xref: /freebsd/sys/netinet/ip_mroute.c (revision ef5d438ed4bc17ad7ece3e40fe4d1f9baf3aadf7)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $Id: ip_mroute.c,v 1.26 1995/12/02 19:38:03 bde Exp $
13  */
14 
15 
16 #include <sys/param.h>
17 #include <sys/systm.h>
18 #include <sys/mbuf.h>
19 #include <sys/socket.h>
20 #include <sys/socketvar.h>
21 #include <sys/protosw.h>
22 #include <sys/errno.h>
23 #include <sys/time.h>
24 #include <sys/kernel.h>
25 #include <sys/ioctl.h>
26 #include <sys/syslog.h>
27 #include <sys/queue.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <netinet/in.h>
31 #include <netinet/in_systm.h>
32 #include <netinet/ip.h>
33 #include <netinet/ip_var.h>
34 #include <netinet/in_pcb.h>
35 #include <netinet/in_var.h>
36 #include <netinet/igmp.h>
37 #include <netinet/igmp_var.h>
38 #include <netinet/ip_mroute.h>
39 #include <netinet/udp.h>
40 
41 extern void	rsvp_input __P((struct mbuf *m, int iphlen));
42 
43 #ifndef NTOHL
44 #if BYTE_ORDER != BIG_ENDIAN
45 #define NTOHL(d) ((d) = ntohl((d)))
46 #define NTOHS(d) ((d) = ntohs((u_short)(d)))
47 #define HTONL(d) ((d) = htonl((d)))
48 #define HTONS(d) ((d) = htons((u_short)(d)))
49 #else
50 #define NTOHL(d)
51 #define NTOHS(d)
52 #define HTONL(d)
53 #define HTONS(d)
54 #endif
55 #endif
56 
57 #ifndef MROUTING
58 extern void	ipip_input __P((struct mbuf *m));
59 extern u_long	_ip_mcast_src __P((int vifi));
60 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
61 				  struct mbuf *m, struct ip_moptions *imo));
62 extern int	_ip_mrouter_done __P((void));
63 extern int	_ip_mrouter_get __P((int cmd, struct socket *so,
64 				     struct mbuf **m));
65 extern int	_ip_mrouter_set __P((int cmd, struct socket *so,
66 				     struct mbuf *m));
67 extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
68 
69 /*
70  * Dummy routines and globals used when multicast routing is not compiled in.
71  */
72 
73 struct socket  *ip_mrouter  = NULL;
74 static u_int		ip_mrtproto = 0;
75 static struct mrtstat	mrtstat;
76 u_int		rsvpdebug = 0;
77 
78 int
79 _ip_mrouter_set(cmd, so, m)
80 	int cmd;
81 	struct socket *so;
82 	struct mbuf *m;
83 {
84 	return(EOPNOTSUPP);
85 }
86 
87 int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
88 
89 
90 int
91 _ip_mrouter_get(cmd, so, m)
92 	int cmd;
93 	struct socket *so;
94 	struct mbuf **m;
95 {
96 	return(EOPNOTSUPP);
97 }
98 
99 int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
100 
101 int
102 _ip_mrouter_done()
103 {
104 	return(0);
105 }
106 
107 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
108 
109 int
110 _ip_mforward(ip, ifp, m, imo)
111 	struct ip *ip;
112 	struct ifnet *ifp;
113 	struct mbuf *m;
114 	struct ip_moptions *imo;
115 {
116 	return(0);
117 }
118 
119 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
120 		   struct ip_moptions *) = _ip_mforward;
121 
122 int
123 _mrt_ioctl(int req, caddr_t data, struct proc *p)
124 {
125 	return EOPNOTSUPP;
126 }
127 
128 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
129 
130 void
131 rsvp_input(m, iphlen)		/* XXX must fixup manually */
132 	struct mbuf *m;
133 	int iphlen;
134 {
135     /* Can still get packets with rsvp_on = 0 if there is a local member
136      * of the group to which the RSVP packet is addressed.  But in this
137      * case we want to throw the packet away.
138      */
139     if (!rsvp_on) {
140 	m_freem(m);
141 	return;
142     }
143 
144     if (ip_rsvpd != NULL) {
145 	if (rsvpdebug)
146 	    printf("rsvp_input: Sending packet up old-style socket\n");
147 	rip_input(m);
148 	return;
149     }
150     /* Drop the packet */
151     m_freem(m);
152 }
153 
154 void ipip_input(struct mbuf *m) { /* XXX must fixup manually */
155 	rip_input(m);
156 }
157 
158 int (*legal_vif_num)(int) = 0;
159 
160 /*
161  * This should never be called, since IP_MULTICAST_VIF should fail, but
162  * just in case it does get called, the code a little lower in ip_output
163  * will assign the packet a local address.
164  */
165 u_long
166 _ip_mcast_src(int vifi) { return INADDR_ANY; }
167 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
168 
169 int
170 ip_rsvp_vif_init(so, m)
171     struct socket *so;
172     struct mbuf *m;
173 {
174     return(EINVAL);
175 }
176 
177 int
178 ip_rsvp_vif_done(so, m)
179     struct socket *so;
180     struct mbuf *m;
181 {
182     return(EINVAL);
183 }
184 
185 void
186 ip_rsvp_force_done(so)
187     struct socket *so;
188 {
189     return;
190 }
191 
192 #else /* MROUTING */
193 
194 #define M_HASCL(m)	((m)->m_flags & M_EXT)
195 
196 #define INSIZ		sizeof(struct in_addr)
197 #define	same(a1, a2) \
198 	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
199 
200 #define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
201 
202 /*
203  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
204  * except for netstat or debugging purposes.
205  */
206 #ifndef MROUTE_LKM
207 extern void	ipip_input __P((struct mbuf *m, int iphlen));
208 struct socket  *ip_mrouter  = NULL;
209 struct mrtstat	mrtstat;
210 
211 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
212 #else /* MROUTE_LKM */
213 #error /* the function definition will have a syntax error */
214 extern void	X_ipip_input __P((struct mbuf *m));
215 extern struct mrtstat mrtstat;
216 static int ip_mrtproto;
217 #endif
218 
219 #define NO_RTE_FOUND 	0x1
220 #define RTE_FOUND	0x2
221 
222 static struct mbuf    *mfctable[MFCTBLSIZ];
223 static u_char		nexpire[MFCTBLSIZ];
224 static struct vif	viftable[MAXVIFS];
225 static u_int	mrtdebug = 0;	  /* debug level 	*/
226 #define		DEBUG_MFC	0x02
227 #define		DEBUG_FORWARD	0x04
228 #define		DEBUG_EXPIRE	0x08
229 #define		DEBUG_XMIT	0x10
230 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
231 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
232 
233 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
234 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
235 
236 /*
237  * Define the token bucket filter structures
238  * tbftable -> each vif has one of these for storing info
239  */
240 
241 static struct tbf tbftable[MAXVIFS];
242 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
243 
244 /*
245  * 'Interfaces' associated with decapsulator (so we can tell
246  * packets that went through it from ones that get reflected
247  * by a broken gateway).  These interfaces are never linked into
248  * the system ifnet list & no routes point to them.  I.e., packets
249  * can't be sent this way.  They only exist as a placeholder for
250  * multicast source verification.
251  */
252 static struct ifnet multicast_decap_if[MAXVIFS];
253 
254 #define ENCAP_TTL 64
255 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
256 
257 /* prototype IP hdr for encapsulated packets */
258 static struct ip multicast_encap_iphdr = {
259 #if BYTE_ORDER == LITTLE_ENDIAN
260 	sizeof(struct ip) >> 2, IPVERSION,
261 #else
262 	IPVERSION, sizeof(struct ip) >> 2,
263 #endif
264 	0,				/* tos */
265 	sizeof(struct ip),		/* total length */
266 	0,				/* id */
267 	0,				/* frag offset */
268 	ENCAP_TTL, ENCAP_PROTO,
269 	0,				/* checksum */
270 };
271 
272 /*
273  * Private variables.
274  */
275 static vifi_t	   numvifs = 0;
276 static int have_encap_tunnel = 0;
277 
278 /*
279  * one-back cache used by ipip_input to locate a tunnel's vif
280  * given a datagram's src ip address.
281  */
282 static u_long last_encap_src;
283 static struct vif *last_encap_vif;
284 
285 static u_long	X_ip_mcast_src __P((int vifi));
286 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
287 static int	X_ip_mrouter_done __P((void));
288 static int	X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
289 static int	X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
290 static int	X_legal_vif_num __P((int vif));
291 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
292 
293 static int get_sg_cnt(struct sioc_sg_req *);
294 static int get_vif_cnt(struct sioc_vif_req *);
295 static int ip_mrouter_init(struct socket *, struct mbuf *);
296 static int add_vif(struct vifctl *);
297 static int del_vif(vifi_t *);
298 static int add_mfc(struct mfcctl *);
299 static int del_mfc(struct mfcctl *);
300 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
301 static int get_version(struct mbuf *);
302 static int get_assert(struct mbuf *);
303 static int set_assert(int *);
304 static void expire_upcalls(void *);
305 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
306 		  vifi_t);
307 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
308 static void encap_send(struct ip *, struct vif *, struct mbuf *);
309 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
310 static void tbf_queue(struct vif *, struct mbuf *);
311 static void tbf_process_q(struct vif *);
312 static void tbf_reprocess_q(void *);
313 static int tbf_dq_sel(struct vif *, struct ip *);
314 static void tbf_send_packet(struct vif *, struct mbuf *);
315 static void tbf_update_tokens(struct vif *);
316 static int priority(struct vif *, struct ip *);
317 void multiencap_decap(struct mbuf *);
318 
319 /*
320  * whether or not special PIM assert processing is enabled.
321  */
322 static int pim_assert;
323 /*
324  * Rate limit for assert notification messages, in usec
325  */
326 #define ASSERT_MSG_TIME		3000000
327 
328 /*
329  * Hash function for a source, group entry
330  */
331 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
332 			((g) >> 20) ^ ((g) >> 10) ^ (g))
333 
334 /*
335  * Find a route for a given origin IP address and Multicast group address
336  * Type of service parameter to be added in the future!!!
337  */
338 
339 #define MFCFIND(o, g, rt) { \
340 	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
341 	register struct mfc *_rt = NULL; \
342 	rt = NULL; \
343 	++mrtstat.mrts_mfc_lookups; \
344 	while (_mb_rt) { \
345 		_rt = mtod(_mb_rt, struct mfc *); \
346 		if ((_rt->mfc_origin.s_addr == o) && \
347 		    (_rt->mfc_mcastgrp.s_addr == g) && \
348 		    (_mb_rt->m_act == NULL)) { \
349 			rt = _rt; \
350 			break; \
351 		} \
352 		_mb_rt = _mb_rt->m_next; \
353 	} \
354 	if (rt == NULL) { \
355 		++mrtstat.mrts_mfc_misses; \
356 	} \
357 }
358 
359 
360 /*
361  * Macros to compute elapsed time efficiently
362  * Borrowed from Van Jacobson's scheduling code
363  */
364 #define TV_DELTA(a, b, delta) { \
365 	    register int xxs; \
366 		\
367 	    delta = (a).tv_usec - (b).tv_usec; \
368 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
369 	       switch (xxs) { \
370 		      case 2: \
371 			  delta += 1000000; \
372 			      /* fall through */ \
373 		      case 1: \
374 			  delta += 1000000; \
375 			  break; \
376 		      default: \
377 			  delta += (1000000 * xxs); \
378 	       } \
379 	    } \
380 }
381 
382 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
383 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
384 
385 #ifdef UPCALL_TIMING
386 u_long upcall_data[51];
387 static void collate(struct timeval *);
388 #endif /* UPCALL_TIMING */
389 
390 
391 /*
392  * Handle MRT setsockopt commands to modify the multicast routing tables.
393  */
394 static int
395 X_ip_mrouter_set(cmd, so, m)
396     int cmd;
397     struct socket *so;
398     struct mbuf *m;
399 {
400    if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
401 
402     switch (cmd) {
403 	case MRT_INIT:     return ip_mrouter_init(so, m);
404 	case MRT_DONE:     return ip_mrouter_done();
405 	case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
406 	case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
407 	case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
408 	case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
409 	case MRT_ASSERT:   return set_assert(mtod(m, int *));
410 	default:             return EOPNOTSUPP;
411     }
412 }
413 
414 #ifndef MROUTE_LKM
415 int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
416 #endif
417 
418 /*
419  * Handle MRT getsockopt commands
420  */
421 static int
422 X_ip_mrouter_get(cmd, so, m)
423     int cmd;
424     struct socket *so;
425     struct mbuf **m;
426 {
427     struct mbuf *mb;
428 
429     if (so != ip_mrouter) return EACCES;
430 
431     *m = mb = m_get(M_WAIT, MT_SOOPTS);
432 
433     switch (cmd) {
434 	case MRT_VERSION:   return get_version(mb);
435 	case MRT_ASSERT:    return get_assert(mb);
436 	default:            return EOPNOTSUPP;
437     }
438 }
439 
440 #ifndef MROUTE_LKM
441 int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
442 #endif
443 
444 /*
445  * Handle ioctl commands to obtain information from the cache
446  */
447 static int
448 X_mrt_ioctl(cmd, data)
449     int cmd;
450     caddr_t data;
451 {
452     int error = 0;
453 
454     switch (cmd) {
455 	case (SIOCGETVIFCNT):
456 	    return (get_vif_cnt((struct sioc_vif_req *)data));
457 	    break;
458 	case (SIOCGETSGCNT):
459 	    return (get_sg_cnt((struct sioc_sg_req *)data));
460 	    break;
461 	default:
462 	    return (EINVAL);
463 	    break;
464     }
465     return error;
466 }
467 
468 #ifndef MROUTE_LKM
469 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
470 #endif
471 
472 /*
473  * returns the packet, byte, rpf-failure count for the source group provided
474  */
475 static int
476 get_sg_cnt(req)
477     register struct sioc_sg_req *req;
478 {
479     register struct mfc *rt;
480     int s;
481 
482     s = splnet();
483     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
484     splx(s);
485     if (rt != NULL) {
486 	req->pktcnt = rt->mfc_pkt_cnt;
487 	req->bytecnt = rt->mfc_byte_cnt;
488 	req->wrong_if = rt->mfc_wrong_if;
489     } else
490 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
491 
492     return 0;
493 }
494 
495 /*
496  * returns the input and output packet and byte counts on the vif provided
497  */
498 static int
499 get_vif_cnt(req)
500     register struct sioc_vif_req *req;
501 {
502     register vifi_t vifi = req->vifi;
503 
504     if (vifi >= numvifs) return EINVAL;
505 
506     req->icount = viftable[vifi].v_pkt_in;
507     req->ocount = viftable[vifi].v_pkt_out;
508     req->ibytes = viftable[vifi].v_bytes_in;
509     req->obytes = viftable[vifi].v_bytes_out;
510 
511     return 0;
512 }
513 
514 /*
515  * Enable multicast routing
516  */
517 static int
518 ip_mrouter_init(so, m)
519 	struct socket *so;
520 	struct mbuf *m;
521 {
522     int *v;
523 
524     if (mrtdebug)
525 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
526 		so->so_type, so->so_proto->pr_protocol);
527 
528     if (so->so_type != SOCK_RAW ||
529 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
530 
531     if (!m || (m->m_len != sizeof(int *)))
532 	return ENOPROTOOPT;
533 
534     v = mtod(m, int *);
535     if (*v != 1)
536 	return ENOPROTOOPT;
537 
538     if (ip_mrouter != NULL) return EADDRINUSE;
539 
540     ip_mrouter = so;
541 
542     bzero((caddr_t)mfctable, sizeof(mfctable));
543     bzero((caddr_t)nexpire, sizeof(nexpire));
544 
545     pim_assert = 0;
546 
547     timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
548 
549     if (mrtdebug)
550 	log(LOG_DEBUG, "ip_mrouter_init\n");
551 
552     return 0;
553 }
554 
555 /*
556  * Disable multicast routing
557  */
558 static int
559 X_ip_mrouter_done()
560 {
561     vifi_t vifi;
562     int i;
563     struct ifnet *ifp;
564     struct ifreq ifr;
565     struct mbuf *mb_rt;
566     struct mbuf *m;
567     struct rtdetq *rte;
568     int s;
569 
570     s = splnet();
571 
572     /*
573      * For each phyint in use, disable promiscuous reception of all IP
574      * multicasts.
575      */
576     for (vifi = 0; vifi < numvifs; vifi++) {
577 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
578 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
579 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
580 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
581 								= INADDR_ANY;
582 	    ifp = viftable[vifi].v_ifp;
583 	    (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
584 	}
585     }
586     bzero((caddr_t)tbftable, sizeof(tbftable));
587     bzero((caddr_t)viftable, sizeof(viftable));
588     numvifs = 0;
589     pim_assert = 0;
590 
591     untimeout(expire_upcalls, (caddr_t)NULL);
592 
593     /*
594      * Free all multicast forwarding cache entries.
595      */
596     for (i = 0; i < MFCTBLSIZ; i++) {
597 	mb_rt = mfctable[i];
598 	while (mb_rt) {
599 	    if (mb_rt->m_act != NULL) {
600 		while (mb_rt->m_act) {
601 		    m = mb_rt->m_act;
602 		    mb_rt->m_act = m->m_act;
603 		    rte = mtod(m, struct rtdetq *);
604 		    m_freem(rte->m);
605 		    m_free(m);
606 		}
607 	    }
608 	    mb_rt = m_free(mb_rt);
609 	}
610     }
611 
612     bzero((caddr_t)mfctable, sizeof(mfctable));
613 
614     /*
615      * Reset de-encapsulation cache
616      */
617     last_encap_src = NULL;
618     last_encap_vif = NULL;
619     have_encap_tunnel = 0;
620 
621     ip_mrouter = NULL;
622 
623     splx(s);
624 
625     if (mrtdebug)
626 	log(LOG_DEBUG, "ip_mrouter_done\n");
627 
628     return 0;
629 }
630 
631 #ifndef MROUTE_LKM
632 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
633 #endif
634 
635 static int
636 get_version(mb)
637     struct mbuf *mb;
638 {
639     int *v;
640 
641     v = mtod(mb, int *);
642 
643     *v = 0x0305;	/* XXX !!!! */
644     mb->m_len = sizeof(int);
645 
646     return 0;
647 }
648 
649 /*
650  * Set PIM assert processing global
651  */
652 static int
653 set_assert(i)
654     int *i;
655 {
656     if ((*i != 1) && (*i != 0))
657 	return EINVAL;
658 
659     pim_assert = *i;
660 
661     return 0;
662 }
663 
664 /*
665  * Get PIM assert processing global
666  */
667 static int
668 get_assert(m)
669     struct mbuf *m;
670 {
671     int *i;
672 
673     i = mtod(m, int *);
674 
675     *i = pim_assert;
676 
677     return 0;
678 }
679 
680 /*
681  * Add a vif to the vif table
682  */
683 static int
684 add_vif(vifcp)
685     register struct vifctl *vifcp;
686 {
687     register struct vif *vifp = viftable + vifcp->vifc_vifi;
688     static struct sockaddr_in sin = {sizeof sin, AF_INET};
689     struct ifaddr *ifa;
690     struct ifnet *ifp;
691     struct ifreq ifr;
692     int error, s;
693     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
694 
695     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
696     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
697 
698     /* Find the interface with an address in AF_INET family */
699     sin.sin_addr = vifcp->vifc_lcl_addr;
700     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
701     if (ifa == 0) return EADDRNOTAVAIL;
702     ifp = ifa->ifa_ifp;
703 
704     if (vifcp->vifc_flags & VIFF_TUNNEL) {
705 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
706 		/*
707 		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
708 		 * start paying attention to encapsulated packets.
709 		 */
710 		if (have_encap_tunnel == 0) {
711 			have_encap_tunnel = 1;
712 			for (s = 0; s < MAXVIFS; ++s) {
713 				multicast_decap_if[s].if_name = "mdecap";
714 				multicast_decap_if[s].if_unit = s;
715 			}
716 		}
717 		/*
718 		 * Set interface to fake encapsulator interface
719 		 */
720 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
721 		/*
722 		 * Prepare cached route entry
723 		 */
724 		bzero(&vifp->v_route, sizeof(vifp->v_route));
725 	} else {
726 	    log(LOG_ERR, "source routed tunnels not supported\n");
727 	    return EOPNOTSUPP;
728 	}
729     } else {
730 	/* Make sure the interface supports multicast */
731 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
732 	    return EOPNOTSUPP;
733 
734 	/* Enable promiscuous reception of all IP multicasts from the if */
735 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
736 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
737 	s = splnet();
738 	error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
739 	splx(s);
740 	if (error)
741 	    return error;
742     }
743 
744     s = splnet();
745     /* define parameters for the tbf structure */
746     vifp->v_tbf = v_tbf;
747     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
748     vifp->v_tbf->tbf_n_tok = 0;
749     vifp->v_tbf->tbf_q_len = 0;
750     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
751     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
752 
753     vifp->v_flags     = vifcp->vifc_flags;
754     vifp->v_threshold = vifcp->vifc_threshold;
755     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
756     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
757     vifp->v_ifp       = ifp;
758     /* scaling up here allows division by 1024 in critical code */
759     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
760     vifp->v_rsvp_on   = 0;
761     vifp->v_rsvpd     = NULL;
762     /* initialize per vif pkt counters */
763     vifp->v_pkt_in    = 0;
764     vifp->v_pkt_out   = 0;
765     vifp->v_bytes_in  = 0;
766     vifp->v_bytes_out = 0;
767     splx(s);
768 
769     /* Adjust numvifs up if the vifi is higher than numvifs */
770     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
771 
772     if (mrtdebug)
773 	log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
774 	    vifcp->vifc_vifi,
775 	    ntohl(vifcp->vifc_lcl_addr.s_addr),
776 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
777 	    ntohl(vifcp->vifc_rmt_addr.s_addr),
778 	    vifcp->vifc_threshold,
779 	    vifcp->vifc_rate_limit);
780 
781     return 0;
782 }
783 
784 /*
785  * Delete a vif from the vif table
786  */
787 static int
788 del_vif(vifip)
789     vifi_t *vifip;
790 {
791     register struct vif *vifp = viftable + *vifip;
792     register vifi_t vifi;
793     register struct mbuf *m;
794     struct ifnet *ifp;
795     struct ifreq ifr;
796     int s;
797 
798     if (*vifip >= numvifs) return EINVAL;
799     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
800 
801     s = splnet();
802 
803     if (!(vifp->v_flags & VIFF_TUNNEL)) {
804 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
805 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
806 	ifp = vifp->v_ifp;
807 	(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
808     }
809 
810     if (vifp == last_encap_vif) {
811 	last_encap_vif = 0;
812 	last_encap_src = 0;
813     }
814 
815     /*
816      * Free packets queued at the interface
817      */
818     while (vifp->v_tbf->tbf_q) {
819 	m = vifp->v_tbf->tbf_q;
820 	vifp->v_tbf->tbf_q = m->m_act;
821 	m_freem(m);
822     }
823 
824     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
825     bzero((caddr_t)vifp, sizeof (*vifp));
826 
827     /* Adjust numvifs down */
828     for (vifi = numvifs; vifi > 0; vifi--)
829 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
830     numvifs = vifi;
831 
832     splx(s);
833 
834     if (mrtdebug)
835       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
836 
837     return 0;
838 }
839 
840 /*
841  * Add an mfc entry
842  */
843 static int
844 add_mfc(mfccp)
845     struct mfcctl *mfccp;
846 {
847     struct mfc *rt;
848     register struct mbuf *mb_rt;
849     u_long hash;
850     struct mbuf *mb_ntry;
851     struct rtdetq *rte;
852     register u_short nstl;
853     int s;
854     int i;
855 
856     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
857 
858     /* If an entry already exists, just update the fields */
859     if (rt) {
860 	if (mrtdebug & DEBUG_MFC)
861 	    log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
862 		ntohl(mfccp->mfcc_origin.s_addr),
863 		ntohl(mfccp->mfcc_mcastgrp.s_addr),
864 		mfccp->mfcc_parent);
865 
866 	s = splnet();
867 	rt->mfc_parent = mfccp->mfcc_parent;
868 	for (i = 0; i < numvifs; i++)
869 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
870 	splx(s);
871 	return 0;
872     }
873 
874     /*
875      * Find the entry for which the upcall was made and update
876      */
877     s = splnet();
878     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
879     for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
880 
881 	rt = mtod(mb_rt, struct mfc *);
882 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
883 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
884 	    (mb_rt->m_act != NULL)) {
885 
886 	    if (nstl++)
887 		log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
888 		    "multiple kernel entries",
889 		    ntohl(mfccp->mfcc_origin.s_addr),
890 		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
891 		    mfccp->mfcc_parent, mb_rt->m_act);
892 
893 	    if (mrtdebug & DEBUG_MFC)
894 		log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
895 		    ntohl(mfccp->mfcc_origin.s_addr),
896 		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
897 		    mfccp->mfcc_parent, mb_rt->m_act);
898 
899 	    rt->mfc_origin     = mfccp->mfcc_origin;
900 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
901 	    rt->mfc_parent     = mfccp->mfcc_parent;
902 	    for (i = 0; i < numvifs; i++)
903 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
904 	    /* initialize pkt counters per src-grp */
905 	    rt->mfc_pkt_cnt    = 0;
906 	    rt->mfc_byte_cnt   = 0;
907 	    rt->mfc_wrong_if   = 0;
908 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
909 
910 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
911 	    nexpire[hash]--;
912 
913 	    /* free packets Qed at the end of this entry */
914 	    while (mb_rt->m_act) {
915 		mb_ntry = mb_rt->m_act;
916 		rte = mtod(mb_ntry, struct rtdetq *);
917 /* #ifdef RSVP_ISI */
918 		ip_mdq(rte->m, rte->ifp, rt, -1);
919 /* #endif */
920 		mb_rt->m_act = mb_ntry->m_act;
921 		m_freem(rte->m);
922 #ifdef UPCALL_TIMING
923 		collate(&(rte->t));
924 #endif /* UPCALL_TIMING */
925 		m_free(mb_ntry);
926 	    }
927 	}
928     }
929 
930     /*
931      * It is possible that an entry is being inserted without an upcall
932      */
933     if (nstl == 0) {
934 	if (mrtdebug & DEBUG_MFC)
935 	    log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
936 		hash, ntohl(mfccp->mfcc_origin.s_addr),
937 		ntohl(mfccp->mfcc_mcastgrp.s_addr),
938 		mfccp->mfcc_parent);
939 
940 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
941 
942 	    rt = mtod(mb_rt, struct mfc *);
943 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
944 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
945 
946 		rt->mfc_origin     = mfccp->mfcc_origin;
947 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
948 		rt->mfc_parent     = mfccp->mfcc_parent;
949 		for (i = 0; i < numvifs; i++)
950 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
951 		/* initialize pkt counters per src-grp */
952 		rt->mfc_pkt_cnt    = 0;
953 		rt->mfc_byte_cnt   = 0;
954 		rt->mfc_wrong_if   = 0;
955 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
956 		if (rt->mfc_expire)
957 		    nexpire[hash]--;
958 		rt->mfc_expire	   = 0;
959 	    }
960 	}
961 	if (mb_rt == NULL) {
962 	    /* no upcall, so make a new entry */
963 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
964 	    if (mb_rt == NULL) {
965 		splx(s);
966 		return ENOBUFS;
967 	    }
968 
969 	    rt = mtod(mb_rt, struct mfc *);
970 
971 	    /* insert new entry at head of hash chain */
972 	    rt->mfc_origin     = mfccp->mfcc_origin;
973 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
974 	    rt->mfc_parent     = mfccp->mfcc_parent;
975 	    for (i = 0; i < numvifs; i++)
976 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
977 	    /* initialize pkt counters per src-grp */
978 	    rt->mfc_pkt_cnt    = 0;
979 	    rt->mfc_byte_cnt   = 0;
980 	    rt->mfc_wrong_if   = 0;
981 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
982 	    rt->mfc_expire     = 0;
983 
984 	    /* link into table */
985 	    mb_rt->m_next  = mfctable[hash];
986 	    mfctable[hash] = mb_rt;
987 	    mb_rt->m_act = NULL;
988 	}
989     }
990     splx(s);
991     return 0;
992 }
993 
994 #ifdef UPCALL_TIMING
995 /*
996  * collect delay statistics on the upcalls
997  */
998 static void collate(t)
999 register struct timeval *t;
1000 {
1001     register u_long d;
1002     register struct timeval tp;
1003     register u_long delta;
1004 
1005     GET_TIME(tp);
1006 
1007     if (TV_LT(*t, tp))
1008     {
1009 	TV_DELTA(tp, *t, delta);
1010 
1011 	d = delta >> 10;
1012 	if (d > 50)
1013 	    d = 50;
1014 
1015 	++upcall_data[d];
1016     }
1017 }
1018 #endif /* UPCALL_TIMING */
1019 
1020 /*
1021  * Delete an mfc entry
1022  */
1023 static int
1024 del_mfc(mfccp)
1025     struct mfcctl *mfccp;
1026 {
1027     struct in_addr 	origin;
1028     struct in_addr 	mcastgrp;
1029     struct mfc 		*rt;
1030     struct mbuf 	*mb_rt;
1031     struct mbuf 	**nptr;
1032     u_long 		hash;
1033     int s;
1034 
1035     origin = mfccp->mfcc_origin;
1036     mcastgrp = mfccp->mfcc_mcastgrp;
1037     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1038 
1039     if (mrtdebug & DEBUG_MFC)
1040 	log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1041 	    ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1042 
1043     s = splnet();
1044 
1045     nptr = &mfctable[hash];
1046     while ((mb_rt = *nptr) != NULL) {
1047         rt = mtod(mb_rt, struct mfc *);
1048 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1049 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1050 	    mb_rt->m_act == NULL)
1051 	    break;
1052 
1053 	nptr = &mb_rt->m_next;
1054     }
1055     if (mb_rt == NULL) {
1056 	splx(s);
1057 	return EADDRNOTAVAIL;
1058     }
1059 
1060     MFREE(mb_rt, *nptr);
1061 
1062     splx(s);
1063 
1064     return 0;
1065 }
1066 
1067 /*
1068  * Send a message to mrouted on the multicast routing socket
1069  */
1070 static int
1071 socket_send(s, mm, src)
1072 	struct socket *s;
1073 	struct mbuf *mm;
1074 	struct sockaddr_in *src;
1075 {
1076 	if (s) {
1077 		if (sbappendaddr(&s->so_rcv,
1078 				 (struct sockaddr *)src,
1079 				 mm, (struct mbuf *)0) != 0) {
1080 			sorwakeup(s);
1081 			return 0;
1082 		}
1083 	}
1084 	m_freem(mm);
1085 	return -1;
1086 }
1087 
1088 /*
1089  * IP multicast forwarding function. This function assumes that the packet
1090  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1091  * pointed to by "ifp", and the packet is to be relayed to other networks
1092  * that have members of the packet's destination IP multicast group.
1093  *
1094  * The packet is returned unscathed to the caller, unless it is
1095  * erroneous, in which case a non-zero return value tells the caller to
1096  * discard it.
1097  */
1098 
1099 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1100 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1101 
1102 static int
1103 X_ip_mforward(ip, ifp, m, imo)
1104     register struct ip *ip;
1105     struct ifnet *ifp;
1106     struct mbuf *m;
1107     struct ip_moptions *imo;
1108 {
1109     register struct mfc *rt = 0; /* XXX uninit warning */
1110     register u_char *ipoptions;
1111     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1112     static int srctun = 0;
1113     register struct mbuf *mm;
1114     int s;
1115     vifi_t vifi;
1116     struct vif *vifp;
1117 
1118     if (mrtdebug & DEBUG_FORWARD)
1119 	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1120 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1121 
1122     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1123 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1124 	/*
1125 	 * Packet arrived via a physical interface or
1126 	 * an encapsulated tunnel.
1127 	 */
1128     } else {
1129 	/*
1130 	 * Packet arrived through a source-route tunnel.
1131 	 * Source-route tunnels are no longer supported.
1132 	 */
1133 	if ((srctun++ % 1000) == 0)
1134 	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1135 		ntohl(ip->ip_src.s_addr));
1136 
1137 	return 1;
1138     }
1139 
1140     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1141 	if (ip->ip_ttl < 255)
1142 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1143 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1144 	    vifp = viftable + vifi;
1145 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1146 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1147 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1148 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1149 	}
1150 	return (ip_mdq(m, ifp, rt, vifi));
1151     }
1152     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1153 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1154 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1155 	if(!imo)
1156 		printf("In fact, no options were specified at all\n");
1157     }
1158 
1159     /*
1160      * Don't forward a packet with time-to-live of zero or one,
1161      * or a packet destined to a local-only group.
1162      */
1163     if (ip->ip_ttl <= 1 ||
1164 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1165 	return 0;
1166 
1167     /*
1168      * Determine forwarding vifs from the forwarding cache table
1169      */
1170     s = splnet();
1171     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1172 
1173     /* Entry exists, so forward if necessary */
1174     if (rt != NULL) {
1175 	splx(s);
1176 	return (ip_mdq(m, ifp, rt, -1));
1177     } else {
1178 	/*
1179 	 * If we don't have a route for packet's origin,
1180 	 * Make a copy of the packet &
1181 	 * send message to routing daemon
1182 	 */
1183 
1184 	register struct mbuf *mb_rt;
1185 	register struct mbuf *mb_ntry;
1186 	register struct mbuf *mb0;
1187 	register struct rtdetq *rte;
1188 	register struct mbuf *rte_m;
1189 	register u_long hash;
1190 	register int npkts;
1191 #ifdef UPCALL_TIMING
1192 	struct timeval tp;
1193 
1194 	GET_TIME(tp);
1195 #endif
1196 
1197 	mrtstat.mrts_no_route++;
1198 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1199 	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1200 		ntohl(ip->ip_src.s_addr),
1201 		ntohl(ip->ip_dst.s_addr));
1202 
1203 	/*
1204 	 * Allocate mbufs early so that we don't do extra work if we are
1205 	 * just going to fail anyway.
1206 	 */
1207 	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1208 	if (mb_ntry == NULL) {
1209 	    splx(s);
1210 	    return ENOBUFS;
1211 	}
1212 	mb0 = m_copy(m, 0, M_COPYALL);
1213 	if (mb0 == NULL) {
1214 	    m_free(mb_ntry);
1215 	    splx(s);
1216 	    return ENOBUFS;
1217 	}
1218 
1219 	/* is there an upcall waiting for this packet? */
1220 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1221 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1222 	    rt = mtod(mb_rt, struct mfc *);
1223 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1224 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1225 		(mb_rt->m_act != NULL))
1226 		break;
1227 	}
1228 
1229 	if (mb_rt == NULL) {
1230 	    int hlen = ip->ip_hl << 2;
1231 	    int i;
1232 	    struct igmpmsg *im;
1233 
1234 	    /* no upcall, so make a new entry */
1235 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1236 	    if (mb_rt == NULL) {
1237 		m_free(mb_ntry);
1238 		m_freem(mb0);
1239 		splx(s);
1240 		return ENOBUFS;
1241 	    }
1242 	    /* Make a copy of the header to send to the user level process */
1243 	    mm = m_copy(m, 0, hlen);
1244 	    if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1245 		mm = m_pullup(mm, hlen);
1246 	    if (mm == NULL) {
1247 		m_free(mb_ntry);
1248 		m_freem(mb0);
1249 		m_free(mb_rt);
1250 		splx(s);
1251 		return ENOBUFS;
1252 	    }
1253 
1254 	    /*
1255 	     * Send message to routing daemon to install
1256 	     * a route into the kernel table
1257 	     */
1258 	    k_igmpsrc.sin_addr = ip->ip_src;
1259 
1260 	    im = mtod(mm, struct igmpmsg *);
1261 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1262 	    im->im_mbz		= 0;
1263 
1264 	    mrtstat.mrts_upcalls++;
1265 
1266 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1267 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1268 		++mrtstat.mrts_upq_sockfull;
1269 		m_free(mb_ntry);
1270 		m_freem(mb0);
1271 		m_free(mb_rt);
1272 		splx(s);
1273 		return ENOBUFS;
1274 	    }
1275 
1276 	    rt = mtod(mb_rt, struct mfc *);
1277 
1278 	    /* insert new entry at head of hash chain */
1279 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1280 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1281 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1282 	    nexpire[hash]++;
1283 	    for (i = 0; i < numvifs; i++)
1284 		rt->mfc_ttls[i] = 0;
1285 	    rt->mfc_parent = -1;
1286 
1287 	    /* link into table */
1288 	    mb_rt->m_next  = mfctable[hash];
1289 	    mfctable[hash] = mb_rt;
1290 	    mb_rt->m_act = NULL;
1291 
1292 	    rte_m = mb_rt;
1293 	} else {
1294 	    /* determine if q has overflowed */
1295 	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1296 		npkts++;
1297 
1298 	    if (npkts > MAX_UPQ) {
1299 		mrtstat.mrts_upq_ovflw++;
1300 		m_free(mb_ntry);
1301 		m_freem(mb0);
1302 		splx(s);
1303 		return 0;
1304 	    }
1305 	}
1306 
1307 	mb_ntry->m_act = NULL;
1308 	rte = mtod(mb_ntry, struct rtdetq *);
1309 
1310 	rte->m 			= mb0;
1311 	rte->ifp 		= ifp;
1312 #ifdef UPCALL_TIMING
1313 	rte->t			= tp;
1314 #endif
1315 
1316 	/* Add this entry to the end of the queue */
1317 	rte_m->m_act		= mb_ntry;
1318 
1319 	splx(s);
1320 
1321 	return 0;
1322     }
1323 }
1324 
1325 #ifndef MROUTE_LKM
1326 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1327 		   struct ip_moptions *) = X_ip_mforward;
1328 #endif
1329 
1330 /*
1331  * Clean up the cache entry if upcall is not serviced
1332  */
1333 static void
1334 expire_upcalls(void *unused)
1335 {
1336     struct mbuf *mb_rt, *m, **nptr;
1337     struct rtdetq *rte;
1338     struct mfc *mfc;
1339     int i;
1340     int s;
1341 
1342     s = splnet();
1343     for (i = 0; i < MFCTBLSIZ; i++) {
1344 	if (nexpire[i] == 0)
1345 	    continue;
1346 	nptr = &mfctable[i];
1347 	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1348 	    mfc = mtod(mb_rt, struct mfc *);
1349 
1350 	    /*
1351 	     * Skip real cache entries
1352 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1353 	     * If it expires now
1354 	     */
1355 	    if (mb_rt->m_act != NULL &&
1356 	        mfc->mfc_expire != 0 &&
1357 		--mfc->mfc_expire == 0) {
1358 		if (mrtdebug & DEBUG_EXPIRE)
1359 		    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1360 			ntohl(mfc->mfc_origin.s_addr),
1361 			ntohl(mfc->mfc_mcastgrp.s_addr));
1362 		/*
1363 		 * drop all the packets
1364 		 * free the mbuf with the pkt, if, timing info
1365 		 */
1366 		while (mb_rt->m_act) {
1367 		    m = mb_rt->m_act;
1368 		    mb_rt->m_act = m->m_act;
1369 
1370 		    rte = mtod(m, struct rtdetq *);
1371 		    m_freem(rte->m);
1372 		    m_free(m);
1373 		}
1374 		++mrtstat.mrts_cache_cleanups;
1375 		nexpire[i]--;
1376 
1377 		MFREE(mb_rt, *nptr);
1378 	    } else {
1379 		nptr = &mb_rt->m_next;
1380 	    }
1381 	}
1382     }
1383     splx(s);
1384     timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1385 }
1386 
1387 /*
1388  * Packet forwarding routine once entry in the cache is made
1389  */
1390 static int
1391 ip_mdq(m, ifp, rt, xmt_vif)
1392     register struct mbuf *m;
1393     register struct ifnet *ifp;
1394     register struct mfc *rt;
1395     register vifi_t xmt_vif;
1396 {
1397     register struct ip  *ip = mtod(m, struct ip *);
1398     register vifi_t vifi;
1399     register struct vif *vifp;
1400     register int plen = ntohs(ip->ip_len);
1401 
1402 /*
1403  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1404  * input, they shouldn't get counted on output, so statistics keeping is
1405  * seperate.
1406  */
1407 #define MC_SEND(ip,vifp,m) {                             \
1408                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1409                     encap_send((ip), (vifp), (m));       \
1410                 else                                     \
1411                     phyint_send((ip), (vifp), (m));      \
1412 }
1413 
1414     /*
1415      * If xmt_vif is not -1, send on only the requested vif.
1416      *
1417      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1418      */
1419     if (xmt_vif < numvifs) {
1420 	MC_SEND(ip, viftable + xmt_vif, m);
1421 	return 1;
1422     }
1423 
1424     /*
1425      * Don't forward if it didn't arrive from the parent vif for its origin.
1426      */
1427     vifi = rt->mfc_parent;
1428     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1429 	/* came in the wrong interface */
1430 	if (mrtdebug & DEBUG_FORWARD)
1431 	    log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1432 		ifp, vifi, viftable[vifi].v_ifp);
1433 	++mrtstat.mrts_wrong_if;
1434 	++rt->mfc_wrong_if;
1435 	/*
1436 	 * If we are doing PIM assert processing, and we are forwarding
1437 	 * packets on this interface, and it is a broadcast medium
1438 	 * interface (and not a tunnel), send a message to the routing daemon.
1439 	 */
1440 	if (pim_assert && rt->mfc_ttls[vifi] &&
1441 		(ifp->if_flags & IFF_BROADCAST) &&
1442 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1443 	    struct sockaddr_in k_igmpsrc;
1444 	    struct mbuf *mm;
1445 	    struct igmpmsg *im;
1446 	    int hlen = ip->ip_hl << 2;
1447 	    struct timeval now;
1448 	    register u_long delta;
1449 
1450 	    GET_TIME(now);
1451 
1452 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1453 
1454 	    if (delta > ASSERT_MSG_TIME) {
1455 		mm = m_copy(m, 0, hlen);
1456 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1457 		    mm = m_pullup(mm, hlen);
1458 		if (mm == NULL) {
1459 		    return ENOBUFS;
1460 		}
1461 
1462 		rt->mfc_last_assert = now;
1463 
1464 		im = mtod(mm, struct igmpmsg *);
1465 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1466 		im->im_mbz		= 0;
1467 		im->im_vif		= vifi;
1468 
1469 		k_igmpsrc.sin_addr = im->im_src;
1470 
1471 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1472 	    }
1473 	}
1474 	return 0;
1475     }
1476 
1477     /* If I sourced this packet, it counts as output, else it was input. */
1478     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1479 	viftable[vifi].v_pkt_out++;
1480 	viftable[vifi].v_bytes_out += plen;
1481     } else {
1482 	viftable[vifi].v_pkt_in++;
1483 	viftable[vifi].v_bytes_in += plen;
1484     }
1485     rt->mfc_pkt_cnt++;
1486     rt->mfc_byte_cnt += plen;
1487 
1488     /*
1489      * For each vif, decide if a copy of the packet should be forwarded.
1490      * Forward if:
1491      *		- the ttl exceeds the vif's threshold
1492      *		- there are group members downstream on interface
1493      */
1494     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1495 	if ((rt->mfc_ttls[vifi] > 0) &&
1496 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1497 	    vifp->v_pkt_out++;
1498 	    vifp->v_bytes_out += plen;
1499 	    MC_SEND(ip, vifp, m);
1500 	}
1501 
1502     return 0;
1503 }
1504 
1505 /*
1506  * check if a vif number is legal/ok. This is used by ip_output, to export
1507  * numvifs there,
1508  */
1509 static int
1510 X_legal_vif_num(vif)
1511     int vif;
1512 {
1513     if (vif >= 0 && vif < numvifs)
1514        return(1);
1515     else
1516        return(0);
1517 }
1518 
1519 #ifndef MROUTE_LKM
1520 int (*legal_vif_num)(int) = X_legal_vif_num;
1521 #endif
1522 
1523 /*
1524  * Return the local address used by this vif
1525  */
1526 static u_long
1527 X_ip_mcast_src(vifi)
1528     int vifi;
1529 {
1530     if (vifi >= 0 && vifi < numvifs)
1531 	return viftable[vifi].v_lcl_addr.s_addr;
1532     else
1533 	return INADDR_ANY;
1534 }
1535 
1536 #ifndef MROUTE_LKM
1537 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1538 #endif
1539 
1540 static void
1541 phyint_send(ip, vifp, m)
1542     struct ip *ip;
1543     struct vif *vifp;
1544     struct mbuf *m;
1545 {
1546     register struct mbuf *mb_copy;
1547     register int hlen = ip->ip_hl << 2;
1548 
1549     /*
1550      * Make a new reference to the packet; make sure that
1551      * the IP header is actually copied, not just referenced,
1552      * so that ip_output() only scribbles on the copy.
1553      */
1554     mb_copy = m_copy(m, 0, M_COPYALL);
1555     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1556 	mb_copy = m_pullup(mb_copy, hlen);
1557     if (mb_copy == NULL)
1558 	return;
1559 
1560     if (vifp->v_rate_limit <= 0)
1561 	tbf_send_packet(vifp, mb_copy);
1562     else
1563 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1564 }
1565 
1566 static void
1567 encap_send(ip, vifp, m)
1568     register struct ip *ip;
1569     register struct vif *vifp;
1570     register struct mbuf *m;
1571 {
1572     register struct mbuf *mb_copy;
1573     register struct ip *ip_copy;
1574     register int i, len = ip->ip_len;
1575 
1576     /*
1577      * copy the old packet & pullup it's IP header into the
1578      * new mbuf so we can modify it.  Try to fill the new
1579      * mbuf since if we don't the ethernet driver will.
1580      */
1581     MGET(mb_copy, M_DONTWAIT, MT_DATA);
1582     if (mb_copy == NULL)
1583 	return;
1584     mb_copy->m_data += 16;
1585     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1586 
1587     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1588 	m_freem(mb_copy);
1589 	return;
1590     }
1591     i = MHLEN - M_LEADINGSPACE(mb_copy);
1592     if (i > len)
1593 	i = len;
1594     mb_copy = m_pullup(mb_copy, i);
1595     if (mb_copy == NULL)
1596 	return;
1597     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1598 
1599     /*
1600      * fill in the encapsulating IP header.
1601      */
1602     ip_copy = mtod(mb_copy, struct ip *);
1603     *ip_copy = multicast_encap_iphdr;
1604     ip_copy->ip_id = htons(ip_id++);
1605     ip_copy->ip_len += len;
1606     ip_copy->ip_src = vifp->v_lcl_addr;
1607     ip_copy->ip_dst = vifp->v_rmt_addr;
1608 
1609     /*
1610      * turn the encapsulated IP header back into a valid one.
1611      */
1612     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1613     --ip->ip_ttl;
1614     HTONS(ip->ip_len);
1615     HTONS(ip->ip_off);
1616     ip->ip_sum = 0;
1617 #if defined(LBL) && !defined(ultrix)
1618     ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1619 #else
1620     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1621     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1622     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1623 #endif
1624 
1625     if (vifp->v_rate_limit <= 0)
1626 	tbf_send_packet(vifp, mb_copy);
1627     else
1628 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1629 }
1630 
1631 /*
1632  * De-encapsulate a packet and feed it back through ip input (this
1633  * routine is called whenever IP gets a packet with proto type
1634  * ENCAP_PROTO and a local destination address).
1635  */
1636 void
1637 #ifdef MROUTE_LKM
1638 X_ipip_input(m)
1639 #else
1640 ipip_input(m, iphlen)
1641 #endif
1642 	register struct mbuf *m;
1643 	int iphlen;
1644 {
1645     struct ifnet *ifp = m->m_pkthdr.rcvif;
1646     register struct ip *ip = mtod(m, struct ip *);
1647     register int hlen = ip->ip_hl << 2;
1648     register int s;
1649     register struct ifqueue *ifq;
1650     register struct vif *vifp;
1651 
1652     if (!have_encap_tunnel) {
1653 	    rip_input(m);
1654 	    return;
1655     }
1656     /*
1657      * dump the packet if it's not to a multicast destination or if
1658      * we don't have an encapsulating tunnel with the source.
1659      * Note:  This code assumes that the remote site IP address
1660      * uniquely identifies the tunnel (i.e., that this site has
1661      * at most one tunnel with the remote site).
1662      */
1663     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1664 	++mrtstat.mrts_bad_tunnel;
1665 	m_freem(m);
1666 	return;
1667     }
1668     if (ip->ip_src.s_addr != last_encap_src) {
1669 	register struct vif *vife;
1670 
1671 	vifp = viftable;
1672 	vife = vifp + numvifs;
1673 	last_encap_src = ip->ip_src.s_addr;
1674 	last_encap_vif = 0;
1675 	for ( ; vifp < vife; ++vifp)
1676 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1677 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1678 		    == VIFF_TUNNEL)
1679 		    last_encap_vif = vifp;
1680 		break;
1681 	    }
1682     }
1683     if ((vifp = last_encap_vif) == 0) {
1684 	last_encap_src = 0;
1685 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1686 	m_freem(m);
1687 	if (mrtdebug)
1688           log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1689 		ntohl(ip->ip_src.s_addr));
1690 	return;
1691     }
1692     ifp = vifp->v_ifp;
1693 
1694     if (hlen > IP_HDR_LEN)
1695       ip_stripoptions(m, (struct mbuf *) 0);
1696     m->m_data += IP_HDR_LEN;
1697     m->m_len -= IP_HDR_LEN;
1698     m->m_pkthdr.len -= IP_HDR_LEN;
1699     m->m_pkthdr.rcvif = ifp;
1700 
1701     ifq = &ipintrq;
1702     s = splimp();
1703     if (IF_QFULL(ifq)) {
1704 	IF_DROP(ifq);
1705 	m_freem(m);
1706     } else {
1707 	IF_ENQUEUE(ifq, m);
1708 	/*
1709 	 * normally we would need a "schednetisr(NETISR_IP)"
1710 	 * here but we were called by ip_input and it is going
1711 	 * to loop back & try to dequeue the packet we just
1712 	 * queued as soon as we return so we avoid the
1713 	 * unnecessary software interrrupt.
1714 	 */
1715     }
1716     splx(s);
1717 }
1718 
1719 /*
1720  * Token bucket filter module
1721  */
1722 
1723 static void
1724 tbf_control(vifp, m, ip, p_len)
1725 	register struct vif *vifp;
1726 	register struct mbuf *m;
1727 	register struct ip *ip;
1728 	register u_long p_len;
1729 {
1730     register struct tbf *t = vifp->v_tbf;
1731 
1732     if (p_len > MAX_BKT_SIZE) {
1733 	/* drop if packet is too large */
1734 	mrtstat.mrts_pkt2large++;
1735 	m_freem(m);
1736 	return;
1737     }
1738 
1739     tbf_update_tokens(vifp);
1740 
1741     /* if there are enough tokens,
1742      * and the queue is empty,
1743      * send this packet out
1744      */
1745 
1746     if (t->tbf_q_len == 0) {
1747 	/* queue empty, send packet if enough tokens */
1748 	if (p_len <= t->tbf_n_tok) {
1749 	    t->tbf_n_tok -= p_len;
1750 	    tbf_send_packet(vifp, m);
1751 	} else {
1752 	    /* queue packet and timeout till later */
1753 	    tbf_queue(vifp, m);
1754 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1755 	}
1756     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1757 	/* finite queue length, so queue pkts and process queue */
1758 	tbf_queue(vifp, m);
1759 	tbf_process_q(vifp);
1760     } else {
1761 	/* queue length too much, try to dq and queue and process */
1762 	if (!tbf_dq_sel(vifp, ip)) {
1763 	    mrtstat.mrts_q_overflow++;
1764 	    m_freem(m);
1765 	    return;
1766 	} else {
1767 	    tbf_queue(vifp, m);
1768 	    tbf_process_q(vifp);
1769 	}
1770     }
1771     return;
1772 }
1773 
1774 /*
1775  * adds a packet to the queue at the interface
1776  */
1777 static void
1778 tbf_queue(vifp, m)
1779 	register struct vif *vifp;
1780 	register struct mbuf *m;
1781 {
1782     register int s = splnet();
1783     register struct tbf *t = vifp->v_tbf;
1784 
1785     if (t->tbf_t == NULL) {
1786 	/* Queue was empty */
1787 	t->tbf_q = m;
1788     } else {
1789 	/* Insert at tail */
1790 	t->tbf_t->m_act = m;
1791     }
1792 
1793     /* Set new tail pointer */
1794     t->tbf_t = m;
1795 
1796 #ifdef DIAGNOSTIC
1797     /* Make sure we didn't get fed a bogus mbuf */
1798     if (m->m_act)
1799 	panic("tbf_queue: m_act");
1800 #endif
1801     m->m_act = NULL;
1802 
1803     t->tbf_q_len++;
1804 
1805     splx(s);
1806 }
1807 
1808 
1809 /*
1810  * processes the queue at the interface
1811  */
1812 static void
1813 tbf_process_q(vifp)
1814     register struct vif *vifp;
1815 {
1816     register struct mbuf *m;
1817     register int len;
1818     register int s = splnet();
1819     register struct tbf *t = vifp->v_tbf;
1820 
1821     /* loop through the queue at the interface and send as many packets
1822      * as possible
1823      */
1824     while (t->tbf_q_len > 0) {
1825 	m = t->tbf_q;
1826 
1827 	len = mtod(m, struct ip *)->ip_len;
1828 
1829 	/* determine if the packet can be sent */
1830 	if (len <= t->tbf_n_tok) {
1831 	    /* if so,
1832 	     * reduce no of tokens, dequeue the packet,
1833 	     * send the packet.
1834 	     */
1835 	    t->tbf_n_tok -= len;
1836 
1837 	    t->tbf_q = m->m_act;
1838 	    if (--t->tbf_q_len == 0)
1839 		t->tbf_t = NULL;
1840 
1841 	    m->m_act = NULL;
1842 	    tbf_send_packet(vifp, m);
1843 
1844 	} else break;
1845     }
1846     splx(s);
1847 }
1848 
1849 static void
1850 tbf_reprocess_q(xvifp)
1851 	void *xvifp;
1852 {
1853     register struct vif *vifp = xvifp;
1854     if (ip_mrouter == NULL)
1855 	return;
1856 
1857     tbf_update_tokens(vifp);
1858 
1859     tbf_process_q(vifp);
1860 
1861     if (vifp->v_tbf->tbf_q_len)
1862 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1863 }
1864 
1865 /* function that will selectively discard a member of the queue
1866  * based on the precedence value and the priority
1867  */
1868 static int
1869 tbf_dq_sel(vifp, ip)
1870     register struct vif *vifp;
1871     register struct ip *ip;
1872 {
1873     register int s = splnet();
1874     register u_int p;
1875     register struct mbuf *m, *last;
1876     register struct mbuf **np;
1877     register struct tbf *t = vifp->v_tbf;
1878 
1879     p = priority(vifp, ip);
1880 
1881     np = &t->tbf_q;
1882     last = NULL;
1883     while ((m = *np) != NULL) {
1884 	if (p > priority(vifp, mtod(m, struct ip *))) {
1885 	    *np = m->m_act;
1886 	    /* If we're removing the last packet, fix the tail pointer */
1887 	    if (m == t->tbf_t)
1888 		t->tbf_t = last;
1889 	    m_freem(m);
1890 	    /* it's impossible for the queue to be empty, but
1891 	     * we check anyway. */
1892 	    if (--t->tbf_q_len == 0)
1893 		t->tbf_t = NULL;
1894 	    splx(s);
1895 	    mrtstat.mrts_drop_sel++;
1896 	    return(1);
1897 	}
1898 	np = &m->m_act;
1899 	last = m;
1900     }
1901     splx(s);
1902     return(0);
1903 }
1904 
1905 static void
1906 tbf_send_packet(vifp, m)
1907     register struct vif *vifp;
1908     register struct mbuf *m;
1909 {
1910     struct ip_moptions imo;
1911     int error;
1912     int s = splnet();
1913 
1914     if (vifp->v_flags & VIFF_TUNNEL) {
1915 	/* If tunnel options */
1916 	ip_output(m, (struct mbuf *)0, (struct route *)0,
1917 		  IP_FORWARDING, (struct ip_moptions *)0);
1918     } else {
1919 	imo.imo_multicast_ifp  = vifp->v_ifp;
1920 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1921 	imo.imo_multicast_loop = 1;
1922 	imo.imo_multicast_vif  = -1;
1923 
1924 	error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1925 			  IP_FORWARDING, &imo);
1926 
1927 	if (mrtdebug & DEBUG_XMIT)
1928 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1929 		vifp - viftable, error);
1930     }
1931     splx(s);
1932 }
1933 
1934 /* determine the current time and then
1935  * the elapsed time (between the last time and time now)
1936  * in milliseconds & update the no. of tokens in the bucket
1937  */
1938 static void
1939 tbf_update_tokens(vifp)
1940     register struct vif *vifp;
1941 {
1942     struct timeval tp;
1943     register u_long tm;
1944     register int s = splnet();
1945     register struct tbf *t = vifp->v_tbf;
1946 
1947     GET_TIME(tp);
1948 
1949     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1950 
1951     /*
1952      * This formula is actually
1953      * "time in seconds" * "bytes/second".
1954      *
1955      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1956      *
1957      * The (1000/1024) was introduced in add_vif to optimize
1958      * this divide into a shift.
1959      */
1960     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1961     t->tbf_last_pkt_t = tp;
1962 
1963     if (t->tbf_n_tok > MAX_BKT_SIZE)
1964 	t->tbf_n_tok = MAX_BKT_SIZE;
1965 
1966     splx(s);
1967 }
1968 
1969 static int
1970 priority(vifp, ip)
1971     register struct vif *vifp;
1972     register struct ip *ip;
1973 {
1974     register int prio;
1975 
1976     /* temporary hack; may add general packet classifier some day */
1977 
1978     /*
1979      * The UDP port space is divided up into four priority ranges:
1980      * [0, 16384)     : unclassified - lowest priority
1981      * [16384, 32768) : audio - highest priority
1982      * [32768, 49152) : whiteboard - medium priority
1983      * [49152, 65536) : video - low priority
1984      */
1985     if (ip->ip_p == IPPROTO_UDP) {
1986 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1987 	switch (ntohs(udp->uh_dport) & 0xc000) {
1988 	    case 0x4000:
1989 		prio = 70;
1990 		break;
1991 	    case 0x8000:
1992 		prio = 60;
1993 		break;
1994 	    case 0xc000:
1995 		prio = 55;
1996 		break;
1997 	    default:
1998 		prio = 50;
1999 		break;
2000 	}
2001 	if (tbfdebug > 1)
2002 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2003     } else {
2004 	    prio = 50;
2005     }
2006     return prio;
2007 }
2008 
2009 /*
2010  * End of token bucket filter modifications
2011  */
2012 
2013 int
2014 ip_rsvp_vif_init(so, m)
2015     struct socket *so;
2016     struct mbuf *m;
2017 {
2018     int i;
2019     register int s;
2020 
2021     if (rsvpdebug)
2022 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2023 	       so->so_type, so->so_proto->pr_protocol);
2024 
2025     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2026 	return EOPNOTSUPP;
2027 
2028     /* Check mbuf. */
2029     if (m == NULL || m->m_len != sizeof(int)) {
2030 	return EINVAL;
2031     }
2032     i = *(mtod(m, int *));
2033 
2034     if (rsvpdebug)
2035 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2036 
2037     s = splnet();
2038 
2039     /* Check vif. */
2040     if (!legal_vif_num(i)) {
2041 	splx(s);
2042 	return EADDRNOTAVAIL;
2043     }
2044 
2045     /* Check if socket is available. */
2046     if (viftable[i].v_rsvpd != NULL) {
2047 	splx(s);
2048 	return EADDRINUSE;
2049     }
2050 
2051     viftable[i].v_rsvpd = so;
2052     /* This may seem silly, but we need to be sure we don't over-increment
2053      * the RSVP counter, in case something slips up.
2054      */
2055     if (!viftable[i].v_rsvp_on) {
2056 	viftable[i].v_rsvp_on = 1;
2057 	rsvp_on++;
2058     }
2059 
2060     splx(s);
2061     return 0;
2062 }
2063 
2064 int
2065 ip_rsvp_vif_done(so, m)
2066     struct socket *so;
2067     struct mbuf *m;
2068 {
2069 	int i;
2070 	register int s;
2071 
2072     if (rsvpdebug)
2073 	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2074 	       so->so_type, so->so_proto->pr_protocol);
2075 
2076     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2077 	return EOPNOTSUPP;
2078 
2079     /* Check mbuf. */
2080     if (m == NULL || m->m_len != sizeof(int)) {
2081 	    return EINVAL;
2082     }
2083     i = *(mtod(m, int *));
2084 
2085     s = splnet();
2086 
2087     /* Check vif. */
2088     if (!legal_vif_num(i)) {
2089 	splx(s);
2090         return EADDRNOTAVAIL;
2091     }
2092 
2093     if (rsvpdebug)
2094 	printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2095 	       viftable[i].v_rsvpd, so);
2096 
2097     viftable[i].v_rsvpd = NULL;
2098     /* This may seem silly, but we need to be sure we don't over-decrement
2099      * the RSVP counter, in case something slips up.
2100      */
2101     if (viftable[i].v_rsvp_on) {
2102 	viftable[i].v_rsvp_on = 0;
2103 	rsvp_on--;
2104     }
2105 
2106     splx(s);
2107     return 0;
2108 }
2109 
2110 void
2111 ip_rsvp_force_done(so)
2112     struct socket *so;
2113 {
2114     int vifi;
2115     register int s;
2116 
2117     /* Don't bother if it is not the right type of socket. */
2118     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2119 	return;
2120 
2121     s = splnet();
2122 
2123     /* The socket may be attached to more than one vif...this
2124      * is perfectly legal.
2125      */
2126     for (vifi = 0; vifi < numvifs; vifi++) {
2127 	if (viftable[vifi].v_rsvpd == so) {
2128 	    viftable[vifi].v_rsvpd = NULL;
2129 	    /* This may seem silly, but we need to be sure we don't
2130 	     * over-decrement the RSVP counter, in case something slips up.
2131 	     */
2132 	    if (viftable[vifi].v_rsvp_on) {
2133 		viftable[vifi].v_rsvp_on = 0;
2134 		rsvp_on--;
2135 	    }
2136 	}
2137     }
2138 
2139     splx(s);
2140     return;
2141 }
2142 
2143 void
2144 rsvp_input(m, iphlen)
2145 	struct mbuf *m;
2146 	int iphlen;
2147 {
2148     int vifi;
2149     register struct ip *ip = mtod(m, struct ip *);
2150     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2151     register int s;
2152     struct ifnet *ifp;
2153 
2154     if (rsvpdebug)
2155 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2156 
2157     /* Can still get packets with rsvp_on = 0 if there is a local member
2158      * of the group to which the RSVP packet is addressed.  But in this
2159      * case we want to throw the packet away.
2160      */
2161     if (!rsvp_on) {
2162 	m_freem(m);
2163 	return;
2164     }
2165 
2166     /* If the old-style non-vif-associated socket is set, then use
2167      * it and ignore the new ones.
2168      */
2169     if (ip_rsvpd != NULL) {
2170 	if (rsvpdebug)
2171 	    printf("rsvp_input: Sending packet up old-style socket\n");
2172 	rip_input(m);
2173 	return;
2174     }
2175 
2176     s = splnet();
2177 
2178     if (rsvpdebug)
2179 	printf("rsvp_input: check vifs\n");
2180 
2181 #ifdef DIAGNOSTIC
2182     if (!(m->m_flags & M_PKTHDR))
2183 	    panic("rsvp_input no hdr");
2184 #endif
2185 
2186     ifp = m->m_pkthdr.rcvif;
2187     /* Find which vif the packet arrived on. */
2188     for (vifi = 0; vifi < numvifs; vifi++) {
2189 	if (viftable[vifi].v_ifp == ifp)
2190  		break;
2191  	}
2192 
2193     if (vifi == numvifs) {
2194 	/* Can't find vif packet arrived on. Drop packet. */
2195 	if (rsvpdebug)
2196 	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2197 	m_freem(m);
2198 	splx(s);
2199 	return;
2200     }
2201 
2202     if (rsvpdebug)
2203 	printf("rsvp_input: check socket\n");
2204 
2205     if (viftable[vifi].v_rsvpd == NULL) {
2206 	/* drop packet, since there is no specific socket for this
2207 	 * interface */
2208 	    if (rsvpdebug)
2209 		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2210 	    m_freem(m);
2211 	    splx(s);
2212 	    return;
2213     }
2214     rsvp_src.sin_addr = ip->ip_src;
2215 
2216     if (rsvpdebug && m)
2217 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2218 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2219 
2220     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2221 	if (rsvpdebug)
2222 	    printf("rsvp_input: Failed to append to socket\n");
2223     else
2224 	if (rsvpdebug)
2225 	    printf("rsvp_input: send packet up\n");
2226 
2227     splx(s);
2228 }
2229 
2230 #ifdef MROUTE_LKM
2231 #include <sys/conf.h>
2232 #include <sys/exec.h>
2233 #include <sys/sysent.h>
2234 #include <sys/lkm.h>
2235 
2236 MOD_MISC("ip_mroute_mod")
2237 
2238 static int
2239 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2240 {
2241 	int i;
2242 	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2243 	int err = 0;
2244 
2245 	switch(cmd) {
2246 		static int (*old_ip_mrouter_cmd)();
2247 		static int (*old_ip_mrouter_done)();
2248 		static int (*old_ip_mforward)();
2249 		static int (*old_mrt_ioctl)();
2250 		static void (*old_proto4_input)();
2251 		static int (*old_legal_vif_num)();
2252 		extern struct protosw inetsw[];
2253 
2254 	case LKM_E_LOAD:
2255 		if(lkmexists(lkmtp) || ip_mrtproto)
2256 		  return(EEXIST);
2257 		old_ip_mrouter_cmd = ip_mrouter_cmd;
2258 		ip_mrouter_cmd = X_ip_mrouter_cmd;
2259 		old_ip_mrouter_done = ip_mrouter_done;
2260 		ip_mrouter_done = X_ip_mrouter_done;
2261 		old_ip_mforward = ip_mforward;
2262 		ip_mforward = X_ip_mforward;
2263 		old_mrt_ioctl = mrt_ioctl;
2264 		mrt_ioctl = X_mrt_ioctl;
2265               old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2266               inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2267 		old_legal_vif_num = legal_vif_num;
2268 		legal_vif_num = X_legal_vif_num;
2269 		ip_mrtproto = IGMP_DVMRP;
2270 
2271 		printf("\nIP multicast routing loaded\n");
2272 		break;
2273 
2274 	case LKM_E_UNLOAD:
2275 		if (ip_mrouter)
2276 		  return EINVAL;
2277 
2278 		ip_mrouter_cmd = old_ip_mrouter_cmd;
2279 		ip_mrouter_done = old_ip_mrouter_done;
2280 		ip_mforward = old_ip_mforward;
2281 		mrt_ioctl = old_mrt_ioctl;
2282               inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2283 		legal_vif_num = old_legal_vif_num;
2284 		ip_mrtproto = 0;
2285 		break;
2286 
2287 	default:
2288 		err = EINVAL;
2289 		break;
2290 	}
2291 
2292 	return(err);
2293 }
2294 
2295 int
2296 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2297 	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2298 		 nosys);
2299 }
2300 
2301 #endif /* MROUTE_LKM */
2302 #endif /* MROUTING */
2303