1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * 53 * MROUTING Revision: 3.5 54 * and PIM-SMv2 and PIM-DM support, advanced API support, 55 * bandwidth metering and signaling 56 */ 57 58 /* 59 * TODO: Prefix functions with ipmf_. 60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 61 * domain attachment (if_afdata) so we can track consumers of that service. 62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 63 * move it to socket options. 64 * TODO: Cleanup LSRR removal further. 65 * TODO: Push RSVP stubs into raw_ip.c. 66 * TODO: Use bitstring.h for vif set. 67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 68 * TODO: Sync ip6_mroute.c with this file. 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_inet.h" 75 #include "opt_mrouting.h" 76 77 #define _PIM_VT 1 78 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/time.h> 99 #include <sys/counter.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/netisr.h> 104 #include <net/route.h> 105 #include <net/vnet.h> 106 107 #include <netinet/in.h> 108 #include <netinet/igmp.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/ip_encap.h> 113 #include <netinet/ip_mroute.h> 114 #include <netinet/ip_var.h> 115 #include <netinet/ip_options.h> 116 #include <netinet/pim.h> 117 #include <netinet/pim_var.h> 118 #include <netinet/udp.h> 119 120 #include <machine/in_cksum.h> 121 122 #ifndef KTR_IPMF 123 #define KTR_IPMF KTR_INET 124 #endif 125 126 #define VIFI_INVALID ((vifi_t) -1) 127 128 VNET_DEFINE_STATIC(uint32_t, last_tv_sec); /* last time we processed this */ 129 #define V_last_tv_sec VNET(last_tv_sec) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct mtx mrouter_mtx; 142 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 143 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 144 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 145 #define MROUTER_LOCK_INIT() \ 146 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 147 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 148 149 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 151 152 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 153 VNET_PCPUSTAT_SYSINIT(mrtstat); 154 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 156 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 157 "netinet/ip_mroute.h)"); 158 159 VNET_DEFINE_STATIC(u_long, mfchash); 160 #define V_mfchash VNET(mfchash) 161 #define MFCHASH(a, g) \ 162 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 163 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 164 #define MFCHASHSIZE 256 165 166 static u_long mfchashsize; /* Hash size */ 167 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 168 #define V_nexpire VNET(nexpire) 169 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 170 #define V_mfchashtbl VNET(mfchashtbl) 171 172 static struct mtx mfc_mtx; 173 #define MFC_LOCK() mtx_lock(&mfc_mtx) 174 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 175 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 176 #define MFC_LOCK_INIT() \ 177 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 178 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 179 180 VNET_DEFINE_STATIC(vifi_t, numvifs); 181 #define V_numvifs VNET(numvifs) 182 VNET_DEFINE_STATIC(struct vif *, viftable); 183 #define V_viftable VNET(viftable) 184 /* 185 * No one should be able to "query" this before initialisation happened in 186 * vnet_mroute_init(), so we should still be fine. 187 */ 188 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 189 &VNET_NAME(viftable), sizeof(*V_viftable) * MAXVIFS, "S,vif[MAXVIFS]", 190 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 191 192 static struct mtx vif_mtx; 193 #define VIF_LOCK() mtx_lock(&vif_mtx) 194 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 195 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 196 #define VIF_LOCK_INIT() \ 197 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 198 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 199 200 static eventhandler_tag if_detach_event_tag = NULL; 201 202 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 203 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 204 205 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 206 #define UPCALL_EXPIRE 6 /* number of timeouts */ 207 208 /* 209 * Bandwidth meter variables and constants 210 */ 211 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 212 /* 213 * Pending timeouts are stored in a hash table, the key being the 214 * expiration time. Periodically, the entries are analysed and processed. 215 */ 216 #define BW_METER_BUCKETS 1024 217 VNET_DEFINE_STATIC(struct bw_meter **, bw_meter_timers); 218 #define V_bw_meter_timers VNET(bw_meter_timers) 219 VNET_DEFINE_STATIC(struct callout, bw_meter_ch); 220 #define V_bw_meter_ch VNET(bw_meter_ch) 221 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 222 223 /* 224 * Pending upcalls are stored in a vector which is flushed when 225 * full, or periodically 226 */ 227 VNET_DEFINE_STATIC(struct bw_upcall *, bw_upcalls); 228 #define V_bw_upcalls VNET(bw_upcalls) 229 VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */ 230 #define V_bw_upcalls_n VNET(bw_upcalls_n) 231 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 232 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 233 234 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 235 236 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 237 VNET_PCPUSTAT_SYSINIT(pimstat); 238 VNET_PCPUSTAT_SYSUNINIT(pimstat); 239 240 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 241 "PIM"); 242 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 243 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 244 245 static u_long pim_squelch_wholepkt = 0; 246 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 247 &pim_squelch_wholepkt, 0, 248 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 249 250 static const struct encaptab *pim_encap_cookie; 251 static int pim_encapcheck(const struct mbuf *, int, int, void *); 252 static int pim_input(struct mbuf *, int, int, void *); 253 254 static const struct encap_config ipv4_encap_cfg = { 255 .proto = IPPROTO_PIM, 256 .min_length = sizeof(struct ip) + PIM_MINLEN, 257 .exact_match = 8, 258 .check = pim_encapcheck, 259 .input = pim_input 260 }; 261 262 /* 263 * Note: the PIM Register encapsulation adds the following in front of a 264 * data packet: 265 * 266 * struct pim_encap_hdr { 267 * struct ip ip; 268 * struct pim_encap_pimhdr pim; 269 * } 270 * 271 */ 272 273 struct pim_encap_pimhdr { 274 struct pim pim; 275 uint32_t flags; 276 }; 277 #define PIM_ENCAP_TTL 64 278 279 static struct ip pim_encap_iphdr = { 280 #if BYTE_ORDER == LITTLE_ENDIAN 281 sizeof(struct ip) >> 2, 282 IPVERSION, 283 #else 284 IPVERSION, 285 sizeof(struct ip) >> 2, 286 #endif 287 0, /* tos */ 288 sizeof(struct ip), /* total length */ 289 0, /* id */ 290 0, /* frag offset */ 291 PIM_ENCAP_TTL, 292 IPPROTO_PIM, 293 0, /* checksum */ 294 }; 295 296 static struct pim_encap_pimhdr pim_encap_pimhdr = { 297 { 298 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 299 0, /* reserved */ 300 0, /* checksum */ 301 }, 302 0 /* flags */ 303 }; 304 305 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 306 #define V_reg_vif_num VNET(reg_vif_num) 307 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if); 308 #define V_multicast_register_if VNET(multicast_register_if) 309 310 /* 311 * Private variables. 312 */ 313 314 static u_long X_ip_mcast_src(int); 315 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 316 struct ip_moptions *); 317 static int X_ip_mrouter_done(void); 318 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 319 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 320 static int X_legal_vif_num(int); 321 static int X_mrt_ioctl(u_long, caddr_t, int); 322 323 static int add_bw_upcall(struct bw_upcall *); 324 static int add_mfc(struct mfcctl2 *); 325 static int add_vif(struct vifctl *); 326 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 327 static void bw_meter_process(void); 328 static void bw_meter_receive_packet(struct bw_meter *, int, 329 struct timeval *); 330 static void bw_upcalls_send(void); 331 static int del_bw_upcall(struct bw_upcall *); 332 static int del_mfc(struct mfcctl2 *); 333 static int del_vif(vifi_t); 334 static int del_vif_locked(vifi_t); 335 static void expire_bw_meter_process(void *); 336 static void expire_bw_upcalls_send(void *); 337 static void expire_mfc(struct mfc *); 338 static void expire_upcalls(void *); 339 static void free_bw_list(struct bw_meter *); 340 static int get_sg_cnt(struct sioc_sg_req *); 341 static int get_vif_cnt(struct sioc_vif_req *); 342 static void if_detached_event(void *, struct ifnet *); 343 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 344 static int ip_mrouter_init(struct socket *, int); 345 static __inline struct mfc * 346 mfc_find(struct in_addr *, struct in_addr *); 347 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 348 static struct mbuf * 349 pim_register_prepare(struct ip *, struct mbuf *); 350 static int pim_register_send(struct ip *, struct vif *, 351 struct mbuf *, struct mfc *); 352 static int pim_register_send_rp(struct ip *, struct vif *, 353 struct mbuf *, struct mfc *); 354 static int pim_register_send_upcall(struct ip *, struct vif *, 355 struct mbuf *, struct mfc *); 356 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 357 static void send_packet(struct vif *, struct mbuf *); 358 static int set_api_config(uint32_t *); 359 static int set_assert(int); 360 static int socket_send(struct socket *, struct mbuf *, 361 struct sockaddr_in *); 362 static void unschedule_bw_meter(struct bw_meter *); 363 364 /* 365 * Kernel multicast forwarding API capabilities and setup. 366 * If more API capabilities are added to the kernel, they should be 367 * recorded in `mrt_api_support'. 368 */ 369 #define MRT_API_VERSION 0x0305 370 371 static const int mrt_api_version = MRT_API_VERSION; 372 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 373 MRT_MFC_FLAGS_BORDER_VIF | 374 MRT_MFC_RP | 375 MRT_MFC_BW_UPCALL); 376 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 377 #define V_mrt_api_config VNET(mrt_api_config) 378 VNET_DEFINE_STATIC(int, pim_assert_enabled); 379 #define V_pim_assert_enabled VNET(pim_assert_enabled) 380 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 381 382 /* 383 * Find a route for a given origin IP address and multicast group address. 384 * Statistics must be updated by the caller. 385 */ 386 static __inline struct mfc * 387 mfc_find(struct in_addr *o, struct in_addr *g) 388 { 389 struct mfc *rt; 390 391 MFC_LOCK_ASSERT(); 392 393 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 394 if (in_hosteq(rt->mfc_origin, *o) && 395 in_hosteq(rt->mfc_mcastgrp, *g) && 396 TAILQ_EMPTY(&rt->mfc_stall)) 397 break; 398 } 399 400 return (rt); 401 } 402 403 /* 404 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 405 */ 406 static int 407 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 408 { 409 int error, optval; 410 vifi_t vifi; 411 struct vifctl vifc; 412 struct mfcctl2 mfc; 413 struct bw_upcall bw_upcall; 414 uint32_t i; 415 416 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 417 return EPERM; 418 419 error = 0; 420 switch (sopt->sopt_name) { 421 case MRT_INIT: 422 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 423 if (error) 424 break; 425 error = ip_mrouter_init(so, optval); 426 break; 427 428 case MRT_DONE: 429 error = ip_mrouter_done(); 430 break; 431 432 case MRT_ADD_VIF: 433 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 434 if (error) 435 break; 436 error = add_vif(&vifc); 437 break; 438 439 case MRT_DEL_VIF: 440 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 441 if (error) 442 break; 443 error = del_vif(vifi); 444 break; 445 446 case MRT_ADD_MFC: 447 case MRT_DEL_MFC: 448 /* 449 * select data size depending on API version. 450 */ 451 if (sopt->sopt_name == MRT_ADD_MFC && 452 V_mrt_api_config & MRT_API_FLAGS_ALL) { 453 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 454 sizeof(struct mfcctl2)); 455 } else { 456 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 457 sizeof(struct mfcctl)); 458 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 459 sizeof(mfc) - sizeof(struct mfcctl)); 460 } 461 if (error) 462 break; 463 if (sopt->sopt_name == MRT_ADD_MFC) 464 error = add_mfc(&mfc); 465 else 466 error = del_mfc(&mfc); 467 break; 468 469 case MRT_ASSERT: 470 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 471 if (error) 472 break; 473 set_assert(optval); 474 break; 475 476 case MRT_API_CONFIG: 477 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 478 if (!error) 479 error = set_api_config(&i); 480 if (!error) 481 error = sooptcopyout(sopt, &i, sizeof i); 482 break; 483 484 case MRT_ADD_BW_UPCALL: 485 case MRT_DEL_BW_UPCALL: 486 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 487 sizeof bw_upcall); 488 if (error) 489 break; 490 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 491 error = add_bw_upcall(&bw_upcall); 492 else 493 error = del_bw_upcall(&bw_upcall); 494 break; 495 496 default: 497 error = EOPNOTSUPP; 498 break; 499 } 500 return error; 501 } 502 503 /* 504 * Handle MRT getsockopt commands 505 */ 506 static int 507 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 508 { 509 int error; 510 511 switch (sopt->sopt_name) { 512 case MRT_VERSION: 513 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 514 break; 515 516 case MRT_ASSERT: 517 error = sooptcopyout(sopt, &V_pim_assert_enabled, 518 sizeof V_pim_assert_enabled); 519 break; 520 521 case MRT_API_SUPPORT: 522 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 523 break; 524 525 case MRT_API_CONFIG: 526 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 527 break; 528 529 default: 530 error = EOPNOTSUPP; 531 break; 532 } 533 return error; 534 } 535 536 /* 537 * Handle ioctl commands to obtain information from the cache 538 */ 539 static int 540 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 541 { 542 int error = 0; 543 544 /* 545 * Currently the only function calling this ioctl routine is rtioctl_fib(). 546 * Typically, only root can create the raw socket in order to execute 547 * this ioctl method, however the request might be coming from a prison 548 */ 549 error = priv_check(curthread, PRIV_NETINET_MROUTE); 550 if (error) 551 return (error); 552 switch (cmd) { 553 case (SIOCGETVIFCNT): 554 error = get_vif_cnt((struct sioc_vif_req *)data); 555 break; 556 557 case (SIOCGETSGCNT): 558 error = get_sg_cnt((struct sioc_sg_req *)data); 559 break; 560 561 default: 562 error = EINVAL; 563 break; 564 } 565 return error; 566 } 567 568 /* 569 * returns the packet, byte, rpf-failure count for the source group provided 570 */ 571 static int 572 get_sg_cnt(struct sioc_sg_req *req) 573 { 574 struct mfc *rt; 575 576 MFC_LOCK(); 577 rt = mfc_find(&req->src, &req->grp); 578 if (rt == NULL) { 579 MFC_UNLOCK(); 580 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 581 return EADDRNOTAVAIL; 582 } 583 req->pktcnt = rt->mfc_pkt_cnt; 584 req->bytecnt = rt->mfc_byte_cnt; 585 req->wrong_if = rt->mfc_wrong_if; 586 MFC_UNLOCK(); 587 return 0; 588 } 589 590 /* 591 * returns the input and output packet and byte counts on the vif provided 592 */ 593 static int 594 get_vif_cnt(struct sioc_vif_req *req) 595 { 596 vifi_t vifi = req->vifi; 597 598 VIF_LOCK(); 599 if (vifi >= V_numvifs) { 600 VIF_UNLOCK(); 601 return EINVAL; 602 } 603 604 req->icount = V_viftable[vifi].v_pkt_in; 605 req->ocount = V_viftable[vifi].v_pkt_out; 606 req->ibytes = V_viftable[vifi].v_bytes_in; 607 req->obytes = V_viftable[vifi].v_bytes_out; 608 VIF_UNLOCK(); 609 610 return 0; 611 } 612 613 static void 614 if_detached_event(void *arg __unused, struct ifnet *ifp) 615 { 616 vifi_t vifi; 617 u_long i; 618 619 MROUTER_LOCK(); 620 621 if (V_ip_mrouter == NULL) { 622 MROUTER_UNLOCK(); 623 return; 624 } 625 626 VIF_LOCK(); 627 MFC_LOCK(); 628 629 /* 630 * Tear down multicast forwarder state associated with this ifnet. 631 * 1. Walk the vif list, matching vifs against this ifnet. 632 * 2. Walk the multicast forwarding cache (mfc) looking for 633 * inner matches with this vif's index. 634 * 3. Expire any matching multicast forwarding cache entries. 635 * 4. Free vif state. This should disable ALLMULTI on the interface. 636 */ 637 for (vifi = 0; vifi < V_numvifs; vifi++) { 638 if (V_viftable[vifi].v_ifp != ifp) 639 continue; 640 for (i = 0; i < mfchashsize; i++) { 641 struct mfc *rt, *nrt; 642 643 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 644 if (rt->mfc_parent == vifi) { 645 expire_mfc(rt); 646 } 647 } 648 } 649 del_vif_locked(vifi); 650 } 651 652 MFC_UNLOCK(); 653 VIF_UNLOCK(); 654 655 MROUTER_UNLOCK(); 656 } 657 658 /* 659 * Enable multicast forwarding. 660 */ 661 static int 662 ip_mrouter_init(struct socket *so, int version) 663 { 664 665 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 666 so->so_type, so->so_proto->pr_protocol); 667 668 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 669 return EOPNOTSUPP; 670 671 if (version != 1) 672 return ENOPROTOOPT; 673 674 MROUTER_LOCK(); 675 676 if (ip_mrouter_unloading) { 677 MROUTER_UNLOCK(); 678 return ENOPROTOOPT; 679 } 680 681 if (V_ip_mrouter != NULL) { 682 MROUTER_UNLOCK(); 683 return EADDRINUSE; 684 } 685 686 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 687 HASH_NOWAIT); 688 689 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 690 curvnet); 691 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 692 curvnet); 693 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 694 curvnet); 695 696 V_ip_mrouter = so; 697 ip_mrouter_cnt++; 698 699 MROUTER_UNLOCK(); 700 701 CTR1(KTR_IPMF, "%s: done", __func__); 702 703 return 0; 704 } 705 706 /* 707 * Disable multicast forwarding. 708 */ 709 static int 710 X_ip_mrouter_done(void) 711 { 712 struct ifnet *ifp; 713 u_long i; 714 vifi_t vifi; 715 716 MROUTER_LOCK(); 717 718 if (V_ip_mrouter == NULL) { 719 MROUTER_UNLOCK(); 720 return EINVAL; 721 } 722 723 /* 724 * Detach/disable hooks to the reset of the system. 725 */ 726 V_ip_mrouter = NULL; 727 ip_mrouter_cnt--; 728 V_mrt_api_config = 0; 729 730 VIF_LOCK(); 731 732 /* 733 * For each phyint in use, disable promiscuous reception of all IP 734 * multicasts. 735 */ 736 for (vifi = 0; vifi < V_numvifs; vifi++) { 737 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 738 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 739 ifp = V_viftable[vifi].v_ifp; 740 if_allmulti(ifp, 0); 741 } 742 } 743 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 744 V_numvifs = 0; 745 V_pim_assert_enabled = 0; 746 747 VIF_UNLOCK(); 748 749 callout_stop(&V_expire_upcalls_ch); 750 callout_stop(&V_bw_upcalls_ch); 751 callout_stop(&V_bw_meter_ch); 752 753 MFC_LOCK(); 754 755 /* 756 * Free all multicast forwarding cache entries. 757 * Do not use hashdestroy(), as we must perform other cleanup. 758 */ 759 for (i = 0; i < mfchashsize; i++) { 760 struct mfc *rt, *nrt; 761 762 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 763 expire_mfc(rt); 764 } 765 } 766 free(V_mfchashtbl, M_MRTABLE); 767 V_mfchashtbl = NULL; 768 769 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 770 771 V_bw_upcalls_n = 0; 772 bzero(V_bw_meter_timers, BW_METER_BUCKETS * sizeof(*V_bw_meter_timers)); 773 774 MFC_UNLOCK(); 775 776 V_reg_vif_num = VIFI_INVALID; 777 778 MROUTER_UNLOCK(); 779 780 CTR1(KTR_IPMF, "%s: done", __func__); 781 782 return 0; 783 } 784 785 /* 786 * Set PIM assert processing global 787 */ 788 static int 789 set_assert(int i) 790 { 791 if ((i != 1) && (i != 0)) 792 return EINVAL; 793 794 V_pim_assert_enabled = i; 795 796 return 0; 797 } 798 799 /* 800 * Configure API capabilities 801 */ 802 int 803 set_api_config(uint32_t *apival) 804 { 805 u_long i; 806 807 /* 808 * We can set the API capabilities only if it is the first operation 809 * after MRT_INIT. I.e.: 810 * - there are no vifs installed 811 * - pim_assert is not enabled 812 * - the MFC table is empty 813 */ 814 if (V_numvifs > 0) { 815 *apival = 0; 816 return EPERM; 817 } 818 if (V_pim_assert_enabled) { 819 *apival = 0; 820 return EPERM; 821 } 822 823 MFC_LOCK(); 824 825 for (i = 0; i < mfchashsize; i++) { 826 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 827 MFC_UNLOCK(); 828 *apival = 0; 829 return EPERM; 830 } 831 } 832 833 MFC_UNLOCK(); 834 835 V_mrt_api_config = *apival & mrt_api_support; 836 *apival = V_mrt_api_config; 837 838 return 0; 839 } 840 841 /* 842 * Add a vif to the vif table 843 */ 844 static int 845 add_vif(struct vifctl *vifcp) 846 { 847 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 848 struct sockaddr_in sin = {sizeof sin, AF_INET}; 849 struct ifaddr *ifa; 850 struct ifnet *ifp; 851 int error; 852 853 VIF_LOCK(); 854 if (vifcp->vifc_vifi >= MAXVIFS) { 855 VIF_UNLOCK(); 856 return EINVAL; 857 } 858 /* rate limiting is no longer supported by this code */ 859 if (vifcp->vifc_rate_limit != 0) { 860 log(LOG_ERR, "rate limiting is no longer supported\n"); 861 VIF_UNLOCK(); 862 return EINVAL; 863 } 864 if (!in_nullhost(vifp->v_lcl_addr)) { 865 VIF_UNLOCK(); 866 return EADDRINUSE; 867 } 868 if (in_nullhost(vifcp->vifc_lcl_addr)) { 869 VIF_UNLOCK(); 870 return EADDRNOTAVAIL; 871 } 872 873 /* Find the interface with an address in AF_INET family */ 874 if (vifcp->vifc_flags & VIFF_REGISTER) { 875 /* 876 * XXX: Because VIFF_REGISTER does not really need a valid 877 * local interface (e.g. it could be 127.0.0.2), we don't 878 * check its address. 879 */ 880 ifp = NULL; 881 } else { 882 struct epoch_tracker et; 883 884 sin.sin_addr = vifcp->vifc_lcl_addr; 885 NET_EPOCH_ENTER(et); 886 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 887 if (ifa == NULL) { 888 NET_EPOCH_EXIT(et); 889 VIF_UNLOCK(); 890 return EADDRNOTAVAIL; 891 } 892 ifp = ifa->ifa_ifp; 893 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 894 NET_EPOCH_EXIT(et); 895 } 896 897 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 898 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 899 VIF_UNLOCK(); 900 return EOPNOTSUPP; 901 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 902 ifp = &V_multicast_register_if; 903 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 904 if (V_reg_vif_num == VIFI_INVALID) { 905 if_initname(&V_multicast_register_if, "register_vif", 0); 906 V_multicast_register_if.if_flags = IFF_LOOPBACK; 907 V_reg_vif_num = vifcp->vifc_vifi; 908 } 909 } else { /* Make sure the interface supports multicast */ 910 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 911 VIF_UNLOCK(); 912 return EOPNOTSUPP; 913 } 914 915 /* Enable promiscuous reception of all IP multicasts from the if */ 916 error = if_allmulti(ifp, 1); 917 if (error) { 918 VIF_UNLOCK(); 919 return error; 920 } 921 } 922 923 vifp->v_flags = vifcp->vifc_flags; 924 vifp->v_threshold = vifcp->vifc_threshold; 925 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 926 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 927 vifp->v_ifp = ifp; 928 /* initialize per vif pkt counters */ 929 vifp->v_pkt_in = 0; 930 vifp->v_pkt_out = 0; 931 vifp->v_bytes_in = 0; 932 vifp->v_bytes_out = 0; 933 934 /* Adjust numvifs up if the vifi is higher than numvifs */ 935 if (V_numvifs <= vifcp->vifc_vifi) 936 V_numvifs = vifcp->vifc_vifi + 1; 937 938 VIF_UNLOCK(); 939 940 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 941 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 942 (int)vifcp->vifc_threshold); 943 944 return 0; 945 } 946 947 /* 948 * Delete a vif from the vif table 949 */ 950 static int 951 del_vif_locked(vifi_t vifi) 952 { 953 struct vif *vifp; 954 955 VIF_LOCK_ASSERT(); 956 957 if (vifi >= V_numvifs) { 958 return EINVAL; 959 } 960 vifp = &V_viftable[vifi]; 961 if (in_nullhost(vifp->v_lcl_addr)) { 962 return EADDRNOTAVAIL; 963 } 964 965 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 966 if_allmulti(vifp->v_ifp, 0); 967 968 if (vifp->v_flags & VIFF_REGISTER) 969 V_reg_vif_num = VIFI_INVALID; 970 971 bzero((caddr_t)vifp, sizeof (*vifp)); 972 973 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 974 975 /* Adjust numvifs down */ 976 for (vifi = V_numvifs; vifi > 0; vifi--) 977 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 978 break; 979 V_numvifs = vifi; 980 981 return 0; 982 } 983 984 static int 985 del_vif(vifi_t vifi) 986 { 987 int cc; 988 989 VIF_LOCK(); 990 cc = del_vif_locked(vifi); 991 VIF_UNLOCK(); 992 993 return cc; 994 } 995 996 /* 997 * update an mfc entry without resetting counters and S,G addresses. 998 */ 999 static void 1000 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1001 { 1002 int i; 1003 1004 rt->mfc_parent = mfccp->mfcc_parent; 1005 for (i = 0; i < V_numvifs; i++) { 1006 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1007 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1008 MRT_MFC_FLAGS_ALL; 1009 } 1010 /* set the RP address */ 1011 if (V_mrt_api_config & MRT_MFC_RP) 1012 rt->mfc_rp = mfccp->mfcc_rp; 1013 else 1014 rt->mfc_rp.s_addr = INADDR_ANY; 1015 } 1016 1017 /* 1018 * fully initialize an mfc entry from the parameter. 1019 */ 1020 static void 1021 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1022 { 1023 rt->mfc_origin = mfccp->mfcc_origin; 1024 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1025 1026 update_mfc_params(rt, mfccp); 1027 1028 /* initialize pkt counters per src-grp */ 1029 rt->mfc_pkt_cnt = 0; 1030 rt->mfc_byte_cnt = 0; 1031 rt->mfc_wrong_if = 0; 1032 timevalclear(&rt->mfc_last_assert); 1033 } 1034 1035 static void 1036 expire_mfc(struct mfc *rt) 1037 { 1038 struct rtdetq *rte, *nrte; 1039 1040 MFC_LOCK_ASSERT(); 1041 1042 free_bw_list(rt->mfc_bw_meter); 1043 1044 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1045 m_freem(rte->m); 1046 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1047 free(rte, M_MRTABLE); 1048 } 1049 1050 LIST_REMOVE(rt, mfc_hash); 1051 free(rt, M_MRTABLE); 1052 } 1053 1054 /* 1055 * Add an mfc entry 1056 */ 1057 static int 1058 add_mfc(struct mfcctl2 *mfccp) 1059 { 1060 struct mfc *rt; 1061 struct rtdetq *rte, *nrte; 1062 u_long hash = 0; 1063 u_short nstl; 1064 1065 VIF_LOCK(); 1066 MFC_LOCK(); 1067 1068 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1069 1070 /* If an entry already exists, just update the fields */ 1071 if (rt) { 1072 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1073 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1074 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1075 mfccp->mfcc_parent); 1076 update_mfc_params(rt, mfccp); 1077 MFC_UNLOCK(); 1078 VIF_UNLOCK(); 1079 return (0); 1080 } 1081 1082 /* 1083 * Find the entry for which the upcall was made and update 1084 */ 1085 nstl = 0; 1086 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1087 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1088 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1089 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1090 !TAILQ_EMPTY(&rt->mfc_stall)) { 1091 CTR5(KTR_IPMF, 1092 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1093 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1094 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1095 mfccp->mfcc_parent, 1096 TAILQ_FIRST(&rt->mfc_stall)); 1097 if (nstl++) 1098 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1099 1100 init_mfc_params(rt, mfccp); 1101 rt->mfc_expire = 0; /* Don't clean this guy up */ 1102 V_nexpire[hash]--; 1103 1104 /* Free queued packets, but attempt to forward them first. */ 1105 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1106 if (rte->ifp != NULL) 1107 ip_mdq(rte->m, rte->ifp, rt, -1); 1108 m_freem(rte->m); 1109 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1110 rt->mfc_nstall--; 1111 free(rte, M_MRTABLE); 1112 } 1113 } 1114 } 1115 1116 /* 1117 * It is possible that an entry is being inserted without an upcall 1118 */ 1119 if (nstl == 0) { 1120 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1121 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1122 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1123 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1124 init_mfc_params(rt, mfccp); 1125 if (rt->mfc_expire) 1126 V_nexpire[hash]--; 1127 rt->mfc_expire = 0; 1128 break; /* XXX */ 1129 } 1130 } 1131 1132 if (rt == NULL) { /* no upcall, so make a new entry */ 1133 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1134 if (rt == NULL) { 1135 MFC_UNLOCK(); 1136 VIF_UNLOCK(); 1137 return (ENOBUFS); 1138 } 1139 1140 init_mfc_params(rt, mfccp); 1141 TAILQ_INIT(&rt->mfc_stall); 1142 rt->mfc_nstall = 0; 1143 1144 rt->mfc_expire = 0; 1145 rt->mfc_bw_meter = NULL; 1146 1147 /* insert new entry at head of hash chain */ 1148 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1149 } 1150 } 1151 1152 MFC_UNLOCK(); 1153 VIF_UNLOCK(); 1154 1155 return (0); 1156 } 1157 1158 /* 1159 * Delete an mfc entry 1160 */ 1161 static int 1162 del_mfc(struct mfcctl2 *mfccp) 1163 { 1164 struct in_addr origin; 1165 struct in_addr mcastgrp; 1166 struct mfc *rt; 1167 1168 origin = mfccp->mfcc_origin; 1169 mcastgrp = mfccp->mfcc_mcastgrp; 1170 1171 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1172 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1173 1174 MFC_LOCK(); 1175 1176 rt = mfc_find(&origin, &mcastgrp); 1177 if (rt == NULL) { 1178 MFC_UNLOCK(); 1179 return EADDRNOTAVAIL; 1180 } 1181 1182 /* 1183 * free the bw_meter entries 1184 */ 1185 free_bw_list(rt->mfc_bw_meter); 1186 rt->mfc_bw_meter = NULL; 1187 1188 LIST_REMOVE(rt, mfc_hash); 1189 free(rt, M_MRTABLE); 1190 1191 MFC_UNLOCK(); 1192 1193 return (0); 1194 } 1195 1196 /* 1197 * Send a message to the routing daemon on the multicast routing socket. 1198 */ 1199 static int 1200 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1201 { 1202 if (s) { 1203 SOCKBUF_LOCK(&s->so_rcv); 1204 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1205 NULL) != 0) { 1206 sorwakeup_locked(s); 1207 return 0; 1208 } 1209 SOCKBUF_UNLOCK(&s->so_rcv); 1210 } 1211 m_freem(mm); 1212 return -1; 1213 } 1214 1215 /* 1216 * IP multicast forwarding function. This function assumes that the packet 1217 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1218 * pointed to by "ifp", and the packet is to be relayed to other networks 1219 * that have members of the packet's destination IP multicast group. 1220 * 1221 * The packet is returned unscathed to the caller, unless it is 1222 * erroneous, in which case a non-zero return value tells the caller to 1223 * discard it. 1224 */ 1225 1226 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1227 1228 static int 1229 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1230 struct ip_moptions *imo) 1231 { 1232 struct mfc *rt; 1233 int error; 1234 vifi_t vifi; 1235 1236 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1237 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1238 1239 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1240 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1241 /* 1242 * Packet arrived via a physical interface or 1243 * an encapsulated tunnel or a register_vif. 1244 */ 1245 } else { 1246 /* 1247 * Packet arrived through a source-route tunnel. 1248 * Source-route tunnels are no longer supported. 1249 */ 1250 return (1); 1251 } 1252 1253 VIF_LOCK(); 1254 MFC_LOCK(); 1255 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1256 if (ip->ip_ttl < MAXTTL) 1257 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1258 error = ip_mdq(m, ifp, NULL, vifi); 1259 MFC_UNLOCK(); 1260 VIF_UNLOCK(); 1261 return error; 1262 } 1263 1264 /* 1265 * Don't forward a packet with time-to-live of zero or one, 1266 * or a packet destined to a local-only group. 1267 */ 1268 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1269 MFC_UNLOCK(); 1270 VIF_UNLOCK(); 1271 return 0; 1272 } 1273 1274 /* 1275 * Determine forwarding vifs from the forwarding cache table 1276 */ 1277 MRTSTAT_INC(mrts_mfc_lookups); 1278 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1279 1280 /* Entry exists, so forward if necessary */ 1281 if (rt != NULL) { 1282 error = ip_mdq(m, ifp, rt, -1); 1283 MFC_UNLOCK(); 1284 VIF_UNLOCK(); 1285 return error; 1286 } else { 1287 /* 1288 * If we don't have a route for packet's origin, 1289 * Make a copy of the packet & send message to routing daemon 1290 */ 1291 1292 struct mbuf *mb0; 1293 struct rtdetq *rte; 1294 u_long hash; 1295 int hlen = ip->ip_hl << 2; 1296 1297 MRTSTAT_INC(mrts_mfc_misses); 1298 MRTSTAT_INC(mrts_no_route); 1299 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1300 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1301 1302 /* 1303 * Allocate mbufs early so that we don't do extra work if we are 1304 * just going to fail anyway. Make sure to pullup the header so 1305 * that other people can't step on it. 1306 */ 1307 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1308 M_NOWAIT|M_ZERO); 1309 if (rte == NULL) { 1310 MFC_UNLOCK(); 1311 VIF_UNLOCK(); 1312 return ENOBUFS; 1313 } 1314 1315 mb0 = m_copypacket(m, M_NOWAIT); 1316 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1317 mb0 = m_pullup(mb0, hlen); 1318 if (mb0 == NULL) { 1319 free(rte, M_MRTABLE); 1320 MFC_UNLOCK(); 1321 VIF_UNLOCK(); 1322 return ENOBUFS; 1323 } 1324 1325 /* is there an upcall waiting for this flow ? */ 1326 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1327 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1328 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1329 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1330 !TAILQ_EMPTY(&rt->mfc_stall)) 1331 break; 1332 } 1333 1334 if (rt == NULL) { 1335 int i; 1336 struct igmpmsg *im; 1337 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1338 struct mbuf *mm; 1339 1340 /* 1341 * Locate the vifi for the incoming interface for this packet. 1342 * If none found, drop packet. 1343 */ 1344 for (vifi = 0; vifi < V_numvifs && 1345 V_viftable[vifi].v_ifp != ifp; vifi++) 1346 ; 1347 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1348 goto non_fatal; 1349 1350 /* no upcall, so make a new entry */ 1351 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1352 if (rt == NULL) 1353 goto fail; 1354 1355 /* Make a copy of the header to send to the user level process */ 1356 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1357 if (mm == NULL) 1358 goto fail1; 1359 1360 /* 1361 * Send message to routing daemon to install 1362 * a route into the kernel table 1363 */ 1364 1365 im = mtod(mm, struct igmpmsg *); 1366 im->im_msgtype = IGMPMSG_NOCACHE; 1367 im->im_mbz = 0; 1368 im->im_vif = vifi; 1369 1370 MRTSTAT_INC(mrts_upcalls); 1371 1372 k_igmpsrc.sin_addr = ip->ip_src; 1373 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1374 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1375 MRTSTAT_INC(mrts_upq_sockfull); 1376 fail1: 1377 free(rt, M_MRTABLE); 1378 fail: 1379 free(rte, M_MRTABLE); 1380 m_freem(mb0); 1381 MFC_UNLOCK(); 1382 VIF_UNLOCK(); 1383 return ENOBUFS; 1384 } 1385 1386 /* insert new entry at head of hash chain */ 1387 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1388 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1389 rt->mfc_expire = UPCALL_EXPIRE; 1390 V_nexpire[hash]++; 1391 for (i = 0; i < V_numvifs; i++) { 1392 rt->mfc_ttls[i] = 0; 1393 rt->mfc_flags[i] = 0; 1394 } 1395 rt->mfc_parent = -1; 1396 1397 /* clear the RP address */ 1398 rt->mfc_rp.s_addr = INADDR_ANY; 1399 rt->mfc_bw_meter = NULL; 1400 1401 /* initialize pkt counters per src-grp */ 1402 rt->mfc_pkt_cnt = 0; 1403 rt->mfc_byte_cnt = 0; 1404 rt->mfc_wrong_if = 0; 1405 timevalclear(&rt->mfc_last_assert); 1406 1407 TAILQ_INIT(&rt->mfc_stall); 1408 rt->mfc_nstall = 0; 1409 1410 /* link into table */ 1411 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1412 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1413 rt->mfc_nstall++; 1414 1415 } else { 1416 /* determine if queue has overflowed */ 1417 if (rt->mfc_nstall > MAX_UPQ) { 1418 MRTSTAT_INC(mrts_upq_ovflw); 1419 non_fatal: 1420 free(rte, M_MRTABLE); 1421 m_freem(mb0); 1422 MFC_UNLOCK(); 1423 VIF_UNLOCK(); 1424 return (0); 1425 } 1426 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1427 rt->mfc_nstall++; 1428 } 1429 1430 rte->m = mb0; 1431 rte->ifp = ifp; 1432 1433 MFC_UNLOCK(); 1434 VIF_UNLOCK(); 1435 1436 return 0; 1437 } 1438 } 1439 1440 /* 1441 * Clean up the cache entry if upcall is not serviced 1442 */ 1443 static void 1444 expire_upcalls(void *arg) 1445 { 1446 u_long i; 1447 1448 CURVNET_SET((struct vnet *) arg); 1449 1450 MFC_LOCK(); 1451 1452 for (i = 0; i < mfchashsize; i++) { 1453 struct mfc *rt, *nrt; 1454 1455 if (V_nexpire[i] == 0) 1456 continue; 1457 1458 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1459 if (TAILQ_EMPTY(&rt->mfc_stall)) 1460 continue; 1461 1462 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1463 continue; 1464 1465 /* 1466 * free the bw_meter entries 1467 */ 1468 while (rt->mfc_bw_meter != NULL) { 1469 struct bw_meter *x = rt->mfc_bw_meter; 1470 1471 rt->mfc_bw_meter = x->bm_mfc_next; 1472 free(x, M_BWMETER); 1473 } 1474 1475 MRTSTAT_INC(mrts_cache_cleanups); 1476 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1477 (u_long)ntohl(rt->mfc_origin.s_addr), 1478 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1479 1480 expire_mfc(rt); 1481 } 1482 } 1483 1484 MFC_UNLOCK(); 1485 1486 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1487 curvnet); 1488 1489 CURVNET_RESTORE(); 1490 } 1491 1492 /* 1493 * Packet forwarding routine once entry in the cache is made 1494 */ 1495 static int 1496 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1497 { 1498 struct ip *ip = mtod(m, struct ip *); 1499 vifi_t vifi; 1500 int plen = ntohs(ip->ip_len); 1501 1502 VIF_LOCK_ASSERT(); 1503 1504 /* 1505 * If xmt_vif is not -1, send on only the requested vif. 1506 * 1507 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1508 */ 1509 if (xmt_vif < V_numvifs) { 1510 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1511 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1512 else 1513 phyint_send(ip, V_viftable + xmt_vif, m); 1514 return 1; 1515 } 1516 1517 /* 1518 * Don't forward if it didn't arrive from the parent vif for its origin. 1519 */ 1520 vifi = rt->mfc_parent; 1521 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1522 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1523 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1524 MRTSTAT_INC(mrts_wrong_if); 1525 ++rt->mfc_wrong_if; 1526 /* 1527 * If we are doing PIM assert processing, send a message 1528 * to the routing daemon. 1529 * 1530 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1531 * can complete the SPT switch, regardless of the type 1532 * of the iif (broadcast media, GRE tunnel, etc). 1533 */ 1534 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1535 V_viftable[vifi].v_ifp) { 1536 1537 if (ifp == &V_multicast_register_if) 1538 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1539 1540 /* Get vifi for the incoming packet */ 1541 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1542 vifi++) 1543 ; 1544 if (vifi >= V_numvifs) 1545 return 0; /* The iif is not found: ignore the packet. */ 1546 1547 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1548 return 0; /* WRONGVIF disabled: ignore the packet */ 1549 1550 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1551 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1552 struct igmpmsg *im; 1553 int hlen = ip->ip_hl << 2; 1554 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1555 1556 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1557 mm = m_pullup(mm, hlen); 1558 if (mm == NULL) 1559 return ENOBUFS; 1560 1561 im = mtod(mm, struct igmpmsg *); 1562 im->im_msgtype = IGMPMSG_WRONGVIF; 1563 im->im_mbz = 0; 1564 im->im_vif = vifi; 1565 1566 MRTSTAT_INC(mrts_upcalls); 1567 1568 k_igmpsrc.sin_addr = im->im_src; 1569 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1570 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1571 MRTSTAT_INC(mrts_upq_sockfull); 1572 return ENOBUFS; 1573 } 1574 } 1575 } 1576 return 0; 1577 } 1578 1579 1580 /* If I sourced this packet, it counts as output, else it was input. */ 1581 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1582 V_viftable[vifi].v_pkt_out++; 1583 V_viftable[vifi].v_bytes_out += plen; 1584 } else { 1585 V_viftable[vifi].v_pkt_in++; 1586 V_viftable[vifi].v_bytes_in += plen; 1587 } 1588 rt->mfc_pkt_cnt++; 1589 rt->mfc_byte_cnt += plen; 1590 1591 /* 1592 * For each vif, decide if a copy of the packet should be forwarded. 1593 * Forward if: 1594 * - the ttl exceeds the vif's threshold 1595 * - there are group members downstream on interface 1596 */ 1597 for (vifi = 0; vifi < V_numvifs; vifi++) 1598 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1599 V_viftable[vifi].v_pkt_out++; 1600 V_viftable[vifi].v_bytes_out += plen; 1601 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1602 pim_register_send(ip, V_viftable + vifi, m, rt); 1603 else 1604 phyint_send(ip, V_viftable + vifi, m); 1605 } 1606 1607 /* 1608 * Perform upcall-related bw measuring. 1609 */ 1610 if (rt->mfc_bw_meter != NULL) { 1611 struct bw_meter *x; 1612 struct timeval now; 1613 1614 microtime(&now); 1615 MFC_LOCK_ASSERT(); 1616 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1617 bw_meter_receive_packet(x, plen, &now); 1618 } 1619 1620 return 0; 1621 } 1622 1623 /* 1624 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1625 */ 1626 static int 1627 X_legal_vif_num(int vif) 1628 { 1629 int ret; 1630 1631 ret = 0; 1632 if (vif < 0) 1633 return (ret); 1634 1635 VIF_LOCK(); 1636 if (vif < V_numvifs) 1637 ret = 1; 1638 VIF_UNLOCK(); 1639 1640 return (ret); 1641 } 1642 1643 /* 1644 * Return the local address used by this vif 1645 */ 1646 static u_long 1647 X_ip_mcast_src(int vifi) 1648 { 1649 in_addr_t addr; 1650 1651 addr = INADDR_ANY; 1652 if (vifi < 0) 1653 return (addr); 1654 1655 VIF_LOCK(); 1656 if (vifi < V_numvifs) 1657 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1658 VIF_UNLOCK(); 1659 1660 return (addr); 1661 } 1662 1663 static void 1664 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1665 { 1666 struct mbuf *mb_copy; 1667 int hlen = ip->ip_hl << 2; 1668 1669 VIF_LOCK_ASSERT(); 1670 1671 /* 1672 * Make a new reference to the packet; make sure that 1673 * the IP header is actually copied, not just referenced, 1674 * so that ip_output() only scribbles on the copy. 1675 */ 1676 mb_copy = m_copypacket(m, M_NOWAIT); 1677 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1678 mb_copy = m_pullup(mb_copy, hlen); 1679 if (mb_copy == NULL) 1680 return; 1681 1682 send_packet(vifp, mb_copy); 1683 } 1684 1685 static void 1686 send_packet(struct vif *vifp, struct mbuf *m) 1687 { 1688 struct ip_moptions imo; 1689 int error __unused; 1690 1691 VIF_LOCK_ASSERT(); 1692 1693 imo.imo_multicast_ifp = vifp->v_ifp; 1694 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1695 imo.imo_multicast_loop = 1; 1696 imo.imo_multicast_vif = -1; 1697 STAILQ_INIT(&imo.imo_head); 1698 1699 /* 1700 * Re-entrancy should not be a problem here, because 1701 * the packets that we send out and are looped back at us 1702 * should get rejected because they appear to come from 1703 * the loopback interface, thus preventing looping. 1704 */ 1705 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1706 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1707 (ptrdiff_t)(vifp - V_viftable), error); 1708 } 1709 1710 /* 1711 * Stubs for old RSVP socket shim implementation. 1712 */ 1713 1714 static int 1715 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1716 { 1717 1718 return (EOPNOTSUPP); 1719 } 1720 1721 static void 1722 X_ip_rsvp_force_done(struct socket *so __unused) 1723 { 1724 1725 } 1726 1727 static int 1728 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1729 { 1730 struct mbuf *m; 1731 1732 m = *mp; 1733 *mp = NULL; 1734 if (!V_rsvp_on) 1735 m_freem(m); 1736 return (IPPROTO_DONE); 1737 } 1738 1739 /* 1740 * Code for bandwidth monitors 1741 */ 1742 1743 /* 1744 * Define common interface for timeval-related methods 1745 */ 1746 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1747 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1748 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1749 1750 static uint32_t 1751 compute_bw_meter_flags(struct bw_upcall *req) 1752 { 1753 uint32_t flags = 0; 1754 1755 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1756 flags |= BW_METER_UNIT_PACKETS; 1757 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1758 flags |= BW_METER_UNIT_BYTES; 1759 if (req->bu_flags & BW_UPCALL_GEQ) 1760 flags |= BW_METER_GEQ; 1761 if (req->bu_flags & BW_UPCALL_LEQ) 1762 flags |= BW_METER_LEQ; 1763 1764 return flags; 1765 } 1766 1767 /* 1768 * Add a bw_meter entry 1769 */ 1770 static int 1771 add_bw_upcall(struct bw_upcall *req) 1772 { 1773 struct mfc *mfc; 1774 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1775 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1776 struct timeval now; 1777 struct bw_meter *x; 1778 uint32_t flags; 1779 1780 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1781 return EOPNOTSUPP; 1782 1783 /* Test if the flags are valid */ 1784 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1785 return EINVAL; 1786 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1787 return EINVAL; 1788 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1789 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1790 return EINVAL; 1791 1792 /* Test if the threshold time interval is valid */ 1793 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1794 return EINVAL; 1795 1796 flags = compute_bw_meter_flags(req); 1797 1798 /* 1799 * Find if we have already same bw_meter entry 1800 */ 1801 MFC_LOCK(); 1802 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1803 if (mfc == NULL) { 1804 MFC_UNLOCK(); 1805 return EADDRNOTAVAIL; 1806 } 1807 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1808 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1809 &req->bu_threshold.b_time, ==)) && 1810 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1811 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1812 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1813 MFC_UNLOCK(); 1814 return 0; /* XXX Already installed */ 1815 } 1816 } 1817 1818 /* Allocate the new bw_meter entry */ 1819 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1820 if (x == NULL) { 1821 MFC_UNLOCK(); 1822 return ENOBUFS; 1823 } 1824 1825 /* Set the new bw_meter entry */ 1826 x->bm_threshold.b_time = req->bu_threshold.b_time; 1827 microtime(&now); 1828 x->bm_start_time = now; 1829 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1830 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1831 x->bm_measured.b_packets = 0; 1832 x->bm_measured.b_bytes = 0; 1833 x->bm_flags = flags; 1834 x->bm_time_next = NULL; 1835 x->bm_time_hash = BW_METER_BUCKETS; 1836 1837 /* Add the new bw_meter entry to the front of entries for this MFC */ 1838 x->bm_mfc = mfc; 1839 x->bm_mfc_next = mfc->mfc_bw_meter; 1840 mfc->mfc_bw_meter = x; 1841 schedule_bw_meter(x, &now); 1842 MFC_UNLOCK(); 1843 1844 return 0; 1845 } 1846 1847 static void 1848 free_bw_list(struct bw_meter *list) 1849 { 1850 while (list != NULL) { 1851 struct bw_meter *x = list; 1852 1853 list = list->bm_mfc_next; 1854 unschedule_bw_meter(x); 1855 free(x, M_BWMETER); 1856 } 1857 } 1858 1859 /* 1860 * Delete one or multiple bw_meter entries 1861 */ 1862 static int 1863 del_bw_upcall(struct bw_upcall *req) 1864 { 1865 struct mfc *mfc; 1866 struct bw_meter *x; 1867 1868 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1869 return EOPNOTSUPP; 1870 1871 MFC_LOCK(); 1872 1873 /* Find the corresponding MFC entry */ 1874 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1875 if (mfc == NULL) { 1876 MFC_UNLOCK(); 1877 return EADDRNOTAVAIL; 1878 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1879 /* 1880 * Delete all bw_meter entries for this mfc 1881 */ 1882 struct bw_meter *list; 1883 1884 list = mfc->mfc_bw_meter; 1885 mfc->mfc_bw_meter = NULL; 1886 free_bw_list(list); 1887 MFC_UNLOCK(); 1888 return 0; 1889 } else { /* Delete a single bw_meter entry */ 1890 struct bw_meter *prev; 1891 uint32_t flags = 0; 1892 1893 flags = compute_bw_meter_flags(req); 1894 1895 /* Find the bw_meter entry to delete */ 1896 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1897 prev = x, x = x->bm_mfc_next) { 1898 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1899 &req->bu_threshold.b_time, ==)) && 1900 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1901 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1902 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1903 break; 1904 } 1905 if (x != NULL) { /* Delete entry from the list for this MFC */ 1906 if (prev != NULL) 1907 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1908 else 1909 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1910 1911 unschedule_bw_meter(x); 1912 MFC_UNLOCK(); 1913 /* Free the bw_meter entry */ 1914 free(x, M_BWMETER); 1915 return 0; 1916 } else { 1917 MFC_UNLOCK(); 1918 return EINVAL; 1919 } 1920 } 1921 /* NOTREACHED */ 1922 } 1923 1924 /* 1925 * Perform bandwidth measurement processing that may result in an upcall 1926 */ 1927 static void 1928 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1929 { 1930 struct timeval delta; 1931 1932 MFC_LOCK_ASSERT(); 1933 1934 delta = *nowp; 1935 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1936 1937 if (x->bm_flags & BW_METER_GEQ) { 1938 /* 1939 * Processing for ">=" type of bw_meter entry 1940 */ 1941 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1942 /* Reset the bw_meter entry */ 1943 x->bm_start_time = *nowp; 1944 x->bm_measured.b_packets = 0; 1945 x->bm_measured.b_bytes = 0; 1946 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1947 } 1948 1949 /* Record that a packet is received */ 1950 x->bm_measured.b_packets++; 1951 x->bm_measured.b_bytes += plen; 1952 1953 /* 1954 * Test if we should deliver an upcall 1955 */ 1956 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1957 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1958 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1959 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1960 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1961 /* Prepare an upcall for delivery */ 1962 bw_meter_prepare_upcall(x, nowp); 1963 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1964 } 1965 } 1966 } else if (x->bm_flags & BW_METER_LEQ) { 1967 /* 1968 * Processing for "<=" type of bw_meter entry 1969 */ 1970 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1971 /* 1972 * We are behind time with the multicast forwarding table 1973 * scanning for "<=" type of bw_meter entries, so test now 1974 * if we should deliver an upcall. 1975 */ 1976 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1977 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1978 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1979 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1980 /* Prepare an upcall for delivery */ 1981 bw_meter_prepare_upcall(x, nowp); 1982 } 1983 /* Reschedule the bw_meter entry */ 1984 unschedule_bw_meter(x); 1985 schedule_bw_meter(x, nowp); 1986 } 1987 1988 /* Record that a packet is received */ 1989 x->bm_measured.b_packets++; 1990 x->bm_measured.b_bytes += plen; 1991 1992 /* 1993 * Test if we should restart the measuring interval 1994 */ 1995 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1996 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1997 (x->bm_flags & BW_METER_UNIT_BYTES && 1998 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1999 /* Don't restart the measuring interval */ 2000 } else { 2001 /* Do restart the measuring interval */ 2002 /* 2003 * XXX: note that we don't unschedule and schedule, because this 2004 * might be too much overhead per packet. Instead, when we process 2005 * all entries for a given timer hash bin, we check whether it is 2006 * really a timeout. If not, we reschedule at that time. 2007 */ 2008 x->bm_start_time = *nowp; 2009 x->bm_measured.b_packets = 0; 2010 x->bm_measured.b_bytes = 0; 2011 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2012 } 2013 } 2014 } 2015 2016 /* 2017 * Prepare a bandwidth-related upcall 2018 */ 2019 static void 2020 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2021 { 2022 struct timeval delta; 2023 struct bw_upcall *u; 2024 2025 MFC_LOCK_ASSERT(); 2026 2027 /* 2028 * Compute the measured time interval 2029 */ 2030 delta = *nowp; 2031 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2032 2033 /* 2034 * If there are too many pending upcalls, deliver them now 2035 */ 2036 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2037 bw_upcalls_send(); 2038 2039 /* 2040 * Set the bw_upcall entry 2041 */ 2042 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2043 u->bu_src = x->bm_mfc->mfc_origin; 2044 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2045 u->bu_threshold.b_time = x->bm_threshold.b_time; 2046 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2047 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2048 u->bu_measured.b_time = delta; 2049 u->bu_measured.b_packets = x->bm_measured.b_packets; 2050 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2051 u->bu_flags = 0; 2052 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2053 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2054 if (x->bm_flags & BW_METER_UNIT_BYTES) 2055 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2056 if (x->bm_flags & BW_METER_GEQ) 2057 u->bu_flags |= BW_UPCALL_GEQ; 2058 if (x->bm_flags & BW_METER_LEQ) 2059 u->bu_flags |= BW_UPCALL_LEQ; 2060 } 2061 2062 /* 2063 * Send the pending bandwidth-related upcalls 2064 */ 2065 static void 2066 bw_upcalls_send(void) 2067 { 2068 struct mbuf *m; 2069 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2070 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2071 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2072 0, /* unused2 */ 2073 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2074 0, /* im_mbz */ 2075 0, /* im_vif */ 2076 0, /* unused3 */ 2077 { 0 }, /* im_src */ 2078 { 0 } }; /* im_dst */ 2079 2080 MFC_LOCK_ASSERT(); 2081 2082 if (V_bw_upcalls_n == 0) 2083 return; /* No pending upcalls */ 2084 2085 V_bw_upcalls_n = 0; 2086 2087 /* 2088 * Allocate a new mbuf, initialize it with the header and 2089 * the payload for the pending calls. 2090 */ 2091 m = m_gethdr(M_NOWAIT, MT_DATA); 2092 if (m == NULL) { 2093 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2094 return; 2095 } 2096 2097 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2098 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2099 2100 /* 2101 * Send the upcalls 2102 * XXX do we need to set the address in k_igmpsrc ? 2103 */ 2104 MRTSTAT_INC(mrts_upcalls); 2105 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2106 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2107 MRTSTAT_INC(mrts_upq_sockfull); 2108 } 2109 } 2110 2111 /* 2112 * Compute the timeout hash value for the bw_meter entries 2113 */ 2114 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2115 do { \ 2116 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2117 \ 2118 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2119 (hash) = next_timeval.tv_sec; \ 2120 if (next_timeval.tv_usec) \ 2121 (hash)++; /* XXX: make sure we don't timeout early */ \ 2122 (hash) %= BW_METER_BUCKETS; \ 2123 } while (0) 2124 2125 /* 2126 * Schedule a timer to process periodically bw_meter entry of type "<=" 2127 * by linking the entry in the proper hash bucket. 2128 */ 2129 static void 2130 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2131 { 2132 int time_hash; 2133 2134 MFC_LOCK_ASSERT(); 2135 2136 if (!(x->bm_flags & BW_METER_LEQ)) 2137 return; /* XXX: we schedule timers only for "<=" entries */ 2138 2139 /* 2140 * Reset the bw_meter entry 2141 */ 2142 x->bm_start_time = *nowp; 2143 x->bm_measured.b_packets = 0; 2144 x->bm_measured.b_bytes = 0; 2145 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2146 2147 /* 2148 * Compute the timeout hash value and insert the entry 2149 */ 2150 BW_METER_TIMEHASH(x, time_hash); 2151 x->bm_time_next = V_bw_meter_timers[time_hash]; 2152 V_bw_meter_timers[time_hash] = x; 2153 x->bm_time_hash = time_hash; 2154 } 2155 2156 /* 2157 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2158 * by removing the entry from the proper hash bucket. 2159 */ 2160 static void 2161 unschedule_bw_meter(struct bw_meter *x) 2162 { 2163 int time_hash; 2164 struct bw_meter *prev, *tmp; 2165 2166 MFC_LOCK_ASSERT(); 2167 2168 if (!(x->bm_flags & BW_METER_LEQ)) 2169 return; /* XXX: we schedule timers only for "<=" entries */ 2170 2171 /* 2172 * Compute the timeout hash value and delete the entry 2173 */ 2174 time_hash = x->bm_time_hash; 2175 if (time_hash >= BW_METER_BUCKETS) 2176 return; /* Entry was not scheduled */ 2177 2178 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2179 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2180 if (tmp == x) 2181 break; 2182 2183 if (tmp == NULL) 2184 panic("unschedule_bw_meter: bw_meter entry not found"); 2185 2186 if (prev != NULL) 2187 prev->bm_time_next = x->bm_time_next; 2188 else 2189 V_bw_meter_timers[time_hash] = x->bm_time_next; 2190 2191 x->bm_time_next = NULL; 2192 x->bm_time_hash = BW_METER_BUCKETS; 2193 } 2194 2195 2196 /* 2197 * Process all "<=" type of bw_meter that should be processed now, 2198 * and for each entry prepare an upcall if necessary. Each processed 2199 * entry is rescheduled again for the (periodic) processing. 2200 * 2201 * This is run periodically (once per second normally). On each round, 2202 * all the potentially matching entries are in the hash slot that we are 2203 * looking at. 2204 */ 2205 static void 2206 bw_meter_process() 2207 { 2208 uint32_t loops; 2209 int i; 2210 struct timeval now, process_endtime; 2211 2212 microtime(&now); 2213 if (V_last_tv_sec == now.tv_sec) 2214 return; /* nothing to do */ 2215 2216 loops = now.tv_sec - V_last_tv_sec; 2217 V_last_tv_sec = now.tv_sec; 2218 if (loops > BW_METER_BUCKETS) 2219 loops = BW_METER_BUCKETS; 2220 2221 MFC_LOCK(); 2222 /* 2223 * Process all bins of bw_meter entries from the one after the last 2224 * processed to the current one. On entry, i points to the last bucket 2225 * visited, so we need to increment i at the beginning of the loop. 2226 */ 2227 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2228 struct bw_meter *x, *tmp_list; 2229 2230 if (++i >= BW_METER_BUCKETS) 2231 i = 0; 2232 2233 /* Disconnect the list of bw_meter entries from the bin */ 2234 tmp_list = V_bw_meter_timers[i]; 2235 V_bw_meter_timers[i] = NULL; 2236 2237 /* Process the list of bw_meter entries */ 2238 while (tmp_list != NULL) { 2239 x = tmp_list; 2240 tmp_list = tmp_list->bm_time_next; 2241 2242 /* Test if the time interval is over */ 2243 process_endtime = x->bm_start_time; 2244 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2245 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2246 /* Not yet: reschedule, but don't reset */ 2247 int time_hash; 2248 2249 BW_METER_TIMEHASH(x, time_hash); 2250 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2251 /* 2252 * XXX: somehow the bin processing is a bit ahead of time. 2253 * Put the entry in the next bin. 2254 */ 2255 if (++time_hash >= BW_METER_BUCKETS) 2256 time_hash = 0; 2257 } 2258 x->bm_time_next = V_bw_meter_timers[time_hash]; 2259 V_bw_meter_timers[time_hash] = x; 2260 x->bm_time_hash = time_hash; 2261 2262 continue; 2263 } 2264 2265 /* 2266 * Test if we should deliver an upcall 2267 */ 2268 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2269 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2270 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2271 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2272 /* Prepare an upcall for delivery */ 2273 bw_meter_prepare_upcall(x, &now); 2274 } 2275 2276 /* 2277 * Reschedule for next processing 2278 */ 2279 schedule_bw_meter(x, &now); 2280 } 2281 } 2282 2283 /* Send all upcalls that are pending delivery */ 2284 bw_upcalls_send(); 2285 2286 MFC_UNLOCK(); 2287 } 2288 2289 /* 2290 * A periodic function for sending all upcalls that are pending delivery 2291 */ 2292 static void 2293 expire_bw_upcalls_send(void *arg) 2294 { 2295 CURVNET_SET((struct vnet *) arg); 2296 2297 MFC_LOCK(); 2298 bw_upcalls_send(); 2299 MFC_UNLOCK(); 2300 2301 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2302 curvnet); 2303 CURVNET_RESTORE(); 2304 } 2305 2306 /* 2307 * A periodic function for periodic scanning of the multicast forwarding 2308 * table for processing all "<=" bw_meter entries. 2309 */ 2310 static void 2311 expire_bw_meter_process(void *arg) 2312 { 2313 CURVNET_SET((struct vnet *) arg); 2314 2315 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2316 bw_meter_process(); 2317 2318 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2319 curvnet); 2320 CURVNET_RESTORE(); 2321 } 2322 2323 /* 2324 * End of bandwidth monitoring code 2325 */ 2326 2327 /* 2328 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2329 * 2330 */ 2331 static int 2332 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2333 struct mfc *rt) 2334 { 2335 struct mbuf *mb_copy, *mm; 2336 2337 /* 2338 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2339 * rendezvous point was unspecified, and we were told not to. 2340 */ 2341 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2342 in_nullhost(rt->mfc_rp)) 2343 return 0; 2344 2345 mb_copy = pim_register_prepare(ip, m); 2346 if (mb_copy == NULL) 2347 return ENOBUFS; 2348 2349 /* 2350 * Send all the fragments. Note that the mbuf for each fragment 2351 * is freed by the sending machinery. 2352 */ 2353 for (mm = mb_copy; mm; mm = mb_copy) { 2354 mb_copy = mm->m_nextpkt; 2355 mm->m_nextpkt = 0; 2356 mm = m_pullup(mm, sizeof(struct ip)); 2357 if (mm != NULL) { 2358 ip = mtod(mm, struct ip *); 2359 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2360 pim_register_send_rp(ip, vifp, mm, rt); 2361 } else { 2362 pim_register_send_upcall(ip, vifp, mm, rt); 2363 } 2364 } 2365 } 2366 2367 return 0; 2368 } 2369 2370 /* 2371 * Return a copy of the data packet that is ready for PIM Register 2372 * encapsulation. 2373 * XXX: Note that in the returned copy the IP header is a valid one. 2374 */ 2375 static struct mbuf * 2376 pim_register_prepare(struct ip *ip, struct mbuf *m) 2377 { 2378 struct mbuf *mb_copy = NULL; 2379 int mtu; 2380 2381 /* Take care of delayed checksums */ 2382 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2383 in_delayed_cksum(m); 2384 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2385 } 2386 2387 /* 2388 * Copy the old packet & pullup its IP header into the 2389 * new mbuf so we can modify it. 2390 */ 2391 mb_copy = m_copypacket(m, M_NOWAIT); 2392 if (mb_copy == NULL) 2393 return NULL; 2394 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2395 if (mb_copy == NULL) 2396 return NULL; 2397 2398 /* take care of the TTL */ 2399 ip = mtod(mb_copy, struct ip *); 2400 --ip->ip_ttl; 2401 2402 /* Compute the MTU after the PIM Register encapsulation */ 2403 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2404 2405 if (ntohs(ip->ip_len) <= mtu) { 2406 /* Turn the IP header into a valid one */ 2407 ip->ip_sum = 0; 2408 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2409 } else { 2410 /* Fragment the packet */ 2411 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2412 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2413 m_freem(mb_copy); 2414 return NULL; 2415 } 2416 } 2417 return mb_copy; 2418 } 2419 2420 /* 2421 * Send an upcall with the data packet to the user-level process. 2422 */ 2423 static int 2424 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2425 struct mbuf *mb_copy, struct mfc *rt) 2426 { 2427 struct mbuf *mb_first; 2428 int len = ntohs(ip->ip_len); 2429 struct igmpmsg *im; 2430 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2431 2432 VIF_LOCK_ASSERT(); 2433 2434 /* 2435 * Add a new mbuf with an upcall header 2436 */ 2437 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2438 if (mb_first == NULL) { 2439 m_freem(mb_copy); 2440 return ENOBUFS; 2441 } 2442 mb_first->m_data += max_linkhdr; 2443 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2444 mb_first->m_len = sizeof(struct igmpmsg); 2445 mb_first->m_next = mb_copy; 2446 2447 /* Send message to routing daemon */ 2448 im = mtod(mb_first, struct igmpmsg *); 2449 im->im_msgtype = IGMPMSG_WHOLEPKT; 2450 im->im_mbz = 0; 2451 im->im_vif = vifp - V_viftable; 2452 im->im_src = ip->ip_src; 2453 im->im_dst = ip->ip_dst; 2454 2455 k_igmpsrc.sin_addr = ip->ip_src; 2456 2457 MRTSTAT_INC(mrts_upcalls); 2458 2459 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2460 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2461 MRTSTAT_INC(mrts_upq_sockfull); 2462 return ENOBUFS; 2463 } 2464 2465 /* Keep statistics */ 2466 PIMSTAT_INC(pims_snd_registers_msgs); 2467 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * Encapsulate the data packet in PIM Register message and send it to the RP. 2474 */ 2475 static int 2476 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2477 struct mfc *rt) 2478 { 2479 struct mbuf *mb_first; 2480 struct ip *ip_outer; 2481 struct pim_encap_pimhdr *pimhdr; 2482 int len = ntohs(ip->ip_len); 2483 vifi_t vifi = rt->mfc_parent; 2484 2485 VIF_LOCK_ASSERT(); 2486 2487 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2488 m_freem(mb_copy); 2489 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2490 } 2491 2492 /* 2493 * Add a new mbuf with the encapsulating header 2494 */ 2495 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2496 if (mb_first == NULL) { 2497 m_freem(mb_copy); 2498 return ENOBUFS; 2499 } 2500 mb_first->m_data += max_linkhdr; 2501 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2502 mb_first->m_next = mb_copy; 2503 2504 mb_first->m_pkthdr.len = len + mb_first->m_len; 2505 2506 /* 2507 * Fill in the encapsulating IP and PIM header 2508 */ 2509 ip_outer = mtod(mb_first, struct ip *); 2510 *ip_outer = pim_encap_iphdr; 2511 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2512 sizeof(pim_encap_pimhdr)); 2513 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2514 ip_outer->ip_dst = rt->mfc_rp; 2515 /* 2516 * Copy the inner header TOS to the outer header, and take care of the 2517 * IP_DF bit. 2518 */ 2519 ip_outer->ip_tos = ip->ip_tos; 2520 if (ip->ip_off & htons(IP_DF)) 2521 ip_outer->ip_off |= htons(IP_DF); 2522 ip_fillid(ip_outer); 2523 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2524 + sizeof(pim_encap_iphdr)); 2525 *pimhdr = pim_encap_pimhdr; 2526 /* If the iif crosses a border, set the Border-bit */ 2527 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2528 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2529 2530 mb_first->m_data += sizeof(pim_encap_iphdr); 2531 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2532 mb_first->m_data -= sizeof(pim_encap_iphdr); 2533 2534 send_packet(vifp, mb_first); 2535 2536 /* Keep statistics */ 2537 PIMSTAT_INC(pims_snd_registers_msgs); 2538 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2539 2540 return 0; 2541 } 2542 2543 /* 2544 * pim_encapcheck() is called by the encap4_input() path at runtime to 2545 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2546 * into the kernel. 2547 */ 2548 static int 2549 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2550 int proto __unused, void *arg __unused) 2551 { 2552 2553 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2554 return (8); /* claim the datagram. */ 2555 } 2556 2557 /* 2558 * PIM-SMv2 and PIM-DM messages processing. 2559 * Receives and verifies the PIM control messages, and passes them 2560 * up to the listening socket, using rip_input(). 2561 * The only message with special processing is the PIM_REGISTER message 2562 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2563 * is passed to if_simloop(). 2564 */ 2565 static int 2566 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2567 { 2568 struct ip *ip = mtod(m, struct ip *); 2569 struct pim *pim; 2570 int iphlen = off; 2571 int minlen; 2572 int datalen = ntohs(ip->ip_len) - iphlen; 2573 int ip_tos; 2574 2575 /* Keep statistics */ 2576 PIMSTAT_INC(pims_rcv_total_msgs); 2577 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2578 2579 /* 2580 * Validate lengths 2581 */ 2582 if (datalen < PIM_MINLEN) { 2583 PIMSTAT_INC(pims_rcv_tooshort); 2584 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2585 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2586 m_freem(m); 2587 return (IPPROTO_DONE); 2588 } 2589 2590 /* 2591 * If the packet is at least as big as a REGISTER, go agead 2592 * and grab the PIM REGISTER header size, to avoid another 2593 * possible m_pullup() later. 2594 * 2595 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2596 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2597 */ 2598 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2599 /* 2600 * Get the IP and PIM headers in contiguous memory, and 2601 * possibly the PIM REGISTER header. 2602 */ 2603 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2604 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2605 return (IPPROTO_DONE); 2606 } 2607 2608 /* m_pullup() may have given us a new mbuf so reset ip. */ 2609 ip = mtod(m, struct ip *); 2610 ip_tos = ip->ip_tos; 2611 2612 /* adjust mbuf to point to the PIM header */ 2613 m->m_data += iphlen; 2614 m->m_len -= iphlen; 2615 pim = mtod(m, struct pim *); 2616 2617 /* 2618 * Validate checksum. If PIM REGISTER, exclude the data packet. 2619 * 2620 * XXX: some older PIMv2 implementations don't make this distinction, 2621 * so for compatibility reason perform the checksum over part of the 2622 * message, and if error, then over the whole message. 2623 */ 2624 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2625 /* do nothing, checksum okay */ 2626 } else if (in_cksum(m, datalen)) { 2627 PIMSTAT_INC(pims_rcv_badsum); 2628 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2629 m_freem(m); 2630 return (IPPROTO_DONE); 2631 } 2632 2633 /* PIM version check */ 2634 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2635 PIMSTAT_INC(pims_rcv_badversion); 2636 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2637 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2638 m_freem(m); 2639 return (IPPROTO_DONE); 2640 } 2641 2642 /* restore mbuf back to the outer IP */ 2643 m->m_data -= iphlen; 2644 m->m_len += iphlen; 2645 2646 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2647 /* 2648 * Since this is a REGISTER, we'll make a copy of the register 2649 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2650 * routing daemon. 2651 */ 2652 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2653 struct mbuf *mcp; 2654 struct ip *encap_ip; 2655 u_int32_t *reghdr; 2656 struct ifnet *vifp; 2657 2658 VIF_LOCK(); 2659 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2660 VIF_UNLOCK(); 2661 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2662 (int)V_reg_vif_num); 2663 m_freem(m); 2664 return (IPPROTO_DONE); 2665 } 2666 /* XXX need refcnt? */ 2667 vifp = V_viftable[V_reg_vif_num].v_ifp; 2668 VIF_UNLOCK(); 2669 2670 /* 2671 * Validate length 2672 */ 2673 if (datalen < PIM_REG_MINLEN) { 2674 PIMSTAT_INC(pims_rcv_tooshort); 2675 PIMSTAT_INC(pims_rcv_badregisters); 2676 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2677 m_freem(m); 2678 return (IPPROTO_DONE); 2679 } 2680 2681 reghdr = (u_int32_t *)(pim + 1); 2682 encap_ip = (struct ip *)(reghdr + 1); 2683 2684 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2685 __func__, ntohl(encap_ip->ip_src.s_addr), 2686 ntohs(encap_ip->ip_len)); 2687 2688 /* verify the version number of the inner packet */ 2689 if (encap_ip->ip_v != IPVERSION) { 2690 PIMSTAT_INC(pims_rcv_badregisters); 2691 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2692 m_freem(m); 2693 return (IPPROTO_DONE); 2694 } 2695 2696 /* verify the inner packet is destined to a mcast group */ 2697 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2698 PIMSTAT_INC(pims_rcv_badregisters); 2699 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2700 ntohl(encap_ip->ip_dst.s_addr)); 2701 m_freem(m); 2702 return (IPPROTO_DONE); 2703 } 2704 2705 /* If a NULL_REGISTER, pass it to the daemon */ 2706 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2707 goto pim_input_to_daemon; 2708 2709 /* 2710 * Copy the TOS from the outer IP header to the inner IP header. 2711 */ 2712 if (encap_ip->ip_tos != ip_tos) { 2713 /* Outer TOS -> inner TOS */ 2714 encap_ip->ip_tos = ip_tos; 2715 /* Recompute the inner header checksum. Sigh... */ 2716 2717 /* adjust mbuf to point to the inner IP header */ 2718 m->m_data += (iphlen + PIM_MINLEN); 2719 m->m_len -= (iphlen + PIM_MINLEN); 2720 2721 encap_ip->ip_sum = 0; 2722 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2723 2724 /* restore mbuf to point back to the outer IP header */ 2725 m->m_data -= (iphlen + PIM_MINLEN); 2726 m->m_len += (iphlen + PIM_MINLEN); 2727 } 2728 2729 /* 2730 * Decapsulate the inner IP packet and loopback to forward it 2731 * as a normal multicast packet. Also, make a copy of the 2732 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2733 * to pass to the daemon later, so it can take the appropriate 2734 * actions (e.g., send back PIM_REGISTER_STOP). 2735 * XXX: here m->m_data points to the outer IP header. 2736 */ 2737 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2738 if (mcp == NULL) { 2739 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2740 m_freem(m); 2741 return (IPPROTO_DONE); 2742 } 2743 2744 /* Keep statistics */ 2745 /* XXX: registers_bytes include only the encap. mcast pkt */ 2746 PIMSTAT_INC(pims_rcv_registers_msgs); 2747 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2748 2749 /* 2750 * forward the inner ip packet; point m_data at the inner ip. 2751 */ 2752 m_adj(m, iphlen + PIM_MINLEN); 2753 2754 CTR4(KTR_IPMF, 2755 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2756 __func__, 2757 (u_long)ntohl(encap_ip->ip_src.s_addr), 2758 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2759 (int)V_reg_vif_num); 2760 2761 /* NB: vifp was collected above; can it change on us? */ 2762 if_simloop(vifp, m, dst.sin_family, 0); 2763 2764 /* prepare the register head to send to the mrouting daemon */ 2765 m = mcp; 2766 } 2767 2768 pim_input_to_daemon: 2769 /* 2770 * Pass the PIM message up to the daemon; if it is a Register message, 2771 * pass the 'head' only up to the daemon. This includes the 2772 * outer IP header, PIM header, PIM-Register header and the 2773 * inner IP header. 2774 * XXX: the outer IP header pkt size of a Register is not adjust to 2775 * reflect the fact that the inner multicast data is truncated. 2776 */ 2777 return (rip_input(&m, &off, proto)); 2778 } 2779 2780 static int 2781 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2782 { 2783 struct mfc *rt; 2784 int error, i; 2785 2786 if (req->newptr) 2787 return (EPERM); 2788 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2789 return (0); 2790 error = sysctl_wire_old_buffer(req, 0); 2791 if (error) 2792 return (error); 2793 2794 MFC_LOCK(); 2795 for (i = 0; i < mfchashsize; i++) { 2796 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2797 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2798 if (error) 2799 goto out_locked; 2800 } 2801 } 2802 out_locked: 2803 MFC_UNLOCK(); 2804 return (error); 2805 } 2806 2807 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2808 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2809 "IPv4 Multicast Forwarding Table " 2810 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2811 2812 static void 2813 vnet_mroute_init(const void *unused __unused) 2814 { 2815 2816 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2817 2818 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2819 M_MRTABLE, M_WAITOK|M_ZERO); 2820 V_bw_meter_timers = mallocarray(BW_METER_BUCKETS, 2821 sizeof(*V_bw_meter_timers), M_MRTABLE, M_WAITOK|M_ZERO); 2822 V_bw_upcalls = mallocarray(BW_UPCALLS_MAX, sizeof(*V_bw_upcalls), 2823 M_MRTABLE, M_WAITOK|M_ZERO); 2824 2825 callout_init(&V_expire_upcalls_ch, 1); 2826 callout_init(&V_bw_upcalls_ch, 1); 2827 callout_init(&V_bw_meter_ch, 1); 2828 } 2829 2830 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2831 NULL); 2832 2833 static void 2834 vnet_mroute_uninit(const void *unused __unused) 2835 { 2836 2837 free(V_bw_upcalls, M_MRTABLE); 2838 free(V_bw_meter_timers, M_MRTABLE); 2839 free(V_viftable, M_MRTABLE); 2840 free(V_nexpire, M_MRTABLE); 2841 V_nexpire = NULL; 2842 } 2843 2844 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2845 vnet_mroute_uninit, NULL); 2846 2847 static int 2848 ip_mroute_modevent(module_t mod, int type, void *unused) 2849 { 2850 2851 switch (type) { 2852 case MOD_LOAD: 2853 MROUTER_LOCK_INIT(); 2854 2855 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2856 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2857 if (if_detach_event_tag == NULL) { 2858 printf("ip_mroute: unable to register " 2859 "ifnet_departure_event handler\n"); 2860 MROUTER_LOCK_DESTROY(); 2861 return (EINVAL); 2862 } 2863 2864 MFC_LOCK_INIT(); 2865 VIF_LOCK_INIT(); 2866 2867 mfchashsize = MFCHASHSIZE; 2868 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2869 !powerof2(mfchashsize)) { 2870 printf("WARNING: %s not a power of 2; using default\n", 2871 "net.inet.ip.mfchashsize"); 2872 mfchashsize = MFCHASHSIZE; 2873 } 2874 2875 pim_squelch_wholepkt = 0; 2876 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2877 &pim_squelch_wholepkt); 2878 2879 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2880 if (pim_encap_cookie == NULL) { 2881 printf("ip_mroute: unable to attach pim encap\n"); 2882 VIF_LOCK_DESTROY(); 2883 MFC_LOCK_DESTROY(); 2884 MROUTER_LOCK_DESTROY(); 2885 return (EINVAL); 2886 } 2887 2888 ip_mcast_src = X_ip_mcast_src; 2889 ip_mforward = X_ip_mforward; 2890 ip_mrouter_done = X_ip_mrouter_done; 2891 ip_mrouter_get = X_ip_mrouter_get; 2892 ip_mrouter_set = X_ip_mrouter_set; 2893 2894 ip_rsvp_force_done = X_ip_rsvp_force_done; 2895 ip_rsvp_vif = X_ip_rsvp_vif; 2896 2897 legal_vif_num = X_legal_vif_num; 2898 mrt_ioctl = X_mrt_ioctl; 2899 rsvp_input_p = X_rsvp_input; 2900 break; 2901 2902 case MOD_UNLOAD: 2903 /* 2904 * Typically module unload happens after the user-level 2905 * process has shutdown the kernel services (the check 2906 * below insures someone can't just yank the module out 2907 * from under a running process). But if the module is 2908 * just loaded and then unloaded w/o starting up a user 2909 * process we still need to cleanup. 2910 */ 2911 MROUTER_LOCK(); 2912 if (ip_mrouter_cnt != 0) { 2913 MROUTER_UNLOCK(); 2914 return (EINVAL); 2915 } 2916 ip_mrouter_unloading = 1; 2917 MROUTER_UNLOCK(); 2918 2919 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2920 2921 if (pim_encap_cookie) { 2922 ip_encap_detach(pim_encap_cookie); 2923 pim_encap_cookie = NULL; 2924 } 2925 2926 ip_mcast_src = NULL; 2927 ip_mforward = NULL; 2928 ip_mrouter_done = NULL; 2929 ip_mrouter_get = NULL; 2930 ip_mrouter_set = NULL; 2931 2932 ip_rsvp_force_done = NULL; 2933 ip_rsvp_vif = NULL; 2934 2935 legal_vif_num = NULL; 2936 mrt_ioctl = NULL; 2937 rsvp_input_p = NULL; 2938 2939 VIF_LOCK_DESTROY(); 2940 MFC_LOCK_DESTROY(); 2941 MROUTER_LOCK_DESTROY(); 2942 break; 2943 2944 default: 2945 return EOPNOTSUPP; 2946 } 2947 return 0; 2948 } 2949 2950 static moduledata_t ip_mroutemod = { 2951 "ip_mroute", 2952 ip_mroute_modevent, 2953 0 2954 }; 2955 2956 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2957