1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/lock.h> 81 #include <sys/ktr.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/module.h> 85 #include <sys/priv.h> 86 #include <sys/protosw.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/sockio.h> 91 #include <sys/sx.h> 92 #include <sys/sysctl.h> 93 #include <sys/syslog.h> 94 #include <sys/systm.h> 95 #include <sys/time.h> 96 97 #include <net/if.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/igmp.h> 104 #include <netinet/in_systm.h> 105 #include <netinet/in_var.h> 106 #include <netinet/ip.h> 107 #include <netinet/ip_encap.h> 108 #include <netinet/ip_mroute.h> 109 #include <netinet/ip_var.h> 110 #include <netinet/ip_options.h> 111 #include <netinet/pim.h> 112 #include <netinet/pim_var.h> 113 #include <netinet/udp.h> 114 115 #include <machine/in_cksum.h> 116 117 #include <security/mac/mac_framework.h> 118 119 #ifndef KTR_IPMF 120 #define KTR_IPMF KTR_INET 121 #endif 122 123 #define VIFI_INVALID ((vifi_t) -1) 124 #define M_HASCL(m) ((m)->m_flags & M_EXT) 125 126 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 127 128 /* 129 * Locking. We use two locks: one for the virtual interface table and 130 * one for the forwarding table. These locks may be nested in which case 131 * the VIF lock must always be taken first. Note that each lock is used 132 * to cover not only the specific data structure but also related data 133 * structures. 134 */ 135 136 static struct mtx mrouter_mtx; 137 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 138 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 139 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 140 #define MROUTER_LOCK_INIT() \ 141 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 142 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 143 144 static struct mrtstat mrtstat; 145 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 146 &mrtstat, mrtstat, 147 "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 148 "netinet/ip_mroute.h)"); 149 150 static u_long mfchash; 151 #define MFCHASH(a, g) \ 152 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 153 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 154 #define MFCHASHSIZE 256 155 156 static u_char *nexpire; /* 0..mfchashsize-1 */ 157 static u_long mfchashsize; /* Hash size */ 158 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 159 160 static struct mtx mfc_mtx; 161 #define MFC_LOCK() mtx_lock(&mfc_mtx) 162 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 163 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 164 #define MFC_LOCK_INIT() \ 165 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 166 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 167 168 static vifi_t numvifs; 169 static struct vif viftable[MAXVIFS]; 170 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 171 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 172 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 173 174 static struct mtx vif_mtx; 175 #define VIF_LOCK() mtx_lock(&vif_mtx) 176 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 177 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 178 #define VIF_LOCK_INIT() \ 179 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 180 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 181 182 static eventhandler_tag if_detach_event_tag = NULL; 183 184 static struct callout expire_upcalls_ch; 185 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 186 #define UPCALL_EXPIRE 6 /* number of timeouts */ 187 188 /* 189 * Bandwidth meter variables and constants 190 */ 191 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 192 /* 193 * Pending timeouts are stored in a hash table, the key being the 194 * expiration time. Periodically, the entries are analysed and processed. 195 */ 196 #define BW_METER_BUCKETS 1024 197 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 198 static struct callout bw_meter_ch; 199 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 200 201 /* 202 * Pending upcalls are stored in a vector which is flushed when 203 * full, or periodically 204 */ 205 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 206 static u_int bw_upcalls_n; /* # of pending upcalls */ 207 static struct callout bw_upcalls_ch; 208 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 209 210 static struct pimstat pimstat; 211 212 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 213 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 214 &pimstat, pimstat, 215 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 216 217 static u_long pim_squelch_wholepkt = 0; 218 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 219 &pim_squelch_wholepkt, 0, 220 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 221 222 extern struct domain inetdomain; 223 static const struct protosw in_pim_protosw = { 224 .pr_type = SOCK_RAW, 225 .pr_domain = &inetdomain, 226 .pr_protocol = IPPROTO_PIM, 227 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 228 .pr_input = pim_input, 229 .pr_output = (pr_output_t*)rip_output, 230 .pr_ctloutput = rip_ctloutput, 231 .pr_usrreqs = &rip_usrreqs 232 }; 233 static const struct encaptab *pim_encap_cookie; 234 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 237 /* 238 * Note: the PIM Register encapsulation adds the following in front of a 239 * data packet: 240 * 241 * struct pim_encap_hdr { 242 * struct ip ip; 243 * struct pim_encap_pimhdr pim; 244 * } 245 * 246 */ 247 248 struct pim_encap_pimhdr { 249 struct pim pim; 250 uint32_t flags; 251 }; 252 #define PIM_ENCAP_TTL 64 253 254 static struct ip pim_encap_iphdr = { 255 #if BYTE_ORDER == LITTLE_ENDIAN 256 sizeof(struct ip) >> 2, 257 IPVERSION, 258 #else 259 IPVERSION, 260 sizeof(struct ip) >> 2, 261 #endif 262 0, /* tos */ 263 sizeof(struct ip), /* total length */ 264 0, /* id */ 265 0, /* frag offset */ 266 PIM_ENCAP_TTL, 267 IPPROTO_PIM, 268 0, /* checksum */ 269 }; 270 271 static struct pim_encap_pimhdr pim_encap_pimhdr = { 272 { 273 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 274 0, /* reserved */ 275 0, /* checksum */ 276 }, 277 0 /* flags */ 278 }; 279 280 static struct ifnet multicast_register_if; 281 static vifi_t reg_vif_num = VIFI_INVALID; 282 283 /* 284 * Private variables. 285 */ 286 287 static u_long X_ip_mcast_src(int); 288 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 289 struct ip_moptions *); 290 static int X_ip_mrouter_done(void); 291 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 292 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 293 static int X_legal_vif_num(int); 294 static int X_mrt_ioctl(u_long, caddr_t, int); 295 296 static int add_bw_upcall(struct bw_upcall *); 297 static int add_mfc(struct mfcctl2 *); 298 static int add_vif(struct vifctl *); 299 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 300 static void bw_meter_process(void); 301 static void bw_meter_receive_packet(struct bw_meter *, int, 302 struct timeval *); 303 static void bw_upcalls_send(void); 304 static int del_bw_upcall(struct bw_upcall *); 305 static int del_mfc(struct mfcctl2 *); 306 static int del_vif(vifi_t); 307 static int del_vif_locked(vifi_t); 308 static void expire_bw_meter_process(void *); 309 static void expire_bw_upcalls_send(void *); 310 static void expire_mfc(struct mfc *); 311 static void expire_upcalls(void *); 312 static void free_bw_list(struct bw_meter *); 313 static int get_sg_cnt(struct sioc_sg_req *); 314 static int get_vif_cnt(struct sioc_vif_req *); 315 static void if_detached_event(void *, struct ifnet *); 316 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 317 static int ip_mrouter_init(struct socket *, int); 318 static __inline struct mfc * 319 mfc_find(struct in_addr *, struct in_addr *); 320 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 321 static struct mbuf * 322 pim_register_prepare(struct ip *, struct mbuf *); 323 static int pim_register_send(struct ip *, struct vif *, 324 struct mbuf *, struct mfc *); 325 static int pim_register_send_rp(struct ip *, struct vif *, 326 struct mbuf *, struct mfc *); 327 static int pim_register_send_upcall(struct ip *, struct vif *, 328 struct mbuf *, struct mfc *); 329 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 330 static void send_packet(struct vif *, struct mbuf *); 331 static int set_api_config(uint32_t *); 332 static int set_assert(int); 333 static int socket_send(struct socket *, struct mbuf *, 334 struct sockaddr_in *); 335 static void unschedule_bw_meter(struct bw_meter *); 336 337 /* 338 * Kernel multicast forwarding API capabilities and setup. 339 * If more API capabilities are added to the kernel, they should be 340 * recorded in `mrt_api_support'. 341 */ 342 #define MRT_API_VERSION 0x0305 343 344 static const int mrt_api_version = MRT_API_VERSION; 345 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 346 MRT_MFC_FLAGS_BORDER_VIF | 347 MRT_MFC_RP | 348 MRT_MFC_BW_UPCALL); 349 static uint32_t mrt_api_config = 0; 350 351 static int pim_assert_enabled; 352 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 353 354 /* 355 * Find a route for a given origin IP address and multicast group address. 356 * Statistics must be updated by the caller. 357 */ 358 static __inline struct mfc * 359 mfc_find(struct in_addr *o, struct in_addr *g) 360 { 361 struct mfc *rt; 362 363 MFC_LOCK_ASSERT(); 364 365 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 366 if (in_hosteq(rt->mfc_origin, *o) && 367 in_hosteq(rt->mfc_mcastgrp, *g) && 368 TAILQ_EMPTY(&rt->mfc_stall)) 369 break; 370 } 371 372 return (rt); 373 } 374 375 /* 376 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 377 */ 378 static int 379 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 380 { 381 int error, optval; 382 vifi_t vifi; 383 struct vifctl vifc; 384 struct mfcctl2 mfc; 385 struct bw_upcall bw_upcall; 386 uint32_t i; 387 388 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 389 return EPERM; 390 391 error = 0; 392 switch (sopt->sopt_name) { 393 case MRT_INIT: 394 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 395 if (error) 396 break; 397 error = ip_mrouter_init(so, optval); 398 break; 399 400 case MRT_DONE: 401 error = ip_mrouter_done(); 402 break; 403 404 case MRT_ADD_VIF: 405 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 406 if (error) 407 break; 408 error = add_vif(&vifc); 409 break; 410 411 case MRT_DEL_VIF: 412 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 413 if (error) 414 break; 415 error = del_vif(vifi); 416 break; 417 418 case MRT_ADD_MFC: 419 case MRT_DEL_MFC: 420 /* 421 * select data size depending on API version. 422 */ 423 if (sopt->sopt_name == MRT_ADD_MFC && 424 mrt_api_config & MRT_API_FLAGS_ALL) { 425 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 426 sizeof(struct mfcctl2)); 427 } else { 428 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 429 sizeof(struct mfcctl)); 430 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 431 sizeof(mfc) - sizeof(struct mfcctl)); 432 } 433 if (error) 434 break; 435 if (sopt->sopt_name == MRT_ADD_MFC) 436 error = add_mfc(&mfc); 437 else 438 error = del_mfc(&mfc); 439 break; 440 441 case MRT_ASSERT: 442 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 443 if (error) 444 break; 445 set_assert(optval); 446 break; 447 448 case MRT_API_CONFIG: 449 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 450 if (!error) 451 error = set_api_config(&i); 452 if (!error) 453 error = sooptcopyout(sopt, &i, sizeof i); 454 break; 455 456 case MRT_ADD_BW_UPCALL: 457 case MRT_DEL_BW_UPCALL: 458 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 459 sizeof bw_upcall); 460 if (error) 461 break; 462 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 463 error = add_bw_upcall(&bw_upcall); 464 else 465 error = del_bw_upcall(&bw_upcall); 466 break; 467 468 default: 469 error = EOPNOTSUPP; 470 break; 471 } 472 return error; 473 } 474 475 /* 476 * Handle MRT getsockopt commands 477 */ 478 static int 479 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 480 { 481 int error; 482 483 switch (sopt->sopt_name) { 484 case MRT_VERSION: 485 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 486 break; 487 488 case MRT_ASSERT: 489 error = sooptcopyout(sopt, &pim_assert_enabled, 490 sizeof pim_assert_enabled); 491 break; 492 493 case MRT_API_SUPPORT: 494 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 495 break; 496 497 case MRT_API_CONFIG: 498 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle ioctl commands to obtain information from the cache 510 */ 511 static int 512 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 513 { 514 int error = 0; 515 516 /* 517 * Currently the only function calling this ioctl routine is rtioctl(). 518 * Typically, only root can create the raw socket in order to execute 519 * this ioctl method, however the request might be coming from a prison 520 */ 521 error = priv_check(curthread, PRIV_NETINET_MROUTE); 522 if (error) 523 return (error); 524 switch (cmd) { 525 case (SIOCGETVIFCNT): 526 error = get_vif_cnt((struct sioc_vif_req *)data); 527 break; 528 529 case (SIOCGETSGCNT): 530 error = get_sg_cnt((struct sioc_sg_req *)data); 531 break; 532 533 default: 534 error = EINVAL; 535 break; 536 } 537 return error; 538 } 539 540 /* 541 * returns the packet, byte, rpf-failure count for the source group provided 542 */ 543 static int 544 get_sg_cnt(struct sioc_sg_req *req) 545 { 546 struct mfc *rt; 547 548 MFC_LOCK(); 549 rt = mfc_find(&req->src, &req->grp); 550 if (rt == NULL) { 551 MFC_UNLOCK(); 552 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 553 return EADDRNOTAVAIL; 554 } 555 req->pktcnt = rt->mfc_pkt_cnt; 556 req->bytecnt = rt->mfc_byte_cnt; 557 req->wrong_if = rt->mfc_wrong_if; 558 MFC_UNLOCK(); 559 return 0; 560 } 561 562 /* 563 * returns the input and output packet and byte counts on the vif provided 564 */ 565 static int 566 get_vif_cnt(struct sioc_vif_req *req) 567 { 568 vifi_t vifi = req->vifi; 569 570 VIF_LOCK(); 571 if (vifi >= numvifs) { 572 VIF_UNLOCK(); 573 return EINVAL; 574 } 575 576 req->icount = viftable[vifi].v_pkt_in; 577 req->ocount = viftable[vifi].v_pkt_out; 578 req->ibytes = viftable[vifi].v_bytes_in; 579 req->obytes = viftable[vifi].v_bytes_out; 580 VIF_UNLOCK(); 581 582 return 0; 583 } 584 585 static void 586 ip_mrouter_reset(void) 587 { 588 589 pim_assert_enabled = 0; 590 mrt_api_config = 0; 591 592 callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE); 593 594 bw_upcalls_n = 0; 595 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 596 callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE); 597 callout_init(&bw_meter_ch, CALLOUT_MPSAFE); 598 } 599 600 static void 601 if_detached_event(void *arg __unused, struct ifnet *ifp) 602 { 603 vifi_t vifi; 604 int i; 605 606 MROUTER_LOCK(); 607 608 if (V_ip_mrouter == NULL) { 609 MROUTER_UNLOCK(); 610 return; 611 } 612 613 VIF_LOCK(); 614 MFC_LOCK(); 615 616 /* 617 * Tear down multicast forwarder state associated with this ifnet. 618 * 1. Walk the vif list, matching vifs against this ifnet. 619 * 2. Walk the multicast forwarding cache (mfc) looking for 620 * inner matches with this vif's index. 621 * 3. Expire any matching multicast forwarding cache entries. 622 * 4. Free vif state. This should disable ALLMULTI on the interface. 623 */ 624 for (vifi = 0; vifi < numvifs; vifi++) { 625 if (viftable[vifi].v_ifp != ifp) 626 continue; 627 for (i = 0; i < mfchashsize; i++) { 628 struct mfc *rt, *nrt; 629 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 630 nrt = LIST_NEXT(rt, mfc_hash); 631 if (rt->mfc_parent == vifi) { 632 expire_mfc(rt); 633 } 634 } 635 } 636 del_vif_locked(vifi); 637 } 638 639 MFC_UNLOCK(); 640 VIF_UNLOCK(); 641 642 MROUTER_UNLOCK(); 643 } 644 645 /* 646 * Enable multicast forwarding. 647 */ 648 static int 649 ip_mrouter_init(struct socket *so, int version) 650 { 651 652 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 653 so->so_type, so->so_proto->pr_protocol); 654 655 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 656 return EOPNOTSUPP; 657 658 if (version != 1) 659 return ENOPROTOOPT; 660 661 MROUTER_LOCK(); 662 663 if (V_ip_mrouter != NULL) { 664 MROUTER_UNLOCK(); 665 return EADDRINUSE; 666 } 667 668 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 669 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 670 if (if_detach_event_tag == NULL) { 671 MROUTER_UNLOCK(); 672 return (ENOMEM); 673 } 674 675 mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT); 676 677 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 678 679 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 680 expire_bw_upcalls_send, NULL); 681 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 682 683 V_ip_mrouter = so; 684 685 MROUTER_UNLOCK(); 686 687 CTR1(KTR_IPMF, "%s: done", __func__); 688 689 return 0; 690 } 691 692 /* 693 * Disable multicast forwarding. 694 */ 695 static int 696 X_ip_mrouter_done(void) 697 { 698 vifi_t vifi; 699 int i; 700 struct ifnet *ifp; 701 struct ifreq ifr; 702 703 MROUTER_LOCK(); 704 705 if (V_ip_mrouter == NULL) { 706 MROUTER_UNLOCK(); 707 return EINVAL; 708 } 709 710 /* 711 * Detach/disable hooks to the reset of the system. 712 */ 713 V_ip_mrouter = NULL; 714 mrt_api_config = 0; 715 716 VIF_LOCK(); 717 718 /* 719 * For each phyint in use, disable promiscuous reception of all IP 720 * multicasts. 721 */ 722 for (vifi = 0; vifi < numvifs; vifi++) { 723 if (!in_nullhost(viftable[vifi].v_lcl_addr) && 724 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 725 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 726 727 so->sin_len = sizeof(struct sockaddr_in); 728 so->sin_family = AF_INET; 729 so->sin_addr.s_addr = INADDR_ANY; 730 ifp = viftable[vifi].v_ifp; 731 if_allmulti(ifp, 0); 732 } 733 } 734 bzero((caddr_t)viftable, sizeof(viftable)); 735 numvifs = 0; 736 pim_assert_enabled = 0; 737 738 VIF_UNLOCK(); 739 740 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 741 742 callout_stop(&expire_upcalls_ch); 743 callout_stop(&bw_upcalls_ch); 744 callout_stop(&bw_meter_ch); 745 746 MFC_LOCK(); 747 748 /* 749 * Free all multicast forwarding cache entries. 750 * Do not use hashdestroy(), as we must perform other cleanup. 751 */ 752 for (i = 0; i < mfchashsize; i++) { 753 struct mfc *rt, *nrt; 754 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 755 nrt = LIST_NEXT(rt, mfc_hash); 756 expire_mfc(rt); 757 } 758 } 759 free(mfchashtbl, M_MRTABLE); 760 mfchashtbl = NULL; 761 762 bzero(nexpire, sizeof(nexpire[0]) * mfchashsize); 763 764 bw_upcalls_n = 0; 765 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 766 767 MFC_UNLOCK(); 768 769 reg_vif_num = VIFI_INVALID; 770 771 MROUTER_UNLOCK(); 772 773 CTR1(KTR_IPMF, "%s: done", __func__); 774 775 return 0; 776 } 777 778 /* 779 * Set PIM assert processing global 780 */ 781 static int 782 set_assert(int i) 783 { 784 if ((i != 1) && (i != 0)) 785 return EINVAL; 786 787 pim_assert_enabled = i; 788 789 return 0; 790 } 791 792 /* 793 * Configure API capabilities 794 */ 795 int 796 set_api_config(uint32_t *apival) 797 { 798 int i; 799 800 /* 801 * We can set the API capabilities only if it is the first operation 802 * after MRT_INIT. I.e.: 803 * - there are no vifs installed 804 * - pim_assert is not enabled 805 * - the MFC table is empty 806 */ 807 if (numvifs > 0) { 808 *apival = 0; 809 return EPERM; 810 } 811 if (pim_assert_enabled) { 812 *apival = 0; 813 return EPERM; 814 } 815 816 MFC_LOCK(); 817 818 for (i = 0; i < mfchashsize; i++) { 819 if (LIST_FIRST(&mfchashtbl[i]) != NULL) { 820 *apival = 0; 821 return EPERM; 822 } 823 } 824 825 MFC_UNLOCK(); 826 827 mrt_api_config = *apival & mrt_api_support; 828 *apival = mrt_api_config; 829 830 return 0; 831 } 832 833 /* 834 * Add a vif to the vif table 835 */ 836 static int 837 add_vif(struct vifctl *vifcp) 838 { 839 struct vif *vifp = viftable + vifcp->vifc_vifi; 840 struct sockaddr_in sin = {sizeof sin, AF_INET}; 841 struct ifaddr *ifa; 842 struct ifnet *ifp; 843 int error; 844 845 VIF_LOCK(); 846 if (vifcp->vifc_vifi >= MAXVIFS) { 847 VIF_UNLOCK(); 848 return EINVAL; 849 } 850 /* rate limiting is no longer supported by this code */ 851 if (vifcp->vifc_rate_limit != 0) { 852 log(LOG_ERR, "rate limiting is no longer supported\n"); 853 VIF_UNLOCK(); 854 return EINVAL; 855 } 856 if (!in_nullhost(vifp->v_lcl_addr)) { 857 VIF_UNLOCK(); 858 return EADDRINUSE; 859 } 860 if (in_nullhost(vifcp->vifc_lcl_addr)) { 861 VIF_UNLOCK(); 862 return EADDRNOTAVAIL; 863 } 864 865 /* Find the interface with an address in AF_INET family */ 866 if (vifcp->vifc_flags & VIFF_REGISTER) { 867 /* 868 * XXX: Because VIFF_REGISTER does not really need a valid 869 * local interface (e.g. it could be 127.0.0.2), we don't 870 * check its address. 871 */ 872 ifp = NULL; 873 } else { 874 sin.sin_addr = vifcp->vifc_lcl_addr; 875 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 876 if (ifa == NULL) { 877 VIF_UNLOCK(); 878 return EADDRNOTAVAIL; 879 } 880 ifp = ifa->ifa_ifp; 881 ifa_free(ifa); 882 } 883 884 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 885 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 886 VIF_UNLOCK(); 887 return EOPNOTSUPP; 888 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 889 ifp = &multicast_register_if; 890 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 891 if (reg_vif_num == VIFI_INVALID) { 892 if_initname(&multicast_register_if, "register_vif", 0); 893 multicast_register_if.if_flags = IFF_LOOPBACK; 894 reg_vif_num = vifcp->vifc_vifi; 895 } 896 } else { /* Make sure the interface supports multicast */ 897 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 898 VIF_UNLOCK(); 899 return EOPNOTSUPP; 900 } 901 902 /* Enable promiscuous reception of all IP multicasts from the if */ 903 error = if_allmulti(ifp, 1); 904 if (error) { 905 VIF_UNLOCK(); 906 return error; 907 } 908 } 909 910 vifp->v_flags = vifcp->vifc_flags; 911 vifp->v_threshold = vifcp->vifc_threshold; 912 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 913 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 914 vifp->v_ifp = ifp; 915 /* initialize per vif pkt counters */ 916 vifp->v_pkt_in = 0; 917 vifp->v_pkt_out = 0; 918 vifp->v_bytes_in = 0; 919 vifp->v_bytes_out = 0; 920 bzero(&vifp->v_route, sizeof(vifp->v_route)); 921 922 /* Adjust numvifs up if the vifi is higher than numvifs */ 923 if (numvifs <= vifcp->vifc_vifi) 924 numvifs = vifcp->vifc_vifi + 1; 925 926 VIF_UNLOCK(); 927 928 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 929 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 930 (int)vifcp->vifc_threshold); 931 932 return 0; 933 } 934 935 /* 936 * Delete a vif from the vif table 937 */ 938 static int 939 del_vif_locked(vifi_t vifi) 940 { 941 struct vif *vifp; 942 943 VIF_LOCK_ASSERT(); 944 945 if (vifi >= numvifs) { 946 return EINVAL; 947 } 948 vifp = &viftable[vifi]; 949 if (in_nullhost(vifp->v_lcl_addr)) { 950 return EADDRNOTAVAIL; 951 } 952 953 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 954 if_allmulti(vifp->v_ifp, 0); 955 956 if (vifp->v_flags & VIFF_REGISTER) 957 reg_vif_num = VIFI_INVALID; 958 959 bzero((caddr_t)vifp, sizeof (*vifp)); 960 961 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 962 963 /* Adjust numvifs down */ 964 for (vifi = numvifs; vifi > 0; vifi--) 965 if (!in_nullhost(viftable[vifi-1].v_lcl_addr)) 966 break; 967 numvifs = vifi; 968 969 return 0; 970 } 971 972 static int 973 del_vif(vifi_t vifi) 974 { 975 int cc; 976 977 VIF_LOCK(); 978 cc = del_vif_locked(vifi); 979 VIF_UNLOCK(); 980 981 return cc; 982 } 983 984 /* 985 * update an mfc entry without resetting counters and S,G addresses. 986 */ 987 static void 988 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 989 { 990 int i; 991 992 rt->mfc_parent = mfccp->mfcc_parent; 993 for (i = 0; i < numvifs; i++) { 994 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 995 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 996 MRT_MFC_FLAGS_ALL; 997 } 998 /* set the RP address */ 999 if (mrt_api_config & MRT_MFC_RP) 1000 rt->mfc_rp = mfccp->mfcc_rp; 1001 else 1002 rt->mfc_rp.s_addr = INADDR_ANY; 1003 } 1004 1005 /* 1006 * fully initialize an mfc entry from the parameter. 1007 */ 1008 static void 1009 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1010 { 1011 rt->mfc_origin = mfccp->mfcc_origin; 1012 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1013 1014 update_mfc_params(rt, mfccp); 1015 1016 /* initialize pkt counters per src-grp */ 1017 rt->mfc_pkt_cnt = 0; 1018 rt->mfc_byte_cnt = 0; 1019 rt->mfc_wrong_if = 0; 1020 timevalclear(&rt->mfc_last_assert); 1021 } 1022 1023 static void 1024 expire_mfc(struct mfc *rt) 1025 { 1026 struct rtdetq *rte, *nrte; 1027 1028 MFC_LOCK_ASSERT(); 1029 1030 free_bw_list(rt->mfc_bw_meter); 1031 1032 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1033 m_freem(rte->m); 1034 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1035 free(rte, M_MRTABLE); 1036 } 1037 1038 LIST_REMOVE(rt, mfc_hash); 1039 free(rt, M_MRTABLE); 1040 } 1041 1042 /* 1043 * Add an mfc entry 1044 */ 1045 static int 1046 add_mfc(struct mfcctl2 *mfccp) 1047 { 1048 struct mfc *rt; 1049 struct rtdetq *rte, *nrte; 1050 u_long hash = 0; 1051 u_short nstl; 1052 1053 VIF_LOCK(); 1054 MFC_LOCK(); 1055 1056 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1057 1058 /* If an entry already exists, just update the fields */ 1059 if (rt) { 1060 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1061 __func__, inet_ntoa(mfccp->mfcc_origin), 1062 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1063 mfccp->mfcc_parent); 1064 update_mfc_params(rt, mfccp); 1065 MFC_UNLOCK(); 1066 VIF_UNLOCK(); 1067 return (0); 1068 } 1069 1070 /* 1071 * Find the entry for which the upcall was made and update 1072 */ 1073 nstl = 0; 1074 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1075 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1076 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1077 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1078 !TAILQ_EMPTY(&rt->mfc_stall)) { 1079 CTR5(KTR_IPMF, 1080 "%s: add mfc orig %s group %lx parent %x qh %p", 1081 __func__, inet_ntoa(mfccp->mfcc_origin), 1082 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1083 mfccp->mfcc_parent, 1084 TAILQ_FIRST(&rt->mfc_stall)); 1085 if (nstl++) 1086 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1087 1088 init_mfc_params(rt, mfccp); 1089 rt->mfc_expire = 0; /* Don't clean this guy up */ 1090 nexpire[hash]--; 1091 1092 /* Free queued packets, but attempt to forward them first. */ 1093 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1094 if (rte->ifp != NULL) 1095 ip_mdq(rte->m, rte->ifp, rt, -1); 1096 m_freem(rte->m); 1097 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1098 rt->mfc_nstall--; 1099 free(rte, M_MRTABLE); 1100 } 1101 } 1102 } 1103 1104 /* 1105 * It is possible that an entry is being inserted without an upcall 1106 */ 1107 if (nstl == 0) { 1108 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1109 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1110 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1111 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1112 init_mfc_params(rt, mfccp); 1113 if (rt->mfc_expire) 1114 nexpire[hash]--; 1115 rt->mfc_expire = 0; 1116 break; /* XXX */ 1117 } 1118 } 1119 1120 if (rt == NULL) { /* no upcall, so make a new entry */ 1121 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1122 if (rt == NULL) { 1123 MFC_UNLOCK(); 1124 VIF_UNLOCK(); 1125 return (ENOBUFS); 1126 } 1127 1128 init_mfc_params(rt, mfccp); 1129 TAILQ_INIT(&rt->mfc_stall); 1130 rt->mfc_nstall = 0; 1131 1132 rt->mfc_expire = 0; 1133 rt->mfc_bw_meter = NULL; 1134 1135 /* insert new entry at head of hash chain */ 1136 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1137 } 1138 } 1139 1140 MFC_UNLOCK(); 1141 VIF_UNLOCK(); 1142 1143 return (0); 1144 } 1145 1146 /* 1147 * Delete an mfc entry 1148 */ 1149 static int 1150 del_mfc(struct mfcctl2 *mfccp) 1151 { 1152 struct in_addr origin; 1153 struct in_addr mcastgrp; 1154 struct mfc *rt; 1155 1156 origin = mfccp->mfcc_origin; 1157 mcastgrp = mfccp->mfcc_mcastgrp; 1158 1159 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1160 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1161 1162 MFC_LOCK(); 1163 1164 rt = mfc_find(&origin, &mcastgrp); 1165 if (rt == NULL) { 1166 MFC_UNLOCK(); 1167 return EADDRNOTAVAIL; 1168 } 1169 1170 /* 1171 * free the bw_meter entries 1172 */ 1173 free_bw_list(rt->mfc_bw_meter); 1174 rt->mfc_bw_meter = NULL; 1175 1176 LIST_REMOVE(rt, mfc_hash); 1177 free(rt, M_MRTABLE); 1178 1179 MFC_UNLOCK(); 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Send a message to the routing daemon on the multicast routing socket. 1186 */ 1187 static int 1188 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1189 { 1190 if (s) { 1191 SOCKBUF_LOCK(&s->so_rcv); 1192 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1193 NULL) != 0) { 1194 sorwakeup_locked(s); 1195 return 0; 1196 } 1197 SOCKBUF_UNLOCK(&s->so_rcv); 1198 } 1199 m_freem(mm); 1200 return -1; 1201 } 1202 1203 /* 1204 * IP multicast forwarding function. This function assumes that the packet 1205 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1206 * pointed to by "ifp", and the packet is to be relayed to other networks 1207 * that have members of the packet's destination IP multicast group. 1208 * 1209 * The packet is returned unscathed to the caller, unless it is 1210 * erroneous, in which case a non-zero return value tells the caller to 1211 * discard it. 1212 */ 1213 1214 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1215 1216 static int 1217 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1218 struct ip_moptions *imo) 1219 { 1220 struct mfc *rt; 1221 int error; 1222 vifi_t vifi; 1223 1224 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1225 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1226 1227 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1228 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1229 /* 1230 * Packet arrived via a physical interface or 1231 * an encapsulated tunnel or a register_vif. 1232 */ 1233 } else { 1234 /* 1235 * Packet arrived through a source-route tunnel. 1236 * Source-route tunnels are no longer supported. 1237 */ 1238 return (1); 1239 } 1240 1241 VIF_LOCK(); 1242 MFC_LOCK(); 1243 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1244 if (ip->ip_ttl < MAXTTL) 1245 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1246 error = ip_mdq(m, ifp, NULL, vifi); 1247 MFC_UNLOCK(); 1248 VIF_UNLOCK(); 1249 return error; 1250 } 1251 1252 /* 1253 * Don't forward a packet with time-to-live of zero or one, 1254 * or a packet destined to a local-only group. 1255 */ 1256 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1257 MFC_UNLOCK(); 1258 VIF_UNLOCK(); 1259 return 0; 1260 } 1261 1262 /* 1263 * Determine forwarding vifs from the forwarding cache table 1264 */ 1265 MRTSTAT_INC(mrts_mfc_lookups); 1266 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1267 1268 /* Entry exists, so forward if necessary */ 1269 if (rt != NULL) { 1270 error = ip_mdq(m, ifp, rt, -1); 1271 MFC_UNLOCK(); 1272 VIF_UNLOCK(); 1273 return error; 1274 } else { 1275 /* 1276 * If we don't have a route for packet's origin, 1277 * Make a copy of the packet & send message to routing daemon 1278 */ 1279 1280 struct mbuf *mb0; 1281 struct rtdetq *rte; 1282 u_long hash; 1283 int hlen = ip->ip_hl << 2; 1284 1285 MRTSTAT_INC(mrts_mfc_misses); 1286 MRTSTAT_INC(mrts_no_route); 1287 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1288 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1289 1290 /* 1291 * Allocate mbufs early so that we don't do extra work if we are 1292 * just going to fail anyway. Make sure to pullup the header so 1293 * that other people can't step on it. 1294 */ 1295 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1296 M_NOWAIT|M_ZERO); 1297 if (rte == NULL) { 1298 MFC_UNLOCK(); 1299 VIF_UNLOCK(); 1300 return ENOBUFS; 1301 } 1302 1303 mb0 = m_copypacket(m, M_DONTWAIT); 1304 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1305 mb0 = m_pullup(mb0, hlen); 1306 if (mb0 == NULL) { 1307 free(rte, M_MRTABLE); 1308 MFC_UNLOCK(); 1309 VIF_UNLOCK(); 1310 return ENOBUFS; 1311 } 1312 1313 /* is there an upcall waiting for this flow ? */ 1314 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1315 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1316 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1317 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1318 !TAILQ_EMPTY(&rt->mfc_stall)) 1319 break; 1320 } 1321 1322 if (rt == NULL) { 1323 int i; 1324 struct igmpmsg *im; 1325 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1326 struct mbuf *mm; 1327 1328 /* 1329 * Locate the vifi for the incoming interface for this packet. 1330 * If none found, drop packet. 1331 */ 1332 for (vifi = 0; vifi < numvifs && 1333 viftable[vifi].v_ifp != ifp; vifi++) 1334 ; 1335 if (vifi >= numvifs) /* vif not found, drop packet */ 1336 goto non_fatal; 1337 1338 /* no upcall, so make a new entry */ 1339 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1340 if (rt == NULL) 1341 goto fail; 1342 1343 /* Make a copy of the header to send to the user level process */ 1344 mm = m_copy(mb0, 0, hlen); 1345 if (mm == NULL) 1346 goto fail1; 1347 1348 /* 1349 * Send message to routing daemon to install 1350 * a route into the kernel table 1351 */ 1352 1353 im = mtod(mm, struct igmpmsg *); 1354 im->im_msgtype = IGMPMSG_NOCACHE; 1355 im->im_mbz = 0; 1356 im->im_vif = vifi; 1357 1358 MRTSTAT_INC(mrts_upcalls); 1359 1360 k_igmpsrc.sin_addr = ip->ip_src; 1361 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1362 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1363 MRTSTAT_INC(mrts_upq_sockfull); 1364 fail1: 1365 free(rt, M_MRTABLE); 1366 fail: 1367 free(rte, M_MRTABLE); 1368 m_freem(mb0); 1369 MFC_UNLOCK(); 1370 VIF_UNLOCK(); 1371 return ENOBUFS; 1372 } 1373 1374 /* insert new entry at head of hash chain */ 1375 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1376 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1377 rt->mfc_expire = UPCALL_EXPIRE; 1378 nexpire[hash]++; 1379 for (i = 0; i < numvifs; i++) { 1380 rt->mfc_ttls[i] = 0; 1381 rt->mfc_flags[i] = 0; 1382 } 1383 rt->mfc_parent = -1; 1384 1385 /* clear the RP address */ 1386 rt->mfc_rp.s_addr = INADDR_ANY; 1387 rt->mfc_bw_meter = NULL; 1388 1389 /* link into table */ 1390 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1391 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1392 rt->mfc_nstall++; 1393 1394 } else { 1395 /* determine if queue has overflowed */ 1396 if (rt->mfc_nstall > MAX_UPQ) { 1397 MRTSTAT_INC(mrts_upq_ovflw); 1398 non_fatal: 1399 free(rte, M_MRTABLE); 1400 m_freem(mb0); 1401 MFC_UNLOCK(); 1402 VIF_UNLOCK(); 1403 return (0); 1404 } 1405 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1406 rt->mfc_nstall++; 1407 } 1408 1409 rte->m = mb0; 1410 rte->ifp = ifp; 1411 1412 MFC_UNLOCK(); 1413 VIF_UNLOCK(); 1414 1415 return 0; 1416 } 1417 } 1418 1419 /* 1420 * Clean up the cache entry if upcall is not serviced 1421 */ 1422 static void 1423 expire_upcalls(void *unused) 1424 { 1425 int i; 1426 1427 MFC_LOCK(); 1428 1429 for (i = 0; i < mfchashsize; i++) { 1430 struct mfc *rt, *nrt; 1431 1432 if (nexpire[i] == 0) 1433 continue; 1434 1435 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1436 nrt = LIST_NEXT(rt, mfc_hash); 1437 1438 if (TAILQ_EMPTY(&rt->mfc_stall)) 1439 continue; 1440 1441 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1442 continue; 1443 1444 /* 1445 * free the bw_meter entries 1446 */ 1447 while (rt->mfc_bw_meter != NULL) { 1448 struct bw_meter *x = rt->mfc_bw_meter; 1449 1450 rt->mfc_bw_meter = x->bm_mfc_next; 1451 free(x, M_BWMETER); 1452 } 1453 1454 MRTSTAT_INC(mrts_cache_cleanups); 1455 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1456 (u_long)ntohl(rt->mfc_origin.s_addr), 1457 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1458 1459 expire_mfc(rt); 1460 } 1461 } 1462 1463 MFC_UNLOCK(); 1464 1465 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1466 } 1467 1468 /* 1469 * Packet forwarding routine once entry in the cache is made 1470 */ 1471 static int 1472 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1473 { 1474 struct ip *ip = mtod(m, struct ip *); 1475 vifi_t vifi; 1476 int plen = ip->ip_len; 1477 1478 VIF_LOCK_ASSERT(); 1479 1480 /* 1481 * If xmt_vif is not -1, send on only the requested vif. 1482 * 1483 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1484 */ 1485 if (xmt_vif < numvifs) { 1486 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1487 pim_register_send(ip, viftable + xmt_vif, m, rt); 1488 else 1489 phyint_send(ip, viftable + xmt_vif, m); 1490 return 1; 1491 } 1492 1493 /* 1494 * Don't forward if it didn't arrive from the parent vif for its origin. 1495 */ 1496 vifi = rt->mfc_parent; 1497 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1498 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1499 __func__, ifp, (int)vifi, viftable[vifi].v_ifp); 1500 MRTSTAT_INC(mrts_wrong_if); 1501 ++rt->mfc_wrong_if; 1502 /* 1503 * If we are doing PIM assert processing, send a message 1504 * to the routing daemon. 1505 * 1506 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1507 * can complete the SPT switch, regardless of the type 1508 * of the iif (broadcast media, GRE tunnel, etc). 1509 */ 1510 if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) { 1511 1512 if (ifp == &multicast_register_if) 1513 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1514 1515 /* Get vifi for the incoming packet */ 1516 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1517 ; 1518 if (vifi >= numvifs) 1519 return 0; /* The iif is not found: ignore the packet. */ 1520 1521 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1522 return 0; /* WRONGVIF disabled: ignore the packet */ 1523 1524 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1525 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1526 struct igmpmsg *im; 1527 int hlen = ip->ip_hl << 2; 1528 struct mbuf *mm = m_copy(m, 0, hlen); 1529 1530 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1531 mm = m_pullup(mm, hlen); 1532 if (mm == NULL) 1533 return ENOBUFS; 1534 1535 im = mtod(mm, struct igmpmsg *); 1536 im->im_msgtype = IGMPMSG_WRONGVIF; 1537 im->im_mbz = 0; 1538 im->im_vif = vifi; 1539 1540 MRTSTAT_INC(mrts_upcalls); 1541 1542 k_igmpsrc.sin_addr = im->im_src; 1543 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1544 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1545 MRTSTAT_INC(mrts_upq_sockfull); 1546 return ENOBUFS; 1547 } 1548 } 1549 } 1550 return 0; 1551 } 1552 1553 1554 /* If I sourced this packet, it counts as output, else it was input. */ 1555 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1556 viftable[vifi].v_pkt_out++; 1557 viftable[vifi].v_bytes_out += plen; 1558 } else { 1559 viftable[vifi].v_pkt_in++; 1560 viftable[vifi].v_bytes_in += plen; 1561 } 1562 rt->mfc_pkt_cnt++; 1563 rt->mfc_byte_cnt += plen; 1564 1565 /* 1566 * For each vif, decide if a copy of the packet should be forwarded. 1567 * Forward if: 1568 * - the ttl exceeds the vif's threshold 1569 * - there are group members downstream on interface 1570 */ 1571 for (vifi = 0; vifi < numvifs; vifi++) 1572 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1573 viftable[vifi].v_pkt_out++; 1574 viftable[vifi].v_bytes_out += plen; 1575 if (viftable[vifi].v_flags & VIFF_REGISTER) 1576 pim_register_send(ip, viftable + vifi, m, rt); 1577 else 1578 phyint_send(ip, viftable + vifi, m); 1579 } 1580 1581 /* 1582 * Perform upcall-related bw measuring. 1583 */ 1584 if (rt->mfc_bw_meter != NULL) { 1585 struct bw_meter *x; 1586 struct timeval now; 1587 1588 microtime(&now); 1589 MFC_LOCK_ASSERT(); 1590 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1591 bw_meter_receive_packet(x, plen, &now); 1592 } 1593 1594 return 0; 1595 } 1596 1597 /* 1598 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1599 */ 1600 static int 1601 X_legal_vif_num(int vif) 1602 { 1603 int ret; 1604 1605 ret = 0; 1606 if (vif < 0) 1607 return (ret); 1608 1609 VIF_LOCK(); 1610 if (vif < numvifs) 1611 ret = 1; 1612 VIF_UNLOCK(); 1613 1614 return (ret); 1615 } 1616 1617 /* 1618 * Return the local address used by this vif 1619 */ 1620 static u_long 1621 X_ip_mcast_src(int vifi) 1622 { 1623 in_addr_t addr; 1624 1625 addr = INADDR_ANY; 1626 if (vifi < 0) 1627 return (addr); 1628 1629 VIF_LOCK(); 1630 if (vifi < numvifs) 1631 addr = viftable[vifi].v_lcl_addr.s_addr; 1632 VIF_UNLOCK(); 1633 1634 return (addr); 1635 } 1636 1637 static void 1638 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1639 { 1640 struct mbuf *mb_copy; 1641 int hlen = ip->ip_hl << 2; 1642 1643 VIF_LOCK_ASSERT(); 1644 1645 /* 1646 * Make a new reference to the packet; make sure that 1647 * the IP header is actually copied, not just referenced, 1648 * so that ip_output() only scribbles on the copy. 1649 */ 1650 mb_copy = m_copypacket(m, M_DONTWAIT); 1651 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1652 mb_copy = m_pullup(mb_copy, hlen); 1653 if (mb_copy == NULL) 1654 return; 1655 1656 send_packet(vifp, mb_copy); 1657 } 1658 1659 static void 1660 send_packet(struct vif *vifp, struct mbuf *m) 1661 { 1662 struct ip_moptions imo; 1663 struct in_multi *imm[2]; 1664 int error; 1665 1666 VIF_LOCK_ASSERT(); 1667 1668 imo.imo_multicast_ifp = vifp->v_ifp; 1669 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1670 imo.imo_multicast_loop = 1; 1671 imo.imo_multicast_vif = -1; 1672 imo.imo_num_memberships = 0; 1673 imo.imo_max_memberships = 2; 1674 imo.imo_membership = &imm[0]; 1675 1676 /* 1677 * Re-entrancy should not be a problem here, because 1678 * the packets that we send out and are looped back at us 1679 * should get rejected because they appear to come from 1680 * the loopback interface, thus preventing looping. 1681 */ 1682 error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL); 1683 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1684 (ptrdiff_t)(vifp - viftable), error); 1685 } 1686 1687 /* 1688 * Stubs for old RSVP socket shim implementation. 1689 */ 1690 1691 static int 1692 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1693 { 1694 1695 return (EOPNOTSUPP); 1696 } 1697 1698 static void 1699 X_ip_rsvp_force_done(struct socket *so __unused) 1700 { 1701 1702 } 1703 1704 static void 1705 X_rsvp_input(struct mbuf *m, int off __unused) 1706 { 1707 1708 if (!V_rsvp_on) 1709 m_freem(m); 1710 } 1711 1712 /* 1713 * Code for bandwidth monitors 1714 */ 1715 1716 /* 1717 * Define common interface for timeval-related methods 1718 */ 1719 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1720 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1721 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1722 1723 static uint32_t 1724 compute_bw_meter_flags(struct bw_upcall *req) 1725 { 1726 uint32_t flags = 0; 1727 1728 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1729 flags |= BW_METER_UNIT_PACKETS; 1730 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1731 flags |= BW_METER_UNIT_BYTES; 1732 if (req->bu_flags & BW_UPCALL_GEQ) 1733 flags |= BW_METER_GEQ; 1734 if (req->bu_flags & BW_UPCALL_LEQ) 1735 flags |= BW_METER_LEQ; 1736 1737 return flags; 1738 } 1739 1740 /* 1741 * Add a bw_meter entry 1742 */ 1743 static int 1744 add_bw_upcall(struct bw_upcall *req) 1745 { 1746 struct mfc *mfc; 1747 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1748 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1749 struct timeval now; 1750 struct bw_meter *x; 1751 uint32_t flags; 1752 1753 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 1754 return EOPNOTSUPP; 1755 1756 /* Test if the flags are valid */ 1757 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1758 return EINVAL; 1759 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1760 return EINVAL; 1761 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1762 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1763 return EINVAL; 1764 1765 /* Test if the threshold time interval is valid */ 1766 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1767 return EINVAL; 1768 1769 flags = compute_bw_meter_flags(req); 1770 1771 /* 1772 * Find if we have already same bw_meter entry 1773 */ 1774 MFC_LOCK(); 1775 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1776 if (mfc == NULL) { 1777 MFC_UNLOCK(); 1778 return EADDRNOTAVAIL; 1779 } 1780 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1781 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1782 &req->bu_threshold.b_time, ==)) && 1783 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1784 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1785 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1786 MFC_UNLOCK(); 1787 return 0; /* XXX Already installed */ 1788 } 1789 } 1790 1791 /* Allocate the new bw_meter entry */ 1792 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1793 if (x == NULL) { 1794 MFC_UNLOCK(); 1795 return ENOBUFS; 1796 } 1797 1798 /* Set the new bw_meter entry */ 1799 x->bm_threshold.b_time = req->bu_threshold.b_time; 1800 microtime(&now); 1801 x->bm_start_time = now; 1802 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1803 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1804 x->bm_measured.b_packets = 0; 1805 x->bm_measured.b_bytes = 0; 1806 x->bm_flags = flags; 1807 x->bm_time_next = NULL; 1808 x->bm_time_hash = BW_METER_BUCKETS; 1809 1810 /* Add the new bw_meter entry to the front of entries for this MFC */ 1811 x->bm_mfc = mfc; 1812 x->bm_mfc_next = mfc->mfc_bw_meter; 1813 mfc->mfc_bw_meter = x; 1814 schedule_bw_meter(x, &now); 1815 MFC_UNLOCK(); 1816 1817 return 0; 1818 } 1819 1820 static void 1821 free_bw_list(struct bw_meter *list) 1822 { 1823 while (list != NULL) { 1824 struct bw_meter *x = list; 1825 1826 list = list->bm_mfc_next; 1827 unschedule_bw_meter(x); 1828 free(x, M_BWMETER); 1829 } 1830 } 1831 1832 /* 1833 * Delete one or multiple bw_meter entries 1834 */ 1835 static int 1836 del_bw_upcall(struct bw_upcall *req) 1837 { 1838 struct mfc *mfc; 1839 struct bw_meter *x; 1840 1841 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 1842 return EOPNOTSUPP; 1843 1844 MFC_LOCK(); 1845 1846 /* Find the corresponding MFC entry */ 1847 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1848 if (mfc == NULL) { 1849 MFC_UNLOCK(); 1850 return EADDRNOTAVAIL; 1851 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1852 /* 1853 * Delete all bw_meter entries for this mfc 1854 */ 1855 struct bw_meter *list; 1856 1857 list = mfc->mfc_bw_meter; 1858 mfc->mfc_bw_meter = NULL; 1859 free_bw_list(list); 1860 MFC_UNLOCK(); 1861 return 0; 1862 } else { /* Delete a single bw_meter entry */ 1863 struct bw_meter *prev; 1864 uint32_t flags = 0; 1865 1866 flags = compute_bw_meter_flags(req); 1867 1868 /* Find the bw_meter entry to delete */ 1869 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1870 prev = x, x = x->bm_mfc_next) { 1871 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1872 &req->bu_threshold.b_time, ==)) && 1873 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1874 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1875 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1876 break; 1877 } 1878 if (x != NULL) { /* Delete entry from the list for this MFC */ 1879 if (prev != NULL) 1880 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1881 else 1882 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1883 1884 unschedule_bw_meter(x); 1885 MFC_UNLOCK(); 1886 /* Free the bw_meter entry */ 1887 free(x, M_BWMETER); 1888 return 0; 1889 } else { 1890 MFC_UNLOCK(); 1891 return EINVAL; 1892 } 1893 } 1894 /* NOTREACHED */ 1895 } 1896 1897 /* 1898 * Perform bandwidth measurement processing that may result in an upcall 1899 */ 1900 static void 1901 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1902 { 1903 struct timeval delta; 1904 1905 MFC_LOCK_ASSERT(); 1906 1907 delta = *nowp; 1908 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1909 1910 if (x->bm_flags & BW_METER_GEQ) { 1911 /* 1912 * Processing for ">=" type of bw_meter entry 1913 */ 1914 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1915 /* Reset the bw_meter entry */ 1916 x->bm_start_time = *nowp; 1917 x->bm_measured.b_packets = 0; 1918 x->bm_measured.b_bytes = 0; 1919 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1920 } 1921 1922 /* Record that a packet is received */ 1923 x->bm_measured.b_packets++; 1924 x->bm_measured.b_bytes += plen; 1925 1926 /* 1927 * Test if we should deliver an upcall 1928 */ 1929 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1930 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1931 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1932 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1933 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1934 /* Prepare an upcall for delivery */ 1935 bw_meter_prepare_upcall(x, nowp); 1936 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1937 } 1938 } 1939 } else if (x->bm_flags & BW_METER_LEQ) { 1940 /* 1941 * Processing for "<=" type of bw_meter entry 1942 */ 1943 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1944 /* 1945 * We are behind time with the multicast forwarding table 1946 * scanning for "<=" type of bw_meter entries, so test now 1947 * if we should deliver an upcall. 1948 */ 1949 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1950 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1951 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1952 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1953 /* Prepare an upcall for delivery */ 1954 bw_meter_prepare_upcall(x, nowp); 1955 } 1956 /* Reschedule the bw_meter entry */ 1957 unschedule_bw_meter(x); 1958 schedule_bw_meter(x, nowp); 1959 } 1960 1961 /* Record that a packet is received */ 1962 x->bm_measured.b_packets++; 1963 x->bm_measured.b_bytes += plen; 1964 1965 /* 1966 * Test if we should restart the measuring interval 1967 */ 1968 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1969 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1970 (x->bm_flags & BW_METER_UNIT_BYTES && 1971 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1972 /* Don't restart the measuring interval */ 1973 } else { 1974 /* Do restart the measuring interval */ 1975 /* 1976 * XXX: note that we don't unschedule and schedule, because this 1977 * might be too much overhead per packet. Instead, when we process 1978 * all entries for a given timer hash bin, we check whether it is 1979 * really a timeout. If not, we reschedule at that time. 1980 */ 1981 x->bm_start_time = *nowp; 1982 x->bm_measured.b_packets = 0; 1983 x->bm_measured.b_bytes = 0; 1984 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Prepare a bandwidth-related upcall 1991 */ 1992 static void 1993 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 1994 { 1995 struct timeval delta; 1996 struct bw_upcall *u; 1997 1998 MFC_LOCK_ASSERT(); 1999 2000 /* 2001 * Compute the measured time interval 2002 */ 2003 delta = *nowp; 2004 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2005 2006 /* 2007 * If there are too many pending upcalls, deliver them now 2008 */ 2009 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2010 bw_upcalls_send(); 2011 2012 /* 2013 * Set the bw_upcall entry 2014 */ 2015 u = &bw_upcalls[bw_upcalls_n++]; 2016 u->bu_src = x->bm_mfc->mfc_origin; 2017 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2018 u->bu_threshold.b_time = x->bm_threshold.b_time; 2019 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2020 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2021 u->bu_measured.b_time = delta; 2022 u->bu_measured.b_packets = x->bm_measured.b_packets; 2023 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2024 u->bu_flags = 0; 2025 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2026 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2027 if (x->bm_flags & BW_METER_UNIT_BYTES) 2028 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2029 if (x->bm_flags & BW_METER_GEQ) 2030 u->bu_flags |= BW_UPCALL_GEQ; 2031 if (x->bm_flags & BW_METER_LEQ) 2032 u->bu_flags |= BW_UPCALL_LEQ; 2033 } 2034 2035 /* 2036 * Send the pending bandwidth-related upcalls 2037 */ 2038 static void 2039 bw_upcalls_send(void) 2040 { 2041 struct mbuf *m; 2042 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2043 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2044 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2045 0, /* unused2 */ 2046 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2047 0, /* im_mbz */ 2048 0, /* im_vif */ 2049 0, /* unused3 */ 2050 { 0 }, /* im_src */ 2051 { 0 } }; /* im_dst */ 2052 2053 MFC_LOCK_ASSERT(); 2054 2055 if (bw_upcalls_n == 0) 2056 return; /* No pending upcalls */ 2057 2058 bw_upcalls_n = 0; 2059 2060 /* 2061 * Allocate a new mbuf, initialize it with the header and 2062 * the payload for the pending calls. 2063 */ 2064 MGETHDR(m, M_DONTWAIT, MT_DATA); 2065 if (m == NULL) { 2066 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2067 return; 2068 } 2069 2070 m->m_len = m->m_pkthdr.len = 0; 2071 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2072 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2073 2074 /* 2075 * Send the upcalls 2076 * XXX do we need to set the address in k_igmpsrc ? 2077 */ 2078 MRTSTAT_INC(mrts_upcalls); 2079 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2080 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2081 MRTSTAT_INC(mrts_upq_sockfull); 2082 } 2083 } 2084 2085 /* 2086 * Compute the timeout hash value for the bw_meter entries 2087 */ 2088 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2089 do { \ 2090 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2091 \ 2092 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2093 (hash) = next_timeval.tv_sec; \ 2094 if (next_timeval.tv_usec) \ 2095 (hash)++; /* XXX: make sure we don't timeout early */ \ 2096 (hash) %= BW_METER_BUCKETS; \ 2097 } while (0) 2098 2099 /* 2100 * Schedule a timer to process periodically bw_meter entry of type "<=" 2101 * by linking the entry in the proper hash bucket. 2102 */ 2103 static void 2104 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2105 { 2106 int time_hash; 2107 2108 MFC_LOCK_ASSERT(); 2109 2110 if (!(x->bm_flags & BW_METER_LEQ)) 2111 return; /* XXX: we schedule timers only for "<=" entries */ 2112 2113 /* 2114 * Reset the bw_meter entry 2115 */ 2116 x->bm_start_time = *nowp; 2117 x->bm_measured.b_packets = 0; 2118 x->bm_measured.b_bytes = 0; 2119 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2120 2121 /* 2122 * Compute the timeout hash value and insert the entry 2123 */ 2124 BW_METER_TIMEHASH(x, time_hash); 2125 x->bm_time_next = bw_meter_timers[time_hash]; 2126 bw_meter_timers[time_hash] = x; 2127 x->bm_time_hash = time_hash; 2128 } 2129 2130 /* 2131 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2132 * by removing the entry from the proper hash bucket. 2133 */ 2134 static void 2135 unschedule_bw_meter(struct bw_meter *x) 2136 { 2137 int time_hash; 2138 struct bw_meter *prev, *tmp; 2139 2140 MFC_LOCK_ASSERT(); 2141 2142 if (!(x->bm_flags & BW_METER_LEQ)) 2143 return; /* XXX: we schedule timers only for "<=" entries */ 2144 2145 /* 2146 * Compute the timeout hash value and delete the entry 2147 */ 2148 time_hash = x->bm_time_hash; 2149 if (time_hash >= BW_METER_BUCKETS) 2150 return; /* Entry was not scheduled */ 2151 2152 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2153 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2154 if (tmp == x) 2155 break; 2156 2157 if (tmp == NULL) 2158 panic("unschedule_bw_meter: bw_meter entry not found"); 2159 2160 if (prev != NULL) 2161 prev->bm_time_next = x->bm_time_next; 2162 else 2163 bw_meter_timers[time_hash] = x->bm_time_next; 2164 2165 x->bm_time_next = NULL; 2166 x->bm_time_hash = BW_METER_BUCKETS; 2167 } 2168 2169 2170 /* 2171 * Process all "<=" type of bw_meter that should be processed now, 2172 * and for each entry prepare an upcall if necessary. Each processed 2173 * entry is rescheduled again for the (periodic) processing. 2174 * 2175 * This is run periodically (once per second normally). On each round, 2176 * all the potentially matching entries are in the hash slot that we are 2177 * looking at. 2178 */ 2179 static void 2180 bw_meter_process() 2181 { 2182 static uint32_t last_tv_sec; /* last time we processed this */ 2183 2184 uint32_t loops; 2185 int i; 2186 struct timeval now, process_endtime; 2187 2188 microtime(&now); 2189 if (last_tv_sec == now.tv_sec) 2190 return; /* nothing to do */ 2191 2192 loops = now.tv_sec - last_tv_sec; 2193 last_tv_sec = now.tv_sec; 2194 if (loops > BW_METER_BUCKETS) 2195 loops = BW_METER_BUCKETS; 2196 2197 MFC_LOCK(); 2198 /* 2199 * Process all bins of bw_meter entries from the one after the last 2200 * processed to the current one. On entry, i points to the last bucket 2201 * visited, so we need to increment i at the beginning of the loop. 2202 */ 2203 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2204 struct bw_meter *x, *tmp_list; 2205 2206 if (++i >= BW_METER_BUCKETS) 2207 i = 0; 2208 2209 /* Disconnect the list of bw_meter entries from the bin */ 2210 tmp_list = bw_meter_timers[i]; 2211 bw_meter_timers[i] = NULL; 2212 2213 /* Process the list of bw_meter entries */ 2214 while (tmp_list != NULL) { 2215 x = tmp_list; 2216 tmp_list = tmp_list->bm_time_next; 2217 2218 /* Test if the time interval is over */ 2219 process_endtime = x->bm_start_time; 2220 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2221 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2222 /* Not yet: reschedule, but don't reset */ 2223 int time_hash; 2224 2225 BW_METER_TIMEHASH(x, time_hash); 2226 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2227 /* 2228 * XXX: somehow the bin processing is a bit ahead of time. 2229 * Put the entry in the next bin. 2230 */ 2231 if (++time_hash >= BW_METER_BUCKETS) 2232 time_hash = 0; 2233 } 2234 x->bm_time_next = bw_meter_timers[time_hash]; 2235 bw_meter_timers[time_hash] = x; 2236 x->bm_time_hash = time_hash; 2237 2238 continue; 2239 } 2240 2241 /* 2242 * Test if we should deliver an upcall 2243 */ 2244 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2245 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2246 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2247 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2248 /* Prepare an upcall for delivery */ 2249 bw_meter_prepare_upcall(x, &now); 2250 } 2251 2252 /* 2253 * Reschedule for next processing 2254 */ 2255 schedule_bw_meter(x, &now); 2256 } 2257 } 2258 2259 /* Send all upcalls that are pending delivery */ 2260 bw_upcalls_send(); 2261 2262 MFC_UNLOCK(); 2263 } 2264 2265 /* 2266 * A periodic function for sending all upcalls that are pending delivery 2267 */ 2268 static void 2269 expire_bw_upcalls_send(void *unused) 2270 { 2271 MFC_LOCK(); 2272 bw_upcalls_send(); 2273 MFC_UNLOCK(); 2274 2275 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2276 expire_bw_upcalls_send, NULL); 2277 } 2278 2279 /* 2280 * A periodic function for periodic scanning of the multicast forwarding 2281 * table for processing all "<=" bw_meter entries. 2282 */ 2283 static void 2284 expire_bw_meter_process(void *unused) 2285 { 2286 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2287 bw_meter_process(); 2288 2289 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 2290 } 2291 2292 /* 2293 * End of bandwidth monitoring code 2294 */ 2295 2296 /* 2297 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2298 * 2299 */ 2300 static int 2301 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2302 struct mfc *rt) 2303 { 2304 struct mbuf *mb_copy, *mm; 2305 2306 /* 2307 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2308 * rendezvous point was unspecified, and we were told not to. 2309 */ 2310 if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) && 2311 in_nullhost(rt->mfc_rp)) 2312 return 0; 2313 2314 mb_copy = pim_register_prepare(ip, m); 2315 if (mb_copy == NULL) 2316 return ENOBUFS; 2317 2318 /* 2319 * Send all the fragments. Note that the mbuf for each fragment 2320 * is freed by the sending machinery. 2321 */ 2322 for (mm = mb_copy; mm; mm = mb_copy) { 2323 mb_copy = mm->m_nextpkt; 2324 mm->m_nextpkt = 0; 2325 mm = m_pullup(mm, sizeof(struct ip)); 2326 if (mm != NULL) { 2327 ip = mtod(mm, struct ip *); 2328 if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2329 pim_register_send_rp(ip, vifp, mm, rt); 2330 } else { 2331 pim_register_send_upcall(ip, vifp, mm, rt); 2332 } 2333 } 2334 } 2335 2336 return 0; 2337 } 2338 2339 /* 2340 * Return a copy of the data packet that is ready for PIM Register 2341 * encapsulation. 2342 * XXX: Note that in the returned copy the IP header is a valid one. 2343 */ 2344 static struct mbuf * 2345 pim_register_prepare(struct ip *ip, struct mbuf *m) 2346 { 2347 struct mbuf *mb_copy = NULL; 2348 int mtu; 2349 2350 /* Take care of delayed checksums */ 2351 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2352 in_delayed_cksum(m); 2353 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2354 } 2355 2356 /* 2357 * Copy the old packet & pullup its IP header into the 2358 * new mbuf so we can modify it. 2359 */ 2360 mb_copy = m_copypacket(m, M_DONTWAIT); 2361 if (mb_copy == NULL) 2362 return NULL; 2363 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2364 if (mb_copy == NULL) 2365 return NULL; 2366 2367 /* take care of the TTL */ 2368 ip = mtod(mb_copy, struct ip *); 2369 --ip->ip_ttl; 2370 2371 /* Compute the MTU after the PIM Register encapsulation */ 2372 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2373 2374 if (ip->ip_len <= mtu) { 2375 /* Turn the IP header into a valid one */ 2376 ip->ip_len = htons(ip->ip_len); 2377 ip->ip_off = htons(ip->ip_off); 2378 ip->ip_sum = 0; 2379 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2380 } else { 2381 /* Fragment the packet */ 2382 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2383 m_freem(mb_copy); 2384 return NULL; 2385 } 2386 } 2387 return mb_copy; 2388 } 2389 2390 /* 2391 * Send an upcall with the data packet to the user-level process. 2392 */ 2393 static int 2394 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2395 struct mbuf *mb_copy, struct mfc *rt) 2396 { 2397 struct mbuf *mb_first; 2398 int len = ntohs(ip->ip_len); 2399 struct igmpmsg *im; 2400 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2401 2402 VIF_LOCK_ASSERT(); 2403 2404 /* 2405 * Add a new mbuf with an upcall header 2406 */ 2407 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2408 if (mb_first == NULL) { 2409 m_freem(mb_copy); 2410 return ENOBUFS; 2411 } 2412 mb_first->m_data += max_linkhdr; 2413 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2414 mb_first->m_len = sizeof(struct igmpmsg); 2415 mb_first->m_next = mb_copy; 2416 2417 /* Send message to routing daemon */ 2418 im = mtod(mb_first, struct igmpmsg *); 2419 im->im_msgtype = IGMPMSG_WHOLEPKT; 2420 im->im_mbz = 0; 2421 im->im_vif = vifp - viftable; 2422 im->im_src = ip->ip_src; 2423 im->im_dst = ip->ip_dst; 2424 2425 k_igmpsrc.sin_addr = ip->ip_src; 2426 2427 MRTSTAT_INC(mrts_upcalls); 2428 2429 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2430 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2431 MRTSTAT_INC(mrts_upq_sockfull); 2432 return ENOBUFS; 2433 } 2434 2435 /* Keep statistics */ 2436 PIMSTAT_INC(pims_snd_registers_msgs); 2437 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2438 2439 return 0; 2440 } 2441 2442 /* 2443 * Encapsulate the data packet in PIM Register message and send it to the RP. 2444 */ 2445 static int 2446 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2447 struct mfc *rt) 2448 { 2449 struct mbuf *mb_first; 2450 struct ip *ip_outer; 2451 struct pim_encap_pimhdr *pimhdr; 2452 int len = ntohs(ip->ip_len); 2453 vifi_t vifi = rt->mfc_parent; 2454 2455 VIF_LOCK_ASSERT(); 2456 2457 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 2458 m_freem(mb_copy); 2459 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2460 } 2461 2462 /* 2463 * Add a new mbuf with the encapsulating header 2464 */ 2465 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2466 if (mb_first == NULL) { 2467 m_freem(mb_copy); 2468 return ENOBUFS; 2469 } 2470 mb_first->m_data += max_linkhdr; 2471 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2472 mb_first->m_next = mb_copy; 2473 2474 mb_first->m_pkthdr.len = len + mb_first->m_len; 2475 2476 /* 2477 * Fill in the encapsulating IP and PIM header 2478 */ 2479 ip_outer = mtod(mb_first, struct ip *); 2480 *ip_outer = pim_encap_iphdr; 2481 ip_outer->ip_id = ip_newid(); 2482 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2483 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 2484 ip_outer->ip_dst = rt->mfc_rp; 2485 /* 2486 * Copy the inner header TOS to the outer header, and take care of the 2487 * IP_DF bit. 2488 */ 2489 ip_outer->ip_tos = ip->ip_tos; 2490 if (ntohs(ip->ip_off) & IP_DF) 2491 ip_outer->ip_off |= IP_DF; 2492 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2493 + sizeof(pim_encap_iphdr)); 2494 *pimhdr = pim_encap_pimhdr; 2495 /* If the iif crosses a border, set the Border-bit */ 2496 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 2497 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2498 2499 mb_first->m_data += sizeof(pim_encap_iphdr); 2500 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2501 mb_first->m_data -= sizeof(pim_encap_iphdr); 2502 2503 send_packet(vifp, mb_first); 2504 2505 /* Keep statistics */ 2506 PIMSTAT_INC(pims_snd_registers_msgs); 2507 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2508 2509 return 0; 2510 } 2511 2512 /* 2513 * pim_encapcheck() is called by the encap4_input() path at runtime to 2514 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2515 * into the kernel. 2516 */ 2517 static int 2518 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2519 { 2520 2521 #ifdef DIAGNOSTIC 2522 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2523 #endif 2524 if (proto != IPPROTO_PIM) 2525 return 0; /* not for us; reject the datagram. */ 2526 2527 return 64; /* claim the datagram. */ 2528 } 2529 2530 /* 2531 * PIM-SMv2 and PIM-DM messages processing. 2532 * Receives and verifies the PIM control messages, and passes them 2533 * up to the listening socket, using rip_input(). 2534 * The only message with special processing is the PIM_REGISTER message 2535 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2536 * is passed to if_simloop(). 2537 */ 2538 void 2539 pim_input(struct mbuf *m, int off) 2540 { 2541 struct ip *ip = mtod(m, struct ip *); 2542 struct pim *pim; 2543 int minlen; 2544 int datalen = ip->ip_len; 2545 int ip_tos; 2546 int iphlen = off; 2547 2548 /* Keep statistics */ 2549 PIMSTAT_INC(pims_rcv_total_msgs); 2550 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2551 2552 /* 2553 * Validate lengths 2554 */ 2555 if (datalen < PIM_MINLEN) { 2556 PIMSTAT_INC(pims_rcv_tooshort); 2557 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2558 __func__, datalen, inet_ntoa(ip->ip_src)); 2559 m_freem(m); 2560 return; 2561 } 2562 2563 /* 2564 * If the packet is at least as big as a REGISTER, go agead 2565 * and grab the PIM REGISTER header size, to avoid another 2566 * possible m_pullup() later. 2567 * 2568 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2569 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2570 */ 2571 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2572 /* 2573 * Get the IP and PIM headers in contiguous memory, and 2574 * possibly the PIM REGISTER header. 2575 */ 2576 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2577 (m = m_pullup(m, minlen)) == 0) { 2578 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2579 return; 2580 } 2581 2582 /* m_pullup() may have given us a new mbuf so reset ip. */ 2583 ip = mtod(m, struct ip *); 2584 ip_tos = ip->ip_tos; 2585 2586 /* adjust mbuf to point to the PIM header */ 2587 m->m_data += iphlen; 2588 m->m_len -= iphlen; 2589 pim = mtod(m, struct pim *); 2590 2591 /* 2592 * Validate checksum. If PIM REGISTER, exclude the data packet. 2593 * 2594 * XXX: some older PIMv2 implementations don't make this distinction, 2595 * so for compatibility reason perform the checksum over part of the 2596 * message, and if error, then over the whole message. 2597 */ 2598 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2599 /* do nothing, checksum okay */ 2600 } else if (in_cksum(m, datalen)) { 2601 PIMSTAT_INC(pims_rcv_badsum); 2602 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2603 m_freem(m); 2604 return; 2605 } 2606 2607 /* PIM version check */ 2608 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2609 PIMSTAT_INC(pims_rcv_badversion); 2610 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2611 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2612 m_freem(m); 2613 return; 2614 } 2615 2616 /* restore mbuf back to the outer IP */ 2617 m->m_data -= iphlen; 2618 m->m_len += iphlen; 2619 2620 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2621 /* 2622 * Since this is a REGISTER, we'll make a copy of the register 2623 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2624 * routing daemon. 2625 */ 2626 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2627 struct mbuf *mcp; 2628 struct ip *encap_ip; 2629 u_int32_t *reghdr; 2630 struct ifnet *vifp; 2631 2632 VIF_LOCK(); 2633 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 2634 VIF_UNLOCK(); 2635 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2636 (int)reg_vif_num); 2637 m_freem(m); 2638 return; 2639 } 2640 /* XXX need refcnt? */ 2641 vifp = viftable[reg_vif_num].v_ifp; 2642 VIF_UNLOCK(); 2643 2644 /* 2645 * Validate length 2646 */ 2647 if (datalen < PIM_REG_MINLEN) { 2648 PIMSTAT_INC(pims_rcv_tooshort); 2649 PIMSTAT_INC(pims_rcv_badregisters); 2650 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2651 m_freem(m); 2652 return; 2653 } 2654 2655 reghdr = (u_int32_t *)(pim + 1); 2656 encap_ip = (struct ip *)(reghdr + 1); 2657 2658 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2659 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2660 2661 /* verify the version number of the inner packet */ 2662 if (encap_ip->ip_v != IPVERSION) { 2663 PIMSTAT_INC(pims_rcv_badregisters); 2664 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2665 m_freem(m); 2666 return; 2667 } 2668 2669 /* verify the inner packet is destined to a mcast group */ 2670 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2671 PIMSTAT_INC(pims_rcv_badregisters); 2672 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2673 inet_ntoa(encap_ip->ip_dst)); 2674 m_freem(m); 2675 return; 2676 } 2677 2678 /* If a NULL_REGISTER, pass it to the daemon */ 2679 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2680 goto pim_input_to_daemon; 2681 2682 /* 2683 * Copy the TOS from the outer IP header to the inner IP header. 2684 */ 2685 if (encap_ip->ip_tos != ip_tos) { 2686 /* Outer TOS -> inner TOS */ 2687 encap_ip->ip_tos = ip_tos; 2688 /* Recompute the inner header checksum. Sigh... */ 2689 2690 /* adjust mbuf to point to the inner IP header */ 2691 m->m_data += (iphlen + PIM_MINLEN); 2692 m->m_len -= (iphlen + PIM_MINLEN); 2693 2694 encap_ip->ip_sum = 0; 2695 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2696 2697 /* restore mbuf to point back to the outer IP header */ 2698 m->m_data -= (iphlen + PIM_MINLEN); 2699 m->m_len += (iphlen + PIM_MINLEN); 2700 } 2701 2702 /* 2703 * Decapsulate the inner IP packet and loopback to forward it 2704 * as a normal multicast packet. Also, make a copy of the 2705 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2706 * to pass to the daemon later, so it can take the appropriate 2707 * actions (e.g., send back PIM_REGISTER_STOP). 2708 * XXX: here m->m_data points to the outer IP header. 2709 */ 2710 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2711 if (mcp == NULL) { 2712 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2713 m_freem(m); 2714 return; 2715 } 2716 2717 /* Keep statistics */ 2718 /* XXX: registers_bytes include only the encap. mcast pkt */ 2719 PIMSTAT_INC(pims_rcv_registers_msgs); 2720 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2721 2722 /* 2723 * forward the inner ip packet; point m_data at the inner ip. 2724 */ 2725 m_adj(m, iphlen + PIM_MINLEN); 2726 2727 CTR4(KTR_IPMF, 2728 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2729 __func__, 2730 (u_long)ntohl(encap_ip->ip_src.s_addr), 2731 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2732 (int)reg_vif_num); 2733 2734 /* NB: vifp was collected above; can it change on us? */ 2735 if_simloop(vifp, m, dst.sin_family, 0); 2736 2737 /* prepare the register head to send to the mrouting daemon */ 2738 m = mcp; 2739 } 2740 2741 pim_input_to_daemon: 2742 /* 2743 * Pass the PIM message up to the daemon; if it is a Register message, 2744 * pass the 'head' only up to the daemon. This includes the 2745 * outer IP header, PIM header, PIM-Register header and the 2746 * inner IP header. 2747 * XXX: the outer IP header pkt size of a Register is not adjust to 2748 * reflect the fact that the inner multicast data is truncated. 2749 */ 2750 rip_input(m, iphlen); 2751 2752 return; 2753 } 2754 2755 static int 2756 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2757 { 2758 struct mfc *rt; 2759 int error, i; 2760 2761 if (req->newptr) 2762 return (EPERM); 2763 if (mfchashtbl == NULL) /* XXX unlocked */ 2764 return (0); 2765 error = sysctl_wire_old_buffer(req, 0); 2766 if (error) 2767 return (error); 2768 2769 MFC_LOCK(); 2770 for (i = 0; i < mfchashsize; i++) { 2771 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 2772 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2773 if (error) 2774 goto out_locked; 2775 } 2776 } 2777 out_locked: 2778 MFC_UNLOCK(); 2779 return (error); 2780 } 2781 2782 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable, 2783 "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], " 2784 "netinet/ip_mroute.h)"); 2785 2786 static int 2787 ip_mroute_modevent(module_t mod, int type, void *unused) 2788 { 2789 2790 switch (type) { 2791 case MOD_LOAD: 2792 MROUTER_LOCK_INIT(); 2793 MFC_LOCK_INIT(); 2794 VIF_LOCK_INIT(); 2795 2796 mfchashsize = MFCHASHSIZE; 2797 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2798 !powerof2(mfchashsize)) { 2799 printf("WARNING: %s not a power of 2; using default\n", 2800 "net.inet.ip.mfchashsize"); 2801 mfchashsize = MFCHASHSIZE; 2802 } 2803 MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2804 2805 pim_squelch_wholepkt = 0; 2806 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2807 &pim_squelch_wholepkt); 2808 ip_mrouter_reset(); 2809 2810 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2811 pim_encapcheck, &in_pim_protosw, NULL); 2812 if (pim_encap_cookie == NULL) { 2813 printf("ip_mroute: unable to attach pim encap\n"); 2814 VIF_LOCK_DESTROY(); 2815 MFC_LOCK_DESTROY(); 2816 MROUTER_LOCK_DESTROY(); 2817 return (EINVAL); 2818 } 2819 2820 ip_mcast_src = X_ip_mcast_src; 2821 ip_mforward = X_ip_mforward; 2822 ip_mrouter_done = X_ip_mrouter_done; 2823 ip_mrouter_get = X_ip_mrouter_get; 2824 ip_mrouter_set = X_ip_mrouter_set; 2825 2826 ip_rsvp_force_done = X_ip_rsvp_force_done; 2827 ip_rsvp_vif = X_ip_rsvp_vif; 2828 2829 legal_vif_num = X_legal_vif_num; 2830 mrt_ioctl = X_mrt_ioctl; 2831 rsvp_input_p = X_rsvp_input; 2832 break; 2833 2834 case MOD_UNLOAD: 2835 /* 2836 * Typically module unload happens after the user-level 2837 * process has shutdown the kernel services (the check 2838 * below insures someone can't just yank the module out 2839 * from under a running process). But if the module is 2840 * just loaded and then unloaded w/o starting up a user 2841 * process we still need to cleanup. 2842 */ 2843 if (V_ip_mrouter != NULL) 2844 return (EINVAL); 2845 2846 if (pim_encap_cookie) { 2847 encap_detach(pim_encap_cookie); 2848 pim_encap_cookie = NULL; 2849 } 2850 X_ip_mrouter_done(); 2851 2852 FREE(nexpire, M_MRTABLE); 2853 nexpire = NULL; 2854 2855 ip_mcast_src = NULL; 2856 ip_mforward = NULL; 2857 ip_mrouter_done = NULL; 2858 ip_mrouter_get = NULL; 2859 ip_mrouter_set = NULL; 2860 2861 ip_rsvp_force_done = NULL; 2862 ip_rsvp_vif = NULL; 2863 2864 legal_vif_num = NULL; 2865 mrt_ioctl = NULL; 2866 rsvp_input_p = NULL; 2867 2868 VIF_LOCK_DESTROY(); 2869 MFC_LOCK_DESTROY(); 2870 MROUTER_LOCK_DESTROY(); 2871 break; 2872 2873 default: 2874 return EOPNOTSUPP; 2875 } 2876 return 0; 2877 } 2878 2879 static moduledata_t ip_mroutemod = { 2880 "ip_mroute", 2881 ip_mroute_modevent, 2882 0 2883 }; 2884 2885 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 2886