147 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 148 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 149 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 150 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 151 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 152 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 153 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 154 #define MRW_LOCK_INIT() \ 155 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 156 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 157 158 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 159 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 160 161 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 162 VNET_PCPUSTAT_SYSINIT(mrtstat); 163 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 164 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 165 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 166 "netinet/ip_mroute.h)"); 167 168 VNET_DEFINE_STATIC(u_long, mfchash); 169 #define V_mfchash VNET(mfchash) 170 #define MFCHASH(a, g) \ 171 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 172 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 173 #define MFCHASHSIZE 256 174 175 static u_long mfchashsize; /* Hash size */ 176 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 177 #define V_nexpire VNET(nexpire) 178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 179 #define V_mfchashtbl VNET(mfchashtbl) 180 181 VNET_DEFINE_STATIC(vifi_t, numvifs); 182 #define V_numvifs VNET(numvifs) 183 VNET_DEFINE_STATIC(struct vif *, viftable); 184 #define V_viftable VNET(viftable) 185 186 static eventhandler_tag if_detach_event_tag = NULL; 187 188 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 189 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 190 191 VNET_DEFINE_STATIC(struct mtx, upcall_thread_mtx); 192 #define V_upcall_thread_mtx VNET(upcall_thread_mtx) 193 194 VNET_DEFINE_STATIC(struct cv, upcall_thread_cv); 195 #define V_upcall_thread_cv VNET(upcall_thread_cv) 196 197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 198 #define V_buf_ring_mtx VNET(buf_ring_mtx) 199 200 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 201 #define UPCALL_EXPIRE 6 /* number of timeouts */ 202 203 /* 204 * Bandwidth meter variables and constants 205 */ 206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 207 208 /* 209 * Pending upcalls are stored in a ring which is flushed when 210 * full, or periodically 211 */ 212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 215 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 217 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 218 219 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 220 221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 222 VNET_PCPUSTAT_SYSINIT(pimstat); 223 VNET_PCPUSTAT_SYSUNINIT(pimstat); 224 225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 226 "PIM"); 227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 228 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 229 230 static u_long pim_squelch_wholepkt = 0; 231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 232 &pim_squelch_wholepkt, 0, 233 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 234 235 static volatile int upcall_thread_shutdown = 0; 236 237 static const struct encaptab *pim_encap_cookie; 238 static int pim_encapcheck(const struct mbuf *, int, int, void *); 239 static int pim_input(struct mbuf *, int, int, void *); 240 241 extern int in_mcast_loop; 242 243 static const struct encap_config ipv4_encap_cfg = { 244 .proto = IPPROTO_PIM, 245 .min_length = sizeof(struct ip) + PIM_MINLEN, 246 .exact_match = 8, 247 .check = pim_encapcheck, 248 .input = pim_input 249 }; 250 251 /* 252 * Note: the PIM Register encapsulation adds the following in front of a 253 * data packet: 254 * 255 * struct pim_encap_hdr { 256 * struct ip ip; 257 * struct pim_encap_pimhdr pim; 258 * } 259 * 260 */ 261 262 struct pim_encap_pimhdr { 263 struct pim pim; 264 uint32_t flags; 265 }; 266 #define PIM_ENCAP_TTL 64 267 268 static struct ip pim_encap_iphdr = { 269 #if BYTE_ORDER == LITTLE_ENDIAN 270 sizeof(struct ip) >> 2, 271 IPVERSION, 272 #else 273 IPVERSION, 274 sizeof(struct ip) >> 2, 275 #endif 276 0, /* tos */ 277 sizeof(struct ip), /* total length */ 278 0, /* id */ 279 0, /* frag offset */ 280 PIM_ENCAP_TTL, 281 IPPROTO_PIM, 282 0, /* checksum */ 283 }; 284 285 static struct pim_encap_pimhdr pim_encap_pimhdr = { 286 { 287 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 288 0, /* reserved */ 289 0, /* checksum */ 290 }, 291 0 /* flags */ 292 }; 293 294 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 295 #define V_reg_vif_num VNET(reg_vif_num) 296 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 297 #define V_multicast_register_if VNET(multicast_register_if) 298 299 /* 300 * Private variables. 301 */ 302 303 static u_long X_ip_mcast_src(int); 304 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 305 struct ip_moptions *); 306 static int X_ip_mrouter_done(void); 307 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 308 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 309 static int X_legal_vif_num(int); 310 static int X_mrt_ioctl(u_long, caddr_t, int); 311 312 static int add_bw_upcall(struct bw_upcall *); 313 static int add_mfc(struct mfcctl2 *); 314 static int add_vif(struct vifctl *); 315 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 316 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 317 struct timeval *); 318 static void bw_upcalls_send(void); 319 static int del_bw_upcall(struct bw_upcall *); 320 static int del_mfc(struct mfcctl2 *); 321 static int del_vif(vifi_t); 322 static int del_vif_locked(vifi_t); 323 static void expire_bw_upcalls_send(void *); 324 static void expire_mfc(struct mfc *); 325 static void expire_upcalls(void *); 326 static void free_bw_list(struct bw_meter *); 327 static int get_sg_cnt(struct sioc_sg_req *); 328 static int get_vif_cnt(struct sioc_vif_req *); 329 static void if_detached_event(void *, struct ifnet *); 330 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 331 static int ip_mrouter_init(struct socket *, int); 332 static __inline struct mfc * 333 mfc_find(struct in_addr *, struct in_addr *); 334 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 335 static struct mbuf * 336 pim_register_prepare(struct ip *, struct mbuf *); 337 static int pim_register_send(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static int pim_register_send_rp(struct ip *, struct vif *, 340 struct mbuf *, struct mfc *); 341 static int pim_register_send_upcall(struct ip *, struct vif *, 342 struct mbuf *, struct mfc *); 343 static void send_packet(struct vif *, struct mbuf *); 344 static int set_api_config(uint32_t *); 345 static int set_assert(int); 346 static int socket_send(struct socket *, struct mbuf *, 347 struct sockaddr_in *); 348 349 /* 350 * Kernel multicast forwarding API capabilities and setup. 351 * If more API capabilities are added to the kernel, they should be 352 * recorded in `mrt_api_support'. 353 */ 354 #define MRT_API_VERSION 0x0305 355 356 static const int mrt_api_version = MRT_API_VERSION; 357 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 358 MRT_MFC_FLAGS_BORDER_VIF | 359 MRT_MFC_RP | 360 MRT_MFC_BW_UPCALL); 361 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 362 #define V_mrt_api_config VNET(mrt_api_config) 363 VNET_DEFINE_STATIC(int, pim_assert_enabled); 364 #define V_pim_assert_enabled VNET(pim_assert_enabled) 365 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 366 367 /* 368 * Find a route for a given origin IP address and multicast group address. 369 * Statistics must be updated by the caller. 370 */ 371 static __inline struct mfc * 372 mfc_find(struct in_addr *o, struct in_addr *g) 373 { 374 struct mfc *rt; 375 376 /* 377 * Might be called both RLOCK and WLOCK. 378 * Check if any, it's caller responsibility 379 * to choose correct option. 380 */ 381 MRW_LOCK_ASSERT(); 382 383 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 384 if (in_hosteq(rt->mfc_origin, *o) && 385 in_hosteq(rt->mfc_mcastgrp, *g) && 386 buf_ring_empty(rt->mfc_stall_ring)) 387 break; 388 } 389 390 return (rt); 391 } 392 393 static __inline struct mfc * 394 mfc_alloc(void) 395 { 396 struct mfc *rt; 397 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 398 if (rt == NULL) 399 return rt; 400 401 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 402 M_NOWAIT, &V_buf_ring_mtx); 403 if (rt->mfc_stall_ring == NULL) { 404 free(rt, M_MRTABLE); 405 return NULL; 406 } 407 408 return rt; 409 } 410 411 /* 412 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 413 */ 414 static int 415 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 416 { 417 int error, optval; 418 vifi_t vifi; 419 struct vifctl vifc; 420 struct mfcctl2 mfc; 421 struct bw_upcall bw_upcall; 422 uint32_t i; 423 424 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 425 return EPERM; 426 427 error = 0; 428 switch (sopt->sopt_name) { 429 case MRT_INIT: 430 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 431 if (error) 432 break; 433 error = ip_mrouter_init(so, optval); 434 break; 435 436 case MRT_DONE: 437 error = ip_mrouter_done(); 438 break; 439 440 case MRT_ADD_VIF: 441 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 442 if (error) 443 break; 444 error = add_vif(&vifc); 445 break; 446 447 case MRT_DEL_VIF: 448 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 449 if (error) 450 break; 451 error = del_vif(vifi); 452 break; 453 454 case MRT_ADD_MFC: 455 case MRT_DEL_MFC: 456 /* 457 * select data size depending on API version. 458 */ 459 if (sopt->sopt_name == MRT_ADD_MFC && 460 V_mrt_api_config & MRT_API_FLAGS_ALL) { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 462 sizeof(struct mfcctl2)); 463 } else { 464 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 465 sizeof(struct mfcctl)); 466 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 467 sizeof(mfc) - sizeof(struct mfcctl)); 468 } 469 if (error) 470 break; 471 if (sopt->sopt_name == MRT_ADD_MFC) 472 error = add_mfc(&mfc); 473 else 474 error = del_mfc(&mfc); 475 break; 476 477 case MRT_ASSERT: 478 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 479 if (error) 480 break; 481 set_assert(optval); 482 break; 483 484 case MRT_API_CONFIG: 485 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 486 if (!error) 487 error = set_api_config(&i); 488 if (!error) 489 error = sooptcopyout(sopt, &i, sizeof i); 490 break; 491 492 case MRT_ADD_BW_UPCALL: 493 case MRT_DEL_BW_UPCALL: 494 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 495 sizeof bw_upcall); 496 if (error) 497 break; 498 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 499 error = add_bw_upcall(&bw_upcall); 500 else 501 error = del_bw_upcall(&bw_upcall); 502 break; 503 504 default: 505 error = EOPNOTSUPP; 506 break; 507 } 508 return error; 509 } 510 511 /* 512 * Handle MRT getsockopt commands 513 */ 514 static int 515 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 516 { 517 int error; 518 519 switch (sopt->sopt_name) { 520 case MRT_VERSION: 521 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 522 break; 523 524 case MRT_ASSERT: 525 error = sooptcopyout(sopt, &V_pim_assert_enabled, 526 sizeof V_pim_assert_enabled); 527 break; 528 529 case MRT_API_SUPPORT: 530 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 531 break; 532 533 case MRT_API_CONFIG: 534 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 535 break; 536 537 default: 538 error = EOPNOTSUPP; 539 break; 540 } 541 return error; 542 } 543 544 /* 545 * Handle ioctl commands to obtain information from the cache 546 */ 547 static int 548 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 549 { 550 int error = 0; 551 552 /* 553 * Currently the only function calling this ioctl routine is rtioctl_fib(). 554 * Typically, only root can create the raw socket in order to execute 555 * this ioctl method, however the request might be coming from a prison 556 */ 557 error = priv_check(curthread, PRIV_NETINET_MROUTE); 558 if (error) 559 return (error); 560 switch (cmd) { 561 case (SIOCGETVIFCNT): 562 error = get_vif_cnt((struct sioc_vif_req *)data); 563 break; 564 565 case (SIOCGETSGCNT): 566 error = get_sg_cnt((struct sioc_sg_req *)data); 567 break; 568 569 default: 570 error = EINVAL; 571 break; 572 } 573 return error; 574 } 575 576 /* 577 * returns the packet, byte, rpf-failure count for the source group provided 578 */ 579 static int 580 get_sg_cnt(struct sioc_sg_req *req) 581 { 582 struct mfc *rt; 583 584 MRW_RLOCK(); 585 rt = mfc_find(&req->src, &req->grp); 586 if (rt == NULL) { 587 MRW_RUNLOCK(); 588 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 589 return EADDRNOTAVAIL; 590 } 591 req->pktcnt = rt->mfc_pkt_cnt; 592 req->bytecnt = rt->mfc_byte_cnt; 593 req->wrong_if = rt->mfc_wrong_if; 594 MRW_RUNLOCK(); 595 return 0; 596 } 597 598 /* 599 * returns the input and output packet and byte counts on the vif provided 600 */ 601 static int 602 get_vif_cnt(struct sioc_vif_req *req) 603 { 604 vifi_t vifi = req->vifi; 605 606 MRW_RLOCK(); 607 if (vifi >= V_numvifs) { 608 MRW_RUNLOCK(); 609 return EINVAL; 610 } 611 612 mtx_lock_spin(&V_viftable[vifi].v_spin); 613 req->icount = V_viftable[vifi].v_pkt_in; 614 req->ocount = V_viftable[vifi].v_pkt_out; 615 req->ibytes = V_viftable[vifi].v_bytes_in; 616 req->obytes = V_viftable[vifi].v_bytes_out; 617 mtx_unlock_spin(&V_viftable[vifi].v_spin); 618 MRW_RUNLOCK(); 619 620 return 0; 621 } 622 623 static void 624 if_detached_event(void *arg __unused, struct ifnet *ifp) 625 { 626 vifi_t vifi; 627 u_long i; 628 629 MRW_WLOCK(); 630 631 if (V_ip_mrouter == NULL) { 632 MRW_WUNLOCK(); 633 return; 634 } 635 636 /* 637 * Tear down multicast forwarder state associated with this ifnet. 638 * 1. Walk the vif list, matching vifs against this ifnet. 639 * 2. Walk the multicast forwarding cache (mfc) looking for 640 * inner matches with this vif's index. 641 * 3. Expire any matching multicast forwarding cache entries. 642 * 4. Free vif state. This should disable ALLMULTI on the interface. 643 */ 644 for (vifi = 0; vifi < V_numvifs; vifi++) { 645 if (V_viftable[vifi].v_ifp != ifp) 646 continue; 647 for (i = 0; i < mfchashsize; i++) { 648 struct mfc *rt, *nrt; 649 650 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 651 if (rt->mfc_parent == vifi) { 652 expire_mfc(rt); 653 } 654 } 655 } 656 del_vif_locked(vifi); 657 } 658 659 MRW_WUNLOCK(); 660 } 661 662 static void 663 ip_mrouter_upcall_thread(void *arg) 664 { 665 CURVNET_SET((struct vnet *) arg); 666 667 while (upcall_thread_shutdown == 0) { 668 /* START: Event loop */ 669 670 /* END: Event loop */ 671 mtx_lock(&V_upcall_thread_mtx); 672 cv_timedwait(&V_upcall_thread_cv, &V_upcall_thread_mtx, hz); 673 mtx_unlock(&V_upcall_thread_mtx); 674 } 675 676 upcall_thread_shutdown = 0; 677 CURVNET_RESTORE(); 678 kthread_exit(); 679 } 680 681 /* 682 * Enable multicast forwarding. 683 */ 684 static int 685 ip_mrouter_init(struct socket *so, int version) 686 { 687 688 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 689 so->so_type, so->so_proto->pr_protocol); 690 691 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 692 return EOPNOTSUPP; 693 694 if (version != 1) 695 return ENOPROTOOPT; 696 697 MRW_WLOCK(); 698 699 if (ip_mrouter_unloading) { 700 MRW_WUNLOCK(); 701 return ENOPROTOOPT; 702 } 703 704 if (V_ip_mrouter != NULL) { 705 MRW_WUNLOCK(); 706 return EADDRINUSE; 707 } 708 709 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 710 HASH_NOWAIT); 711 712 /* Create upcall ring */ 713 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 714 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 715 M_NOWAIT, &V_bw_upcalls_ring_mtx); 716 if (!V_bw_upcalls_ring) 717 return (ENOMEM); 718 719 /* Create upcall thread */ 720 upcall_thread_shutdown = 0; 721 mtx_init(&V_upcall_thread_mtx, "ip_mroute upcall thread mtx", NULL, MTX_DEF); 722 cv_init(&V_upcall_thread_cv, "ip_mroute upcall cv"); 723 kthread_add(ip_mrouter_upcall_thread, curvnet, 724 NULL, NULL, 0, 0, "ip_mroute upcall thread"); 725 726 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 727 curvnet); 728 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 729 curvnet); 730 731 V_ip_mrouter = so; 732 atomic_add_int(&ip_mrouter_cnt, 1); 733 734 /* This is a mutex required by buf_ring init, but not used internally */ 735 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 736 737 MRW_WUNLOCK(); 738 739 CTR1(KTR_IPMF, "%s: done", __func__); 740 741 return 0; 742 } 743 744 /* 745 * Disable multicast forwarding. 746 */ 747 static int 748 X_ip_mrouter_done(void) 749 { 750 struct ifnet *ifp; 751 u_long i; 752 vifi_t vifi; 753 struct bw_upcall *bu; 754 755 if (V_ip_mrouter == NULL) 756 return EINVAL; 757 758 /* 759 * Detach/disable hooks to the reset of the system. 760 */ 761 V_ip_mrouter = NULL; 762 atomic_subtract_int(&ip_mrouter_cnt, 1); 763 V_mrt_api_config = 0; 764 765 MROUTER_WAIT(); 766 767 MRW_WLOCK(); 768 769 upcall_thread_shutdown = 1; 770 mtx_lock(&V_upcall_thread_mtx); 771 cv_signal(&V_upcall_thread_cv); 772 mtx_unlock(&V_upcall_thread_mtx); 773 774 /* Wait for thread shutdown */ 775 while (upcall_thread_shutdown == 1) {}; 776 777 mtx_destroy(&V_upcall_thread_mtx); 778 779 /* Destroy upcall ring */ 780 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 781 free(bu, M_MRTABLE); 782 } 783 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 784 mtx_destroy(&V_bw_upcalls_ring_mtx); 785 786 /* 787 * For each phyint in use, disable promiscuous reception of all IP 788 * multicasts. 789 */ 790 for (vifi = 0; vifi < V_numvifs; vifi++) { 791 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 792 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 793 ifp = V_viftable[vifi].v_ifp; 794 if_allmulti(ifp, 0); 795 } 796 } 797 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 798 V_numvifs = 0; 799 V_pim_assert_enabled = 0; 800 801 callout_stop(&V_expire_upcalls_ch); 802 callout_stop(&V_bw_upcalls_ch); 803 804 /* 805 * Free all multicast forwarding cache entries. 806 * Do not use hashdestroy(), as we must perform other cleanup. 807 */ 808 for (i = 0; i < mfchashsize; i++) { 809 struct mfc *rt, *nrt; 810 811 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 812 expire_mfc(rt); 813 } 814 } 815 free(V_mfchashtbl, M_MRTABLE); 816 V_mfchashtbl = NULL; 817 818 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 819 820 V_reg_vif_num = VIFI_INVALID; 821 822 mtx_destroy(&V_buf_ring_mtx); 823 824 MRW_WUNLOCK(); 825 826 CTR1(KTR_IPMF, "%s: done", __func__); 827 828 return 0; 829 } 830 831 /* 832 * Set PIM assert processing global 833 */ 834 static int 835 set_assert(int i) 836 { 837 if ((i != 1) && (i != 0)) 838 return EINVAL; 839 840 V_pim_assert_enabled = i; 841 842 return 0; 843 } 844 845 /* 846 * Configure API capabilities 847 */ 848 int 849 set_api_config(uint32_t *apival) 850 { 851 u_long i; 852 853 /* 854 * We can set the API capabilities only if it is the first operation 855 * after MRT_INIT. I.e.: 856 * - there are no vifs installed 857 * - pim_assert is not enabled 858 * - the MFC table is empty 859 */ 860 if (V_numvifs > 0) { 861 *apival = 0; 862 return EPERM; 863 } 864 if (V_pim_assert_enabled) { 865 *apival = 0; 866 return EPERM; 867 } 868 869 MRW_RLOCK(); 870 871 for (i = 0; i < mfchashsize; i++) { 872 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 873 MRW_RUNLOCK(); 874 *apival = 0; 875 return EPERM; 876 } 877 } 878 879 MRW_RUNLOCK(); 880 881 V_mrt_api_config = *apival & mrt_api_support; 882 *apival = V_mrt_api_config; 883 884 return 0; 885 } 886 887 /* 888 * Add a vif to the vif table 889 */ 890 static int 891 add_vif(struct vifctl *vifcp) 892 { 893 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 894 struct sockaddr_in sin = {sizeof sin, AF_INET}; 895 struct ifaddr *ifa; 896 struct ifnet *ifp; 897 int error; 898 899 900 if (vifcp->vifc_vifi >= MAXVIFS) 901 return EINVAL; 902 /* rate limiting is no longer supported by this code */ 903 if (vifcp->vifc_rate_limit != 0) { 904 log(LOG_ERR, "rate limiting is no longer supported\n"); 905 return EINVAL; 906 } 907 908 if (in_nullhost(vifcp->vifc_lcl_addr)) 909 return EADDRNOTAVAIL; 910 911 /* Find the interface with an address in AF_INET family */ 912 if (vifcp->vifc_flags & VIFF_REGISTER) { 913 /* 914 * XXX: Because VIFF_REGISTER does not really need a valid 915 * local interface (e.g. it could be 127.0.0.2), we don't 916 * check its address. 917 */ 918 ifp = NULL; 919 } else { 920 struct epoch_tracker et; 921 922 sin.sin_addr = vifcp->vifc_lcl_addr; 923 NET_EPOCH_ENTER(et); 924 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 925 if (ifa == NULL) { 926 NET_EPOCH_EXIT(et); 927 return EADDRNOTAVAIL; 928 } 929 ifp = ifa->ifa_ifp; 930 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 931 NET_EPOCH_EXIT(et); 932 } 933 934 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 935 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 936 return EOPNOTSUPP; 937 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 938 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 939 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 940 if (V_reg_vif_num == VIFI_INVALID) { 941 if_initname(V_multicast_register_if, "register_vif", 0); 942 V_reg_vif_num = vifcp->vifc_vifi; 943 } 944 } else { /* Make sure the interface supports multicast */ 945 if ((ifp->if_flags & IFF_MULTICAST) == 0) 946 return EOPNOTSUPP; 947 948 /* Enable promiscuous reception of all IP multicasts from the if */ 949 error = if_allmulti(ifp, 1); 950 if (error) 951 return error; 952 } 953 954 MRW_WLOCK(); 955 956 if (!in_nullhost(vifp->v_lcl_addr)) { 957 if (ifp) 958 V_multicast_register_if = NULL; 959 MRW_WUNLOCK(); 960 if (ifp) 961 if_free(ifp); 962 return EADDRINUSE; 963 } 964 965 vifp->v_flags = vifcp->vifc_flags; 966 vifp->v_threshold = vifcp->vifc_threshold; 967 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 968 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 969 vifp->v_ifp = ifp; 970 /* initialize per vif pkt counters */ 971 vifp->v_pkt_in = 0; 972 vifp->v_pkt_out = 0; 973 vifp->v_bytes_in = 0; 974 vifp->v_bytes_out = 0; 975 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 976 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 977 978 /* Adjust numvifs up if the vifi is higher than numvifs */ 979 if (V_numvifs <= vifcp->vifc_vifi) 980 V_numvifs = vifcp->vifc_vifi + 1; 981 982 MRW_WUNLOCK(); 983 984 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 985 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 986 (int)vifcp->vifc_threshold); 987 988 return 0; 989 } 990 991 /* 992 * Delete a vif from the vif table 993 */ 994 static int 995 del_vif_locked(vifi_t vifi) 996 { 997 struct vif *vifp; 998 999 MRW_WLOCK_ASSERT(); 1000 1001 if (vifi >= V_numvifs) { 1002 return EINVAL; 1003 } 1004 vifp = &V_viftable[vifi]; 1005 if (in_nullhost(vifp->v_lcl_addr)) { 1006 return EADDRNOTAVAIL; 1007 } 1008 1009 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1010 if_allmulti(vifp->v_ifp, 0); 1011 1012 if (vifp->v_flags & VIFF_REGISTER) { 1013 V_reg_vif_num = VIFI_INVALID; 1014 if (vifp->v_ifp) { 1015 if (vifp->v_ifp == V_multicast_register_if) 1016 V_multicast_register_if = NULL; 1017 if_free(vifp->v_ifp); 1018 } 1019 } 1020 1021 mtx_destroy(&vifp->v_spin); 1022 1023 bzero((caddr_t)vifp, sizeof (*vifp)); 1024 1025 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1026 1027 /* Adjust numvifs down */ 1028 for (vifi = V_numvifs; vifi > 0; vifi--) 1029 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1030 break; 1031 V_numvifs = vifi; 1032 1033 return 0; 1034 } 1035 1036 static int 1037 del_vif(vifi_t vifi) 1038 { 1039 int cc; 1040 1041 MRW_WLOCK(); 1042 cc = del_vif_locked(vifi); 1043 MRW_WUNLOCK(); 1044 1045 return cc; 1046 } 1047 1048 /* 1049 * update an mfc entry without resetting counters and S,G addresses. 1050 */ 1051 static void 1052 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1053 { 1054 int i; 1055 1056 rt->mfc_parent = mfccp->mfcc_parent; 1057 for (i = 0; i < V_numvifs; i++) { 1058 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1059 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1060 MRT_MFC_FLAGS_ALL; 1061 } 1062 /* set the RP address */ 1063 if (V_mrt_api_config & MRT_MFC_RP) 1064 rt->mfc_rp = mfccp->mfcc_rp; 1065 else 1066 rt->mfc_rp.s_addr = INADDR_ANY; 1067 } 1068 1069 /* 1070 * fully initialize an mfc entry from the parameter. 1071 */ 1072 static void 1073 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1074 { 1075 rt->mfc_origin = mfccp->mfcc_origin; 1076 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1077 1078 update_mfc_params(rt, mfccp); 1079 1080 /* initialize pkt counters per src-grp */ 1081 rt->mfc_pkt_cnt = 0; 1082 rt->mfc_byte_cnt = 0; 1083 rt->mfc_wrong_if = 0; 1084 timevalclear(&rt->mfc_last_assert); 1085 } 1086 1087 static void 1088 expire_mfc(struct mfc *rt) 1089 { 1090 struct rtdetq *rte; 1091 1092 MRW_WLOCK_ASSERT(); 1093 1094 free_bw_list(rt->mfc_bw_meter_leq); 1095 free_bw_list(rt->mfc_bw_meter_geq); 1096 1097 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1098 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1099 if (rte) { 1100 m_freem(rte->m); 1101 free(rte, M_MRTABLE); 1102 } 1103 } 1104 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1105 1106 LIST_REMOVE(rt, mfc_hash); 1107 free(rt, M_MRTABLE); 1108 } 1109 1110 /* 1111 * Add an mfc entry 1112 */ 1113 static int 1114 add_mfc(struct mfcctl2 *mfccp) 1115 { 1116 struct mfc *rt; 1117 struct rtdetq *rte; 1118 u_long hash = 0; 1119 u_short nstl; 1120 1121 MRW_WLOCK(); 1122 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1123 1124 /* If an entry already exists, just update the fields */ 1125 if (rt) { 1126 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1127 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1128 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1129 mfccp->mfcc_parent); 1130 update_mfc_params(rt, mfccp); 1131 MRW_WUNLOCK(); 1132 return (0); 1133 } 1134 1135 /* 1136 * Find the entry for which the upcall was made and update 1137 */ 1138 nstl = 0; 1139 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1140 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1141 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1142 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1143 !buf_ring_empty(rt->mfc_stall_ring)) { 1144 CTR5(KTR_IPMF, 1145 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1146 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1147 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1148 mfccp->mfcc_parent, 1149 rt->mfc_stall_ring); 1150 if (nstl++) 1151 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1152 1153 init_mfc_params(rt, mfccp); 1154 rt->mfc_expire = 0; /* Don't clean this guy up */ 1155 V_nexpire[hash]--; 1156 1157 /* Free queued packets, but attempt to forward them first. */ 1158 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1159 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1160 if (rte->ifp != NULL) 1161 ip_mdq(rte->m, rte->ifp, rt, -1); 1162 m_freem(rte->m); 1163 free(rte, M_MRTABLE); 1164 } 1165 } 1166 } 1167 1168 /* 1169 * It is possible that an entry is being inserted without an upcall 1170 */ 1171 if (nstl == 0) { 1172 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1173 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1174 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1175 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1176 init_mfc_params(rt, mfccp); 1177 if (rt->mfc_expire) 1178 V_nexpire[hash]--; 1179 rt->mfc_expire = 0; 1180 break; /* XXX */ 1181 } 1182 } 1183 1184 if (rt == NULL) { /* no upcall, so make a new entry */ 1185 rt = mfc_alloc(); 1186 if (rt == NULL) { 1187 MRW_WUNLOCK(); 1188 return (ENOBUFS); 1189 } 1190 1191 init_mfc_params(rt, mfccp); 1192 1193 rt->mfc_expire = 0; 1194 rt->mfc_bw_meter_leq = NULL; 1195 rt->mfc_bw_meter_geq = NULL; 1196 1197 /* insert new entry at head of hash chain */ 1198 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1199 } 1200 } 1201 1202 MRW_WUNLOCK(); 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Delete an mfc entry 1209 */ 1210 static int 1211 del_mfc(struct mfcctl2 *mfccp) 1212 { 1213 struct in_addr origin; 1214 struct in_addr mcastgrp; 1215 struct mfc *rt; 1216 1217 origin = mfccp->mfcc_origin; 1218 mcastgrp = mfccp->mfcc_mcastgrp; 1219 1220 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1221 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1222 1223 MRW_WLOCK(); 1224 1225 rt = mfc_find(&origin, &mcastgrp); 1226 if (rt == NULL) { 1227 MRW_WUNLOCK(); 1228 return EADDRNOTAVAIL; 1229 } 1230 1231 /* 1232 * free the bw_meter entries 1233 */ 1234 free_bw_list(rt->mfc_bw_meter_leq); 1235 rt->mfc_bw_meter_leq = NULL; 1236 free_bw_list(rt->mfc_bw_meter_geq); 1237 rt->mfc_bw_meter_geq = NULL; 1238 1239 LIST_REMOVE(rt, mfc_hash); 1240 free(rt, M_MRTABLE); 1241 1242 MRW_WUNLOCK(); 1243 1244 return (0); 1245 } 1246 1247 /* 1248 * Send a message to the routing daemon on the multicast routing socket. 1249 */ 1250 static int 1251 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1252 { 1253 if (s) { 1254 SOCKBUF_LOCK(&s->so_rcv); 1255 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1256 NULL) != 0) { 1257 sorwakeup_locked(s); 1258 return 0; 1259 } 1260 soroverflow_locked(s); 1261 } 1262 m_freem(mm); 1263 return -1; 1264 } 1265 1266 /* 1267 * IP multicast forwarding function. This function assumes that the packet 1268 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1269 * pointed to by "ifp", and the packet is to be relayed to other networks 1270 * that have members of the packet's destination IP multicast group. 1271 * 1272 * The packet is returned unscathed to the caller, unless it is 1273 * erroneous, in which case a non-zero return value tells the caller to 1274 * discard it. 1275 */ 1276 1277 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1278 1279 static int 1280 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1281 struct ip_moptions *imo) 1282 { 1283 struct mfc *rt; 1284 int error; 1285 vifi_t vifi; 1286 struct mbuf *mb0; 1287 struct rtdetq *rte; 1288 u_long hash; 1289 int hlen; 1290 1291 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1292 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1293 1294 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1295 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1296 /* 1297 * Packet arrived via a physical interface or 1298 * an encapsulated tunnel or a register_vif. 1299 */ 1300 } else { 1301 /* 1302 * Packet arrived through a source-route tunnel. 1303 * Source-route tunnels are no longer supported. 1304 */ 1305 return (1); 1306 } 1307 1308 /* 1309 * BEGIN: MCAST ROUTING HOT PATH 1310 */ 1311 MRW_RLOCK(); 1312 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1313 if (ip->ip_ttl < MAXTTL) 1314 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1315 error = ip_mdq(m, ifp, NULL, vifi); 1316 MRW_RUNLOCK(); 1317 return error; 1318 } 1319 1320 /* 1321 * Don't forward a packet with time-to-live of zero or one, 1322 * or a packet destined to a local-only group. 1323 */ 1324 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1325 MRW_RUNLOCK(); 1326 return 0; 1327 } 1328 1329 mfc_find_retry: 1330 /* 1331 * Determine forwarding vifs from the forwarding cache table 1332 */ 1333 MRTSTAT_INC(mrts_mfc_lookups); 1334 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1335 1336 /* Entry exists, so forward if necessary */ 1337 if (rt != NULL) { 1338 error = ip_mdq(m, ifp, rt, -1); 1339 /* Generic unlock here as we might release R or W lock */ 1340 MRW_UNLOCK(); 1341 return error; 1342 } 1343 1344 /* 1345 * END: MCAST ROUTING HOT PATH 1346 */ 1347 1348 /* Further processing must be done with WLOCK taken */ 1349 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1350 MRW_RUNLOCK(); 1351 MRW_WLOCK(); 1352 goto mfc_find_retry; 1353 } 1354 1355 /* 1356 * If we don't have a route for packet's origin, 1357 * Make a copy of the packet & send message to routing daemon 1358 */ 1359 hlen = ip->ip_hl << 2; 1360 1361 MRTSTAT_INC(mrts_mfc_misses); 1362 MRTSTAT_INC(mrts_no_route); 1363 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1364 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1365 1366 /* 1367 * Allocate mbufs early so that we don't do extra work if we are 1368 * just going to fail anyway. Make sure to pullup the header so 1369 * that other people can't step on it. 1370 */ 1371 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1372 M_NOWAIT|M_ZERO); 1373 if (rte == NULL) { 1374 MRW_WUNLOCK(); 1375 return ENOBUFS; 1376 } 1377 1378 mb0 = m_copypacket(m, M_NOWAIT); 1379 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1380 mb0 = m_pullup(mb0, hlen); 1381 if (mb0 == NULL) { 1382 free(rte, M_MRTABLE); 1383 MRW_WUNLOCK(); 1384 return ENOBUFS; 1385 } 1386 1387 /* is there an upcall waiting for this flow ? */ 1388 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1389 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1390 { 1391 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1392 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1393 !buf_ring_empty(rt->mfc_stall_ring)) 1394 break; 1395 } 1396 1397 if (rt == NULL) { 1398 int i; 1399 struct igmpmsg *im; 1400 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1401 struct mbuf *mm; 1402 1403 /* 1404 * Locate the vifi for the incoming interface for this packet. 1405 * If none found, drop packet. 1406 */ 1407 for (vifi = 0; vifi < V_numvifs && 1408 V_viftable[vifi].v_ifp != ifp; vifi++) 1409 ; 1410 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1411 goto non_fatal; 1412 1413 /* no upcall, so make a new entry */ 1414 rt = mfc_alloc(); 1415 if (rt == NULL) 1416 goto fail; 1417 1418 /* Make a copy of the header to send to the user level process */ 1419 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1420 if (mm == NULL) 1421 goto fail1; 1422 1423 /* 1424 * Send message to routing daemon to install 1425 * a route into the kernel table 1426 */ 1427 1428 im = mtod(mm, struct igmpmsg*); 1429 im->im_msgtype = IGMPMSG_NOCACHE; 1430 im->im_mbz = 0; 1431 im->im_vif = vifi; 1432 1433 MRTSTAT_INC(mrts_upcalls); 1434 1435 k_igmpsrc.sin_addr = ip->ip_src; 1436 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1437 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1438 MRTSTAT_INC(mrts_upq_sockfull); 1439 fail1: free(rt, M_MRTABLE); 1440 fail: free(rte, M_MRTABLE); 1441 m_freem(mb0); 1442 MRW_WUNLOCK(); 1443 return ENOBUFS; 1444 } 1445 1446 /* insert new entry at head of hash chain */ 1447 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1448 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1449 rt->mfc_expire = UPCALL_EXPIRE; 1450 V_nexpire[hash]++; 1451 for (i = 0; i < V_numvifs; i++) { 1452 rt->mfc_ttls[i] = 0; 1453 rt->mfc_flags[i] = 0; 1454 } 1455 rt->mfc_parent = -1; 1456 1457 /* clear the RP address */ 1458 rt->mfc_rp.s_addr = INADDR_ANY; 1459 rt->mfc_bw_meter_leq = NULL; 1460 rt->mfc_bw_meter_geq = NULL; 1461 1462 /* initialize pkt counters per src-grp */ 1463 rt->mfc_pkt_cnt = 0; 1464 rt->mfc_byte_cnt = 0; 1465 rt->mfc_wrong_if = 0; 1466 timevalclear(&rt->mfc_last_assert); 1467 1468 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1469 } else { 1470 /* determine if queue has overflowed */ 1471 if (buf_ring_full(rt->mfc_stall_ring)) { 1472 MRTSTAT_INC(mrts_upq_ovflw); 1473 non_fatal: free(rte, M_MRTABLE); 1474 m_freem(mb0); 1475 MRW_WUNLOCK(); 1476 return (0); 1477 } 1478 1479 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1480 } 1481 1482 rte->m = mb0; 1483 rte->ifp = ifp; 1484 1485 MRW_WUNLOCK(); 1486 1487 return 0; 1488 } 1489 1490 /* 1491 * Clean up the cache entry if upcall is not serviced 1492 */ 1493 static void 1494 expire_upcalls(void *arg) 1495 { 1496 u_long i; 1497 1498 CURVNET_SET((struct vnet *) arg); 1499 1500 /*This callout is always run with MRW_WLOCK taken. */ 1501 1502 for (i = 0; i < mfchashsize; i++) { 1503 struct mfc *rt, *nrt; 1504 1505 if (V_nexpire[i] == 0) 1506 continue; 1507 1508 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1509 if (buf_ring_empty(rt->mfc_stall_ring)) 1510 continue; 1511 1512 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1513 continue; 1514 1515 MRTSTAT_INC(mrts_cache_cleanups); 1516 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1517 (u_long)ntohl(rt->mfc_origin.s_addr), 1518 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1519 1520 expire_mfc(rt); 1521 } 1522 } 1523 1524 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1525 curvnet); 1526 1527 CURVNET_RESTORE(); 1528 } 1529 1530 /* 1531 * Packet forwarding routine once entry in the cache is made 1532 */ 1533 static int 1534 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1535 { 1536 struct ip *ip = mtod(m, struct ip *); 1537 vifi_t vifi; 1538 int plen = ntohs(ip->ip_len); 1539 1540 MRW_LOCK_ASSERT(); 1541 1542 /* 1543 * If xmt_vif is not -1, send on only the requested vif. 1544 * 1545 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1546 */ 1547 if (xmt_vif < V_numvifs) { 1548 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1549 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1550 else 1551 phyint_send(ip, V_viftable + xmt_vif, m); 1552 return 1; 1553 } 1554 1555 /* 1556 * Don't forward if it didn't arrive from the parent vif for its origin. 1557 */ 1558 vifi = rt->mfc_parent; 1559 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1560 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1561 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1562 MRTSTAT_INC(mrts_wrong_if); 1563 ++rt->mfc_wrong_if; 1564 /* 1565 * If we are doing PIM assert processing, send a message 1566 * to the routing daemon. 1567 * 1568 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1569 * can complete the SPT switch, regardless of the type 1570 * of the iif (broadcast media, GRE tunnel, etc). 1571 */ 1572 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1573 V_viftable[vifi].v_ifp) { 1574 if (ifp == V_multicast_register_if) 1575 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1576 1577 /* Get vifi for the incoming packet */ 1578 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1579 vifi++) 1580 ; 1581 if (vifi >= V_numvifs) 1582 return 0; /* The iif is not found: ignore the packet. */ 1583 1584 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1585 return 0; /* WRONGVIF disabled: ignore the packet */ 1586 1587 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1588 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1589 struct igmpmsg *im; 1590 int hlen = ip->ip_hl << 2; 1591 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1592 1593 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1594 mm = m_pullup(mm, hlen); 1595 if (mm == NULL) 1596 return ENOBUFS; 1597 1598 im = mtod(mm, struct igmpmsg *); 1599 im->im_msgtype = IGMPMSG_WRONGVIF; 1600 im->im_mbz = 0; 1601 im->im_vif = vifi; 1602 1603 MRTSTAT_INC(mrts_upcalls); 1604 1605 k_igmpsrc.sin_addr = im->im_src; 1606 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1607 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1608 MRTSTAT_INC(mrts_upq_sockfull); 1609 return ENOBUFS; 1610 } 1611 } 1612 } 1613 return 0; 1614 } 1615 1616 /* If I sourced this packet, it counts as output, else it was input. */ 1617 mtx_lock_spin(&V_viftable[vifi].v_spin); 1618 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1619 V_viftable[vifi].v_pkt_out++; 1620 V_viftable[vifi].v_bytes_out += plen; 1621 } else { 1622 V_viftable[vifi].v_pkt_in++; 1623 V_viftable[vifi].v_bytes_in += plen; 1624 } 1625 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1626 1627 rt->mfc_pkt_cnt++; 1628 rt->mfc_byte_cnt += plen; 1629 1630 /* 1631 * For each vif, decide if a copy of the packet should be forwarded. 1632 * Forward if: 1633 * - the ttl exceeds the vif's threshold 1634 * - there are group members downstream on interface 1635 */ 1636 for (vifi = 0; vifi < V_numvifs; vifi++) 1637 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1638 V_viftable[vifi].v_pkt_out++; 1639 V_viftable[vifi].v_bytes_out += plen; 1640 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1641 pim_register_send(ip, V_viftable + vifi, m, rt); 1642 else 1643 phyint_send(ip, V_viftable + vifi, m); 1644 } 1645 1646 /* 1647 * Perform upcall-related bw measuring. 1648 */ 1649 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1650 struct bw_meter *x; 1651 struct timeval now; 1652 1653 microtime(&now); 1654 /* Process meters for Greater-or-EQual case */ 1655 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1656 bw_meter_geq_receive_packet(x, plen, &now); 1657 1658 /* Process meters for Lower-or-EQual case */ 1659 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1660 /* 1661 * Record that a packet is received. 1662 * Spin lock has to be taken as callout context 1663 * (expire_bw_meter_leq) might modify these fields 1664 * as well 1665 */ 1666 mtx_lock_spin(&x->bm_spin); 1667 x->bm_measured.b_packets++; 1668 x->bm_measured.b_bytes += plen; 1669 mtx_unlock_spin(&x->bm_spin); 1670 } 1671 } 1672 1673 return 0; 1674 } 1675 1676 /* 1677 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1678 */ 1679 static int 1680 X_legal_vif_num(int vif) 1681 { 1682 int ret; 1683 1684 ret = 0; 1685 if (vif < 0) 1686 return (ret); 1687 1688 MRW_RLOCK(); 1689 if (vif < V_numvifs) 1690 ret = 1; 1691 MRW_RUNLOCK(); 1692 1693 return (ret); 1694 } 1695 1696 /* 1697 * Return the local address used by this vif 1698 */ 1699 static u_long 1700 X_ip_mcast_src(int vifi) 1701 { 1702 in_addr_t addr; 1703 1704 addr = INADDR_ANY; 1705 if (vifi < 0) 1706 return (addr); 1707 1708 MRW_RLOCK(); 1709 if (vifi < V_numvifs) 1710 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1711 MRW_RUNLOCK(); 1712 1713 return (addr); 1714 } 1715 1716 static void 1717 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1718 { 1719 struct mbuf *mb_copy; 1720 int hlen = ip->ip_hl << 2; 1721 1722 MRW_LOCK_ASSERT(); 1723 1724 /* 1725 * Make a new reference to the packet; make sure that 1726 * the IP header is actually copied, not just referenced, 1727 * so that ip_output() only scribbles on the copy. 1728 */ 1729 mb_copy = m_copypacket(m, M_NOWAIT); 1730 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1731 mb_copy = m_pullup(mb_copy, hlen); 1732 if (mb_copy == NULL) 1733 return; 1734 1735 send_packet(vifp, mb_copy); 1736 } 1737 1738 static void 1739 send_packet(struct vif *vifp, struct mbuf *m) 1740 { 1741 struct ip_moptions imo; 1742 int error __unused; 1743 1744 MRW_LOCK_ASSERT(); 1745 1746 imo.imo_multicast_ifp = vifp->v_ifp; 1747 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1748 imo.imo_multicast_loop = !!in_mcast_loop; 1749 imo.imo_multicast_vif = -1; 1750 STAILQ_INIT(&imo.imo_head); 1751 1752 /* 1753 * Re-entrancy should not be a problem here, because 1754 * the packets that we send out and are looped back at us 1755 * should get rejected because they appear to come from 1756 * the loopback interface, thus preventing looping. 1757 */ 1758 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1759 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1760 (ptrdiff_t)(vifp - V_viftable), error); 1761 } 1762 1763 /* 1764 * Stubs for old RSVP socket shim implementation. 1765 */ 1766 1767 static int 1768 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1769 { 1770 1771 return (EOPNOTSUPP); 1772 } 1773 1774 static void 1775 X_ip_rsvp_force_done(struct socket *so __unused) 1776 { 1777 1778 } 1779 1780 static int 1781 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1782 { 1783 struct mbuf *m; 1784 1785 m = *mp; 1786 *mp = NULL; 1787 if (!V_rsvp_on) 1788 m_freem(m); 1789 return (IPPROTO_DONE); 1790 } 1791 1792 /* 1793 * Code for bandwidth monitors 1794 */ 1795 1796 /* 1797 * Define common interface for timeval-related methods 1798 */ 1799 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1800 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1801 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1802 1803 static uint32_t 1804 compute_bw_meter_flags(struct bw_upcall *req) 1805 { 1806 uint32_t flags = 0; 1807 1808 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1809 flags |= BW_METER_UNIT_PACKETS; 1810 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1811 flags |= BW_METER_UNIT_BYTES; 1812 if (req->bu_flags & BW_UPCALL_GEQ) 1813 flags |= BW_METER_GEQ; 1814 if (req->bu_flags & BW_UPCALL_LEQ) 1815 flags |= BW_METER_LEQ; 1816 1817 return flags; 1818 } 1819 1820 static void 1821 expire_bw_meter_leq(void *arg) 1822 { 1823 struct bw_meter *x = arg; 1824 struct timeval now; 1825 /* 1826 * INFO: 1827 * callout is always executed with MRW_WLOCK taken 1828 */ 1829 1830 CURVNET_SET((struct vnet *)x->arg); 1831 1832 microtime(&now); 1833 1834 /* 1835 * Test if we should deliver an upcall 1836 */ 1837 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1838 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1839 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1840 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1841 /* Prepare an upcall for delivery */ 1842 bw_meter_prepare_upcall(x, &now); 1843 } 1844 1845 /* Send all upcalls that are pending delivery */ 1846 mtx_lock(&V_upcall_thread_mtx); 1847 cv_signal(&V_upcall_thread_cv); 1848 mtx_unlock(&V_upcall_thread_mtx); 1849 1850 /* Reset counters */ 1851 x->bm_start_time = now; 1852 /* Spin lock has to be taken as ip_forward context 1853 * might modify these fields as well 1854 */ 1855 mtx_lock_spin(&x->bm_spin); 1856 x->bm_measured.b_bytes = 0; 1857 x->bm_measured.b_packets = 0; 1858 mtx_unlock_spin(&x->bm_spin); 1859 1860 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1861 1862 CURVNET_RESTORE(); 1863 } 1864 1865 /* 1866 * Add a bw_meter entry 1867 */ 1868 static int 1869 add_bw_upcall(struct bw_upcall *req) 1870 { 1871 struct mfc *mfc; 1872 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1873 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1874 struct timeval now; 1875 struct bw_meter *x, **bwm_ptr; 1876 uint32_t flags; 1877 1878 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1879 return EOPNOTSUPP; 1880 1881 /* Test if the flags are valid */ 1882 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1883 return EINVAL; 1884 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1885 return EINVAL; 1886 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1887 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1888 return EINVAL; 1889 1890 /* Test if the threshold time interval is valid */ 1891 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1892 return EINVAL; 1893 1894 flags = compute_bw_meter_flags(req); 1895 1896 /* 1897 * Find if we have already same bw_meter entry 1898 */ 1899 MRW_WLOCK(); 1900 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1901 if (mfc == NULL) { 1902 MRW_WUNLOCK(); 1903 return EADDRNOTAVAIL; 1904 } 1905 1906 /* Choose an appropriate bw_meter list */ 1907 if (req->bu_flags & BW_UPCALL_GEQ) 1908 bwm_ptr = &mfc->mfc_bw_meter_geq; 1909 else 1910 bwm_ptr = &mfc->mfc_bw_meter_leq; 1911 1912 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1913 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1914 &req->bu_threshold.b_time, ==)) 1915 && (x->bm_threshold.b_packets 1916 == req->bu_threshold.b_packets) 1917 && (x->bm_threshold.b_bytes 1918 == req->bu_threshold.b_bytes) 1919 && (x->bm_flags & BW_METER_USER_FLAGS) 1920 == flags) { 1921 MRW_WUNLOCK(); 1922 return 0; /* XXX Already installed */ 1923 } 1924 } 1925 1926 /* Allocate the new bw_meter entry */ 1927 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1928 M_ZERO | M_NOWAIT); 1929 if (x == NULL) { 1930 MRW_WUNLOCK(); 1931 return ENOBUFS; 1932 } 1933 1934 /* Set the new bw_meter entry */ 1935 x->bm_threshold.b_time = req->bu_threshold.b_time; 1936 microtime(&now); 1937 x->bm_start_time = now; 1938 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1939 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1940 x->bm_measured.b_packets = 0; 1941 x->bm_measured.b_bytes = 0; 1942 x->bm_flags = flags; 1943 x->bm_time_next = NULL; 1944 x->bm_mfc = mfc; 1945 x->arg = curvnet; 1946 sprintf(x->bm_spin_name, "BM spin %p", x); 1947 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1948 1949 /* For LEQ case create periodic callout */ 1950 if (req->bu_flags & BW_UPCALL_LEQ) { 1951 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1952 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1953 expire_bw_meter_leq, x); 1954 } 1955 1956 /* Add the new bw_meter entry to the front of entries for this MFC */ 1957 x->bm_mfc_next = *bwm_ptr; 1958 *bwm_ptr = x; 1959 1960 MRW_WUNLOCK(); 1961 1962 return 0; 1963 } 1964 1965 static void 1966 free_bw_list(struct bw_meter *list) 1967 { 1968 while (list != NULL) { 1969 struct bw_meter *x = list; 1970 1971 /* MRW_WLOCK must be held here */ 1972 if (x->bm_flags & BW_METER_LEQ) { 1973 callout_drain(&x->bm_meter_callout); 1974 mtx_destroy(&x->bm_spin); 1975 } 1976 1977 list = list->bm_mfc_next; 1978 free(x, M_BWMETER); 1979 } 1980 } 1981 1982 /* 1983 * Delete one or multiple bw_meter entries 1984 */ 1985 static int 1986 del_bw_upcall(struct bw_upcall *req) 1987 { 1988 struct mfc *mfc; 1989 struct bw_meter *x, **bwm_ptr; 1990 1991 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1992 return EOPNOTSUPP; 1993 1994 MRW_WLOCK(); 1995 1996 /* Find the corresponding MFC entry */ 1997 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1998 if (mfc == NULL) { 1999 MRW_WUNLOCK(); 2000 return EADDRNOTAVAIL; 2001 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2002 /* 2003 * Delete all bw_meter entries for this mfc 2004 */ 2005 struct bw_meter *list; 2006 2007 /* Free LEQ list */ 2008 list = mfc->mfc_bw_meter_leq; 2009 mfc->mfc_bw_meter_leq = NULL; 2010 free_bw_list(list); 2011 2012 /* Free GEQ list */ 2013 list = mfc->mfc_bw_meter_geq; 2014 mfc->mfc_bw_meter_geq = NULL; 2015 free_bw_list(list); 2016 MRW_WUNLOCK(); 2017 return 0; 2018 } else { /* Delete a single bw_meter entry */ 2019 struct bw_meter *prev; 2020 uint32_t flags = 0; 2021 2022 flags = compute_bw_meter_flags(req); 2023 2024 /* Choose an appropriate bw_meter list */ 2025 if (req->bu_flags & BW_UPCALL_GEQ) 2026 bwm_ptr = &mfc->mfc_bw_meter_geq; 2027 else 2028 bwm_ptr = &mfc->mfc_bw_meter_leq; 2029 2030 /* Find the bw_meter entry to delete */ 2031 for (prev = NULL, x = *bwm_ptr; x != NULL; 2032 prev = x, x = x->bm_mfc_next) { 2033 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2034 &req->bu_threshold.b_time, ==)) && 2035 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2036 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2037 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2038 break; 2039 } 2040 if (x != NULL) { /* Delete entry from the list for this MFC */ 2041 if (prev != NULL) 2042 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2043 else 2044 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2045 2046 if (req->bu_flags & BW_UPCALL_LEQ) 2047 callout_stop(&x->bm_meter_callout); 2048 2049 MRW_WUNLOCK(); 2050 /* Free the bw_meter entry */ 2051 free(x, M_BWMETER); 2052 return 0; 2053 } else { 2054 MRW_WUNLOCK(); 2055 return EINVAL; 2056 } 2057 } 2058 /* NOTREACHED */ 2059 } 2060 2061 /* 2062 * Perform bandwidth measurement processing that may result in an upcall 2063 */ 2064 static void 2065 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2066 { 2067 struct timeval delta; 2068 2069 MRW_LOCK_ASSERT(); 2070 2071 delta = *nowp; 2072 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2073 2074 /* 2075 * Processing for ">=" type of bw_meter entry. 2076 * bm_spin does not have to be hold here as in GEQ 2077 * case this is the only context accessing bm_measured. 2078 */ 2079 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2080 /* Reset the bw_meter entry */ 2081 x->bm_start_time = *nowp; 2082 x->bm_measured.b_packets = 0; 2083 x->bm_measured.b_bytes = 0; 2084 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2085 } 2086 2087 /* Record that a packet is received */ 2088 x->bm_measured.b_packets++; 2089 x->bm_measured.b_bytes += plen; 2090 2091 /* 2092 * Test if we should deliver an upcall 2093 */ 2094 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2095 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2096 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2097 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2098 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2099 /* Prepare an upcall for delivery */ 2100 bw_meter_prepare_upcall(x, nowp); 2101 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2102 } 2103 } 2104 } 2105 2106 /* 2107 * Prepare a bandwidth-related upcall 2108 */ 2109 static void 2110 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2111 { 2112 struct timeval delta; 2113 struct bw_upcall *u; 2114 2115 MRW_LOCK_ASSERT(); 2116 2117 /* 2118 * Compute the measured time interval 2119 */ 2120 delta = *nowp; 2121 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2122 2123 /* 2124 * Set the bw_upcall entry 2125 */ 2126 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2127 if (!u) { 2128 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2129 return; 2130 } 2131 u->bu_src = x->bm_mfc->mfc_origin; 2132 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2133 u->bu_threshold.b_time = x->bm_threshold.b_time; 2134 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2135 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2136 u->bu_measured.b_time = delta; 2137 u->bu_measured.b_packets = x->bm_measured.b_packets; 2138 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2139 u->bu_flags = 0; 2140 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2141 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2142 if (x->bm_flags & BW_METER_UNIT_BYTES) 2143 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2144 if (x->bm_flags & BW_METER_GEQ) 2145 u->bu_flags |= BW_UPCALL_GEQ; 2146 if (x->bm_flags & BW_METER_LEQ) 2147 u->bu_flags |= BW_UPCALL_LEQ; 2148 2149 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2150 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2151 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2152 mtx_lock(&V_upcall_thread_mtx); 2153 cv_signal(&V_upcall_thread_cv); 2154 mtx_unlock(&V_upcall_thread_mtx); 2155 } 2156 } 2157 /* 2158 * Send the pending bandwidth-related upcalls 2159 */ 2160 static void 2161 bw_upcalls_send(void) 2162 { 2163 struct mbuf *m; 2164 int len = 0; 2165 struct bw_upcall *bu; 2166 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2167 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2168 0, /* unused2 */ 2169 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2170 0, /* im_mbz */ 2171 0, /* im_vif */ 2172 0, /* unused3 */ 2173 { 0 }, /* im_src */ 2174 { 0 } }; /* im_dst */ 2175 2176 MRW_LOCK_ASSERT(); 2177 2178 if (buf_ring_empty(V_bw_upcalls_ring)) 2179 return; 2180 2181 /* 2182 * Allocate a new mbuf, initialize it with the header and 2183 * the payload for the pending calls. 2184 */ 2185 m = m_gethdr(M_NOWAIT, MT_DATA); 2186 if (m == NULL) { 2187 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2188 return; 2189 } 2190 2191 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2192 len += sizeof(struct igmpmsg); 2193 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2194 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2195 len += sizeof(struct bw_upcall); 2196 free(bu, M_MRTABLE); 2197 } 2198 2199 /* 2200 * Send the upcalls 2201 * XXX do we need to set the address in k_igmpsrc ? 2202 */ 2203 MRTSTAT_INC(mrts_upcalls); 2204 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2205 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2206 MRTSTAT_INC(mrts_upq_sockfull); 2207 } 2208 } 2209 2210 /* 2211 * A periodic function for sending all upcalls that are pending delivery 2212 */ 2213 static void 2214 expire_bw_upcalls_send(void *arg) 2215 { 2216 CURVNET_SET((struct vnet *) arg); 2217 2218 /* This callout is run with MRW_RLOCK taken */ 2219 2220 bw_upcalls_send(); 2221 2222 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2223 curvnet); 2224 CURVNET_RESTORE(); 2225 } 2226 2227 /* 2228 * End of bandwidth monitoring code 2229 */ 2230 2231 /* 2232 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2233 * 2234 */ 2235 static int 2236 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2237 struct mfc *rt) 2238 { 2239 struct mbuf *mb_copy, *mm; 2240 2241 /* 2242 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2243 * rendezvous point was unspecified, and we were told not to. 2244 */ 2245 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2246 in_nullhost(rt->mfc_rp)) 2247 return 0; 2248 2249 mb_copy = pim_register_prepare(ip, m); 2250 if (mb_copy == NULL) 2251 return ENOBUFS; 2252 2253 /* 2254 * Send all the fragments. Note that the mbuf for each fragment 2255 * is freed by the sending machinery. 2256 */ 2257 for (mm = mb_copy; mm; mm = mb_copy) { 2258 mb_copy = mm->m_nextpkt; 2259 mm->m_nextpkt = 0; 2260 mm = m_pullup(mm, sizeof(struct ip)); 2261 if (mm != NULL) { 2262 ip = mtod(mm, struct ip *); 2263 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2264 pim_register_send_rp(ip, vifp, mm, rt); 2265 } else { 2266 pim_register_send_upcall(ip, vifp, mm, rt); 2267 } 2268 } 2269 } 2270 2271 return 0; 2272 } 2273 2274 /* 2275 * Return a copy of the data packet that is ready for PIM Register 2276 * encapsulation. 2277 * XXX: Note that in the returned copy the IP header is a valid one. 2278 */ 2279 static struct mbuf * 2280 pim_register_prepare(struct ip *ip, struct mbuf *m) 2281 { 2282 struct mbuf *mb_copy = NULL; 2283 int mtu; 2284 2285 /* Take care of delayed checksums */ 2286 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2287 in_delayed_cksum(m); 2288 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2289 } 2290 2291 /* 2292 * Copy the old packet & pullup its IP header into the 2293 * new mbuf so we can modify it. 2294 */ 2295 mb_copy = m_copypacket(m, M_NOWAIT); 2296 if (mb_copy == NULL) 2297 return NULL; 2298 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2299 if (mb_copy == NULL) 2300 return NULL; 2301 2302 /* take care of the TTL */ 2303 ip = mtod(mb_copy, struct ip *); 2304 --ip->ip_ttl; 2305 2306 /* Compute the MTU after the PIM Register encapsulation */ 2307 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2308 2309 if (ntohs(ip->ip_len) <= mtu) { 2310 /* Turn the IP header into a valid one */ 2311 ip->ip_sum = 0; 2312 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2313 } else { 2314 /* Fragment the packet */ 2315 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2316 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2317 m_freem(mb_copy); 2318 return NULL; 2319 } 2320 } 2321 return mb_copy; 2322 } 2323 2324 /* 2325 * Send an upcall with the data packet to the user-level process. 2326 */ 2327 static int 2328 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2329 struct mbuf *mb_copy, struct mfc *rt) 2330 { 2331 struct mbuf *mb_first; 2332 int len = ntohs(ip->ip_len); 2333 struct igmpmsg *im; 2334 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2335 2336 MRW_LOCK_ASSERT(); 2337 2338 /* 2339 * Add a new mbuf with an upcall header 2340 */ 2341 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2342 if (mb_first == NULL) { 2343 m_freem(mb_copy); 2344 return ENOBUFS; 2345 } 2346 mb_first->m_data += max_linkhdr; 2347 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2348 mb_first->m_len = sizeof(struct igmpmsg); 2349 mb_first->m_next = mb_copy; 2350 2351 /* Send message to routing daemon */ 2352 im = mtod(mb_first, struct igmpmsg *); 2353 im->im_msgtype = IGMPMSG_WHOLEPKT; 2354 im->im_mbz = 0; 2355 im->im_vif = vifp - V_viftable; 2356 im->im_src = ip->ip_src; 2357 im->im_dst = ip->ip_dst; 2358 2359 k_igmpsrc.sin_addr = ip->ip_src; 2360 2361 MRTSTAT_INC(mrts_upcalls); 2362 2363 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2364 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2365 MRTSTAT_INC(mrts_upq_sockfull); 2366 return ENOBUFS; 2367 } 2368 2369 /* Keep statistics */ 2370 PIMSTAT_INC(pims_snd_registers_msgs); 2371 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2372 2373 return 0; 2374 } 2375 2376 /* 2377 * Encapsulate the data packet in PIM Register message and send it to the RP. 2378 */ 2379 static int 2380 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2381 struct mfc *rt) 2382 { 2383 struct mbuf *mb_first; 2384 struct ip *ip_outer; 2385 struct pim_encap_pimhdr *pimhdr; 2386 int len = ntohs(ip->ip_len); 2387 vifi_t vifi = rt->mfc_parent; 2388 2389 MRW_LOCK_ASSERT(); 2390 2391 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2392 m_freem(mb_copy); 2393 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2394 } 2395 2396 /* 2397 * Add a new mbuf with the encapsulating header 2398 */ 2399 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2400 if (mb_first == NULL) { 2401 m_freem(mb_copy); 2402 return ENOBUFS; 2403 } 2404 mb_first->m_data += max_linkhdr; 2405 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2406 mb_first->m_next = mb_copy; 2407 2408 mb_first->m_pkthdr.len = len + mb_first->m_len; 2409 2410 /* 2411 * Fill in the encapsulating IP and PIM header 2412 */ 2413 ip_outer = mtod(mb_first, struct ip *); 2414 *ip_outer = pim_encap_iphdr; 2415 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2416 sizeof(pim_encap_pimhdr)); 2417 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2418 ip_outer->ip_dst = rt->mfc_rp; 2419 /* 2420 * Copy the inner header TOS to the outer header, and take care of the 2421 * IP_DF bit. 2422 */ 2423 ip_outer->ip_tos = ip->ip_tos; 2424 if (ip->ip_off & htons(IP_DF)) 2425 ip_outer->ip_off |= htons(IP_DF); 2426 ip_fillid(ip_outer); 2427 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2428 + sizeof(pim_encap_iphdr)); 2429 *pimhdr = pim_encap_pimhdr; 2430 /* If the iif crosses a border, set the Border-bit */ 2431 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2432 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2433 2434 mb_first->m_data += sizeof(pim_encap_iphdr); 2435 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2436 mb_first->m_data -= sizeof(pim_encap_iphdr); 2437 2438 send_packet(vifp, mb_first); 2439 2440 /* Keep statistics */ 2441 PIMSTAT_INC(pims_snd_registers_msgs); 2442 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2443 2444 return 0; 2445 } 2446 2447 /* 2448 * pim_encapcheck() is called by the encap4_input() path at runtime to 2449 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2450 * into the kernel. 2451 */ 2452 static int 2453 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2454 int proto __unused, void *arg __unused) 2455 { 2456 2457 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2458 return (8); /* claim the datagram. */ 2459 } 2460 2461 /* 2462 * PIM-SMv2 and PIM-DM messages processing. 2463 * Receives and verifies the PIM control messages, and passes them 2464 * up to the listening socket, using rip_input(). 2465 * The only message with special processing is the PIM_REGISTER message 2466 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2467 * is passed to if_simloop(). 2468 */ 2469 static int 2470 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2471 { 2472 struct ip *ip = mtod(m, struct ip *); 2473 struct pim *pim; 2474 int iphlen = off; 2475 int minlen; 2476 int datalen = ntohs(ip->ip_len) - iphlen; 2477 int ip_tos; 2478 2479 /* Keep statistics */ 2480 PIMSTAT_INC(pims_rcv_total_msgs); 2481 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2482 2483 /* 2484 * Validate lengths 2485 */ 2486 if (datalen < PIM_MINLEN) { 2487 PIMSTAT_INC(pims_rcv_tooshort); 2488 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2489 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2490 m_freem(m); 2491 return (IPPROTO_DONE); 2492 } 2493 2494 /* 2495 * If the packet is at least as big as a REGISTER, go agead 2496 * and grab the PIM REGISTER header size, to avoid another 2497 * possible m_pullup() later. 2498 * 2499 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2500 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2501 */ 2502 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2503 /* 2504 * Get the IP and PIM headers in contiguous memory, and 2505 * possibly the PIM REGISTER header. 2506 */ 2507 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2508 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2509 return (IPPROTO_DONE); 2510 } 2511 2512 /* m_pullup() may have given us a new mbuf so reset ip. */ 2513 ip = mtod(m, struct ip *); 2514 ip_tos = ip->ip_tos; 2515 2516 /* adjust mbuf to point to the PIM header */ 2517 m->m_data += iphlen; 2518 m->m_len -= iphlen; 2519 pim = mtod(m, struct pim *); 2520 2521 /* 2522 * Validate checksum. If PIM REGISTER, exclude the data packet. 2523 * 2524 * XXX: some older PIMv2 implementations don't make this distinction, 2525 * so for compatibility reason perform the checksum over part of the 2526 * message, and if error, then over the whole message. 2527 */ 2528 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2529 /* do nothing, checksum okay */ 2530 } else if (in_cksum(m, datalen)) { 2531 PIMSTAT_INC(pims_rcv_badsum); 2532 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2533 m_freem(m); 2534 return (IPPROTO_DONE); 2535 } 2536 2537 /* PIM version check */ 2538 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2539 PIMSTAT_INC(pims_rcv_badversion); 2540 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2541 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2542 m_freem(m); 2543 return (IPPROTO_DONE); 2544 } 2545 2546 /* restore mbuf back to the outer IP */ 2547 m->m_data -= iphlen; 2548 m->m_len += iphlen; 2549 2550 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2551 /* 2552 * Since this is a REGISTER, we'll make a copy of the register 2553 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2554 * routing daemon. 2555 */ 2556 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2557 struct mbuf *mcp; 2558 struct ip *encap_ip; 2559 u_int32_t *reghdr; 2560 struct ifnet *vifp; 2561 2562 MRW_RLOCK(); 2563 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2564 MRW_RUNLOCK(); 2565 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2566 (int)V_reg_vif_num); 2567 m_freem(m); 2568 return (IPPROTO_DONE); 2569 } 2570 /* XXX need refcnt? */ 2571 vifp = V_viftable[V_reg_vif_num].v_ifp; 2572 MRW_RUNLOCK(); 2573 2574 /* 2575 * Validate length 2576 */ 2577 if (datalen < PIM_REG_MINLEN) { 2578 PIMSTAT_INC(pims_rcv_tooshort); 2579 PIMSTAT_INC(pims_rcv_badregisters); 2580 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2581 m_freem(m); 2582 return (IPPROTO_DONE); 2583 } 2584 2585 reghdr = (u_int32_t *)(pim + 1); 2586 encap_ip = (struct ip *)(reghdr + 1); 2587 2588 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2589 __func__, ntohl(encap_ip->ip_src.s_addr), 2590 ntohs(encap_ip->ip_len)); 2591 2592 /* verify the version number of the inner packet */ 2593 if (encap_ip->ip_v != IPVERSION) { 2594 PIMSTAT_INC(pims_rcv_badregisters); 2595 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2596 m_freem(m); 2597 return (IPPROTO_DONE); 2598 } 2599 2600 /* verify the inner packet is destined to a mcast group */ 2601 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2602 PIMSTAT_INC(pims_rcv_badregisters); 2603 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2604 ntohl(encap_ip->ip_dst.s_addr)); 2605 m_freem(m); 2606 return (IPPROTO_DONE); 2607 } 2608 2609 /* If a NULL_REGISTER, pass it to the daemon */ 2610 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2611 goto pim_input_to_daemon; 2612 2613 /* 2614 * Copy the TOS from the outer IP header to the inner IP header. 2615 */ 2616 if (encap_ip->ip_tos != ip_tos) { 2617 /* Outer TOS -> inner TOS */ 2618 encap_ip->ip_tos = ip_tos; 2619 /* Recompute the inner header checksum. Sigh... */ 2620 2621 /* adjust mbuf to point to the inner IP header */ 2622 m->m_data += (iphlen + PIM_MINLEN); 2623 m->m_len -= (iphlen + PIM_MINLEN); 2624 2625 encap_ip->ip_sum = 0; 2626 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2627 2628 /* restore mbuf to point back to the outer IP header */ 2629 m->m_data -= (iphlen + PIM_MINLEN); 2630 m->m_len += (iphlen + PIM_MINLEN); 2631 } 2632 2633 /* 2634 * Decapsulate the inner IP packet and loopback to forward it 2635 * as a normal multicast packet. Also, make a copy of the 2636 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2637 * to pass to the daemon later, so it can take the appropriate 2638 * actions (e.g., send back PIM_REGISTER_STOP). 2639 * XXX: here m->m_data points to the outer IP header. 2640 */ 2641 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2642 if (mcp == NULL) { 2643 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2644 m_freem(m); 2645 return (IPPROTO_DONE); 2646 } 2647 2648 /* Keep statistics */ 2649 /* XXX: registers_bytes include only the encap. mcast pkt */ 2650 PIMSTAT_INC(pims_rcv_registers_msgs); 2651 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2652 2653 /* 2654 * forward the inner ip packet; point m_data at the inner ip. 2655 */ 2656 m_adj(m, iphlen + PIM_MINLEN); 2657 2658 CTR4(KTR_IPMF, 2659 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2660 __func__, 2661 (u_long)ntohl(encap_ip->ip_src.s_addr), 2662 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2663 (int)V_reg_vif_num); 2664 2665 /* NB: vifp was collected above; can it change on us? */ 2666 if_simloop(vifp, m, dst.sin_family, 0); 2667 2668 /* prepare the register head to send to the mrouting daemon */ 2669 m = mcp; 2670 } 2671 2672 pim_input_to_daemon: 2673 /* 2674 * Pass the PIM message up to the daemon; if it is a Register message, 2675 * pass the 'head' only up to the daemon. This includes the 2676 * outer IP header, PIM header, PIM-Register header and the 2677 * inner IP header. 2678 * XXX: the outer IP header pkt size of a Register is not adjust to 2679 * reflect the fact that the inner multicast data is truncated. 2680 */ 2681 return (rip_input(&m, &off, proto)); 2682 } 2683 2684 static int 2685 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2686 { 2687 struct mfc *rt; 2688 int error, i; 2689 2690 if (req->newptr) 2691 return (EPERM); 2692 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2693 return (0); 2694 error = sysctl_wire_old_buffer(req, 0); 2695 if (error) 2696 return (error); 2697 2698 MRW_RLOCK(); 2699 for (i = 0; i < mfchashsize; i++) { 2700 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2701 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2702 if (error) 2703 goto out_locked; 2704 } 2705 } 2706 out_locked: 2707 MRW_RUNLOCK(); 2708 return (error); 2709 } 2710 2711 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2712 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2713 "IPv4 Multicast Forwarding Table " 2714 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2715 2716 static int 2717 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2718 { 2719 int error; 2720 2721 if (req->newptr) 2722 return (EPERM); 2723 if (V_viftable == NULL) /* XXX unlocked */ 2724 return (0); 2725 error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS); 2726 if (error) 2727 return (error); 2728 2729 MRW_RLOCK(); 2730 error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS); 2731 MRW_RUNLOCK(); 2732 return (error); 2733 } 2734 2735 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2736 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2737 sysctl_viflist, "S,vif[MAXVIFS]", 2738 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2739 2740 static void 2741 vnet_mroute_init(const void *unused __unused) 2742 { 2743 2744 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2745 2746 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2747 M_MRTABLE, M_WAITOK|M_ZERO); 2748 2749 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2750 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2751 } 2752 2753 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2754 NULL); 2755 2756 static void 2757 vnet_mroute_uninit(const void *unused __unused) 2758 { 2759 2760 free(V_viftable, M_MRTABLE); 2761 free(V_nexpire, M_MRTABLE); 2762 V_nexpire = NULL; 2763 } 2764 2765 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2766 vnet_mroute_uninit, NULL); 2767 2768 static int 2769 ip_mroute_modevent(module_t mod, int type, void *unused) 2770 { 2771 2772 switch (type) { 2773 case MOD_LOAD: 2774 MRW_LOCK_INIT(); 2775 2776 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2777 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2778 if (if_detach_event_tag == NULL) { 2779 printf("ip_mroute: unable to register " 2780 "ifnet_departure_event handler\n"); 2781 MRW_LOCK_DESTROY(); 2782 return (EINVAL); 2783 } 2784 2785 mfchashsize = MFCHASHSIZE; 2786 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2787 !powerof2(mfchashsize)) { 2788 printf("WARNING: %s not a power of 2; using default\n", 2789 "net.inet.ip.mfchashsize"); 2790 mfchashsize = MFCHASHSIZE; 2791 } 2792 2793 pim_squelch_wholepkt = 0; 2794 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2795 &pim_squelch_wholepkt); 2796 2797 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2798 if (pim_encap_cookie == NULL) { 2799 printf("ip_mroute: unable to attach pim encap\n"); 2800 MRW_LOCK_DESTROY(); 2801 return (EINVAL); 2802 } 2803 2804 ip_mcast_src = X_ip_mcast_src; 2805 ip_mforward = X_ip_mforward; 2806 ip_mrouter_done = X_ip_mrouter_done; 2807 ip_mrouter_get = X_ip_mrouter_get; 2808 ip_mrouter_set = X_ip_mrouter_set; 2809 2810 ip_rsvp_force_done = X_ip_rsvp_force_done; 2811 ip_rsvp_vif = X_ip_rsvp_vif; 2812 2813 legal_vif_num = X_legal_vif_num; 2814 mrt_ioctl = X_mrt_ioctl; 2815 rsvp_input_p = X_rsvp_input; 2816 break; 2817 2818 case MOD_UNLOAD: 2819 /* 2820 * Typically module unload happens after the user-level 2821 * process has shutdown the kernel services (the check 2822 * below insures someone can't just yank the module out 2823 * from under a running process). But if the module is 2824 * just loaded and then unloaded w/o starting up a user 2825 * process we still need to cleanup. 2826 */ 2827 MRW_WLOCK(); 2828 if (ip_mrouter_cnt != 0) { 2829 MRW_WUNLOCK(); 2830 return (EINVAL); 2831 } 2832 ip_mrouter_unloading = 1; 2833 MRW_WUNLOCK(); 2834 2835 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2836 2837 if (pim_encap_cookie) { 2838 ip_encap_detach(pim_encap_cookie); 2839 pim_encap_cookie = NULL; 2840 } 2841 2842 ip_mcast_src = NULL; 2843 ip_mforward = NULL; 2844 ip_mrouter_done = NULL; 2845 ip_mrouter_get = NULL; 2846 ip_mrouter_set = NULL; 2847 2848 ip_rsvp_force_done = NULL; 2849 ip_rsvp_vif = NULL; 2850 2851 legal_vif_num = NULL; 2852 mrt_ioctl = NULL; 2853 rsvp_input_p = NULL; 2854 2855 MRW_LOCK_DESTROY(); 2856 break; 2857 2858 default: 2859 return EOPNOTSUPP; 2860 } 2861 return 0; 2862 } 2863 2864 static moduledata_t ip_mroutemod = { 2865 "ip_mroute", 2866 ip_mroute_modevent, 2867 0 2868 }; 2869 2870 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2871