xref: /freebsd/sys/netinet/ip_mroute.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $FreeBSD$
13  */
14 
15 #include "opt_mrouting.h"
16 #include "opt_random_ip_id.h"
17 
18 #include <sys/param.h>
19 #include <sys/kernel.h>
20 #include <sys/lock.h>
21 #include <sys/malloc.h>
22 #include <sys/mbuf.h>
23 #include <sys/protosw.h>
24 #include <sys/signalvar.h>
25 #include <sys/socket.h>
26 #include <sys/socketvar.h>
27 #include <sys/sockio.h>
28 #include <sys/sx.h>
29 #include <sys/sysctl.h>
30 #include <sys/syslog.h>
31 #include <sys/systm.h>
32 #include <sys/time.h>
33 #include <net/if.h>
34 #include <net/route.h>
35 #include <netinet/in.h>
36 #include <netinet/igmp.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/in_var.h>
39 #include <netinet/ip.h>
40 #include <netinet/ip_encap.h>
41 #include <netinet/ip_mroute.h>
42 #include <netinet/ip_var.h>
43 #include <netinet/udp.h>
44 #include <machine/in_cksum.h>
45 
46 #ifndef MROUTING
47 extern u_long	_ip_mcast_src(int vifi);
48 extern int	_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
49 		    struct ip_moptions *imo);
50 extern int	_ip_mrouter_done(void);
51 extern int	_ip_mrouter_get(struct socket *so, struct sockopt *sopt);
52 extern int	_ip_mrouter_set(struct socket *so, struct sockopt *sopt);
53 extern int	_mrt_ioctl(int req, caddr_t data);
54 
55 /*
56  * Dummy routines and globals used when multicast routing is not compiled in.
57  */
58 
59 struct socket  *ip_mrouter  = NULL;
60 u_int		rsvpdebug = 0;
61 
62 int
63 _ip_mrouter_set(so, sopt)
64 	struct socket *so;
65 	struct sockopt *sopt;
66 {
67 	return(EOPNOTSUPP);
68 }
69 
70 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
71 
72 
73 int
74 _ip_mrouter_get(so, sopt)
75 	struct socket *so;
76 	struct sockopt *sopt;
77 {
78 	return(EOPNOTSUPP);
79 }
80 
81 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
82 
83 int
84 _ip_mrouter_done()
85 {
86 	return(0);
87 }
88 
89 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
90 
91 int
92 _ip_mforward(ip, ifp, m, imo)
93 	struct ip *ip;
94 	struct ifnet *ifp;
95 	struct mbuf *m;
96 	struct ip_moptions *imo;
97 {
98 	return(0);
99 }
100 
101 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
102 		   struct ip_moptions *) = _ip_mforward;
103 
104 int
105 _mrt_ioctl(int req, caddr_t data)
106 {
107 	return EOPNOTSUPP;
108 }
109 
110 int (*mrt_ioctl)(int, caddr_t) = _mrt_ioctl;
111 
112 void
113 rsvp_input(m, off)		/* XXX must fixup manually */
114 	struct mbuf *m;
115 	int off;
116 {
117     /* Can still get packets with rsvp_on = 0 if there is a local member
118      * of the group to which the RSVP packet is addressed.  But in this
119      * case we want to throw the packet away.
120      */
121     if (!rsvp_on) {
122 	m_freem(m);
123 	return;
124     }
125 
126     if (ip_rsvpd != NULL) {
127 	if (rsvpdebug)
128 	    printf("rsvp_input: Sending packet up old-style socket\n");
129 	rip_input(m, off);
130 	return;
131     }
132     /* Drop the packet */
133     m_freem(m);
134 }
135 
136 int (*legal_vif_num)(int) = 0;
137 
138 /*
139  * This should never be called, since IP_MULTICAST_VIF should fail, but
140  * just in case it does get called, the code a little lower in ip_output
141  * will assign the packet a local address.
142  */
143 u_long
144 _ip_mcast_src(int vifi) { return INADDR_ANY; }
145 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
146 
147 int
148 ip_rsvp_vif_init(so, sopt)
149     struct socket *so;
150     struct sockopt *sopt;
151 {
152     return(EINVAL);
153 }
154 
155 int
156 ip_rsvp_vif_done(so, sopt)
157     struct socket *so;
158     struct sockopt *sopt;
159 {
160     return(EINVAL);
161 }
162 
163 void
164 ip_rsvp_force_done(so)
165     struct socket *so;
166 {
167     return;
168 }
169 
170 #else /* MROUTING */
171 
172 #define M_HASCL(m)	((m)->m_flags & M_EXT)
173 
174 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
175 
176 #ifndef MROUTE_KLD
177 /* The socket used to communicate with the multicast routing daemon.  */
178 struct socket  *ip_mrouter  = NULL;
179 #endif
180 
181 #if defined(MROUTING) || defined(MROUTE_KLD)
182 static struct mrtstat	mrtstat;
183 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
184     &mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
185 #endif
186 
187 static struct mfc	*mfctable[MFCTBLSIZ];
188 static u_char		nexpire[MFCTBLSIZ];
189 static struct vif	viftable[MAXVIFS];
190 static u_int	mrtdebug = 0;	  /* debug level 	*/
191 #define		DEBUG_MFC	0x02
192 #define		DEBUG_FORWARD	0x04
193 #define		DEBUG_EXPIRE	0x08
194 #define		DEBUG_XMIT	0x10
195 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
196 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
197 
198 static struct callout_handle expire_upcalls_ch;
199 
200 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
201 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
202 
203 /*
204  * Define the token bucket filter structures
205  * tbftable -> each vif has one of these for storing info
206  */
207 
208 static struct tbf tbftable[MAXVIFS];
209 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
210 
211 /*
212  * 'Interfaces' associated with decapsulator (so we can tell
213  * packets that went through it from ones that get reflected
214  * by a broken gateway).  These interfaces are never linked into
215  * the system ifnet list & no routes point to them.  I.e., packets
216  * can't be sent this way.  They only exist as a placeholder for
217  * multicast source verification.
218  */
219 static struct ifnet multicast_decap_if[MAXVIFS];
220 
221 #define ENCAP_TTL 64
222 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
223 
224 /* prototype IP hdr for encapsulated packets */
225 static struct ip multicast_encap_iphdr = {
226 #if BYTE_ORDER == LITTLE_ENDIAN
227 	sizeof(struct ip) >> 2, IPVERSION,
228 #else
229 	IPVERSION, sizeof(struct ip) >> 2,
230 #endif
231 	0,				/* tos */
232 	sizeof(struct ip),		/* total length */
233 	0,				/* id */
234 	0,				/* frag offset */
235 	ENCAP_TTL, ENCAP_PROTO,
236 	0,				/* checksum */
237 };
238 
239 /*
240  * Private variables.
241  */
242 static vifi_t	   numvifs = 0;
243 static const struct encaptab *encap_cookie = NULL;
244 
245 /*
246  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
247  * given a datagram's src ip address.
248  */
249 static u_long last_encap_src;
250 static struct vif *last_encap_vif;
251 
252 static u_long	X_ip_mcast_src(int vifi);
253 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo);
254 static int	X_ip_mrouter_done(void);
255 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
256 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
257 static int	X_legal_vif_num(int vif);
258 static int	X_mrt_ioctl(int cmd, caddr_t data);
259 
260 static int get_sg_cnt(struct sioc_sg_req *);
261 static int get_vif_cnt(struct sioc_vif_req *);
262 static int ip_mrouter_init(struct socket *, int);
263 static int add_vif(struct vifctl *);
264 static int del_vif(vifi_t);
265 static int add_mfc(struct mfcctl *);
266 static int del_mfc(struct mfcctl *);
267 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
268 static int set_assert(int);
269 static void expire_upcalls(void *);
270 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
271 		  vifi_t);
272 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
273 static void encap_send(struct ip *, struct vif *, struct mbuf *);
274 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
275 static void tbf_queue(struct vif *, struct mbuf *);
276 static void tbf_process_q(struct vif *);
277 static void tbf_reprocess_q(void *);
278 static int tbf_dq_sel(struct vif *, struct ip *);
279 static void tbf_send_packet(struct vif *, struct mbuf *);
280 static void tbf_update_tokens(struct vif *);
281 static int priority(struct vif *, struct ip *);
282 
283 /*
284  * whether or not special PIM assert processing is enabled.
285  */
286 static int pim_assert;
287 /*
288  * Rate limit for assert notification messages, in usec
289  */
290 #define ASSERT_MSG_TIME		3000000
291 
292 /*
293  * Hash function for a source, group entry
294  */
295 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
296 			((g) >> 20) ^ ((g) >> 10) ^ (g))
297 
298 /*
299  * Find a route for a given origin IP address and Multicast group address
300  * Type of service parameter to be added in the future!!!
301  */
302 
303 #define MFCFIND(o, g, rt) { \
304 	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
305 	rt = NULL; \
306 	++mrtstat.mrts_mfc_lookups; \
307 	while (_rt) { \
308 		if ((_rt->mfc_origin.s_addr == o) && \
309 		    (_rt->mfc_mcastgrp.s_addr == g) && \
310 		    (_rt->mfc_stall == NULL)) { \
311 			rt = _rt; \
312 			break; \
313 		} \
314 		_rt = _rt->mfc_next; \
315 	} \
316 	if (rt == NULL) { \
317 		++mrtstat.mrts_mfc_misses; \
318 	} \
319 }
320 
321 
322 /*
323  * Macros to compute elapsed time efficiently
324  * Borrowed from Van Jacobson's scheduling code
325  */
326 #define TV_DELTA(a, b, delta) { \
327 	    register int xxs; \
328 		\
329 	    delta = (a).tv_usec - (b).tv_usec; \
330 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
331 	       switch (xxs) { \
332 		      case 2: \
333 			  delta += 1000000; \
334 			      /* fall through */ \
335 		      case 1: \
336 			  delta += 1000000; \
337 			  break; \
338 		      default: \
339 			  delta += (1000000 * xxs); \
340 	       } \
341 	    } \
342 }
343 
344 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
345 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
346 
347 #ifdef UPCALL_TIMING
348 u_long upcall_data[51];
349 static void collate(struct timeval *);
350 #endif /* UPCALL_TIMING */
351 
352 
353 /*
354  * Handle MRT setsockopt commands to modify the multicast routing tables.
355  */
356 static int
357 X_ip_mrouter_set(so, sopt)
358 	struct socket *so;
359 	struct sockopt *sopt;
360 {
361 	int	error, optval;
362 	vifi_t	vifi;
363 	struct	vifctl vifc;
364 	struct	mfcctl mfc;
365 
366 	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
367 		return (EPERM);
368 
369 	error = 0;
370 	switch (sopt->sopt_name) {
371 	case MRT_INIT:
372 		error = sooptcopyin(sopt, &optval, sizeof optval,
373 				    sizeof optval);
374 		if (error)
375 			break;
376 		error = ip_mrouter_init(so, optval);
377 		break;
378 
379 	case MRT_DONE:
380 		error = ip_mrouter_done();
381 		break;
382 
383 	case MRT_ADD_VIF:
384 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
385 		if (error)
386 			break;
387 		error = add_vif(&vifc);
388 		break;
389 
390 	case MRT_DEL_VIF:
391 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
392 		if (error)
393 			break;
394 		error = del_vif(vifi);
395 		break;
396 
397 	case MRT_ADD_MFC:
398 	case MRT_DEL_MFC:
399 		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
400 		if (error)
401 			break;
402 		if (sopt->sopt_name == MRT_ADD_MFC)
403 			error = add_mfc(&mfc);
404 		else
405 			error = del_mfc(&mfc);
406 		break;
407 
408 	case MRT_ASSERT:
409 		error = sooptcopyin(sopt, &optval, sizeof optval,
410 				    sizeof optval);
411 		if (error)
412 			break;
413 		set_assert(optval);
414 		break;
415 
416 	default:
417 		error = EOPNOTSUPP;
418 		break;
419 	}
420 	return (error);
421 }
422 
423 #ifndef MROUTE_KLD
424 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
425 #endif
426 
427 /*
428  * Handle MRT getsockopt commands
429  */
430 static int
431 X_ip_mrouter_get(so, sopt)
432 	struct socket *so;
433 	struct sockopt *sopt;
434 {
435 	int error;
436 	static int version = 0x0305; /* !!! why is this here? XXX */
437 
438 	switch (sopt->sopt_name) {
439 	case MRT_VERSION:
440 		error = sooptcopyout(sopt, &version, sizeof version);
441 		break;
442 
443 	case MRT_ASSERT:
444 		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
445 		break;
446 	default:
447 		error = EOPNOTSUPP;
448 		break;
449 	}
450 	return (error);
451 }
452 
453 #ifndef MROUTE_KLD
454 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
455 #endif
456 
457 /*
458  * Handle ioctl commands to obtain information from the cache
459  */
460 static int
461 X_mrt_ioctl(cmd, data)
462     int cmd;
463     caddr_t data;
464 {
465     int error = 0;
466 
467     switch (cmd) {
468 	case (SIOCGETVIFCNT):
469 	    return (get_vif_cnt((struct sioc_vif_req *)data));
470 	    break;
471 	case (SIOCGETSGCNT):
472 	    return (get_sg_cnt((struct sioc_sg_req *)data));
473 	    break;
474 	default:
475 	    return (EINVAL);
476 	    break;
477     }
478     return error;
479 }
480 
481 #ifndef MROUTE_KLD
482 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
483 #endif
484 
485 /*
486  * returns the packet, byte, rpf-failure count for the source group provided
487  */
488 static int
489 get_sg_cnt(req)
490     register struct sioc_sg_req *req;
491 {
492     register struct mfc *rt;
493     int s;
494 
495     s = splnet();
496     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
497     splx(s);
498     if (rt != NULL) {
499 	req->pktcnt = rt->mfc_pkt_cnt;
500 	req->bytecnt = rt->mfc_byte_cnt;
501 	req->wrong_if = rt->mfc_wrong_if;
502     } else
503 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
504 
505     return 0;
506 }
507 
508 /*
509  * returns the input and output packet and byte counts on the vif provided
510  */
511 static int
512 get_vif_cnt(req)
513     register struct sioc_vif_req *req;
514 {
515     register vifi_t vifi = req->vifi;
516 
517     if (vifi >= numvifs) return EINVAL;
518 
519     req->icount = viftable[vifi].v_pkt_in;
520     req->ocount = viftable[vifi].v_pkt_out;
521     req->ibytes = viftable[vifi].v_bytes_in;
522     req->obytes = viftable[vifi].v_bytes_out;
523 
524     return 0;
525 }
526 
527 /*
528  * Enable multicast routing
529  */
530 static int
531 ip_mrouter_init(so, version)
532 	struct socket *so;
533 	int version;
534 {
535     if (mrtdebug)
536 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
537 		so->so_type, so->so_proto->pr_protocol);
538 
539     if (so->so_type != SOCK_RAW ||
540 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
541 
542     if (version != 1)
543 	return ENOPROTOOPT;
544 
545     if (ip_mrouter != NULL) return EADDRINUSE;
546 
547     ip_mrouter = so;
548 
549     bzero((caddr_t)mfctable, sizeof(mfctable));
550     bzero((caddr_t)nexpire, sizeof(nexpire));
551 
552     pim_assert = 0;
553 
554     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
555 
556     if (mrtdebug)
557 	log(LOG_DEBUG, "ip_mrouter_init\n");
558 
559     return 0;
560 }
561 
562 /*
563  * Disable multicast routing
564  */
565 static int
566 X_ip_mrouter_done()
567 {
568     vifi_t vifi;
569     int i;
570     struct ifnet *ifp;
571     struct ifreq ifr;
572     struct mfc *rt;
573     struct rtdetq *rte;
574     int s;
575 
576     s = splnet();
577 
578     /*
579      * For each phyint in use, disable promiscuous reception of all IP
580      * multicasts.
581      */
582     for (vifi = 0; vifi < numvifs; vifi++) {
583 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
584 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
585 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
586 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
587 								= INADDR_ANY;
588 	    ifp = viftable[vifi].v_ifp;
589 	    if_allmulti(ifp, 0);
590 	}
591     }
592     bzero((caddr_t)tbftable, sizeof(tbftable));
593     bzero((caddr_t)viftable, sizeof(viftable));
594     numvifs = 0;
595     pim_assert = 0;
596 
597     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
598 
599     /*
600      * Free all multicast forwarding cache entries.
601      */
602     for (i = 0; i < MFCTBLSIZ; i++) {
603 	for (rt = mfctable[i]; rt != NULL; ) {
604 	    struct mfc *nr = rt->mfc_next;
605 
606 	    for (rte = rt->mfc_stall; rte != NULL; ) {
607 		struct rtdetq *n = rte->next;
608 
609 		m_freem(rte->m);
610 		free(rte, M_MRTABLE);
611 		rte = n;
612 	    }
613 	    free(rt, M_MRTABLE);
614 	    rt = nr;
615 	}
616     }
617 
618     bzero((caddr_t)mfctable, sizeof(mfctable));
619 
620     /*
621      * Reset de-encapsulation cache
622      */
623     last_encap_src = 0;
624     last_encap_vif = NULL;
625     if (encap_cookie) {
626 	encap_detach(encap_cookie);
627 	encap_cookie = NULL;
628     }
629 
630     ip_mrouter = NULL;
631 
632     splx(s);
633 
634     if (mrtdebug)
635 	log(LOG_DEBUG, "ip_mrouter_done\n");
636 
637     return 0;
638 }
639 
640 #ifndef MROUTE_KLD
641 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
642 #endif
643 
644 /*
645  * Set PIM assert processing global
646  */
647 static int
648 set_assert(i)
649 	int i;
650 {
651     if ((i != 1) && (i != 0))
652 	return EINVAL;
653 
654     pim_assert = i;
655 
656     return 0;
657 }
658 
659 /*
660  * Decide if a packet is from a tunnelled peer.
661  * Return 0 if not, 64 if so.
662  */
663 static int
664 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
665 {
666     struct ip *ip = mtod(m, struct ip *);
667     int hlen = ip->ip_hl << 2;
668     register struct vif *vifp;
669 
670     /*
671      * don't claim the packet if it's not to a multicast destination or if
672      * we don't have an encapsulating tunnel with the source.
673      * Note:  This code assumes that the remote site IP address
674      * uniquely identifies the tunnel (i.e., that this site has
675      * at most one tunnel with the remote site).
676      */
677     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
678 	return 0;
679     }
680     if (ip->ip_src.s_addr != last_encap_src) {
681 	register struct vif *vife;
682 
683 	vifp = viftable;
684 	vife = vifp + numvifs;
685 	last_encap_src = ip->ip_src.s_addr;
686 	last_encap_vif = 0;
687 	for ( ; vifp < vife; ++vifp)
688 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
689 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
690 		    == VIFF_TUNNEL)
691 		    last_encap_vif = vifp;
692 		break;
693 	    }
694     }
695     if ((vifp = last_encap_vif) == 0) {
696 	last_encap_src = 0;
697 	return 0;
698     }
699     return 64;
700 }
701 
702 /*
703  * De-encapsulate a packet and feed it back through ip input (this
704  * routine is called whenever IP gets a packet that mroute_encap_func()
705  * claimed).
706  */
707 static void
708 mroute_encap_input(struct mbuf *m, int off)
709 {
710     struct ip *ip = mtod(m, struct ip *);
711     int hlen = ip->ip_hl << 2;
712 
713     if (hlen > sizeof(struct ip))
714       ip_stripoptions(m, (struct mbuf *) 0);
715     m->m_data += sizeof(struct ip);
716     m->m_len -= sizeof(struct ip);
717     m->m_pkthdr.len -= sizeof(struct ip);
718 
719     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
720 
721     (void) IF_HANDOFF(&ipintrq, m, NULL);
722 	/*
723 	 * normally we would need a "schednetisr(NETISR_IP)"
724 	 * here but we were called by ip_input and it is going
725 	 * to loop back & try to dequeue the packet we just
726 	 * queued as soon as we return so we avoid the
727 	 * unnecessary software interrrupt.
728 	 */
729 }
730 
731 extern struct domain inetdomain;
732 static struct protosw mroute_encap_protosw =
733 { SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
734   mroute_encap_input,	0,	0,		rip_ctloutput,
735   0,
736   0,		0,		0,		0,
737   &rip_usrreqs
738 };
739 
740 /*
741  * Add a vif to the vif table
742  */
743 static int
744 add_vif(vifcp)
745     register struct vifctl *vifcp;
746 {
747     register struct vif *vifp = viftable + vifcp->vifc_vifi;
748     static struct sockaddr_in sin = {sizeof sin, AF_INET};
749     struct ifaddr *ifa;
750     struct ifnet *ifp;
751     int error, s;
752     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
753 
754     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
755     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
756 
757     /* Find the interface with an address in AF_INET family */
758     sin.sin_addr = vifcp->vifc_lcl_addr;
759     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
760     if (ifa == 0) return EADDRNOTAVAIL;
761     ifp = ifa->ifa_ifp;
762 
763     if (vifcp->vifc_flags & VIFF_TUNNEL) {
764 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
765 		/*
766 		 * An encapsulating tunnel is wanted.  Tell
767 		 * mroute_encap_input() to start paying attention
768 		 * to encapsulated packets.
769 		 */
770 		if (encap_cookie == NULL) {
771 			encap_cookie = encap_attach_func(AF_INET, -1,
772 				mroute_encapcheck,
773 				(struct protosw *)&mroute_encap_protosw, NULL);
774 
775 			if (encap_cookie == NULL) {
776 				printf("ip_mroute: unable to attach encap\n");
777 				return (EIO);	/* XXX */
778 			}
779 			for (s = 0; s < MAXVIFS; ++s) {
780 				multicast_decap_if[s].if_name = "mdecap";
781 				multicast_decap_if[s].if_unit = s;
782 			}
783 		}
784 		/*
785 		 * Set interface to fake encapsulator interface
786 		 */
787 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
788 		/*
789 		 * Prepare cached route entry
790 		 */
791 		bzero(&vifp->v_route, sizeof(vifp->v_route));
792 	} else {
793 	    log(LOG_ERR, "source routed tunnels not supported\n");
794 	    return EOPNOTSUPP;
795 	}
796     } else {
797 	/* Make sure the interface supports multicast */
798 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
799 	    return EOPNOTSUPP;
800 
801 	/* Enable promiscuous reception of all IP multicasts from the if */
802 	s = splnet();
803 	error = if_allmulti(ifp, 1);
804 	splx(s);
805 	if (error)
806 	    return error;
807     }
808 
809     s = splnet();
810     /* define parameters for the tbf structure */
811     vifp->v_tbf = v_tbf;
812     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
813     vifp->v_tbf->tbf_n_tok = 0;
814     vifp->v_tbf->tbf_q_len = 0;
815     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
816     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
817 
818     vifp->v_flags     = vifcp->vifc_flags;
819     vifp->v_threshold = vifcp->vifc_threshold;
820     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
821     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
822     vifp->v_ifp       = ifp;
823     /* scaling up here allows division by 1024 in critical code */
824     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
825     vifp->v_rsvp_on   = 0;
826     vifp->v_rsvpd     = NULL;
827     /* initialize per vif pkt counters */
828     vifp->v_pkt_in    = 0;
829     vifp->v_pkt_out   = 0;
830     vifp->v_bytes_in  = 0;
831     vifp->v_bytes_out = 0;
832     splx(s);
833 
834     /* Adjust numvifs up if the vifi is higher than numvifs */
835     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
836 
837     if (mrtdebug)
838 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
839 	    vifcp->vifc_vifi,
840 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
841 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
842 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
843 	    vifcp->vifc_threshold,
844 	    vifcp->vifc_rate_limit);
845 
846     return 0;
847 }
848 
849 /*
850  * Delete a vif from the vif table
851  */
852 static int
853 del_vif(vifi)
854 	vifi_t vifi;
855 {
856     register struct vif *vifp = &viftable[vifi];
857     register struct mbuf *m;
858     struct ifnet *ifp;
859     struct ifreq ifr;
860     int s;
861 
862     if (vifi >= numvifs) return EINVAL;
863     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
864 
865     s = splnet();
866 
867     if (!(vifp->v_flags & VIFF_TUNNEL)) {
868 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
869 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
870 	ifp = vifp->v_ifp;
871 	if_allmulti(ifp, 0);
872     }
873 
874     if (vifp == last_encap_vif) {
875 	last_encap_vif = 0;
876 	last_encap_src = 0;
877     }
878 
879     /*
880      * Free packets queued at the interface
881      */
882     while (vifp->v_tbf->tbf_q) {
883 	m = vifp->v_tbf->tbf_q;
884 	vifp->v_tbf->tbf_q = m->m_act;
885 	m_freem(m);
886     }
887 
888     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
889     bzero((caddr_t)vifp, sizeof (*vifp));
890 
891     if (mrtdebug)
892       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
893 
894     /* Adjust numvifs down */
895     for (vifi = numvifs; vifi > 0; vifi--)
896 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
897     numvifs = vifi;
898 
899     splx(s);
900 
901     return 0;
902 }
903 
904 /*
905  * Add an mfc entry
906  */
907 static int
908 add_mfc(mfccp)
909     struct mfcctl *mfccp;
910 {
911     struct mfc *rt;
912     u_long hash;
913     struct rtdetq *rte;
914     register u_short nstl;
915     int s;
916     int i;
917 
918     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
919 
920     /* If an entry already exists, just update the fields */
921     if (rt) {
922 	if (mrtdebug & DEBUG_MFC)
923 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
924 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
925 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
926 		mfccp->mfcc_parent);
927 
928 	s = splnet();
929 	rt->mfc_parent = mfccp->mfcc_parent;
930 	for (i = 0; i < numvifs; i++)
931 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
932 	splx(s);
933 	return 0;
934     }
935 
936     /*
937      * Find the entry for which the upcall was made and update
938      */
939     s = splnet();
940     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
941     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
942 
943 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
944 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
945 	    (rt->mfc_stall != NULL)) {
946 
947 	    if (nstl++)
948 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
949 		    "multiple kernel entries",
950 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
951 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
952 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
953 
954 	    if (mrtdebug & DEBUG_MFC)
955 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
956 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
957 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
958 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
959 
960 	    rt->mfc_origin     = mfccp->mfcc_origin;
961 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
962 	    rt->mfc_parent     = mfccp->mfcc_parent;
963 	    for (i = 0; i < numvifs; i++)
964 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
965 	    /* initialize pkt counters per src-grp */
966 	    rt->mfc_pkt_cnt    = 0;
967 	    rt->mfc_byte_cnt   = 0;
968 	    rt->mfc_wrong_if   = 0;
969 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
970 
971 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
972 	    nexpire[hash]--;
973 
974 	    /* free packets Qed at the end of this entry */
975 	    for (rte = rt->mfc_stall; rte != NULL; ) {
976 		struct rtdetq *n = rte->next;
977 
978 		ip_mdq(rte->m, rte->ifp, rt, -1);
979 		m_freem(rte->m);
980 #ifdef UPCALL_TIMING
981 		collate(&(rte->t));
982 #endif /* UPCALL_TIMING */
983 		free(rte, M_MRTABLE);
984 		rte = n;
985 	    }
986 	    rt->mfc_stall = NULL;
987 	}
988     }
989 
990     /*
991      * It is possible that an entry is being inserted without an upcall
992      */
993     if (nstl == 0) {
994 	if (mrtdebug & DEBUG_MFC)
995 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
996 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
997 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
998 		mfccp->mfcc_parent);
999 
1000 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1001 
1002 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1003 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1004 
1005 		rt->mfc_origin     = mfccp->mfcc_origin;
1006 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1007 		rt->mfc_parent     = mfccp->mfcc_parent;
1008 		for (i = 0; i < numvifs; i++)
1009 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1010 		/* initialize pkt counters per src-grp */
1011 		rt->mfc_pkt_cnt    = 0;
1012 		rt->mfc_byte_cnt   = 0;
1013 		rt->mfc_wrong_if   = 0;
1014 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1015 		if (rt->mfc_expire)
1016 		    nexpire[hash]--;
1017 		rt->mfc_expire	   = 0;
1018 	    }
1019 	}
1020 	if (rt == NULL) {
1021 	    /* no upcall, so make a new entry */
1022 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1023 	    if (rt == NULL) {
1024 		splx(s);
1025 		return ENOBUFS;
1026 	    }
1027 
1028 	    /* insert new entry at head of hash chain */
1029 	    rt->mfc_origin     = mfccp->mfcc_origin;
1030 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1031 	    rt->mfc_parent     = mfccp->mfcc_parent;
1032 	    for (i = 0; i < numvifs; i++)
1033 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1034 	    /* initialize pkt counters per src-grp */
1035 	    rt->mfc_pkt_cnt    = 0;
1036 	    rt->mfc_byte_cnt   = 0;
1037 	    rt->mfc_wrong_if   = 0;
1038 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1039 	    rt->mfc_expire     = 0;
1040 	    rt->mfc_stall      = NULL;
1041 
1042 	    /* link into table */
1043 	    rt->mfc_next = mfctable[hash];
1044 	    mfctable[hash] = rt;
1045 	}
1046     }
1047     splx(s);
1048     return 0;
1049 }
1050 
1051 #ifdef UPCALL_TIMING
1052 /*
1053  * collect delay statistics on the upcalls
1054  */
1055 static void collate(t)
1056 register struct timeval *t;
1057 {
1058     register u_long d;
1059     register struct timeval tp;
1060     register u_long delta;
1061 
1062     GET_TIME(tp);
1063 
1064     if (TV_LT(*t, tp))
1065     {
1066 	TV_DELTA(tp, *t, delta);
1067 
1068 	d = delta >> 10;
1069 	if (d > 50)
1070 	    d = 50;
1071 
1072 	++upcall_data[d];
1073     }
1074 }
1075 #endif /* UPCALL_TIMING */
1076 
1077 /*
1078  * Delete an mfc entry
1079  */
1080 static int
1081 del_mfc(mfccp)
1082     struct mfcctl *mfccp;
1083 {
1084     struct in_addr 	origin;
1085     struct in_addr 	mcastgrp;
1086     struct mfc 		*rt;
1087     struct mfc	 	**nptr;
1088     u_long 		hash;
1089     int s;
1090 
1091     origin = mfccp->mfcc_origin;
1092     mcastgrp = mfccp->mfcc_mcastgrp;
1093     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1094 
1095     if (mrtdebug & DEBUG_MFC)
1096 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1097 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1098 
1099     s = splnet();
1100 
1101     nptr = &mfctable[hash];
1102     while ((rt = *nptr) != NULL) {
1103 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1104 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1105 	    rt->mfc_stall == NULL)
1106 	    break;
1107 
1108 	nptr = &rt->mfc_next;
1109     }
1110     if (rt == NULL) {
1111 	splx(s);
1112 	return EADDRNOTAVAIL;
1113     }
1114 
1115     *nptr = rt->mfc_next;
1116     free(rt, M_MRTABLE);
1117 
1118     splx(s);
1119 
1120     return 0;
1121 }
1122 
1123 /*
1124  * Send a message to mrouted on the multicast routing socket
1125  */
1126 static int
1127 socket_send(s, mm, src)
1128 	struct socket *s;
1129 	struct mbuf *mm;
1130 	struct sockaddr_in *src;
1131 {
1132 	if (s) {
1133 		if (sbappendaddr(&s->so_rcv,
1134 				 (struct sockaddr *)src,
1135 				 mm, (struct mbuf *)0) != 0) {
1136 			sorwakeup(s);
1137 			return 0;
1138 		}
1139 	}
1140 	m_freem(mm);
1141 	return -1;
1142 }
1143 
1144 /*
1145  * IP multicast forwarding function. This function assumes that the packet
1146  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1147  * pointed to by "ifp", and the packet is to be relayed to other networks
1148  * that have members of the packet's destination IP multicast group.
1149  *
1150  * The packet is returned unscathed to the caller, unless it is
1151  * erroneous, in which case a non-zero return value tells the caller to
1152  * discard it.
1153  */
1154 
1155 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1156 
1157 static int
1158 X_ip_mforward(ip, ifp, m, imo)
1159     register struct ip *ip;
1160     struct ifnet *ifp;
1161     struct mbuf *m;
1162     struct ip_moptions *imo;
1163 {
1164     register struct mfc *rt;
1165     register u_char *ipoptions;
1166     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1167     static int srctun = 0;
1168     register struct mbuf *mm;
1169     int s;
1170     vifi_t vifi;
1171     struct vif *vifp;
1172 
1173     if (mrtdebug & DEBUG_FORWARD)
1174 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1175 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1176 	    (void *)ifp);
1177 
1178     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1179 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1180 	/*
1181 	 * Packet arrived via a physical interface or
1182 	 * an encapsulated tunnel.
1183 	 */
1184     } else {
1185 	/*
1186 	 * Packet arrived through a source-route tunnel.
1187 	 * Source-route tunnels are no longer supported.
1188 	 */
1189 	if ((srctun++ % 1000) == 0)
1190 	    log(LOG_ERR,
1191 		"ip_mforward: received source-routed packet from %lx\n",
1192 		(u_long)ntohl(ip->ip_src.s_addr));
1193 
1194 	return 1;
1195     }
1196 
1197     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1198 	if (ip->ip_ttl < 255)
1199 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1200 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1201 	    vifp = viftable + vifi;
1202 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1203 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1204 		vifi,
1205 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1206 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1207 	}
1208 	return (ip_mdq(m, ifp, NULL, vifi));
1209     }
1210     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1211 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1212 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1213 	if(!imo)
1214 		printf("In fact, no options were specified at all\n");
1215     }
1216 
1217     /*
1218      * Don't forward a packet with time-to-live of zero or one,
1219      * or a packet destined to a local-only group.
1220      */
1221     if (ip->ip_ttl <= 1 ||
1222 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1223 	return 0;
1224 
1225     /*
1226      * Determine forwarding vifs from the forwarding cache table
1227      */
1228     s = splnet();
1229     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1230 
1231     /* Entry exists, so forward if necessary */
1232     if (rt != NULL) {
1233 	splx(s);
1234 	return (ip_mdq(m, ifp, rt, -1));
1235     } else {
1236 	/*
1237 	 * If we don't have a route for packet's origin,
1238 	 * Make a copy of the packet &
1239 	 * send message to routing daemon
1240 	 */
1241 
1242 	register struct mbuf *mb0;
1243 	register struct rtdetq *rte;
1244 	register u_long hash;
1245 	int hlen = ip->ip_hl << 2;
1246 #ifdef UPCALL_TIMING
1247 	struct timeval tp;
1248 
1249 	GET_TIME(tp);
1250 #endif
1251 
1252 	mrtstat.mrts_no_route++;
1253 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1254 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1255 		(u_long)ntohl(ip->ip_src.s_addr),
1256 		(u_long)ntohl(ip->ip_dst.s_addr));
1257 
1258 	/*
1259 	 * Allocate mbufs early so that we don't do extra work if we are
1260 	 * just going to fail anyway.  Make sure to pullup the header so
1261 	 * that other people can't step on it.
1262 	 */
1263 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1264 	if (rte == NULL) {
1265 	    splx(s);
1266 	    return ENOBUFS;
1267 	}
1268 	mb0 = m_copy(m, 0, M_COPYALL);
1269 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1270 	    mb0 = m_pullup(mb0, hlen);
1271 	if (mb0 == NULL) {
1272 	    free(rte, M_MRTABLE);
1273 	    splx(s);
1274 	    return ENOBUFS;
1275 	}
1276 
1277 	/* is there an upcall waiting for this packet? */
1278 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1279 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1280 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1281 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1282 		(rt->mfc_stall != NULL))
1283 		break;
1284 	}
1285 
1286 	if (rt == NULL) {
1287 	    int i;
1288 	    struct igmpmsg *im;
1289 
1290 	    /* no upcall, so make a new entry */
1291 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1292 	    if (rt == NULL) {
1293 		free(rte, M_MRTABLE);
1294 		m_freem(mb0);
1295 		splx(s);
1296 		return ENOBUFS;
1297 	    }
1298 	    /* Make a copy of the header to send to the user level process */
1299 	    mm = m_copy(mb0, 0, hlen);
1300 	    if (mm == NULL) {
1301 		free(rte, M_MRTABLE);
1302 		m_freem(mb0);
1303 		free(rt, M_MRTABLE);
1304 		splx(s);
1305 		return ENOBUFS;
1306 	    }
1307 
1308 	    /*
1309 	     * Send message to routing daemon to install
1310 	     * a route into the kernel table
1311 	     */
1312 	    k_igmpsrc.sin_addr = ip->ip_src;
1313 
1314 	    im = mtod(mm, struct igmpmsg *);
1315 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1316 	    im->im_mbz		= 0;
1317 
1318 	    mrtstat.mrts_upcalls++;
1319 
1320 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1321 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1322 		++mrtstat.mrts_upq_sockfull;
1323 		free(rte, M_MRTABLE);
1324 		m_freem(mb0);
1325 		free(rt, M_MRTABLE);
1326 		splx(s);
1327 		return ENOBUFS;
1328 	    }
1329 
1330 	    /* insert new entry at head of hash chain */
1331 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1332 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1333 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1334 	    nexpire[hash]++;
1335 	    for (i = 0; i < numvifs; i++)
1336 		rt->mfc_ttls[i] = 0;
1337 	    rt->mfc_parent = -1;
1338 
1339 	    /* link into table */
1340 	    rt->mfc_next   = mfctable[hash];
1341 	    mfctable[hash] = rt;
1342 	    rt->mfc_stall = rte;
1343 
1344 	} else {
1345 	    /* determine if q has overflowed */
1346 	    int npkts = 0;
1347 	    struct rtdetq **p;
1348 
1349 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1350 		npkts++;
1351 
1352 	    if (npkts > MAX_UPQ) {
1353 		mrtstat.mrts_upq_ovflw++;
1354 		free(rte, M_MRTABLE);
1355 		m_freem(mb0);
1356 		splx(s);
1357 		return 0;
1358 	    }
1359 
1360 	    /* Add this entry to the end of the queue */
1361 	    *p = rte;
1362 	}
1363 
1364 	rte->m 			= mb0;
1365 	rte->ifp 		= ifp;
1366 #ifdef UPCALL_TIMING
1367 	rte->t			= tp;
1368 #endif
1369 	rte->next		= NULL;
1370 
1371 	splx(s);
1372 
1373 	return 0;
1374     }
1375 }
1376 
1377 #ifndef MROUTE_KLD
1378 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1379 		   struct ip_moptions *) = X_ip_mforward;
1380 #endif
1381 
1382 /*
1383  * Clean up the cache entry if upcall is not serviced
1384  */
1385 static void
1386 expire_upcalls(void *unused)
1387 {
1388     struct rtdetq *rte;
1389     struct mfc *mfc, **nptr;
1390     int i;
1391     int s;
1392 
1393     s = splnet();
1394     for (i = 0; i < MFCTBLSIZ; i++) {
1395 	if (nexpire[i] == 0)
1396 	    continue;
1397 	nptr = &mfctable[i];
1398 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1399 	    /*
1400 	     * Skip real cache entries
1401 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1402 	     * If it expires now
1403 	     */
1404 	    if (mfc->mfc_stall != NULL &&
1405 	        mfc->mfc_expire != 0 &&
1406 		--mfc->mfc_expire == 0) {
1407 		if (mrtdebug & DEBUG_EXPIRE)
1408 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1409 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1410 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1411 		/*
1412 		 * drop all the packets
1413 		 * free the mbuf with the pkt, if, timing info
1414 		 */
1415 		for (rte = mfc->mfc_stall; rte; ) {
1416 		    struct rtdetq *n = rte->next;
1417 
1418 		    m_freem(rte->m);
1419 		    free(rte, M_MRTABLE);
1420 		    rte = n;
1421 		}
1422 		++mrtstat.mrts_cache_cleanups;
1423 		nexpire[i]--;
1424 
1425 		*nptr = mfc->mfc_next;
1426 		free(mfc, M_MRTABLE);
1427 	    } else {
1428 		nptr = &mfc->mfc_next;
1429 	    }
1430 	}
1431     }
1432     splx(s);
1433     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1434 }
1435 
1436 /*
1437  * Packet forwarding routine once entry in the cache is made
1438  */
1439 static int
1440 ip_mdq(m, ifp, rt, xmt_vif)
1441     register struct mbuf *m;
1442     register struct ifnet *ifp;
1443     register struct mfc *rt;
1444     register vifi_t xmt_vif;
1445 {
1446     register struct ip  *ip = mtod(m, struct ip *);
1447     register vifi_t vifi;
1448     register struct vif *vifp;
1449     register int plen = ip->ip_len;
1450 
1451 /*
1452  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1453  * input, they shouldn't get counted on output, so statistics keeping is
1454  * separate.
1455  */
1456 #define MC_SEND(ip,vifp,m) {                             \
1457                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1458                     encap_send((ip), (vifp), (m));       \
1459                 else                                     \
1460                     phyint_send((ip), (vifp), (m));      \
1461 }
1462 
1463     /*
1464      * If xmt_vif is not -1, send on only the requested vif.
1465      *
1466      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1467      */
1468     if (xmt_vif < numvifs) {
1469 	MC_SEND(ip, viftable + xmt_vif, m);
1470 	return 1;
1471     }
1472 
1473     /*
1474      * Don't forward if it didn't arrive from the parent vif for its origin.
1475      */
1476     vifi = rt->mfc_parent;
1477     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1478 	/* came in the wrong interface */
1479 	if (mrtdebug & DEBUG_FORWARD)
1480 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1481 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1482 	++mrtstat.mrts_wrong_if;
1483 	++rt->mfc_wrong_if;
1484 	/*
1485 	 * If we are doing PIM assert processing, and we are forwarding
1486 	 * packets on this interface, and it is a broadcast medium
1487 	 * interface (and not a tunnel), send a message to the routing daemon.
1488 	 */
1489 	if (pim_assert && rt->mfc_ttls[vifi] &&
1490 		(ifp->if_flags & IFF_BROADCAST) &&
1491 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1492 	    struct sockaddr_in k_igmpsrc;
1493 	    struct mbuf *mm;
1494 	    struct igmpmsg *im;
1495 	    int hlen = ip->ip_hl << 2;
1496 	    struct timeval now;
1497 	    register u_long delta;
1498 
1499 	    GET_TIME(now);
1500 
1501 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1502 
1503 	    if (delta > ASSERT_MSG_TIME) {
1504 		mm = m_copy(m, 0, hlen);
1505 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1506 		    mm = m_pullup(mm, hlen);
1507 		if (mm == NULL) {
1508 		    return ENOBUFS;
1509 		}
1510 
1511 		rt->mfc_last_assert = now;
1512 
1513 		im = mtod(mm, struct igmpmsg *);
1514 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1515 		im->im_mbz		= 0;
1516 		im->im_vif		= vifi;
1517 
1518 		k_igmpsrc.sin_addr = im->im_src;
1519 
1520 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1521 	    }
1522 	}
1523 	return 0;
1524     }
1525 
1526     /* If I sourced this packet, it counts as output, else it was input. */
1527     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1528 	viftable[vifi].v_pkt_out++;
1529 	viftable[vifi].v_bytes_out += plen;
1530     } else {
1531 	viftable[vifi].v_pkt_in++;
1532 	viftable[vifi].v_bytes_in += plen;
1533     }
1534     rt->mfc_pkt_cnt++;
1535     rt->mfc_byte_cnt += plen;
1536 
1537     /*
1538      * For each vif, decide if a copy of the packet should be forwarded.
1539      * Forward if:
1540      *		- the ttl exceeds the vif's threshold
1541      *		- there are group members downstream on interface
1542      */
1543     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1544 	if ((rt->mfc_ttls[vifi] > 0) &&
1545 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1546 	    vifp->v_pkt_out++;
1547 	    vifp->v_bytes_out += plen;
1548 	    MC_SEND(ip, vifp, m);
1549 	}
1550 
1551     return 0;
1552 }
1553 
1554 /*
1555  * check if a vif number is legal/ok. This is used by ip_output, to export
1556  * numvifs there,
1557  */
1558 static int
1559 X_legal_vif_num(vif)
1560     int vif;
1561 {
1562     if (vif >= 0 && vif < numvifs)
1563        return(1);
1564     else
1565        return(0);
1566 }
1567 
1568 #ifndef MROUTE_KLD
1569 int (*legal_vif_num)(int) = X_legal_vif_num;
1570 #endif
1571 
1572 /*
1573  * Return the local address used by this vif
1574  */
1575 static u_long
1576 X_ip_mcast_src(vifi)
1577     int vifi;
1578 {
1579     if (vifi >= 0 && vifi < numvifs)
1580 	return viftable[vifi].v_lcl_addr.s_addr;
1581     else
1582 	return INADDR_ANY;
1583 }
1584 
1585 #ifndef MROUTE_KLD
1586 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1587 #endif
1588 
1589 static void
1590 phyint_send(ip, vifp, m)
1591     struct ip *ip;
1592     struct vif *vifp;
1593     struct mbuf *m;
1594 {
1595     register struct mbuf *mb_copy;
1596     register int hlen = ip->ip_hl << 2;
1597 
1598     /*
1599      * Make a new reference to the packet; make sure that
1600      * the IP header is actually copied, not just referenced,
1601      * so that ip_output() only scribbles on the copy.
1602      */
1603     mb_copy = m_copy(m, 0, M_COPYALL);
1604     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1605 	mb_copy = m_pullup(mb_copy, hlen);
1606     if (mb_copy == NULL)
1607 	return;
1608 
1609     if (vifp->v_rate_limit == 0)
1610 	tbf_send_packet(vifp, mb_copy);
1611     else
1612 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1613 }
1614 
1615 static void
1616 encap_send(ip, vifp, m)
1617     register struct ip *ip;
1618     register struct vif *vifp;
1619     register struct mbuf *m;
1620 {
1621     register struct mbuf *mb_copy;
1622     register struct ip *ip_copy;
1623     register int i, len = ip->ip_len;
1624 
1625     /*
1626      * copy the old packet & pullup its IP header into the
1627      * new mbuf so we can modify it.  Try to fill the new
1628      * mbuf since if we don't the ethernet driver will.
1629      */
1630     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1631     if (mb_copy == NULL)
1632 	return;
1633     mb_copy->m_data += max_linkhdr;
1634     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1635 
1636     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1637 	m_freem(mb_copy);
1638 	return;
1639     }
1640     i = MHLEN - M_LEADINGSPACE(mb_copy);
1641     if (i > len)
1642 	i = len;
1643     mb_copy = m_pullup(mb_copy, i);
1644     if (mb_copy == NULL)
1645 	return;
1646     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1647 
1648     /*
1649      * fill in the encapsulating IP header.
1650      */
1651     ip_copy = mtod(mb_copy, struct ip *);
1652     *ip_copy = multicast_encap_iphdr;
1653 #ifdef RANDOM_IP_ID
1654     ip_copy->ip_id = ip_randomid();
1655 #else
1656     ip_copy->ip_id = htons(ip_id++);
1657 #endif
1658     ip_copy->ip_len += len;
1659     ip_copy->ip_src = vifp->v_lcl_addr;
1660     ip_copy->ip_dst = vifp->v_rmt_addr;
1661 
1662     /*
1663      * turn the encapsulated IP header back into a valid one.
1664      */
1665     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1666     --ip->ip_ttl;
1667     ip->ip_len = htons(ip->ip_len);
1668     ip->ip_off = htons(ip->ip_off);
1669     ip->ip_sum = 0;
1670     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1671     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1672     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1673 
1674     if (vifp->v_rate_limit == 0)
1675 	tbf_send_packet(vifp, mb_copy);
1676     else
1677 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1678 }
1679 
1680 /*
1681  * Token bucket filter module
1682  */
1683 
1684 static void
1685 tbf_control(vifp, m, ip, p_len)
1686 	register struct vif *vifp;
1687 	register struct mbuf *m;
1688 	register struct ip *ip;
1689 	register u_long p_len;
1690 {
1691     register struct tbf *t = vifp->v_tbf;
1692 
1693     if (p_len > MAX_BKT_SIZE) {
1694 	/* drop if packet is too large */
1695 	mrtstat.mrts_pkt2large++;
1696 	m_freem(m);
1697 	return;
1698     }
1699 
1700     tbf_update_tokens(vifp);
1701 
1702     /* if there are enough tokens,
1703      * and the queue is empty,
1704      * send this packet out
1705      */
1706 
1707     if (t->tbf_q_len == 0) {
1708 	/* queue empty, send packet if enough tokens */
1709 	if (p_len <= t->tbf_n_tok) {
1710 	    t->tbf_n_tok -= p_len;
1711 	    tbf_send_packet(vifp, m);
1712 	} else {
1713 	    /* queue packet and timeout till later */
1714 	    tbf_queue(vifp, m);
1715 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1716 	}
1717     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1718 	/* finite queue length, so queue pkts and process queue */
1719 	tbf_queue(vifp, m);
1720 	tbf_process_q(vifp);
1721     } else {
1722 	/* queue length too much, try to dq and queue and process */
1723 	if (!tbf_dq_sel(vifp, ip)) {
1724 	    mrtstat.mrts_q_overflow++;
1725 	    m_freem(m);
1726 	    return;
1727 	} else {
1728 	    tbf_queue(vifp, m);
1729 	    tbf_process_q(vifp);
1730 	}
1731     }
1732     return;
1733 }
1734 
1735 /*
1736  * adds a packet to the queue at the interface
1737  */
1738 static void
1739 tbf_queue(vifp, m)
1740 	register struct vif *vifp;
1741 	register struct mbuf *m;
1742 {
1743     register int s = splnet();
1744     register struct tbf *t = vifp->v_tbf;
1745 
1746     if (t->tbf_t == NULL) {
1747 	/* Queue was empty */
1748 	t->tbf_q = m;
1749     } else {
1750 	/* Insert at tail */
1751 	t->tbf_t->m_act = m;
1752     }
1753 
1754     /* Set new tail pointer */
1755     t->tbf_t = m;
1756 
1757 #ifdef DIAGNOSTIC
1758     /* Make sure we didn't get fed a bogus mbuf */
1759     if (m->m_act)
1760 	panic("tbf_queue: m_act");
1761 #endif
1762     m->m_act = NULL;
1763 
1764     t->tbf_q_len++;
1765 
1766     splx(s);
1767 }
1768 
1769 
1770 /*
1771  * processes the queue at the interface
1772  */
1773 static void
1774 tbf_process_q(vifp)
1775     register struct vif *vifp;
1776 {
1777     register struct mbuf *m;
1778     register int len;
1779     register int s = splnet();
1780     register struct tbf *t = vifp->v_tbf;
1781 
1782     /* loop through the queue at the interface and send as many packets
1783      * as possible
1784      */
1785     while (t->tbf_q_len > 0) {
1786 	m = t->tbf_q;
1787 
1788 	len = mtod(m, struct ip *)->ip_len;
1789 
1790 	/* determine if the packet can be sent */
1791 	if (len <= t->tbf_n_tok) {
1792 	    /* if so,
1793 	     * reduce no of tokens, dequeue the packet,
1794 	     * send the packet.
1795 	     */
1796 	    t->tbf_n_tok -= len;
1797 
1798 	    t->tbf_q = m->m_act;
1799 	    if (--t->tbf_q_len == 0)
1800 		t->tbf_t = NULL;
1801 
1802 	    m->m_act = NULL;
1803 	    tbf_send_packet(vifp, m);
1804 
1805 	} else break;
1806     }
1807     splx(s);
1808 }
1809 
1810 static void
1811 tbf_reprocess_q(xvifp)
1812 	void *xvifp;
1813 {
1814     register struct vif *vifp = xvifp;
1815     if (ip_mrouter == NULL)
1816 	return;
1817 
1818     tbf_update_tokens(vifp);
1819 
1820     tbf_process_q(vifp);
1821 
1822     if (vifp->v_tbf->tbf_q_len)
1823 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1824 }
1825 
1826 /* function that will selectively discard a member of the queue
1827  * based on the precedence value and the priority
1828  */
1829 static int
1830 tbf_dq_sel(vifp, ip)
1831     register struct vif *vifp;
1832     register struct ip *ip;
1833 {
1834     register int s = splnet();
1835     register u_int p;
1836     register struct mbuf *m, *last;
1837     register struct mbuf **np;
1838     register struct tbf *t = vifp->v_tbf;
1839 
1840     p = priority(vifp, ip);
1841 
1842     np = &t->tbf_q;
1843     last = NULL;
1844     while ((m = *np) != NULL) {
1845 	if (p > priority(vifp, mtod(m, struct ip *))) {
1846 	    *np = m->m_act;
1847 	    /* If we're removing the last packet, fix the tail pointer */
1848 	    if (m == t->tbf_t)
1849 		t->tbf_t = last;
1850 	    m_freem(m);
1851 	    /* it's impossible for the queue to be empty, but
1852 	     * we check anyway. */
1853 	    if (--t->tbf_q_len == 0)
1854 		t->tbf_t = NULL;
1855 	    splx(s);
1856 	    mrtstat.mrts_drop_sel++;
1857 	    return(1);
1858 	}
1859 	np = &m->m_act;
1860 	last = m;
1861     }
1862     splx(s);
1863     return(0);
1864 }
1865 
1866 static void
1867 tbf_send_packet(vifp, m)
1868     register struct vif *vifp;
1869     register struct mbuf *m;
1870 {
1871     struct ip_moptions imo;
1872     int error;
1873     static struct route ro;
1874     int s = splnet();
1875 
1876     if (vifp->v_flags & VIFF_TUNNEL) {
1877 	/* If tunnel options */
1878 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1879 		  IP_FORWARDING, (struct ip_moptions *)0);
1880     } else {
1881 	imo.imo_multicast_ifp  = vifp->v_ifp;
1882 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1883 	imo.imo_multicast_loop = 1;
1884 	imo.imo_multicast_vif  = -1;
1885 
1886 	/*
1887 	 * Re-entrancy should not be a problem here, because
1888 	 * the packets that we send out and are looped back at us
1889 	 * should get rejected because they appear to come from
1890 	 * the loopback interface, thus preventing looping.
1891 	 */
1892 	error = ip_output(m, (struct mbuf *)0, &ro,
1893 			  IP_FORWARDING, &imo);
1894 
1895 	if (mrtdebug & DEBUG_XMIT)
1896 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1897 		vifp - viftable, error);
1898     }
1899     splx(s);
1900 }
1901 
1902 /* determine the current time and then
1903  * the elapsed time (between the last time and time now)
1904  * in milliseconds & update the no. of tokens in the bucket
1905  */
1906 static void
1907 tbf_update_tokens(vifp)
1908     register struct vif *vifp;
1909 {
1910     struct timeval tp;
1911     register u_long tm;
1912     register int s = splnet();
1913     register struct tbf *t = vifp->v_tbf;
1914 
1915     GET_TIME(tp);
1916 
1917     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1918 
1919     /*
1920      * This formula is actually
1921      * "time in seconds" * "bytes/second".
1922      *
1923      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1924      *
1925      * The (1000/1024) was introduced in add_vif to optimize
1926      * this divide into a shift.
1927      */
1928     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1929     t->tbf_last_pkt_t = tp;
1930 
1931     if (t->tbf_n_tok > MAX_BKT_SIZE)
1932 	t->tbf_n_tok = MAX_BKT_SIZE;
1933 
1934     splx(s);
1935 }
1936 
1937 static int
1938 priority(vifp, ip)
1939     register struct vif *vifp;
1940     register struct ip *ip;
1941 {
1942     register int prio;
1943 
1944     /* temporary hack; may add general packet classifier some day */
1945 
1946     /*
1947      * The UDP port space is divided up into four priority ranges:
1948      * [0, 16384)     : unclassified - lowest priority
1949      * [16384, 32768) : audio - highest priority
1950      * [32768, 49152) : whiteboard - medium priority
1951      * [49152, 65536) : video - low priority
1952      */
1953     if (ip->ip_p == IPPROTO_UDP) {
1954 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1955 	switch (ntohs(udp->uh_dport) & 0xc000) {
1956 	    case 0x4000:
1957 		prio = 70;
1958 		break;
1959 	    case 0x8000:
1960 		prio = 60;
1961 		break;
1962 	    case 0xc000:
1963 		prio = 55;
1964 		break;
1965 	    default:
1966 		prio = 50;
1967 		break;
1968 	}
1969 	if (tbfdebug > 1)
1970 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1971     } else {
1972 	    prio = 50;
1973     }
1974     return prio;
1975 }
1976 
1977 /*
1978  * End of token bucket filter modifications
1979  */
1980 
1981 int
1982 ip_rsvp_vif_init(so, sopt)
1983 	struct socket *so;
1984 	struct sockopt *sopt;
1985 {
1986     int error, i, s;
1987 
1988     if (rsvpdebug)
1989 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1990 	       so->so_type, so->so_proto->pr_protocol);
1991 
1992     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1993 	return EOPNOTSUPP;
1994 
1995     /* Check mbuf. */
1996     error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1997     if (error)
1998 	    return (error);
1999 
2000     if (rsvpdebug)
2001 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2002 
2003     s = splnet();
2004 
2005     /* Check vif. */
2006     if (!legal_vif_num(i)) {
2007 	splx(s);
2008 	return EADDRNOTAVAIL;
2009     }
2010 
2011     /* Check if socket is available. */
2012     if (viftable[i].v_rsvpd != NULL) {
2013 	splx(s);
2014 	return EADDRINUSE;
2015     }
2016 
2017     viftable[i].v_rsvpd = so;
2018     /* This may seem silly, but we need to be sure we don't over-increment
2019      * the RSVP counter, in case something slips up.
2020      */
2021     if (!viftable[i].v_rsvp_on) {
2022 	viftable[i].v_rsvp_on = 1;
2023 	rsvp_on++;
2024     }
2025 
2026     splx(s);
2027     return 0;
2028 }
2029 
2030 int
2031 ip_rsvp_vif_done(so, sopt)
2032 	struct socket *so;
2033 	struct sockopt *sopt;
2034 {
2035 	int error, i, s;
2036 
2037 	if (rsvpdebug)
2038 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2039 		       so->so_type, so->so_proto->pr_protocol);
2040 
2041 	if (so->so_type != SOCK_RAW ||
2042 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2043 		return EOPNOTSUPP;
2044 
2045 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2046 	if (error)
2047 		return (error);
2048 
2049 	s = splnet();
2050 
2051 	/* Check vif. */
2052 	if (!legal_vif_num(i)) {
2053 		splx(s);
2054 		return EADDRNOTAVAIL;
2055 	}
2056 
2057 	if (rsvpdebug)
2058 		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2059 		       viftable[i].v_rsvpd, so);
2060 
2061 	viftable[i].v_rsvpd = NULL;
2062 	/*
2063 	 * This may seem silly, but we need to be sure we don't over-decrement
2064 	 * the RSVP counter, in case something slips up.
2065 	 */
2066 	if (viftable[i].v_rsvp_on) {
2067 		viftable[i].v_rsvp_on = 0;
2068 		rsvp_on--;
2069 	}
2070 
2071 	splx(s);
2072 	return 0;
2073 }
2074 
2075 void
2076 ip_rsvp_force_done(so)
2077     struct socket *so;
2078 {
2079     int vifi;
2080     register int s;
2081 
2082     /* Don't bother if it is not the right type of socket. */
2083     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2084 	return;
2085 
2086     s = splnet();
2087 
2088     /* The socket may be attached to more than one vif...this
2089      * is perfectly legal.
2090      */
2091     for (vifi = 0; vifi < numvifs; vifi++) {
2092 	if (viftable[vifi].v_rsvpd == so) {
2093 	    viftable[vifi].v_rsvpd = NULL;
2094 	    /* This may seem silly, but we need to be sure we don't
2095 	     * over-decrement the RSVP counter, in case something slips up.
2096 	     */
2097 	    if (viftable[vifi].v_rsvp_on) {
2098 		viftable[vifi].v_rsvp_on = 0;
2099 		rsvp_on--;
2100 	    }
2101 	}
2102     }
2103 
2104     splx(s);
2105     return;
2106 }
2107 
2108 void
2109 rsvp_input(m, off)
2110 	struct mbuf *m;
2111 	int off;
2112 {
2113     int vifi;
2114     register struct ip *ip = mtod(m, struct ip *);
2115     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2116     register int s;
2117     struct ifnet *ifp;
2118 
2119     if (rsvpdebug)
2120 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2121 
2122     /* Can still get packets with rsvp_on = 0 if there is a local member
2123      * of the group to which the RSVP packet is addressed.  But in this
2124      * case we want to throw the packet away.
2125      */
2126     if (!rsvp_on) {
2127 	m_freem(m);
2128 	return;
2129     }
2130 
2131     s = splnet();
2132 
2133     if (rsvpdebug)
2134 	printf("rsvp_input: check vifs\n");
2135 
2136 #ifdef DIAGNOSTIC
2137     if (!(m->m_flags & M_PKTHDR))
2138 	    panic("rsvp_input no hdr");
2139 #endif
2140 
2141     ifp = m->m_pkthdr.rcvif;
2142     /* Find which vif the packet arrived on. */
2143     for (vifi = 0; vifi < numvifs; vifi++)
2144 	if (viftable[vifi].v_ifp == ifp)
2145 	    break;
2146 
2147     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2148 	/*
2149 	 * If the old-style non-vif-associated socket is set,
2150 	 * then use it.  Otherwise, drop packet since there
2151 	 * is no specific socket for this vif.
2152 	 */
2153 	if (ip_rsvpd != NULL) {
2154 	    if (rsvpdebug)
2155 		printf("rsvp_input: Sending packet up old-style socket\n");
2156 	    rip_input(m, off);  /* xxx */
2157 	} else {
2158 	    if (rsvpdebug && vifi == numvifs)
2159 		printf("rsvp_input: Can't find vif for packet.\n");
2160 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2161 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2162 	    m_freem(m);
2163 	}
2164 	splx(s);
2165 	return;
2166     }
2167     rsvp_src.sin_addr = ip->ip_src;
2168 
2169     if (rsvpdebug && m)
2170 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2171 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2172 
2173     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2174 	if (rsvpdebug)
2175 	    printf("rsvp_input: Failed to append to socket\n");
2176     } else {
2177 	if (rsvpdebug)
2178 	    printf("rsvp_input: send packet up\n");
2179     }
2180 
2181     splx(s);
2182 }
2183 
2184 #ifdef MROUTE_KLD
2185 
2186 static int
2187 ip_mroute_modevent(module_t mod, int type, void *unused)
2188 {
2189 	int s;
2190 
2191 	switch (type) {
2192 		static u_long (*old_ip_mcast_src)(int);
2193 		static int (*old_ip_mrouter_set)(struct socket *,
2194 			struct sockopt *);
2195 		static int (*old_ip_mrouter_get)(struct socket *,
2196 			struct sockopt *);
2197 		static int (*old_ip_mrouter_done)(void);
2198 		static int (*old_ip_mforward)(struct ip *, struct ifnet *,
2199 			struct mbuf *, struct ip_moptions *);
2200 		static int (*old_mrt_ioctl)(int, caddr_t);
2201 		static int (*old_legal_vif_num)(int);
2202 
2203 	case MOD_LOAD:
2204 		s = splnet();
2205 		/* XXX Protect against multiple loading */
2206 		old_ip_mcast_src = ip_mcast_src;
2207 		ip_mcast_src = X_ip_mcast_src;
2208 		old_ip_mrouter_get = ip_mrouter_get;
2209 		ip_mrouter_get = X_ip_mrouter_get;
2210 		old_ip_mrouter_set = ip_mrouter_set;
2211 		ip_mrouter_set = X_ip_mrouter_set;
2212 		old_ip_mrouter_done = ip_mrouter_done;
2213 		ip_mrouter_done = X_ip_mrouter_done;
2214 		old_ip_mforward = ip_mforward;
2215 		ip_mforward = X_ip_mforward;
2216 		old_mrt_ioctl = mrt_ioctl;
2217 		mrt_ioctl = X_mrt_ioctl;
2218 		old_legal_vif_num = legal_vif_num;
2219 		legal_vif_num = X_legal_vif_num;
2220 
2221 		splx(s);
2222 		return 0;
2223 
2224 	case MOD_UNLOAD:
2225 		if (ip_mrouter)
2226 		  return EINVAL;
2227 
2228 		s = splnet();
2229 		ip_mrouter_get = old_ip_mrouter_get;
2230 		ip_mrouter_set = old_ip_mrouter_set;
2231 		ip_mrouter_done = old_ip_mrouter_done;
2232 		ip_mforward = old_ip_mforward;
2233 		mrt_ioctl = old_mrt_ioctl;
2234 		legal_vif_num = old_legal_vif_num;
2235 		splx(s);
2236 		return 0;
2237 
2238 	default:
2239 		break;
2240 	}
2241 	return 0;
2242 }
2243 
2244 static moduledata_t ip_mroutemod = {
2245 	"ip_mroute",
2246 	ip_mroute_modevent,
2247 	0
2248 };
2249 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2250 
2251 #endif /* MROUTE_KLD */
2252 #endif /* MROUTING */
2253