1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_types.h> 110 #include <net/netisr.h> 111 #include <net/route.h> 112 #include <net/vnet.h> 113 114 #include <netinet/in.h> 115 #include <netinet/igmp.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/ip_encap.h> 120 #include <netinet/ip_mroute.h> 121 #include <netinet/ip_var.h> 122 #include <netinet/ip_options.h> 123 #include <netinet/pim.h> 124 #include <netinet/pim_var.h> 125 #include <netinet/udp.h> 126 127 #include <machine/in_cksum.h> 128 129 #ifndef KTR_IPMF 130 #define KTR_IPMF KTR_INET 131 #endif 132 133 #define VIFI_INVALID ((vifi_t) -1) 134 135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 136 137 /* 138 * Locking. We use two locks: one for the virtual interface table and 139 * one for the forwarding table. These locks may be nested in which case 140 * the VIF lock must always be taken first. Note that each lock is used 141 * to cover not only the specific data structure but also related data 142 * structures. 143 */ 144 145 static struct rwlock mrouter_mtx; 146 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 147 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 148 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 149 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 150 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 151 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 152 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 153 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 154 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 155 #define MRW_LOCK_INIT() \ 156 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 157 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 158 159 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 161 162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 163 VNET_PCPUSTAT_SYSINIT(mrtstat); 164 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 166 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 167 "netinet/ip_mroute.h)"); 168 169 VNET_DEFINE_STATIC(u_long, mfchash); 170 #define V_mfchash VNET(mfchash) 171 #define MFCHASH(a, g) \ 172 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 173 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 174 #define MFCHASHSIZE 256 175 176 static u_long mfchashsize; /* Hash size */ 177 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 178 #define V_nexpire VNET(nexpire) 179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 180 #define V_mfchashtbl VNET(mfchashtbl) 181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 182 #define V_task_queue VNET(task_queue) 183 VNET_DEFINE_STATIC(struct task, task); 184 #define V_task VNET(task) 185 186 VNET_DEFINE_STATIC(vifi_t, numvifs); 187 #define V_numvifs VNET(numvifs) 188 VNET_DEFINE_STATIC(struct vif *, viftable); 189 #define V_viftable VNET(viftable) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 197 #define V_buf_ring_mtx VNET(buf_ring_mtx) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 207 /* 208 * Pending upcalls are stored in a ring which is flushed when 209 * full, or periodically 210 */ 211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 212 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 214 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 216 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 217 218 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 219 220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 221 VNET_PCPUSTAT_SYSINIT(pimstat); 222 VNET_PCPUSTAT_SYSUNINIT(pimstat); 223 224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 225 "PIM"); 226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 227 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 228 229 static u_long pim_squelch_wholepkt = 0; 230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 231 &pim_squelch_wholepkt, 0, 232 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void *); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(NULL); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i; 625 626 MRW_WLOCK(); 627 628 if (V_ip_mrouter == NULL) { 629 MRW_WUNLOCK(); 630 return; 631 } 632 633 /* 634 * Tear down multicast forwarder state associated with this ifnet. 635 * 1. Walk the vif list, matching vifs against this ifnet. 636 * 2. Walk the multicast forwarding cache (mfc) looking for 637 * inner matches with this vif's index. 638 * 3. Expire any matching multicast forwarding cache entries. 639 * 4. Free vif state. This should disable ALLMULTI on the interface. 640 */ 641 for (vifi = 0; vifi < V_numvifs; vifi++) { 642 if (V_viftable[vifi].v_ifp != ifp) 643 continue; 644 for (i = 0; i < mfchashsize; i++) { 645 struct mfc *rt, *nrt; 646 647 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 648 if (rt->mfc_parent == vifi) { 649 expire_mfc(rt); 650 } 651 } 652 } 653 del_vif_locked(vifi); 654 } 655 656 MRW_WUNLOCK(); 657 } 658 659 static void 660 ip_mrouter_upcall_thread(void *arg, int pending __unused) 661 { 662 CURVNET_SET((struct vnet *) arg); 663 664 MRW_WLOCK(); 665 bw_upcalls_send(); 666 MRW_WUNLOCK(); 667 668 CURVNET_RESTORE(); 669 } 670 671 /* 672 * Enable multicast forwarding. 673 */ 674 static int 675 ip_mrouter_init(struct socket *so, int version) 676 { 677 678 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 679 so->so_type, so->so_proto->pr_protocol); 680 681 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 682 return EOPNOTSUPP; 683 684 if (version != 1) 685 return ENOPROTOOPT; 686 687 MRW_WLOCK(); 688 689 if (ip_mrouter_unloading) { 690 MRW_WUNLOCK(); 691 return ENOPROTOOPT; 692 } 693 694 if (V_ip_mrouter != NULL) { 695 MRW_WUNLOCK(); 696 return EADDRINUSE; 697 } 698 699 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 700 HASH_NOWAIT); 701 702 /* Create upcall ring */ 703 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 704 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 705 M_NOWAIT, &V_bw_upcalls_ring_mtx); 706 if (!V_bw_upcalls_ring) { 707 MRW_WUNLOCK(); 708 return (ENOMEM); 709 } 710 711 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 712 taskqueue_cancel(V_task_queue, &V_task, NULL); 713 taskqueue_unblock(V_task_queue); 714 715 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 716 curvnet); 717 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 718 curvnet); 719 720 V_ip_mrouter = so; 721 atomic_add_int(&ip_mrouter_cnt, 1); 722 723 /* This is a mutex required by buf_ring init, but not used internally */ 724 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 725 726 MRW_WUNLOCK(); 727 728 CTR1(KTR_IPMF, "%s: done", __func__); 729 730 return 0; 731 } 732 733 /* 734 * Disable multicast forwarding. 735 */ 736 static int 737 X_ip_mrouter_done(void *locked) 738 { 739 struct ifnet *ifp; 740 u_long i; 741 vifi_t vifi; 742 struct bw_upcall *bu; 743 744 if (V_ip_mrouter == NULL) { 745 if (locked) { 746 struct epoch_tracker *mrouter_et = locked; 747 MROUTER_RUNLOCK_PARAM(mrouter_et); 748 } 749 return EINVAL; 750 } 751 752 /* 753 * Detach/disable hooks to the reset of the system. 754 */ 755 V_ip_mrouter = NULL; 756 atomic_subtract_int(&ip_mrouter_cnt, 1); 757 V_mrt_api_config = 0; 758 759 if (locked) { 760 struct epoch_tracker *mrouter_et = locked; 761 MROUTER_RUNLOCK_PARAM(mrouter_et); 762 } 763 764 MROUTER_WAIT(); 765 766 /* Stop and drain task queue */ 767 taskqueue_block(V_task_queue); 768 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 769 taskqueue_drain(V_task_queue, &V_task); 770 } 771 772 MRW_WLOCK(); 773 taskqueue_cancel(V_task_queue, &V_task, NULL); 774 775 /* Destroy upcall ring */ 776 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 777 free(bu, M_MRTABLE); 778 } 779 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 780 mtx_destroy(&V_bw_upcalls_ring_mtx); 781 782 /* 783 * For each phyint in use, disable promiscuous reception of all IP 784 * multicasts. 785 */ 786 for (vifi = 0; vifi < V_numvifs; vifi++) { 787 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 788 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 789 ifp = V_viftable[vifi].v_ifp; 790 if_allmulti(ifp, 0); 791 } 792 } 793 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 794 V_numvifs = 0; 795 V_pim_assert_enabled = 0; 796 797 callout_stop(&V_expire_upcalls_ch); 798 callout_stop(&V_bw_upcalls_ch); 799 800 /* 801 * Free all multicast forwarding cache entries. 802 * Do not use hashdestroy(), as we must perform other cleanup. 803 */ 804 for (i = 0; i < mfchashsize; i++) { 805 struct mfc *rt, *nrt; 806 807 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 808 expire_mfc(rt); 809 } 810 } 811 free(V_mfchashtbl, M_MRTABLE); 812 V_mfchashtbl = NULL; 813 814 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 815 816 V_reg_vif_num = VIFI_INVALID; 817 818 mtx_destroy(&V_buf_ring_mtx); 819 820 MRW_WUNLOCK(); 821 822 CTR1(KTR_IPMF, "%s: done", __func__); 823 824 return 0; 825 } 826 827 /* 828 * Set PIM assert processing global 829 */ 830 static int 831 set_assert(int i) 832 { 833 if ((i != 1) && (i != 0)) 834 return EINVAL; 835 836 V_pim_assert_enabled = i; 837 838 return 0; 839 } 840 841 /* 842 * Configure API capabilities 843 */ 844 int 845 set_api_config(uint32_t *apival) 846 { 847 u_long i; 848 849 /* 850 * We can set the API capabilities only if it is the first operation 851 * after MRT_INIT. I.e.: 852 * - there are no vifs installed 853 * - pim_assert is not enabled 854 * - the MFC table is empty 855 */ 856 if (V_numvifs > 0) { 857 *apival = 0; 858 return EPERM; 859 } 860 if (V_pim_assert_enabled) { 861 *apival = 0; 862 return EPERM; 863 } 864 865 MRW_RLOCK(); 866 867 for (i = 0; i < mfchashsize; i++) { 868 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 869 MRW_RUNLOCK(); 870 *apival = 0; 871 return EPERM; 872 } 873 } 874 875 MRW_RUNLOCK(); 876 877 V_mrt_api_config = *apival & mrt_api_support; 878 *apival = V_mrt_api_config; 879 880 return 0; 881 } 882 883 /* 884 * Add a vif to the vif table 885 */ 886 static int 887 add_vif(struct vifctl *vifcp) 888 { 889 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 890 struct sockaddr_in sin = {sizeof sin, AF_INET}; 891 struct ifaddr *ifa; 892 struct ifnet *ifp; 893 int error; 894 895 896 if (vifcp->vifc_vifi >= MAXVIFS) 897 return EINVAL; 898 /* rate limiting is no longer supported by this code */ 899 if (vifcp->vifc_rate_limit != 0) { 900 log(LOG_ERR, "rate limiting is no longer supported\n"); 901 return EINVAL; 902 } 903 904 if (in_nullhost(vifcp->vifc_lcl_addr)) 905 return EADDRNOTAVAIL; 906 907 /* Find the interface with an address in AF_INET family */ 908 if (vifcp->vifc_flags & VIFF_REGISTER) { 909 /* 910 * XXX: Because VIFF_REGISTER does not really need a valid 911 * local interface (e.g. it could be 127.0.0.2), we don't 912 * check its address. 913 */ 914 ifp = NULL; 915 } else { 916 struct epoch_tracker et; 917 918 sin.sin_addr = vifcp->vifc_lcl_addr; 919 NET_EPOCH_ENTER(et); 920 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 921 if (ifa == NULL) { 922 NET_EPOCH_EXIT(et); 923 return EADDRNOTAVAIL; 924 } 925 ifp = ifa->ifa_ifp; 926 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 927 NET_EPOCH_EXIT(et); 928 } 929 930 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 931 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 932 return EOPNOTSUPP; 933 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 934 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 935 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 936 if (V_reg_vif_num == VIFI_INVALID) { 937 if_initname(V_multicast_register_if, "register_vif", 0); 938 V_reg_vif_num = vifcp->vifc_vifi; 939 } 940 } else { /* Make sure the interface supports multicast */ 941 if ((ifp->if_flags & IFF_MULTICAST) == 0) 942 return EOPNOTSUPP; 943 944 /* Enable promiscuous reception of all IP multicasts from the if */ 945 error = if_allmulti(ifp, 1); 946 if (error) 947 return error; 948 } 949 950 MRW_WLOCK(); 951 952 if (!in_nullhost(vifp->v_lcl_addr)) { 953 if (ifp) 954 V_multicast_register_if = NULL; 955 MRW_WUNLOCK(); 956 if (ifp) 957 if_free(ifp); 958 return EADDRINUSE; 959 } 960 961 vifp->v_flags = vifcp->vifc_flags; 962 vifp->v_threshold = vifcp->vifc_threshold; 963 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 964 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 965 vifp->v_ifp = ifp; 966 /* initialize per vif pkt counters */ 967 vifp->v_pkt_in = 0; 968 vifp->v_pkt_out = 0; 969 vifp->v_bytes_in = 0; 970 vifp->v_bytes_out = 0; 971 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 972 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 973 974 /* Adjust numvifs up if the vifi is higher than numvifs */ 975 if (V_numvifs <= vifcp->vifc_vifi) 976 V_numvifs = vifcp->vifc_vifi + 1; 977 978 MRW_WUNLOCK(); 979 980 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 981 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 982 (int)vifcp->vifc_threshold); 983 984 return 0; 985 } 986 987 /* 988 * Delete a vif from the vif table 989 */ 990 static int 991 del_vif_locked(vifi_t vifi) 992 { 993 struct vif *vifp; 994 995 MRW_WLOCK_ASSERT(); 996 997 if (vifi >= V_numvifs) { 998 return EINVAL; 999 } 1000 vifp = &V_viftable[vifi]; 1001 if (in_nullhost(vifp->v_lcl_addr)) { 1002 return EADDRNOTAVAIL; 1003 } 1004 1005 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1006 if_allmulti(vifp->v_ifp, 0); 1007 1008 if (vifp->v_flags & VIFF_REGISTER) { 1009 V_reg_vif_num = VIFI_INVALID; 1010 if (vifp->v_ifp) { 1011 if (vifp->v_ifp == V_multicast_register_if) 1012 V_multicast_register_if = NULL; 1013 if_free(vifp->v_ifp); 1014 } 1015 } 1016 1017 mtx_destroy(&vifp->v_spin); 1018 1019 bzero((caddr_t)vifp, sizeof (*vifp)); 1020 1021 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1022 1023 /* Adjust numvifs down */ 1024 for (vifi = V_numvifs; vifi > 0; vifi--) 1025 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1026 break; 1027 V_numvifs = vifi; 1028 1029 return 0; 1030 } 1031 1032 static int 1033 del_vif(vifi_t vifi) 1034 { 1035 int cc; 1036 1037 MRW_WLOCK(); 1038 cc = del_vif_locked(vifi); 1039 MRW_WUNLOCK(); 1040 1041 return cc; 1042 } 1043 1044 /* 1045 * update an mfc entry without resetting counters and S,G addresses. 1046 */ 1047 static void 1048 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1049 { 1050 int i; 1051 1052 rt->mfc_parent = mfccp->mfcc_parent; 1053 for (i = 0; i < V_numvifs; i++) { 1054 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1055 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1056 MRT_MFC_FLAGS_ALL; 1057 } 1058 /* set the RP address */ 1059 if (V_mrt_api_config & MRT_MFC_RP) 1060 rt->mfc_rp = mfccp->mfcc_rp; 1061 else 1062 rt->mfc_rp.s_addr = INADDR_ANY; 1063 } 1064 1065 /* 1066 * fully initialize an mfc entry from the parameter. 1067 */ 1068 static void 1069 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1070 { 1071 rt->mfc_origin = mfccp->mfcc_origin; 1072 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1073 1074 update_mfc_params(rt, mfccp); 1075 1076 /* initialize pkt counters per src-grp */ 1077 rt->mfc_pkt_cnt = 0; 1078 rt->mfc_byte_cnt = 0; 1079 rt->mfc_wrong_if = 0; 1080 timevalclear(&rt->mfc_last_assert); 1081 } 1082 1083 static void 1084 expire_mfc(struct mfc *rt) 1085 { 1086 struct rtdetq *rte; 1087 1088 MRW_WLOCK_ASSERT(); 1089 1090 free_bw_list(rt->mfc_bw_meter_leq); 1091 free_bw_list(rt->mfc_bw_meter_geq); 1092 1093 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1094 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1095 if (rte) { 1096 m_freem(rte->m); 1097 free(rte, M_MRTABLE); 1098 } 1099 } 1100 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1101 1102 LIST_REMOVE(rt, mfc_hash); 1103 free(rt, M_MRTABLE); 1104 } 1105 1106 /* 1107 * Add an mfc entry 1108 */ 1109 static int 1110 add_mfc(struct mfcctl2 *mfccp) 1111 { 1112 struct mfc *rt; 1113 struct rtdetq *rte; 1114 u_long hash = 0; 1115 u_short nstl; 1116 1117 MRW_WLOCK(); 1118 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1119 1120 /* If an entry already exists, just update the fields */ 1121 if (rt) { 1122 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1123 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1124 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1125 mfccp->mfcc_parent); 1126 update_mfc_params(rt, mfccp); 1127 MRW_WUNLOCK(); 1128 return (0); 1129 } 1130 1131 /* 1132 * Find the entry for which the upcall was made and update 1133 */ 1134 nstl = 0; 1135 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1136 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1137 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1138 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1139 !buf_ring_empty(rt->mfc_stall_ring)) { 1140 CTR5(KTR_IPMF, 1141 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1142 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1143 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1144 mfccp->mfcc_parent, 1145 rt->mfc_stall_ring); 1146 if (nstl++) 1147 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1148 1149 init_mfc_params(rt, mfccp); 1150 rt->mfc_expire = 0; /* Don't clean this guy up */ 1151 V_nexpire[hash]--; 1152 1153 /* Free queued packets, but attempt to forward them first. */ 1154 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1155 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1156 if (rte->ifp != NULL) 1157 ip_mdq(rte->m, rte->ifp, rt, -1); 1158 m_freem(rte->m); 1159 free(rte, M_MRTABLE); 1160 } 1161 } 1162 } 1163 1164 /* 1165 * It is possible that an entry is being inserted without an upcall 1166 */ 1167 if (nstl == 0) { 1168 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1169 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1170 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1171 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1172 init_mfc_params(rt, mfccp); 1173 if (rt->mfc_expire) 1174 V_nexpire[hash]--; 1175 rt->mfc_expire = 0; 1176 break; /* XXX */ 1177 } 1178 } 1179 1180 if (rt == NULL) { /* no upcall, so make a new entry */ 1181 rt = mfc_alloc(); 1182 if (rt == NULL) { 1183 MRW_WUNLOCK(); 1184 return (ENOBUFS); 1185 } 1186 1187 init_mfc_params(rt, mfccp); 1188 1189 rt->mfc_expire = 0; 1190 rt->mfc_bw_meter_leq = NULL; 1191 rt->mfc_bw_meter_geq = NULL; 1192 1193 /* insert new entry at head of hash chain */ 1194 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1195 } 1196 } 1197 1198 MRW_WUNLOCK(); 1199 1200 return (0); 1201 } 1202 1203 /* 1204 * Delete an mfc entry 1205 */ 1206 static int 1207 del_mfc(struct mfcctl2 *mfccp) 1208 { 1209 struct in_addr origin; 1210 struct in_addr mcastgrp; 1211 struct mfc *rt; 1212 1213 origin = mfccp->mfcc_origin; 1214 mcastgrp = mfccp->mfcc_mcastgrp; 1215 1216 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1217 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1218 1219 MRW_WLOCK(); 1220 1221 rt = mfc_find(&origin, &mcastgrp); 1222 if (rt == NULL) { 1223 MRW_WUNLOCK(); 1224 return EADDRNOTAVAIL; 1225 } 1226 1227 /* 1228 * free the bw_meter entries 1229 */ 1230 free_bw_list(rt->mfc_bw_meter_leq); 1231 rt->mfc_bw_meter_leq = NULL; 1232 free_bw_list(rt->mfc_bw_meter_geq); 1233 rt->mfc_bw_meter_geq = NULL; 1234 1235 LIST_REMOVE(rt, mfc_hash); 1236 free(rt, M_MRTABLE); 1237 1238 MRW_WUNLOCK(); 1239 1240 return (0); 1241 } 1242 1243 /* 1244 * Send a message to the routing daemon on the multicast routing socket. 1245 */ 1246 static int 1247 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1248 { 1249 if (s) { 1250 SOCKBUF_LOCK(&s->so_rcv); 1251 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1252 NULL) != 0) { 1253 sorwakeup_locked(s); 1254 return 0; 1255 } 1256 soroverflow_locked(s); 1257 } 1258 m_freem(mm); 1259 return -1; 1260 } 1261 1262 /* 1263 * IP multicast forwarding function. This function assumes that the packet 1264 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1265 * pointed to by "ifp", and the packet is to be relayed to other networks 1266 * that have members of the packet's destination IP multicast group. 1267 * 1268 * The packet is returned unscathed to the caller, unless it is 1269 * erroneous, in which case a non-zero return value tells the caller to 1270 * discard it. 1271 */ 1272 1273 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1274 1275 static int 1276 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1277 struct ip_moptions *imo) 1278 { 1279 struct mfc *rt; 1280 int error; 1281 vifi_t vifi; 1282 struct mbuf *mb0; 1283 struct rtdetq *rte; 1284 u_long hash; 1285 int hlen; 1286 1287 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1288 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1289 1290 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1291 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1292 /* 1293 * Packet arrived via a physical interface or 1294 * an encapsulated tunnel or a register_vif. 1295 */ 1296 } else { 1297 /* 1298 * Packet arrived through a source-route tunnel. 1299 * Source-route tunnels are no longer supported. 1300 */ 1301 return (1); 1302 } 1303 1304 /* 1305 * BEGIN: MCAST ROUTING HOT PATH 1306 */ 1307 MRW_RLOCK(); 1308 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1309 if (ip->ip_ttl < MAXTTL) 1310 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1311 error = ip_mdq(m, ifp, NULL, vifi); 1312 MRW_RUNLOCK(); 1313 return error; 1314 } 1315 1316 /* 1317 * Don't forward a packet with time-to-live of zero or one, 1318 * or a packet destined to a local-only group. 1319 */ 1320 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1321 MRW_RUNLOCK(); 1322 return 0; 1323 } 1324 1325 mfc_find_retry: 1326 /* 1327 * Determine forwarding vifs from the forwarding cache table 1328 */ 1329 MRTSTAT_INC(mrts_mfc_lookups); 1330 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1331 1332 /* Entry exists, so forward if necessary */ 1333 if (rt != NULL) { 1334 error = ip_mdq(m, ifp, rt, -1); 1335 /* Generic unlock here as we might release R or W lock */ 1336 MRW_UNLOCK(); 1337 return error; 1338 } 1339 1340 /* 1341 * END: MCAST ROUTING HOT PATH 1342 */ 1343 1344 /* Further processing must be done with WLOCK taken */ 1345 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1346 MRW_RUNLOCK(); 1347 MRW_WLOCK(); 1348 goto mfc_find_retry; 1349 } 1350 1351 /* 1352 * If we don't have a route for packet's origin, 1353 * Make a copy of the packet & send message to routing daemon 1354 */ 1355 hlen = ip->ip_hl << 2; 1356 1357 MRTSTAT_INC(mrts_mfc_misses); 1358 MRTSTAT_INC(mrts_no_route); 1359 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1360 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1361 1362 /* 1363 * Allocate mbufs early so that we don't do extra work if we are 1364 * just going to fail anyway. Make sure to pullup the header so 1365 * that other people can't step on it. 1366 */ 1367 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1368 M_NOWAIT|M_ZERO); 1369 if (rte == NULL) { 1370 MRW_WUNLOCK(); 1371 return ENOBUFS; 1372 } 1373 1374 mb0 = m_copypacket(m, M_NOWAIT); 1375 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1376 mb0 = m_pullup(mb0, hlen); 1377 if (mb0 == NULL) { 1378 free(rte, M_MRTABLE); 1379 MRW_WUNLOCK(); 1380 return ENOBUFS; 1381 } 1382 1383 /* is there an upcall waiting for this flow ? */ 1384 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1385 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1386 { 1387 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1388 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1389 !buf_ring_empty(rt->mfc_stall_ring)) 1390 break; 1391 } 1392 1393 if (rt == NULL) { 1394 int i; 1395 struct igmpmsg *im; 1396 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1397 struct mbuf *mm; 1398 1399 /* 1400 * Locate the vifi for the incoming interface for this packet. 1401 * If none found, drop packet. 1402 */ 1403 for (vifi = 0; vifi < V_numvifs && 1404 V_viftable[vifi].v_ifp != ifp; vifi++) 1405 ; 1406 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1407 goto non_fatal; 1408 1409 /* no upcall, so make a new entry */ 1410 rt = mfc_alloc(); 1411 if (rt == NULL) 1412 goto fail; 1413 1414 /* Make a copy of the header to send to the user level process */ 1415 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1416 if (mm == NULL) 1417 goto fail1; 1418 1419 /* 1420 * Send message to routing daemon to install 1421 * a route into the kernel table 1422 */ 1423 1424 im = mtod(mm, struct igmpmsg*); 1425 im->im_msgtype = IGMPMSG_NOCACHE; 1426 im->im_mbz = 0; 1427 im->im_vif = vifi; 1428 1429 MRTSTAT_INC(mrts_upcalls); 1430 1431 k_igmpsrc.sin_addr = ip->ip_src; 1432 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1433 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1434 MRTSTAT_INC(mrts_upq_sockfull); 1435 fail1: free(rt, M_MRTABLE); 1436 fail: free(rte, M_MRTABLE); 1437 m_freem(mb0); 1438 MRW_WUNLOCK(); 1439 return ENOBUFS; 1440 } 1441 1442 /* insert new entry at head of hash chain */ 1443 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1444 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1445 rt->mfc_expire = UPCALL_EXPIRE; 1446 V_nexpire[hash]++; 1447 for (i = 0; i < V_numvifs; i++) { 1448 rt->mfc_ttls[i] = 0; 1449 rt->mfc_flags[i] = 0; 1450 } 1451 rt->mfc_parent = -1; 1452 1453 /* clear the RP address */ 1454 rt->mfc_rp.s_addr = INADDR_ANY; 1455 rt->mfc_bw_meter_leq = NULL; 1456 rt->mfc_bw_meter_geq = NULL; 1457 1458 /* initialize pkt counters per src-grp */ 1459 rt->mfc_pkt_cnt = 0; 1460 rt->mfc_byte_cnt = 0; 1461 rt->mfc_wrong_if = 0; 1462 timevalclear(&rt->mfc_last_assert); 1463 1464 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1465 1466 /* Add RT to hashtable as it didn't exist before */ 1467 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1468 } else { 1469 /* determine if queue has overflowed */ 1470 if (buf_ring_full(rt->mfc_stall_ring)) { 1471 MRTSTAT_INC(mrts_upq_ovflw); 1472 non_fatal: free(rte, M_MRTABLE); 1473 m_freem(mb0); 1474 MRW_WUNLOCK(); 1475 return (0); 1476 } 1477 1478 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1479 } 1480 1481 rte->m = mb0; 1482 rte->ifp = ifp; 1483 1484 MRW_WUNLOCK(); 1485 1486 return 0; 1487 } 1488 1489 /* 1490 * Clean up the cache entry if upcall is not serviced 1491 */ 1492 static void 1493 expire_upcalls(void *arg) 1494 { 1495 u_long i; 1496 1497 CURVNET_SET((struct vnet *) arg); 1498 1499 /*This callout is always run with MRW_WLOCK taken. */ 1500 1501 for (i = 0; i < mfchashsize; i++) { 1502 struct mfc *rt, *nrt; 1503 1504 if (V_nexpire[i] == 0) 1505 continue; 1506 1507 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1508 if (buf_ring_empty(rt->mfc_stall_ring)) 1509 continue; 1510 1511 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1512 continue; 1513 1514 MRTSTAT_INC(mrts_cache_cleanups); 1515 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1516 (u_long)ntohl(rt->mfc_origin.s_addr), 1517 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1518 1519 expire_mfc(rt); 1520 } 1521 } 1522 1523 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1524 curvnet); 1525 1526 CURVNET_RESTORE(); 1527 } 1528 1529 /* 1530 * Packet forwarding routine once entry in the cache is made 1531 */ 1532 static int 1533 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1534 { 1535 struct ip *ip = mtod(m, struct ip *); 1536 vifi_t vifi; 1537 int plen = ntohs(ip->ip_len); 1538 1539 MRW_LOCK_ASSERT(); 1540 1541 /* 1542 * If xmt_vif is not -1, send on only the requested vif. 1543 * 1544 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1545 */ 1546 if (xmt_vif < V_numvifs) { 1547 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1548 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1549 else 1550 phyint_send(ip, V_viftable + xmt_vif, m); 1551 return 1; 1552 } 1553 1554 /* 1555 * Don't forward if it didn't arrive from the parent vif for its origin. 1556 */ 1557 vifi = rt->mfc_parent; 1558 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1559 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1560 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1561 MRTSTAT_INC(mrts_wrong_if); 1562 ++rt->mfc_wrong_if; 1563 /* 1564 * If we are doing PIM assert processing, send a message 1565 * to the routing daemon. 1566 * 1567 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1568 * can complete the SPT switch, regardless of the type 1569 * of the iif (broadcast media, GRE tunnel, etc). 1570 */ 1571 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1572 V_viftable[vifi].v_ifp) { 1573 if (ifp == V_multicast_register_if) 1574 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1575 1576 /* Get vifi for the incoming packet */ 1577 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1578 vifi++) 1579 ; 1580 if (vifi >= V_numvifs) 1581 return 0; /* The iif is not found: ignore the packet. */ 1582 1583 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1584 return 0; /* WRONGVIF disabled: ignore the packet */ 1585 1586 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1587 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1588 struct igmpmsg *im; 1589 int hlen = ip->ip_hl << 2; 1590 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1591 1592 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1593 mm = m_pullup(mm, hlen); 1594 if (mm == NULL) 1595 return ENOBUFS; 1596 1597 im = mtod(mm, struct igmpmsg *); 1598 im->im_msgtype = IGMPMSG_WRONGVIF; 1599 im->im_mbz = 0; 1600 im->im_vif = vifi; 1601 1602 MRTSTAT_INC(mrts_upcalls); 1603 1604 k_igmpsrc.sin_addr = im->im_src; 1605 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1606 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1607 MRTSTAT_INC(mrts_upq_sockfull); 1608 return ENOBUFS; 1609 } 1610 } 1611 } 1612 return 0; 1613 } 1614 1615 /* If I sourced this packet, it counts as output, else it was input. */ 1616 mtx_lock_spin(&V_viftable[vifi].v_spin); 1617 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1618 V_viftable[vifi].v_pkt_out++; 1619 V_viftable[vifi].v_bytes_out += plen; 1620 } else { 1621 V_viftable[vifi].v_pkt_in++; 1622 V_viftable[vifi].v_bytes_in += plen; 1623 } 1624 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1625 1626 rt->mfc_pkt_cnt++; 1627 rt->mfc_byte_cnt += plen; 1628 1629 /* 1630 * For each vif, decide if a copy of the packet should be forwarded. 1631 * Forward if: 1632 * - the ttl exceeds the vif's threshold 1633 * - there are group members downstream on interface 1634 */ 1635 for (vifi = 0; vifi < V_numvifs; vifi++) 1636 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1637 V_viftable[vifi].v_pkt_out++; 1638 V_viftable[vifi].v_bytes_out += plen; 1639 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1640 pim_register_send(ip, V_viftable + vifi, m, rt); 1641 else 1642 phyint_send(ip, V_viftable + vifi, m); 1643 } 1644 1645 /* 1646 * Perform upcall-related bw measuring. 1647 */ 1648 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1649 struct bw_meter *x; 1650 struct timeval now; 1651 1652 microtime(&now); 1653 /* Process meters for Greater-or-EQual case */ 1654 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1655 bw_meter_geq_receive_packet(x, plen, &now); 1656 1657 /* Process meters for Lower-or-EQual case */ 1658 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1659 /* 1660 * Record that a packet is received. 1661 * Spin lock has to be taken as callout context 1662 * (expire_bw_meter_leq) might modify these fields 1663 * as well 1664 */ 1665 mtx_lock_spin(&x->bm_spin); 1666 x->bm_measured.b_packets++; 1667 x->bm_measured.b_bytes += plen; 1668 mtx_unlock_spin(&x->bm_spin); 1669 } 1670 } 1671 1672 return 0; 1673 } 1674 1675 /* 1676 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1677 */ 1678 static int 1679 X_legal_vif_num(int vif) 1680 { 1681 int ret; 1682 1683 ret = 0; 1684 if (vif < 0) 1685 return (ret); 1686 1687 MRW_RLOCK(); 1688 if (vif < V_numvifs) 1689 ret = 1; 1690 MRW_RUNLOCK(); 1691 1692 return (ret); 1693 } 1694 1695 /* 1696 * Return the local address used by this vif 1697 */ 1698 static u_long 1699 X_ip_mcast_src(int vifi) 1700 { 1701 in_addr_t addr; 1702 1703 addr = INADDR_ANY; 1704 if (vifi < 0) 1705 return (addr); 1706 1707 MRW_RLOCK(); 1708 if (vifi < V_numvifs) 1709 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1710 MRW_RUNLOCK(); 1711 1712 return (addr); 1713 } 1714 1715 static void 1716 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1717 { 1718 struct mbuf *mb_copy; 1719 int hlen = ip->ip_hl << 2; 1720 1721 MRW_LOCK_ASSERT(); 1722 1723 /* 1724 * Make a new reference to the packet; make sure that 1725 * the IP header is actually copied, not just referenced, 1726 * so that ip_output() only scribbles on the copy. 1727 */ 1728 mb_copy = m_copypacket(m, M_NOWAIT); 1729 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1730 mb_copy = m_pullup(mb_copy, hlen); 1731 if (mb_copy == NULL) 1732 return; 1733 1734 send_packet(vifp, mb_copy); 1735 } 1736 1737 static void 1738 send_packet(struct vif *vifp, struct mbuf *m) 1739 { 1740 struct ip_moptions imo; 1741 int error __unused; 1742 1743 MRW_LOCK_ASSERT(); 1744 1745 imo.imo_multicast_ifp = vifp->v_ifp; 1746 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1747 imo.imo_multicast_loop = !!in_mcast_loop; 1748 imo.imo_multicast_vif = -1; 1749 STAILQ_INIT(&imo.imo_head); 1750 1751 /* 1752 * Re-entrancy should not be a problem here, because 1753 * the packets that we send out and are looped back at us 1754 * should get rejected because they appear to come from 1755 * the loopback interface, thus preventing looping. 1756 */ 1757 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1758 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1759 (ptrdiff_t)(vifp - V_viftable), error); 1760 } 1761 1762 /* 1763 * Stubs for old RSVP socket shim implementation. 1764 */ 1765 1766 static int 1767 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1768 { 1769 1770 return (EOPNOTSUPP); 1771 } 1772 1773 static void 1774 X_ip_rsvp_force_done(struct socket *so __unused) 1775 { 1776 1777 } 1778 1779 static int 1780 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1781 { 1782 struct mbuf *m; 1783 1784 m = *mp; 1785 *mp = NULL; 1786 if (!V_rsvp_on) 1787 m_freem(m); 1788 return (IPPROTO_DONE); 1789 } 1790 1791 /* 1792 * Code for bandwidth monitors 1793 */ 1794 1795 /* 1796 * Define common interface for timeval-related methods 1797 */ 1798 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1799 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1800 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1801 1802 static uint32_t 1803 compute_bw_meter_flags(struct bw_upcall *req) 1804 { 1805 uint32_t flags = 0; 1806 1807 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1808 flags |= BW_METER_UNIT_PACKETS; 1809 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1810 flags |= BW_METER_UNIT_BYTES; 1811 if (req->bu_flags & BW_UPCALL_GEQ) 1812 flags |= BW_METER_GEQ; 1813 if (req->bu_flags & BW_UPCALL_LEQ) 1814 flags |= BW_METER_LEQ; 1815 1816 return flags; 1817 } 1818 1819 static void 1820 expire_bw_meter_leq(void *arg) 1821 { 1822 struct bw_meter *x = arg; 1823 struct timeval now; 1824 /* 1825 * INFO: 1826 * callout is always executed with MRW_WLOCK taken 1827 */ 1828 1829 CURVNET_SET((struct vnet *)x->arg); 1830 1831 microtime(&now); 1832 1833 /* 1834 * Test if we should deliver an upcall 1835 */ 1836 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1837 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1838 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1839 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1840 /* Prepare an upcall for delivery */ 1841 bw_meter_prepare_upcall(x, &now); 1842 } 1843 1844 /* Send all upcalls that are pending delivery */ 1845 taskqueue_enqueue(V_task_queue, &V_task); 1846 1847 /* Reset counters */ 1848 x->bm_start_time = now; 1849 /* Spin lock has to be taken as ip_forward context 1850 * might modify these fields as well 1851 */ 1852 mtx_lock_spin(&x->bm_spin); 1853 x->bm_measured.b_bytes = 0; 1854 x->bm_measured.b_packets = 0; 1855 mtx_unlock_spin(&x->bm_spin); 1856 1857 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1858 1859 CURVNET_RESTORE(); 1860 } 1861 1862 /* 1863 * Add a bw_meter entry 1864 */ 1865 static int 1866 add_bw_upcall(struct bw_upcall *req) 1867 { 1868 struct mfc *mfc; 1869 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1870 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1871 struct timeval now; 1872 struct bw_meter *x, **bwm_ptr; 1873 uint32_t flags; 1874 1875 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1876 return EOPNOTSUPP; 1877 1878 /* Test if the flags are valid */ 1879 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1880 return EINVAL; 1881 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1882 return EINVAL; 1883 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1884 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1885 return EINVAL; 1886 1887 /* Test if the threshold time interval is valid */ 1888 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1889 return EINVAL; 1890 1891 flags = compute_bw_meter_flags(req); 1892 1893 /* 1894 * Find if we have already same bw_meter entry 1895 */ 1896 MRW_WLOCK(); 1897 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1898 if (mfc == NULL) { 1899 MRW_WUNLOCK(); 1900 return EADDRNOTAVAIL; 1901 } 1902 1903 /* Choose an appropriate bw_meter list */ 1904 if (req->bu_flags & BW_UPCALL_GEQ) 1905 bwm_ptr = &mfc->mfc_bw_meter_geq; 1906 else 1907 bwm_ptr = &mfc->mfc_bw_meter_leq; 1908 1909 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1910 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1911 &req->bu_threshold.b_time, ==)) 1912 && (x->bm_threshold.b_packets 1913 == req->bu_threshold.b_packets) 1914 && (x->bm_threshold.b_bytes 1915 == req->bu_threshold.b_bytes) 1916 && (x->bm_flags & BW_METER_USER_FLAGS) 1917 == flags) { 1918 MRW_WUNLOCK(); 1919 return 0; /* XXX Already installed */ 1920 } 1921 } 1922 1923 /* Allocate the new bw_meter entry */ 1924 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1925 M_ZERO | M_NOWAIT); 1926 if (x == NULL) { 1927 MRW_WUNLOCK(); 1928 return ENOBUFS; 1929 } 1930 1931 /* Set the new bw_meter entry */ 1932 x->bm_threshold.b_time = req->bu_threshold.b_time; 1933 microtime(&now); 1934 x->bm_start_time = now; 1935 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1936 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1937 x->bm_measured.b_packets = 0; 1938 x->bm_measured.b_bytes = 0; 1939 x->bm_flags = flags; 1940 x->bm_time_next = NULL; 1941 x->bm_mfc = mfc; 1942 x->arg = curvnet; 1943 sprintf(x->bm_spin_name, "BM spin %p", x); 1944 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1945 1946 /* For LEQ case create periodic callout */ 1947 if (req->bu_flags & BW_UPCALL_LEQ) { 1948 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1949 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1950 expire_bw_meter_leq, x); 1951 } 1952 1953 /* Add the new bw_meter entry to the front of entries for this MFC */ 1954 x->bm_mfc_next = *bwm_ptr; 1955 *bwm_ptr = x; 1956 1957 MRW_WUNLOCK(); 1958 1959 return 0; 1960 } 1961 1962 static void 1963 free_bw_list(struct bw_meter *list) 1964 { 1965 while (list != NULL) { 1966 struct bw_meter *x = list; 1967 1968 /* MRW_WLOCK must be held here */ 1969 if (x->bm_flags & BW_METER_LEQ) { 1970 callout_drain(&x->bm_meter_callout); 1971 mtx_destroy(&x->bm_spin); 1972 } 1973 1974 list = list->bm_mfc_next; 1975 free(x, M_BWMETER); 1976 } 1977 } 1978 1979 /* 1980 * Delete one or multiple bw_meter entries 1981 */ 1982 static int 1983 del_bw_upcall(struct bw_upcall *req) 1984 { 1985 struct mfc *mfc; 1986 struct bw_meter *x, **bwm_ptr; 1987 1988 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1989 return EOPNOTSUPP; 1990 1991 MRW_WLOCK(); 1992 1993 /* Find the corresponding MFC entry */ 1994 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1995 if (mfc == NULL) { 1996 MRW_WUNLOCK(); 1997 return EADDRNOTAVAIL; 1998 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1999 /* 2000 * Delete all bw_meter entries for this mfc 2001 */ 2002 struct bw_meter *list; 2003 2004 /* Free LEQ list */ 2005 list = mfc->mfc_bw_meter_leq; 2006 mfc->mfc_bw_meter_leq = NULL; 2007 free_bw_list(list); 2008 2009 /* Free GEQ list */ 2010 list = mfc->mfc_bw_meter_geq; 2011 mfc->mfc_bw_meter_geq = NULL; 2012 free_bw_list(list); 2013 MRW_WUNLOCK(); 2014 return 0; 2015 } else { /* Delete a single bw_meter entry */ 2016 struct bw_meter *prev; 2017 uint32_t flags = 0; 2018 2019 flags = compute_bw_meter_flags(req); 2020 2021 /* Choose an appropriate bw_meter list */ 2022 if (req->bu_flags & BW_UPCALL_GEQ) 2023 bwm_ptr = &mfc->mfc_bw_meter_geq; 2024 else 2025 bwm_ptr = &mfc->mfc_bw_meter_leq; 2026 2027 /* Find the bw_meter entry to delete */ 2028 for (prev = NULL, x = *bwm_ptr; x != NULL; 2029 prev = x, x = x->bm_mfc_next) { 2030 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2031 &req->bu_threshold.b_time, ==)) && 2032 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2033 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2034 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2035 break; 2036 } 2037 if (x != NULL) { /* Delete entry from the list for this MFC */ 2038 if (prev != NULL) 2039 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2040 else 2041 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2042 2043 if (req->bu_flags & BW_UPCALL_LEQ) 2044 callout_stop(&x->bm_meter_callout); 2045 2046 MRW_WUNLOCK(); 2047 /* Free the bw_meter entry */ 2048 free(x, M_BWMETER); 2049 return 0; 2050 } else { 2051 MRW_WUNLOCK(); 2052 return EINVAL; 2053 } 2054 } 2055 /* NOTREACHED */ 2056 } 2057 2058 /* 2059 * Perform bandwidth measurement processing that may result in an upcall 2060 */ 2061 static void 2062 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2063 { 2064 struct timeval delta; 2065 2066 MRW_LOCK_ASSERT(); 2067 2068 delta = *nowp; 2069 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2070 2071 /* 2072 * Processing for ">=" type of bw_meter entry. 2073 * bm_spin does not have to be hold here as in GEQ 2074 * case this is the only context accessing bm_measured. 2075 */ 2076 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2077 /* Reset the bw_meter entry */ 2078 x->bm_start_time = *nowp; 2079 x->bm_measured.b_packets = 0; 2080 x->bm_measured.b_bytes = 0; 2081 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2082 } 2083 2084 /* Record that a packet is received */ 2085 x->bm_measured.b_packets++; 2086 x->bm_measured.b_bytes += plen; 2087 2088 /* 2089 * Test if we should deliver an upcall 2090 */ 2091 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2092 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2093 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2094 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2095 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2096 /* Prepare an upcall for delivery */ 2097 bw_meter_prepare_upcall(x, nowp); 2098 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2099 } 2100 } 2101 } 2102 2103 /* 2104 * Prepare a bandwidth-related upcall 2105 */ 2106 static void 2107 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2108 { 2109 struct timeval delta; 2110 struct bw_upcall *u; 2111 2112 MRW_LOCK_ASSERT(); 2113 2114 /* 2115 * Compute the measured time interval 2116 */ 2117 delta = *nowp; 2118 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2119 2120 /* 2121 * Set the bw_upcall entry 2122 */ 2123 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2124 if (!u) { 2125 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2126 return; 2127 } 2128 u->bu_src = x->bm_mfc->mfc_origin; 2129 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2130 u->bu_threshold.b_time = x->bm_threshold.b_time; 2131 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2132 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2133 u->bu_measured.b_time = delta; 2134 u->bu_measured.b_packets = x->bm_measured.b_packets; 2135 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2136 u->bu_flags = 0; 2137 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2138 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2139 if (x->bm_flags & BW_METER_UNIT_BYTES) 2140 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2141 if (x->bm_flags & BW_METER_GEQ) 2142 u->bu_flags |= BW_UPCALL_GEQ; 2143 if (x->bm_flags & BW_METER_LEQ) 2144 u->bu_flags |= BW_UPCALL_LEQ; 2145 2146 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2147 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2148 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2149 taskqueue_enqueue(V_task_queue, &V_task); 2150 } 2151 } 2152 /* 2153 * Send the pending bandwidth-related upcalls 2154 */ 2155 static void 2156 bw_upcalls_send(void) 2157 { 2158 struct mbuf *m; 2159 int len = 0; 2160 struct bw_upcall *bu; 2161 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2162 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2163 0, /* unused2 */ 2164 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2165 0, /* im_mbz */ 2166 0, /* im_vif */ 2167 0, /* unused3 */ 2168 { 0 }, /* im_src */ 2169 { 0 } }; /* im_dst */ 2170 2171 MRW_LOCK_ASSERT(); 2172 2173 if (buf_ring_empty(V_bw_upcalls_ring)) 2174 return; 2175 2176 /* 2177 * Allocate a new mbuf, initialize it with the header and 2178 * the payload for the pending calls. 2179 */ 2180 m = m_gethdr(M_NOWAIT, MT_DATA); 2181 if (m == NULL) { 2182 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2183 return; 2184 } 2185 2186 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2187 len += sizeof(struct igmpmsg); 2188 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2189 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2190 len += sizeof(struct bw_upcall); 2191 free(bu, M_MRTABLE); 2192 } 2193 2194 /* 2195 * Send the upcalls 2196 * XXX do we need to set the address in k_igmpsrc ? 2197 */ 2198 MRTSTAT_INC(mrts_upcalls); 2199 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2200 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2201 MRTSTAT_INC(mrts_upq_sockfull); 2202 } 2203 } 2204 2205 /* 2206 * A periodic function for sending all upcalls that are pending delivery 2207 */ 2208 static void 2209 expire_bw_upcalls_send(void *arg) 2210 { 2211 CURVNET_SET((struct vnet *) arg); 2212 2213 /* This callout is run with MRW_RLOCK taken */ 2214 2215 bw_upcalls_send(); 2216 2217 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2218 curvnet); 2219 CURVNET_RESTORE(); 2220 } 2221 2222 /* 2223 * End of bandwidth monitoring code 2224 */ 2225 2226 /* 2227 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2228 * 2229 */ 2230 static int 2231 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2232 struct mfc *rt) 2233 { 2234 struct mbuf *mb_copy, *mm; 2235 2236 /* 2237 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2238 * rendezvous point was unspecified, and we were told not to. 2239 */ 2240 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2241 in_nullhost(rt->mfc_rp)) 2242 return 0; 2243 2244 mb_copy = pim_register_prepare(ip, m); 2245 if (mb_copy == NULL) 2246 return ENOBUFS; 2247 2248 /* 2249 * Send all the fragments. Note that the mbuf for each fragment 2250 * is freed by the sending machinery. 2251 */ 2252 for (mm = mb_copy; mm; mm = mb_copy) { 2253 mb_copy = mm->m_nextpkt; 2254 mm->m_nextpkt = 0; 2255 mm = m_pullup(mm, sizeof(struct ip)); 2256 if (mm != NULL) { 2257 ip = mtod(mm, struct ip *); 2258 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2259 pim_register_send_rp(ip, vifp, mm, rt); 2260 } else { 2261 pim_register_send_upcall(ip, vifp, mm, rt); 2262 } 2263 } 2264 } 2265 2266 return 0; 2267 } 2268 2269 /* 2270 * Return a copy of the data packet that is ready for PIM Register 2271 * encapsulation. 2272 * XXX: Note that in the returned copy the IP header is a valid one. 2273 */ 2274 static struct mbuf * 2275 pim_register_prepare(struct ip *ip, struct mbuf *m) 2276 { 2277 struct mbuf *mb_copy = NULL; 2278 int mtu; 2279 2280 /* Take care of delayed checksums */ 2281 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2282 in_delayed_cksum(m); 2283 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2284 } 2285 2286 /* 2287 * Copy the old packet & pullup its IP header into the 2288 * new mbuf so we can modify it. 2289 */ 2290 mb_copy = m_copypacket(m, M_NOWAIT); 2291 if (mb_copy == NULL) 2292 return NULL; 2293 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2294 if (mb_copy == NULL) 2295 return NULL; 2296 2297 /* take care of the TTL */ 2298 ip = mtod(mb_copy, struct ip *); 2299 --ip->ip_ttl; 2300 2301 /* Compute the MTU after the PIM Register encapsulation */ 2302 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2303 2304 if (ntohs(ip->ip_len) <= mtu) { 2305 /* Turn the IP header into a valid one */ 2306 ip->ip_sum = 0; 2307 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2308 } else { 2309 /* Fragment the packet */ 2310 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2311 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2312 m_freem(mb_copy); 2313 return NULL; 2314 } 2315 } 2316 return mb_copy; 2317 } 2318 2319 /* 2320 * Send an upcall with the data packet to the user-level process. 2321 */ 2322 static int 2323 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2324 struct mbuf *mb_copy, struct mfc *rt) 2325 { 2326 struct mbuf *mb_first; 2327 int len = ntohs(ip->ip_len); 2328 struct igmpmsg *im; 2329 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2330 2331 MRW_LOCK_ASSERT(); 2332 2333 /* 2334 * Add a new mbuf with an upcall header 2335 */ 2336 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2337 if (mb_first == NULL) { 2338 m_freem(mb_copy); 2339 return ENOBUFS; 2340 } 2341 mb_first->m_data += max_linkhdr; 2342 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2343 mb_first->m_len = sizeof(struct igmpmsg); 2344 mb_first->m_next = mb_copy; 2345 2346 /* Send message to routing daemon */ 2347 im = mtod(mb_first, struct igmpmsg *); 2348 im->im_msgtype = IGMPMSG_WHOLEPKT; 2349 im->im_mbz = 0; 2350 im->im_vif = vifp - V_viftable; 2351 im->im_src = ip->ip_src; 2352 im->im_dst = ip->ip_dst; 2353 2354 k_igmpsrc.sin_addr = ip->ip_src; 2355 2356 MRTSTAT_INC(mrts_upcalls); 2357 2358 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2359 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2360 MRTSTAT_INC(mrts_upq_sockfull); 2361 return ENOBUFS; 2362 } 2363 2364 /* Keep statistics */ 2365 PIMSTAT_INC(pims_snd_registers_msgs); 2366 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2367 2368 return 0; 2369 } 2370 2371 /* 2372 * Encapsulate the data packet in PIM Register message and send it to the RP. 2373 */ 2374 static int 2375 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2376 struct mfc *rt) 2377 { 2378 struct mbuf *mb_first; 2379 struct ip *ip_outer; 2380 struct pim_encap_pimhdr *pimhdr; 2381 int len = ntohs(ip->ip_len); 2382 vifi_t vifi = rt->mfc_parent; 2383 2384 MRW_LOCK_ASSERT(); 2385 2386 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2387 m_freem(mb_copy); 2388 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2389 } 2390 2391 /* 2392 * Add a new mbuf with the encapsulating header 2393 */ 2394 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2395 if (mb_first == NULL) { 2396 m_freem(mb_copy); 2397 return ENOBUFS; 2398 } 2399 mb_first->m_data += max_linkhdr; 2400 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2401 mb_first->m_next = mb_copy; 2402 2403 mb_first->m_pkthdr.len = len + mb_first->m_len; 2404 2405 /* 2406 * Fill in the encapsulating IP and PIM header 2407 */ 2408 ip_outer = mtod(mb_first, struct ip *); 2409 *ip_outer = pim_encap_iphdr; 2410 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2411 sizeof(pim_encap_pimhdr)); 2412 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2413 ip_outer->ip_dst = rt->mfc_rp; 2414 /* 2415 * Copy the inner header TOS to the outer header, and take care of the 2416 * IP_DF bit. 2417 */ 2418 ip_outer->ip_tos = ip->ip_tos; 2419 if (ip->ip_off & htons(IP_DF)) 2420 ip_outer->ip_off |= htons(IP_DF); 2421 ip_fillid(ip_outer); 2422 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2423 + sizeof(pim_encap_iphdr)); 2424 *pimhdr = pim_encap_pimhdr; 2425 /* If the iif crosses a border, set the Border-bit */ 2426 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2427 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2428 2429 mb_first->m_data += sizeof(pim_encap_iphdr); 2430 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2431 mb_first->m_data -= sizeof(pim_encap_iphdr); 2432 2433 send_packet(vifp, mb_first); 2434 2435 /* Keep statistics */ 2436 PIMSTAT_INC(pims_snd_registers_msgs); 2437 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2438 2439 return 0; 2440 } 2441 2442 /* 2443 * pim_encapcheck() is called by the encap4_input() path at runtime to 2444 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2445 * into the kernel. 2446 */ 2447 static int 2448 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2449 int proto __unused, void *arg __unused) 2450 { 2451 2452 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2453 return (8); /* claim the datagram. */ 2454 } 2455 2456 /* 2457 * PIM-SMv2 and PIM-DM messages processing. 2458 * Receives and verifies the PIM control messages, and passes them 2459 * up to the listening socket, using rip_input(). 2460 * The only message with special processing is the PIM_REGISTER message 2461 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2462 * is passed to if_simloop(). 2463 */ 2464 static int 2465 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2466 { 2467 struct ip *ip = mtod(m, struct ip *); 2468 struct pim *pim; 2469 int iphlen = off; 2470 int minlen; 2471 int datalen = ntohs(ip->ip_len) - iphlen; 2472 int ip_tos; 2473 2474 /* Keep statistics */ 2475 PIMSTAT_INC(pims_rcv_total_msgs); 2476 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2477 2478 /* 2479 * Validate lengths 2480 */ 2481 if (datalen < PIM_MINLEN) { 2482 PIMSTAT_INC(pims_rcv_tooshort); 2483 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2484 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2485 m_freem(m); 2486 return (IPPROTO_DONE); 2487 } 2488 2489 /* 2490 * If the packet is at least as big as a REGISTER, go agead 2491 * and grab the PIM REGISTER header size, to avoid another 2492 * possible m_pullup() later. 2493 * 2494 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2495 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2496 */ 2497 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2498 /* 2499 * Get the IP and PIM headers in contiguous memory, and 2500 * possibly the PIM REGISTER header. 2501 */ 2502 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2503 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2504 return (IPPROTO_DONE); 2505 } 2506 2507 /* m_pullup() may have given us a new mbuf so reset ip. */ 2508 ip = mtod(m, struct ip *); 2509 ip_tos = ip->ip_tos; 2510 2511 /* adjust mbuf to point to the PIM header */ 2512 m->m_data += iphlen; 2513 m->m_len -= iphlen; 2514 pim = mtod(m, struct pim *); 2515 2516 /* 2517 * Validate checksum. If PIM REGISTER, exclude the data packet. 2518 * 2519 * XXX: some older PIMv2 implementations don't make this distinction, 2520 * so for compatibility reason perform the checksum over part of the 2521 * message, and if error, then over the whole message. 2522 */ 2523 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2524 /* do nothing, checksum okay */ 2525 } else if (in_cksum(m, datalen)) { 2526 PIMSTAT_INC(pims_rcv_badsum); 2527 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2528 m_freem(m); 2529 return (IPPROTO_DONE); 2530 } 2531 2532 /* PIM version check */ 2533 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2534 PIMSTAT_INC(pims_rcv_badversion); 2535 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2536 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2537 m_freem(m); 2538 return (IPPROTO_DONE); 2539 } 2540 2541 /* restore mbuf back to the outer IP */ 2542 m->m_data -= iphlen; 2543 m->m_len += iphlen; 2544 2545 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2546 /* 2547 * Since this is a REGISTER, we'll make a copy of the register 2548 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2549 * routing daemon. 2550 */ 2551 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2552 struct mbuf *mcp; 2553 struct ip *encap_ip; 2554 u_int32_t *reghdr; 2555 struct ifnet *vifp; 2556 2557 MRW_RLOCK(); 2558 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2559 MRW_RUNLOCK(); 2560 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2561 (int)V_reg_vif_num); 2562 m_freem(m); 2563 return (IPPROTO_DONE); 2564 } 2565 /* XXX need refcnt? */ 2566 vifp = V_viftable[V_reg_vif_num].v_ifp; 2567 MRW_RUNLOCK(); 2568 2569 /* 2570 * Validate length 2571 */ 2572 if (datalen < PIM_REG_MINLEN) { 2573 PIMSTAT_INC(pims_rcv_tooshort); 2574 PIMSTAT_INC(pims_rcv_badregisters); 2575 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2576 m_freem(m); 2577 return (IPPROTO_DONE); 2578 } 2579 2580 reghdr = (u_int32_t *)(pim + 1); 2581 encap_ip = (struct ip *)(reghdr + 1); 2582 2583 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2584 __func__, ntohl(encap_ip->ip_src.s_addr), 2585 ntohs(encap_ip->ip_len)); 2586 2587 /* verify the version number of the inner packet */ 2588 if (encap_ip->ip_v != IPVERSION) { 2589 PIMSTAT_INC(pims_rcv_badregisters); 2590 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2591 m_freem(m); 2592 return (IPPROTO_DONE); 2593 } 2594 2595 /* verify the inner packet is destined to a mcast group */ 2596 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2597 PIMSTAT_INC(pims_rcv_badregisters); 2598 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2599 ntohl(encap_ip->ip_dst.s_addr)); 2600 m_freem(m); 2601 return (IPPROTO_DONE); 2602 } 2603 2604 /* If a NULL_REGISTER, pass it to the daemon */ 2605 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2606 goto pim_input_to_daemon; 2607 2608 /* 2609 * Copy the TOS from the outer IP header to the inner IP header. 2610 */ 2611 if (encap_ip->ip_tos != ip_tos) { 2612 /* Outer TOS -> inner TOS */ 2613 encap_ip->ip_tos = ip_tos; 2614 /* Recompute the inner header checksum. Sigh... */ 2615 2616 /* adjust mbuf to point to the inner IP header */ 2617 m->m_data += (iphlen + PIM_MINLEN); 2618 m->m_len -= (iphlen + PIM_MINLEN); 2619 2620 encap_ip->ip_sum = 0; 2621 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2622 2623 /* restore mbuf to point back to the outer IP header */ 2624 m->m_data -= (iphlen + PIM_MINLEN); 2625 m->m_len += (iphlen + PIM_MINLEN); 2626 } 2627 2628 /* 2629 * Decapsulate the inner IP packet and loopback to forward it 2630 * as a normal multicast packet. Also, make a copy of the 2631 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2632 * to pass to the daemon later, so it can take the appropriate 2633 * actions (e.g., send back PIM_REGISTER_STOP). 2634 * XXX: here m->m_data points to the outer IP header. 2635 */ 2636 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2637 if (mcp == NULL) { 2638 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2639 m_freem(m); 2640 return (IPPROTO_DONE); 2641 } 2642 2643 /* Keep statistics */ 2644 /* XXX: registers_bytes include only the encap. mcast pkt */ 2645 PIMSTAT_INC(pims_rcv_registers_msgs); 2646 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2647 2648 /* 2649 * forward the inner ip packet; point m_data at the inner ip. 2650 */ 2651 m_adj(m, iphlen + PIM_MINLEN); 2652 2653 CTR4(KTR_IPMF, 2654 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2655 __func__, 2656 (u_long)ntohl(encap_ip->ip_src.s_addr), 2657 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2658 (int)V_reg_vif_num); 2659 2660 /* NB: vifp was collected above; can it change on us? */ 2661 if_simloop(vifp, m, dst.sin_family, 0); 2662 2663 /* prepare the register head to send to the mrouting daemon */ 2664 m = mcp; 2665 } 2666 2667 pim_input_to_daemon: 2668 /* 2669 * Pass the PIM message up to the daemon; if it is a Register message, 2670 * pass the 'head' only up to the daemon. This includes the 2671 * outer IP header, PIM header, PIM-Register header and the 2672 * inner IP header. 2673 * XXX: the outer IP header pkt size of a Register is not adjust to 2674 * reflect the fact that the inner multicast data is truncated. 2675 */ 2676 return (rip_input(&m, &off, proto)); 2677 } 2678 2679 static int 2680 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2681 { 2682 struct mfc *rt; 2683 int error, i; 2684 2685 if (req->newptr) 2686 return (EPERM); 2687 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2688 return (0); 2689 error = sysctl_wire_old_buffer(req, 0); 2690 if (error) 2691 return (error); 2692 2693 MRW_RLOCK(); 2694 for (i = 0; i < mfchashsize; i++) { 2695 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2696 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2697 if (error) 2698 goto out_locked; 2699 } 2700 } 2701 out_locked: 2702 MRW_RUNLOCK(); 2703 return (error); 2704 } 2705 2706 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2707 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2708 "IPv4 Multicast Forwarding Table " 2709 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2710 2711 static int 2712 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2713 { 2714 int error; 2715 2716 if (req->newptr) 2717 return (EPERM); 2718 if (V_viftable == NULL) /* XXX unlocked */ 2719 return (0); 2720 error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS); 2721 if (error) 2722 return (error); 2723 2724 MRW_RLOCK(); 2725 error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS); 2726 MRW_RUNLOCK(); 2727 return (error); 2728 } 2729 2730 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2731 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2732 sysctl_viflist, "S,vif[MAXVIFS]", 2733 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2734 2735 static void 2736 vnet_mroute_init(const void *unused __unused) 2737 { 2738 2739 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2740 2741 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2742 M_MRTABLE, M_WAITOK|M_ZERO); 2743 2744 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2745 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2746 2747 /* Prepare taskqueue */ 2748 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2749 taskqueue_thread_enqueue, &V_task_queue); 2750 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2751 } 2752 2753 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2754 NULL); 2755 2756 static void 2757 vnet_mroute_uninit(const void *unused __unused) 2758 { 2759 2760 /* Taskqueue should be cancelled and drained before freeing */ 2761 taskqueue_free(V_task_queue); 2762 2763 free(V_viftable, M_MRTABLE); 2764 free(V_nexpire, M_MRTABLE); 2765 V_nexpire = NULL; 2766 } 2767 2768 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2769 vnet_mroute_uninit, NULL); 2770 2771 static int 2772 ip_mroute_modevent(module_t mod, int type, void *unused) 2773 { 2774 2775 switch (type) { 2776 case MOD_LOAD: 2777 MRW_LOCK_INIT(); 2778 2779 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2780 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2781 if (if_detach_event_tag == NULL) { 2782 printf("ip_mroute: unable to register " 2783 "ifnet_departure_event handler\n"); 2784 MRW_LOCK_DESTROY(); 2785 return (EINVAL); 2786 } 2787 2788 mfchashsize = MFCHASHSIZE; 2789 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2790 !powerof2(mfchashsize)) { 2791 printf("WARNING: %s not a power of 2; using default\n", 2792 "net.inet.ip.mfchashsize"); 2793 mfchashsize = MFCHASHSIZE; 2794 } 2795 2796 pim_squelch_wholepkt = 0; 2797 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2798 &pim_squelch_wholepkt); 2799 2800 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2801 if (pim_encap_cookie == NULL) { 2802 printf("ip_mroute: unable to attach pim encap\n"); 2803 MRW_LOCK_DESTROY(); 2804 return (EINVAL); 2805 } 2806 2807 ip_mcast_src = X_ip_mcast_src; 2808 ip_mforward = X_ip_mforward; 2809 ip_mrouter_done = X_ip_mrouter_done; 2810 ip_mrouter_get = X_ip_mrouter_get; 2811 ip_mrouter_set = X_ip_mrouter_set; 2812 2813 ip_rsvp_force_done = X_ip_rsvp_force_done; 2814 ip_rsvp_vif = X_ip_rsvp_vif; 2815 2816 legal_vif_num = X_legal_vif_num; 2817 mrt_ioctl = X_mrt_ioctl; 2818 rsvp_input_p = X_rsvp_input; 2819 break; 2820 2821 case MOD_UNLOAD: 2822 /* 2823 * Typically module unload happens after the user-level 2824 * process has shutdown the kernel services (the check 2825 * below insures someone can't just yank the module out 2826 * from under a running process). But if the module is 2827 * just loaded and then unloaded w/o starting up a user 2828 * process we still need to cleanup. 2829 */ 2830 MRW_WLOCK(); 2831 if (ip_mrouter_cnt != 0) { 2832 MRW_WUNLOCK(); 2833 return (EINVAL); 2834 } 2835 ip_mrouter_unloading = 1; 2836 MRW_WUNLOCK(); 2837 2838 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2839 2840 if (pim_encap_cookie) { 2841 ip_encap_detach(pim_encap_cookie); 2842 pim_encap_cookie = NULL; 2843 } 2844 2845 ip_mcast_src = NULL; 2846 ip_mforward = NULL; 2847 ip_mrouter_done = NULL; 2848 ip_mrouter_get = NULL; 2849 ip_mrouter_set = NULL; 2850 2851 ip_rsvp_force_done = NULL; 2852 ip_rsvp_vif = NULL; 2853 2854 legal_vif_num = NULL; 2855 mrt_ioctl = NULL; 2856 rsvp_input_p = NULL; 2857 2858 MRW_LOCK_DESTROY(); 2859 break; 2860 2861 default: 2862 return EOPNOTSUPP; 2863 } 2864 return 0; 2865 } 2866 2867 static moduledata_t ip_mroutemod = { 2868 "ip_mroute", 2869 ip_mroute_modevent, 2870 0 2871 }; 2872 2873 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2874