xref: /freebsd/sys/netinet/ip_mroute.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36  */
37 
38 /*
39  * IP multicast forwarding procedures
40  *
41  * Written by David Waitzman, BBN Labs, August 1988.
42  * Modified by Steve Deering, Stanford, February 1989.
43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
44  * Modified by Van Jacobson, LBL, January 1993
45  * Modified by Ajit Thyagarajan, PARC, August 1993
46  * Modified by Bill Fenner, PARC, April 1995
47  * Modified by Ahmed Helmy, SGI, June 1996
48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50  * Modified by Hitoshi Asaeda, WIDE, August 2000
51  * Modified by Pavlin Radoslavov, ICSI, October 2002
52  * Modified by Wojciech Macek, Semihalf, May 2021
53  *
54  * MROUTING Revision: 3.5
55  * and PIM-SMv2 and PIM-DM support, advanced API support,
56  * bandwidth metering and signaling
57  */
58 
59 /*
60  * TODO: Prefix functions with ipmf_.
61  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
62  * domain attachment (if_afdata) so we can track consumers of that service.
63  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
64  * move it to socket options.
65  * TODO: Cleanup LSRR removal further.
66  * TODO: Push RSVP stubs into raw_ip.c.
67  * TODO: Use bitstring.h for vif set.
68  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
69  * TODO: Sync ip6_mroute.c with this file.
70  */
71 
72 #include <sys/cdefs.h>
73 __FBSDID("$FreeBSD$");
74 
75 #include "opt_inet.h"
76 #include "opt_mrouting.h"
77 
78 #define _PIM_VT 1
79 
80 #include <sys/types.h>
81 #include <sys/param.h>
82 #include <sys/kernel.h>
83 #include <sys/stddef.h>
84 #include <sys/condvar.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/module.h>
92 #include <sys/priv.h>
93 #include <sys/protosw.h>
94 #include <sys/signalvar.h>
95 #include <sys/socket.h>
96 #include <sys/socketvar.h>
97 #include <sys/sockio.h>
98 #include <sys/sx.h>
99 #include <sys/sysctl.h>
100 #include <sys/syslog.h>
101 #include <sys/systm.h>
102 #include <sys/taskqueue.h>
103 #include <sys/time.h>
104 #include <sys/counter.h>
105 #include <machine/atomic.h>
106 
107 #include <net/if.h>
108 #include <net/if_var.h>
109 #include <net/if_private.h>
110 #include <net/if_types.h>
111 #include <net/netisr.h>
112 #include <net/route.h>
113 #include <net/vnet.h>
114 
115 #include <netinet/in.h>
116 #include <netinet/igmp.h>
117 #include <netinet/in_systm.h>
118 #include <netinet/in_var.h>
119 #include <netinet/ip.h>
120 #include <netinet/ip_encap.h>
121 #include <netinet/ip_mroute.h>
122 #include <netinet/ip_var.h>
123 #include <netinet/ip_options.h>
124 #include <netinet/pim.h>
125 #include <netinet/pim_var.h>
126 #include <netinet/udp.h>
127 
128 #include <machine/in_cksum.h>
129 
130 #ifndef KTR_IPMF
131 #define KTR_IPMF KTR_INET
132 #endif
133 
134 #define		VIFI_INVALID	((vifi_t) -1)
135 
136 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
137 
138 /*
139  * Locking.  We use two locks: one for the virtual interface table and
140  * one for the forwarding table.  These locks may be nested in which case
141  * the VIF lock must always be taken first.  Note that each lock is used
142  * to cover not only the specific data structure but also related data
143  * structures.
144  */
145 
146 static struct rwlock mrouter_mtx;
147 #define	MRW_RLOCK()		rw_rlock(&mrouter_mtx)
148 #define	MRW_WLOCK()		rw_wlock(&mrouter_mtx)
149 #define	MRW_RUNLOCK()	rw_runlock(&mrouter_mtx)
150 #define	MRW_WUNLOCK()	rw_wunlock(&mrouter_mtx)
151 #define	MRW_UNLOCK()	rw_unlock(&mrouter_mtx)
152 #define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_LOCKED)
153 #define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_mtx, RA_WLOCKED)
154 #define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_mtx)
155 #define	MRW_WOWNED()	rw_wowned(&mrouter_mtx)
156 #define	MRW_LOCK_INIT()						\
157 	rw_init(&mrouter_mtx, "IPv4 multicast forwarding")
158 #define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_mtx)
159 
160 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
161 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
162 
163 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
164 VNET_PCPUSTAT_SYSINIT(mrtstat);
165 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
166 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
167     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
168     "netinet/ip_mroute.h)");
169 
170 VNET_DEFINE_STATIC(u_long, mfchash);
171 #define	V_mfchash		VNET(mfchash)
172 #define	MFCHASH(a, g)							\
173 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
174 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
175 #define	MFCHASHSIZE	256
176 
177 static u_long mfchashsize;			/* Hash size */
178 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
179 #define	V_nexpire		VNET(nexpire)
180 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
181 #define	V_mfchashtbl		VNET(mfchashtbl)
182 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
183 #define	V_task_queue		VNET(task_queue)
184 VNET_DEFINE_STATIC(struct task, task);
185 #define	V_task		VNET(task)
186 
187 VNET_DEFINE_STATIC(vifi_t, numvifs);
188 #define	V_numvifs		VNET(numvifs)
189 VNET_DEFINE_STATIC(struct vif *, viftable);
190 #define	V_viftable		VNET(viftable)
191 
192 static eventhandler_tag if_detach_event_tag = NULL;
193 
194 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
195 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
196 
197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
198 #define	V_buf_ring_mtx	VNET(buf_ring_mtx)
199 
200 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
201 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
202 
203 /*
204  * Bandwidth meter variables and constants
205  */
206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
207 
208 /*
209  * Pending upcalls are stored in a ring which is flushed when
210  * full, or periodically
211  */
212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
213 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
215 #define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
217 #define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
218 
219 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
220 
221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
222 VNET_PCPUSTAT_SYSINIT(pimstat);
223 VNET_PCPUSTAT_SYSUNINIT(pimstat);
224 
225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
226     "PIM");
227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
228     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
229 
230 static u_long	pim_squelch_wholepkt = 0;
231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
232     &pim_squelch_wholepkt, 0,
233     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
234 
235 static const struct encaptab *pim_encap_cookie;
236 static int pim_encapcheck(const struct mbuf *, int, int, void *);
237 static int pim_input(struct mbuf *, int, int, void *);
238 
239 extern int in_mcast_loop;
240 
241 static const struct encap_config ipv4_encap_cfg = {
242 	.proto = IPPROTO_PIM,
243 	.min_length = sizeof(struct ip) + PIM_MINLEN,
244 	.exact_match = 8,
245 	.check = pim_encapcheck,
246 	.input = pim_input
247 };
248 
249 /*
250  * Note: the PIM Register encapsulation adds the following in front of a
251  * data packet:
252  *
253  * struct pim_encap_hdr {
254  *    struct ip ip;
255  *    struct pim_encap_pimhdr  pim;
256  * }
257  *
258  */
259 
260 struct pim_encap_pimhdr {
261 	struct pim pim;
262 	uint32_t   flags;
263 };
264 #define		PIM_ENCAP_TTL	64
265 
266 static struct ip pim_encap_iphdr = {
267 #if BYTE_ORDER == LITTLE_ENDIAN
268 	sizeof(struct ip) >> 2,
269 	IPVERSION,
270 #else
271 	IPVERSION,
272 	sizeof(struct ip) >> 2,
273 #endif
274 	0,			/* tos */
275 	sizeof(struct ip),	/* total length */
276 	0,			/* id */
277 	0,			/* frag offset */
278 	PIM_ENCAP_TTL,
279 	IPPROTO_PIM,
280 	0,			/* checksum */
281 };
282 
283 static struct pim_encap_pimhdr pim_encap_pimhdr = {
284     {
285 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
286 	0,			/* reserved */
287 	0,			/* checksum */
288     },
289     0				/* flags */
290 };
291 
292 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
293 #define	V_reg_vif_num		VNET(reg_vif_num)
294 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
295 #define	V_multicast_register_if	VNET(multicast_register_if)
296 
297 /*
298  * Private variables.
299  */
300 
301 static u_long	X_ip_mcast_src(int);
302 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
303 		    struct ip_moptions *);
304 static int	X_ip_mrouter_done(void);
305 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
306 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
307 static int	X_legal_vif_num(int);
308 static int	X_mrt_ioctl(u_long, caddr_t, int);
309 
310 static int	add_bw_upcall(struct bw_upcall *);
311 static int	add_mfc(struct mfcctl2 *);
312 static int	add_vif(struct vifctl *);
313 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
314 static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
315 		    struct timeval *);
316 static void	bw_upcalls_send(void);
317 static int	del_bw_upcall(struct bw_upcall *);
318 static int	del_mfc(struct mfcctl2 *);
319 static int	del_vif(vifi_t);
320 static int	del_vif_locked(vifi_t, struct ifnet **);
321 static void	expire_bw_upcalls_send(void *);
322 static void	expire_mfc(struct mfc *);
323 static void	expire_upcalls(void *);
324 static void	free_bw_list(struct bw_meter *);
325 static int	get_sg_cnt(struct sioc_sg_req *);
326 static int	get_vif_cnt(struct sioc_vif_req *);
327 static void	if_detached_event(void *, struct ifnet *);
328 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
329 static int	ip_mrouter_init(struct socket *, int);
330 static __inline struct mfc *
331 		mfc_find(struct in_addr *, struct in_addr *);
332 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
333 static struct mbuf *
334 		pim_register_prepare(struct ip *, struct mbuf *);
335 static int	pim_register_send(struct ip *, struct vif *,
336 		    struct mbuf *, struct mfc *);
337 static int	pim_register_send_rp(struct ip *, struct vif *,
338 		    struct mbuf *, struct mfc *);
339 static int	pim_register_send_upcall(struct ip *, struct vif *,
340 		    struct mbuf *, struct mfc *);
341 static void	send_packet(struct vif *, struct mbuf *);
342 static int	set_api_config(uint32_t *);
343 static int	set_assert(int);
344 static int	socket_send(struct socket *, struct mbuf *,
345 		    struct sockaddr_in *);
346 
347 /*
348  * Kernel multicast forwarding API capabilities and setup.
349  * If more API capabilities are added to the kernel, they should be
350  * recorded in `mrt_api_support'.
351  */
352 #define MRT_API_VERSION		0x0305
353 
354 static const int mrt_api_version = MRT_API_VERSION;
355 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
356 					 MRT_MFC_FLAGS_BORDER_VIF |
357 					 MRT_MFC_RP |
358 					 MRT_MFC_BW_UPCALL);
359 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
360 #define	V_mrt_api_config	VNET(mrt_api_config)
361 VNET_DEFINE_STATIC(int, pim_assert_enabled);
362 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
363 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
364 
365 /*
366  * Find a route for a given origin IP address and multicast group address.
367  * Statistics must be updated by the caller.
368  */
369 static __inline struct mfc *
370 mfc_find(struct in_addr *o, struct in_addr *g)
371 {
372 	struct mfc *rt;
373 
374 	/*
375 	 * Might be called both RLOCK and WLOCK.
376 	 * Check if any, it's caller responsibility
377 	 * to choose correct option.
378 	 */
379 	MRW_LOCK_ASSERT();
380 
381 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
382 		if (in_hosteq(rt->mfc_origin, *o) &&
383 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
384 		    buf_ring_empty(rt->mfc_stall_ring))
385 			break;
386 	}
387 
388 	return (rt);
389 }
390 
391 static __inline struct mfc *
392 mfc_alloc(void)
393 {
394 	struct mfc *rt;
395 	rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
396 	if (rt == NULL)
397 		return rt;
398 
399 	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
400 	    M_NOWAIT, &V_buf_ring_mtx);
401 	if (rt->mfc_stall_ring == NULL) {
402 		free(rt, M_MRTABLE);
403 		return NULL;
404 	}
405 
406 	return rt;
407 }
408 
409 /*
410  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
411  */
412 static int
413 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
414 {
415     int	error, optval;
416     vifi_t	vifi;
417     struct	vifctl vifc;
418     struct	mfcctl2 mfc;
419     struct	bw_upcall bw_upcall;
420     uint32_t	i;
421 
422     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
423 	return EPERM;
424 
425     error = 0;
426     switch (sopt->sopt_name) {
427     case MRT_INIT:
428 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
429 	if (error)
430 	    break;
431 	error = ip_mrouter_init(so, optval);
432 	break;
433 
434     case MRT_DONE:
435 	error = ip_mrouter_done();
436 	break;
437 
438     case MRT_ADD_VIF:
439 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
440 	if (error)
441 	    break;
442 	error = add_vif(&vifc);
443 	break;
444 
445     case MRT_DEL_VIF:
446 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
447 	if (error)
448 	    break;
449 	error = del_vif(vifi);
450 	break;
451 
452     case MRT_ADD_MFC:
453     case MRT_DEL_MFC:
454 	/*
455 	 * select data size depending on API version.
456 	 */
457 	if (sopt->sopt_name == MRT_ADD_MFC &&
458 		V_mrt_api_config & MRT_API_FLAGS_ALL) {
459 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
460 				sizeof(struct mfcctl2));
461 	} else {
462 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
463 				sizeof(struct mfcctl));
464 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
465 			sizeof(mfc) - sizeof(struct mfcctl));
466 	}
467 	if (error)
468 	    break;
469 	if (sopt->sopt_name == MRT_ADD_MFC)
470 	    error = add_mfc(&mfc);
471 	else
472 	    error = del_mfc(&mfc);
473 	break;
474 
475     case MRT_ASSERT:
476 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
477 	if (error)
478 	    break;
479 	set_assert(optval);
480 	break;
481 
482     case MRT_API_CONFIG:
483 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
484 	if (!error)
485 	    error = set_api_config(&i);
486 	if (!error)
487 	    error = sooptcopyout(sopt, &i, sizeof i);
488 	break;
489 
490     case MRT_ADD_BW_UPCALL:
491     case MRT_DEL_BW_UPCALL:
492 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
493 				sizeof bw_upcall);
494 	if (error)
495 	    break;
496 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
497 	    error = add_bw_upcall(&bw_upcall);
498 	else
499 	    error = del_bw_upcall(&bw_upcall);
500 	break;
501 
502     default:
503 	error = EOPNOTSUPP;
504 	break;
505     }
506     return error;
507 }
508 
509 /*
510  * Handle MRT getsockopt commands
511  */
512 static int
513 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
514 {
515     int error;
516 
517     switch (sopt->sopt_name) {
518     case MRT_VERSION:
519 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
520 	break;
521 
522     case MRT_ASSERT:
523 	error = sooptcopyout(sopt, &V_pim_assert_enabled,
524 	    sizeof V_pim_assert_enabled);
525 	break;
526 
527     case MRT_API_SUPPORT:
528 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
529 	break;
530 
531     case MRT_API_CONFIG:
532 	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
533 	break;
534 
535     default:
536 	error = EOPNOTSUPP;
537 	break;
538     }
539     return error;
540 }
541 
542 /*
543  * Handle ioctl commands to obtain information from the cache
544  */
545 static int
546 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
547 {
548     int error = 0;
549 
550     /*
551      * Currently the only function calling this ioctl routine is rtioctl_fib().
552      * Typically, only root can create the raw socket in order to execute
553      * this ioctl method, however the request might be coming from a prison
554      */
555     error = priv_check(curthread, PRIV_NETINET_MROUTE);
556     if (error)
557 	return (error);
558     switch (cmd) {
559     case (SIOCGETVIFCNT):
560 	error = get_vif_cnt((struct sioc_vif_req *)data);
561 	break;
562 
563     case (SIOCGETSGCNT):
564 	error = get_sg_cnt((struct sioc_sg_req *)data);
565 	break;
566 
567     default:
568 	error = EINVAL;
569 	break;
570     }
571     return error;
572 }
573 
574 /*
575  * returns the packet, byte, rpf-failure count for the source group provided
576  */
577 static int
578 get_sg_cnt(struct sioc_sg_req *req)
579 {
580     struct mfc *rt;
581 
582     MRW_RLOCK();
583     rt = mfc_find(&req->src, &req->grp);
584     if (rt == NULL) {
585 	    MRW_RUNLOCK();
586 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
587 	return EADDRNOTAVAIL;
588     }
589     req->pktcnt = rt->mfc_pkt_cnt;
590     req->bytecnt = rt->mfc_byte_cnt;
591     req->wrong_if = rt->mfc_wrong_if;
592     MRW_RUNLOCK();
593     return 0;
594 }
595 
596 /*
597  * returns the input and output packet and byte counts on the vif provided
598  */
599 static int
600 get_vif_cnt(struct sioc_vif_req *req)
601 {
602     vifi_t vifi = req->vifi;
603 
604     MRW_RLOCK();
605     if (vifi >= V_numvifs) {
606 	MRW_RUNLOCK();
607 	return EINVAL;
608     }
609 
610     mtx_lock_spin(&V_viftable[vifi].v_spin);
611     req->icount = V_viftable[vifi].v_pkt_in;
612     req->ocount = V_viftable[vifi].v_pkt_out;
613     req->ibytes = V_viftable[vifi].v_bytes_in;
614     req->obytes = V_viftable[vifi].v_bytes_out;
615     mtx_unlock_spin(&V_viftable[vifi].v_spin);
616     MRW_RUNLOCK();
617 
618     return 0;
619 }
620 
621 static void
622 if_detached_event(void *arg __unused, struct ifnet *ifp)
623 {
624     vifi_t vifi;
625     u_long i, vifi_cnt = 0;
626     struct ifnet *free_ptr;
627 
628     MRW_WLOCK();
629 
630     if (V_ip_mrouter == NULL) {
631 	MRW_WUNLOCK();
632 	return;
633     }
634 
635     /*
636      * Tear down multicast forwarder state associated with this ifnet.
637      * 1. Walk the vif list, matching vifs against this ifnet.
638      * 2. Walk the multicast forwarding cache (mfc) looking for
639      *    inner matches with this vif's index.
640      * 3. Expire any matching multicast forwarding cache entries.
641      * 4. Free vif state. This should disable ALLMULTI on the interface.
642      */
643     for (vifi = 0; vifi < V_numvifs; vifi++) {
644 	if (V_viftable[vifi].v_ifp != ifp)
645 		continue;
646 	for (i = 0; i < mfchashsize; i++) {
647 		struct mfc *rt, *nrt;
648 
649 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
650 			if (rt->mfc_parent == vifi) {
651 				expire_mfc(rt);
652 			}
653 		}
654 	}
655 	del_vif_locked(vifi, &free_ptr);
656 	if (free_ptr != NULL)
657 		vifi_cnt++;
658     }
659 
660     MRW_WUNLOCK();
661 
662     /*
663      * Free IFP. We don't have to use free_ptr here as it is the same
664      * that ifp. Perform free as many times as required in case
665      * refcount is greater than 1.
666      */
667     for (i = 0; i < vifi_cnt; i++)
668 	    if_free(ifp);
669 }
670 
671 static void
672 ip_mrouter_upcall_thread(void *arg, int pending __unused)
673 {
674 	CURVNET_SET((struct vnet *) arg);
675 
676 	MRW_WLOCK();
677 	bw_upcalls_send();
678 	MRW_WUNLOCK();
679 
680 	CURVNET_RESTORE();
681 }
682 
683 /*
684  * Enable multicast forwarding.
685  */
686 static int
687 ip_mrouter_init(struct socket *so, int version)
688 {
689 
690     CTR2(KTR_IPMF, "%s: so %p", __func__, so);
691 
692     if (version != 1)
693 	return ENOPROTOOPT;
694 
695     MRW_WLOCK();
696 
697     if (ip_mrouter_unloading) {
698 	MRW_WUNLOCK();
699 	return ENOPROTOOPT;
700     }
701 
702     if (V_ip_mrouter != NULL) {
703 	MRW_WUNLOCK();
704 	return EADDRINUSE;
705     }
706 
707     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
708 	HASH_NOWAIT);
709 
710     /* Create upcall ring */
711     mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
712     V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
713 	M_NOWAIT, &V_bw_upcalls_ring_mtx);
714     if (!V_bw_upcalls_ring) {
715 	MRW_WUNLOCK();
716 	return (ENOMEM);
717     }
718 
719     TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
720     taskqueue_cancel(V_task_queue, &V_task, NULL);
721     taskqueue_unblock(V_task_queue);
722 
723     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
724 	curvnet);
725     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
726 	curvnet);
727 
728     V_ip_mrouter = so;
729     atomic_add_int(&ip_mrouter_cnt, 1);
730 
731     /* This is a mutex required by buf_ring init, but not used internally */
732     mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
733 
734     MRW_WUNLOCK();
735 
736     CTR1(KTR_IPMF, "%s: done", __func__);
737 
738     return 0;
739 }
740 
741 /*
742  * Disable multicast forwarding.
743  */
744 static int
745 X_ip_mrouter_done(void)
746 {
747     struct ifnet **ifps;
748     int nifp;
749     u_long i;
750     vifi_t vifi;
751     struct bw_upcall *bu;
752 
753     if (V_ip_mrouter == NULL)
754 	return (EINVAL);
755 
756     /*
757      * Detach/disable hooks to the reset of the system.
758      */
759     V_ip_mrouter = NULL;
760     atomic_subtract_int(&ip_mrouter_cnt, 1);
761     V_mrt_api_config = 0;
762 
763     /*
764      * Wait for all epoch sections to complete to ensure
765      * V_ip_mrouter = NULL is visible to others.
766      */
767     epoch_wait_preempt(net_epoch_preempt);
768 
769     /* Stop and drain task queue */
770     taskqueue_block(V_task_queue);
771     while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
772     	taskqueue_drain(V_task_queue, &V_task);
773     }
774 
775     ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
776 
777     MRW_WLOCK();
778     taskqueue_cancel(V_task_queue, &V_task, NULL);
779 
780     /* Destroy upcall ring */
781     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
782 	free(bu, M_MRTABLE);
783     }
784     buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
785     mtx_destroy(&V_bw_upcalls_ring_mtx);
786 
787     /*
788      * For each phyint in use, prepare to disable promiscuous reception
789      * of all IP multicasts.  Defer the actual call until the lock is released;
790      * just record the list of interfaces while locked.  Some interfaces use
791      * sx locks in their ioctl routines, which is not allowed while holding
792      * a non-sleepable lock.
793      */
794     KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
795     for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
796 	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
797 		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
798 	    ifps[nifp++] = V_viftable[vifi].v_ifp;
799 	}
800     }
801     bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
802     V_numvifs = 0;
803     V_pim_assert_enabled = 0;
804 
805     callout_stop(&V_expire_upcalls_ch);
806     callout_stop(&V_bw_upcalls_ch);
807 
808     /*
809      * Free all multicast forwarding cache entries.
810      * Do not use hashdestroy(), as we must perform other cleanup.
811      */
812     for (i = 0; i < mfchashsize; i++) {
813 	struct mfc *rt, *nrt;
814 
815 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
816 		expire_mfc(rt);
817 	}
818     }
819     free(V_mfchashtbl, M_MRTABLE);
820     V_mfchashtbl = NULL;
821 
822     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
823 
824     V_reg_vif_num = VIFI_INVALID;
825 
826     mtx_destroy(&V_buf_ring_mtx);
827 
828     MRW_WUNLOCK();
829 
830     /*
831      * Now drop our claim on promiscuous multicast on the interfaces recorded
832      * above.  This is safe to do now because ALLMULTI is reference counted.
833      */
834     for (vifi = 0; vifi < nifp; vifi++)
835 	    if_allmulti(ifps[vifi], 0);
836     free(ifps, M_TEMP);
837 
838     CTR1(KTR_IPMF, "%s: done", __func__);
839 
840     return 0;
841 }
842 
843 /*
844  * Set PIM assert processing global
845  */
846 static int
847 set_assert(int i)
848 {
849     if ((i != 1) && (i != 0))
850 	return EINVAL;
851 
852     V_pim_assert_enabled = i;
853 
854     return 0;
855 }
856 
857 /*
858  * Configure API capabilities
859  */
860 int
861 set_api_config(uint32_t *apival)
862 {
863     u_long i;
864 
865     /*
866      * We can set the API capabilities only if it is the first operation
867      * after MRT_INIT. I.e.:
868      *  - there are no vifs installed
869      *  - pim_assert is not enabled
870      *  - the MFC table is empty
871      */
872     if (V_numvifs > 0) {
873 	*apival = 0;
874 	return EPERM;
875     }
876     if (V_pim_assert_enabled) {
877 	*apival = 0;
878 	return EPERM;
879     }
880 
881     MRW_RLOCK();
882 
883     for (i = 0; i < mfchashsize; i++) {
884 	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
885 	    MRW_RUNLOCK();
886 	    *apival = 0;
887 	    return EPERM;
888 	}
889     }
890 
891     MRW_RUNLOCK();
892 
893     V_mrt_api_config = *apival & mrt_api_support;
894     *apival = V_mrt_api_config;
895 
896     return 0;
897 }
898 
899 /*
900  * Add a vif to the vif table
901  */
902 static int
903 add_vif(struct vifctl *vifcp)
904 {
905     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
906     struct sockaddr_in sin = {sizeof sin, AF_INET};
907     struct ifaddr *ifa;
908     struct ifnet *ifp;
909     int error;
910 
911 
912     if (vifcp->vifc_vifi >= MAXVIFS)
913 	return EINVAL;
914     /* rate limiting is no longer supported by this code */
915     if (vifcp->vifc_rate_limit != 0) {
916 	log(LOG_ERR, "rate limiting is no longer supported\n");
917 	return EINVAL;
918     }
919 
920     if (in_nullhost(vifcp->vifc_lcl_addr))
921 	return EADDRNOTAVAIL;
922 
923     /* Find the interface with an address in AF_INET family */
924     if (vifcp->vifc_flags & VIFF_REGISTER) {
925 	/*
926 	 * XXX: Because VIFF_REGISTER does not really need a valid
927 	 * local interface (e.g. it could be 127.0.0.2), we don't
928 	 * check its address.
929 	 */
930 	ifp = NULL;
931     } else {
932 	struct epoch_tracker et;
933 
934 	sin.sin_addr = vifcp->vifc_lcl_addr;
935 	NET_EPOCH_ENTER(et);
936 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
937 	if (ifa == NULL) {
938 	    NET_EPOCH_EXIT(et);
939 	    return EADDRNOTAVAIL;
940 	}
941 	ifp = ifa->ifa_ifp;
942 	/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
943 	NET_EPOCH_EXIT(et);
944     }
945 
946     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
947 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
948 	return EOPNOTSUPP;
949     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
950 	ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
951 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
952 	if (V_reg_vif_num == VIFI_INVALID) {
953 	    if_initname(V_multicast_register_if, "register_vif", 0);
954 	    V_reg_vif_num = vifcp->vifc_vifi;
955 	}
956     } else {		/* Make sure the interface supports multicast */
957 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
958 	    return EOPNOTSUPP;
959 
960 	/* Enable promiscuous reception of all IP multicasts from the if */
961 	error = if_allmulti(ifp, 1);
962 	if (error)
963 	    return error;
964     }
965 
966     MRW_WLOCK();
967 
968     if (!in_nullhost(vifp->v_lcl_addr)) {
969 	if (ifp)
970 		V_multicast_register_if = NULL;
971 	MRW_WUNLOCK();
972 	if (ifp)
973 		if_free(ifp);
974 	return EADDRINUSE;
975     }
976 
977     vifp->v_flags     = vifcp->vifc_flags;
978     vifp->v_threshold = vifcp->vifc_threshold;
979     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
980     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
981     vifp->v_ifp       = ifp;
982     /* initialize per vif pkt counters */
983     vifp->v_pkt_in    = 0;
984     vifp->v_pkt_out   = 0;
985     vifp->v_bytes_in  = 0;
986     vifp->v_bytes_out = 0;
987     sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
988     mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
989 
990     /* Adjust numvifs up if the vifi is higher than numvifs */
991     if (V_numvifs <= vifcp->vifc_vifi)
992 	V_numvifs = vifcp->vifc_vifi + 1;
993 
994     MRW_WUNLOCK();
995 
996     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
997 	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
998 	(int)vifcp->vifc_threshold);
999 
1000     return 0;
1001 }
1002 
1003 /*
1004  * Delete a vif from the vif table
1005  */
1006 static int
1007 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free)
1008 {
1009     struct vif *vifp;
1010 
1011     *ifp_free = NULL;
1012 
1013     MRW_WLOCK_ASSERT();
1014 
1015     if (vifi >= V_numvifs) {
1016 	return EINVAL;
1017     }
1018     vifp = &V_viftable[vifi];
1019     if (in_nullhost(vifp->v_lcl_addr)) {
1020 	return EADDRNOTAVAIL;
1021     }
1022 
1023     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1024 	if_allmulti(vifp->v_ifp, 0);
1025 
1026     if (vifp->v_flags & VIFF_REGISTER) {
1027 	V_reg_vif_num = VIFI_INVALID;
1028 	if (vifp->v_ifp) {
1029 	    if (vifp->v_ifp == V_multicast_register_if)
1030 	        V_multicast_register_if = NULL;
1031 	    *ifp_free = vifp->v_ifp;
1032 	}
1033     }
1034 
1035     mtx_destroy(&vifp->v_spin);
1036 
1037     bzero((caddr_t)vifp, sizeof (*vifp));
1038 
1039     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1040 
1041     /* Adjust numvifs down */
1042     for (vifi = V_numvifs; vifi > 0; vifi--)
1043 	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1044 	    break;
1045     V_numvifs = vifi;
1046 
1047     return 0;
1048 }
1049 
1050 static int
1051 del_vif(vifi_t vifi)
1052 {
1053     int cc;
1054     struct ifnet *free_ptr;
1055 
1056     MRW_WLOCK();
1057     cc = del_vif_locked(vifi, &free_ptr);
1058     MRW_WUNLOCK();
1059 
1060     if (free_ptr)
1061 	    if_free(free_ptr);
1062 
1063     return cc;
1064 }
1065 
1066 /*
1067  * update an mfc entry without resetting counters and S,G addresses.
1068  */
1069 static void
1070 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1071 {
1072     int i;
1073 
1074     rt->mfc_parent = mfccp->mfcc_parent;
1075     for (i = 0; i < V_numvifs; i++) {
1076 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1077 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1078 	    MRT_MFC_FLAGS_ALL;
1079     }
1080     /* set the RP address */
1081     if (V_mrt_api_config & MRT_MFC_RP)
1082 	rt->mfc_rp = mfccp->mfcc_rp;
1083     else
1084 	rt->mfc_rp.s_addr = INADDR_ANY;
1085 }
1086 
1087 /*
1088  * fully initialize an mfc entry from the parameter.
1089  */
1090 static void
1091 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1092 {
1093     rt->mfc_origin     = mfccp->mfcc_origin;
1094     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1095 
1096     update_mfc_params(rt, mfccp);
1097 
1098     /* initialize pkt counters per src-grp */
1099     rt->mfc_pkt_cnt    = 0;
1100     rt->mfc_byte_cnt   = 0;
1101     rt->mfc_wrong_if   = 0;
1102     timevalclear(&rt->mfc_last_assert);
1103 }
1104 
1105 static void
1106 expire_mfc(struct mfc *rt)
1107 {
1108 	struct rtdetq *rte;
1109 
1110 	MRW_WLOCK_ASSERT();
1111 
1112 	free_bw_list(rt->mfc_bw_meter_leq);
1113 	free_bw_list(rt->mfc_bw_meter_geq);
1114 
1115 	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1116 		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1117 		if (rte) {
1118 			m_freem(rte->m);
1119 			free(rte, M_MRTABLE);
1120 		}
1121 	}
1122 	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1123 
1124 	LIST_REMOVE(rt, mfc_hash);
1125 	free(rt, M_MRTABLE);
1126 }
1127 
1128 /*
1129  * Add an mfc entry
1130  */
1131 static int
1132 add_mfc(struct mfcctl2 *mfccp)
1133 {
1134     struct mfc *rt;
1135     struct rtdetq *rte;
1136     u_long hash = 0;
1137     u_short nstl;
1138     struct epoch_tracker et;
1139 
1140     MRW_WLOCK();
1141     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1142 
1143     /* If an entry already exists, just update the fields */
1144     if (rt) {
1145 	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1146 	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1147 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1148 	    mfccp->mfcc_parent);
1149 	update_mfc_params(rt, mfccp);
1150 	MRW_WUNLOCK();
1151 	return (0);
1152     }
1153 
1154     /*
1155      * Find the entry for which the upcall was made and update
1156      */
1157     nstl = 0;
1158     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1159     NET_EPOCH_ENTER(et);
1160     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1161 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1162 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1163 	    !buf_ring_empty(rt->mfc_stall_ring)) {
1164 		CTR5(KTR_IPMF,
1165 		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1166 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1167 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1168 		    mfccp->mfcc_parent,
1169 		    rt->mfc_stall_ring);
1170 		if (nstl++)
1171 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1172 
1173 		init_mfc_params(rt, mfccp);
1174 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1175 		V_nexpire[hash]--;
1176 
1177 		/* Free queued packets, but attempt to forward them first. */
1178 		while (!buf_ring_empty(rt->mfc_stall_ring)) {
1179 			rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1180 			if (rte->ifp != NULL)
1181 				ip_mdq(rte->m, rte->ifp, rt, -1);
1182 			m_freem(rte->m);
1183 			free(rte, M_MRTABLE);
1184 		}
1185 	}
1186     }
1187     NET_EPOCH_EXIT(et);
1188 
1189     /*
1190      * It is possible that an entry is being inserted without an upcall
1191      */
1192     if (nstl == 0) {
1193 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1194 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1195 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1196 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1197 			init_mfc_params(rt, mfccp);
1198 			if (rt->mfc_expire)
1199 			    V_nexpire[hash]--;
1200 			rt->mfc_expire = 0;
1201 			break; /* XXX */
1202 		}
1203 	}
1204 
1205 	if (rt == NULL) {		/* no upcall, so make a new entry */
1206 	    rt = mfc_alloc();
1207 	    if (rt == NULL) {
1208 		MRW_WUNLOCK();
1209 		return (ENOBUFS);
1210 	    }
1211 
1212 	    init_mfc_params(rt, mfccp);
1213 
1214 	    rt->mfc_expire     = 0;
1215 	    rt->mfc_bw_meter_leq = NULL;
1216 	    rt->mfc_bw_meter_geq = NULL;
1217 
1218 	    /* insert new entry at head of hash chain */
1219 	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1220 	}
1221     }
1222 
1223     MRW_WUNLOCK();
1224 
1225     return (0);
1226 }
1227 
1228 /*
1229  * Delete an mfc entry
1230  */
1231 static int
1232 del_mfc(struct mfcctl2 *mfccp)
1233 {
1234     struct in_addr	origin;
1235     struct in_addr	mcastgrp;
1236     struct mfc		*rt;
1237 
1238     origin = mfccp->mfcc_origin;
1239     mcastgrp = mfccp->mfcc_mcastgrp;
1240 
1241     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1242 	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1243 
1244     MRW_WLOCK();
1245 
1246     rt = mfc_find(&origin, &mcastgrp);
1247     if (rt == NULL) {
1248 	MRW_WUNLOCK();
1249 	return EADDRNOTAVAIL;
1250     }
1251 
1252     /*
1253      * free the bw_meter entries
1254      */
1255     free_bw_list(rt->mfc_bw_meter_leq);
1256     rt->mfc_bw_meter_leq = NULL;
1257     free_bw_list(rt->mfc_bw_meter_geq);
1258     rt->mfc_bw_meter_geq = NULL;
1259 
1260     LIST_REMOVE(rt, mfc_hash);
1261     free(rt, M_MRTABLE);
1262 
1263     MRW_WUNLOCK();
1264 
1265     return (0);
1266 }
1267 
1268 /*
1269  * Send a message to the routing daemon on the multicast routing socket.
1270  */
1271 static int
1272 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1273 {
1274     if (s) {
1275 	SOCKBUF_LOCK(&s->so_rcv);
1276 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1277 	    NULL) != 0) {
1278 	    sorwakeup_locked(s);
1279 	    return 0;
1280 	}
1281 	soroverflow_locked(s);
1282     }
1283     m_freem(mm);
1284     return -1;
1285 }
1286 
1287 /*
1288  * IP multicast forwarding function. This function assumes that the packet
1289  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1290  * pointed to by "ifp", and the packet is to be relayed to other networks
1291  * that have members of the packet's destination IP multicast group.
1292  *
1293  * The packet is returned unscathed to the caller, unless it is
1294  * erroneous, in which case a non-zero return value tells the caller to
1295  * discard it.
1296  */
1297 
1298 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1299 
1300 static int
1301 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1302     struct ip_moptions *imo)
1303 {
1304 	struct mfc *rt;
1305 	int error;
1306 	vifi_t vifi;
1307 	struct mbuf *mb0;
1308 	struct rtdetq *rte;
1309 	u_long hash;
1310 	int hlen;
1311 
1312 	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1313 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1314 
1315 	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1316 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1317 		/*
1318 		 * Packet arrived via a physical interface or
1319 		 * an encapsulated tunnel or a register_vif.
1320 		 */
1321 	} else {
1322 		/*
1323 		 * Packet arrived through a source-route tunnel.
1324 		 * Source-route tunnels are no longer supported.
1325 		 */
1326 		return (1);
1327 	}
1328 
1329 	/*
1330 	 * BEGIN: MCAST ROUTING HOT PATH
1331 	 */
1332 	MRW_RLOCK();
1333 	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1334 		if (ip->ip_ttl < MAXTTL)
1335 			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1336 		error = ip_mdq(m, ifp, NULL, vifi);
1337 		MRW_RUNLOCK();
1338 		return error;
1339 	}
1340 
1341 	/*
1342 	 * Don't forward a packet with time-to-live of zero or one,
1343 	 * or a packet destined to a local-only group.
1344 	 */
1345 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1346 		MRW_RUNLOCK();
1347 		return 0;
1348 	}
1349 
1350 	mfc_find_retry:
1351 	/*
1352 	 * Determine forwarding vifs from the forwarding cache table
1353 	 */
1354 	MRTSTAT_INC(mrts_mfc_lookups);
1355 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1356 
1357 	/* Entry exists, so forward if necessary */
1358 	if (rt != NULL) {
1359 		error = ip_mdq(m, ifp, rt, -1);
1360 		/* Generic unlock here as we might release R or W lock */
1361 		MRW_UNLOCK();
1362 		return error;
1363 	}
1364 
1365 	/*
1366 	 * END: MCAST ROUTING HOT PATH
1367 	 */
1368 
1369 	/* Further processing must be done with WLOCK taken */
1370 	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1371 		MRW_RUNLOCK();
1372 		MRW_WLOCK();
1373 		goto mfc_find_retry;
1374 	}
1375 
1376 	/*
1377 	 * If we don't have a route for packet's origin,
1378 	 * Make a copy of the packet & send message to routing daemon
1379 	 */
1380 	hlen = ip->ip_hl << 2;
1381 
1382 	MRTSTAT_INC(mrts_mfc_misses);
1383 	MRTSTAT_INC(mrts_no_route);
1384 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1385 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1386 
1387 	/*
1388 	 * Allocate mbufs early so that we don't do extra work if we are
1389 	 * just going to fail anyway.  Make sure to pullup the header so
1390 	 * that other people can't step on it.
1391 	 */
1392 	rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE,
1393 	    M_NOWAIT|M_ZERO);
1394 	if (rte == NULL) {
1395 		MRW_WUNLOCK();
1396 		return ENOBUFS;
1397 	}
1398 
1399 	mb0 = m_copypacket(m, M_NOWAIT);
1400 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1401 		mb0 = m_pullup(mb0, hlen);
1402 	if (mb0 == NULL) {
1403 		free(rte, M_MRTABLE);
1404 		MRW_WUNLOCK();
1405 		return ENOBUFS;
1406 	}
1407 
1408 	/* is there an upcall waiting for this flow ? */
1409 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1410 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1411 	{
1412 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1413 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1414 		    !buf_ring_empty(rt->mfc_stall_ring))
1415 			break;
1416 	}
1417 
1418 	if (rt == NULL) {
1419 		int i;
1420 		struct igmpmsg *im;
1421 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1422 		struct mbuf *mm;
1423 
1424 		/*
1425 		 * Locate the vifi for the incoming interface for this packet.
1426 		 * If none found, drop packet.
1427 		 */
1428 		for (vifi = 0; vifi < V_numvifs &&
1429 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1430 			;
1431 		if (vifi >= V_numvifs) /* vif not found, drop packet */
1432 			goto non_fatal;
1433 
1434 		/* no upcall, so make a new entry */
1435 		rt = mfc_alloc();
1436 		if (rt == NULL)
1437 			goto fail;
1438 
1439 		/* Make a copy of the header to send to the user level process */
1440 		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1441 		if (mm == NULL)
1442 			goto fail1;
1443 
1444 		/*
1445 		 * Send message to routing daemon to install
1446 		 * a route into the kernel table
1447 		 */
1448 
1449 		im = mtod(mm, struct igmpmsg*);
1450 		im->im_msgtype = IGMPMSG_NOCACHE;
1451 		im->im_mbz = 0;
1452 		im->im_vif = vifi;
1453 
1454 		MRTSTAT_INC(mrts_upcalls);
1455 
1456 		k_igmpsrc.sin_addr = ip->ip_src;
1457 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1458 			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1459 			MRTSTAT_INC(mrts_upq_sockfull);
1460 			fail1: free(rt, M_MRTABLE);
1461 			fail: free(rte, M_MRTABLE);
1462 			m_freem(mb0);
1463 			MRW_WUNLOCK();
1464 			return ENOBUFS;
1465 		}
1466 
1467 		/* insert new entry at head of hash chain */
1468 		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1469 		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1470 		rt->mfc_expire = UPCALL_EXPIRE;
1471 		V_nexpire[hash]++;
1472 		for (i = 0; i < V_numvifs; i++) {
1473 			rt->mfc_ttls[i] = 0;
1474 			rt->mfc_flags[i] = 0;
1475 		}
1476 		rt->mfc_parent = -1;
1477 
1478 		/* clear the RP address */
1479 		rt->mfc_rp.s_addr = INADDR_ANY;
1480 		rt->mfc_bw_meter_leq = NULL;
1481 		rt->mfc_bw_meter_geq = NULL;
1482 
1483 		/* initialize pkt counters per src-grp */
1484 		rt->mfc_pkt_cnt = 0;
1485 		rt->mfc_byte_cnt = 0;
1486 		rt->mfc_wrong_if = 0;
1487 		timevalclear(&rt->mfc_last_assert);
1488 
1489 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1490 
1491 		/* Add RT to hashtable as it didn't exist before */
1492 		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1493 	} else {
1494 		/* determine if queue has overflowed */
1495 		if (buf_ring_full(rt->mfc_stall_ring)) {
1496 			MRTSTAT_INC(mrts_upq_ovflw);
1497 			non_fatal: free(rte, M_MRTABLE);
1498 			m_freem(mb0);
1499 			MRW_WUNLOCK();
1500 			return (0);
1501 		}
1502 
1503 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1504 	}
1505 
1506 	rte->m = mb0;
1507 	rte->ifp = ifp;
1508 
1509 	MRW_WUNLOCK();
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Clean up the cache entry if upcall is not serviced
1516  */
1517 static void
1518 expire_upcalls(void *arg)
1519 {
1520     u_long i;
1521 
1522     CURVNET_SET((struct vnet *) arg);
1523 
1524     /*This callout is always run with MRW_WLOCK taken. */
1525 
1526     for (i = 0; i < mfchashsize; i++) {
1527 	struct mfc *rt, *nrt;
1528 
1529 	if (V_nexpire[i] == 0)
1530 	    continue;
1531 
1532 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1533 		if (buf_ring_empty(rt->mfc_stall_ring))
1534 			continue;
1535 
1536 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1537 			continue;
1538 
1539 		MRTSTAT_INC(mrts_cache_cleanups);
1540 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1541 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1542 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1543 
1544 		expire_mfc(rt);
1545 	    }
1546     }
1547 
1548     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1549 	curvnet);
1550 
1551     CURVNET_RESTORE();
1552 }
1553 
1554 /*
1555  * Packet forwarding routine once entry in the cache is made
1556  */
1557 static int
1558 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1559 {
1560     struct ip  *ip = mtod(m, struct ip *);
1561     vifi_t vifi;
1562     int plen = ntohs(ip->ip_len);
1563 
1564     MRW_LOCK_ASSERT();
1565     NET_EPOCH_ASSERT();
1566 
1567     /*
1568      * If xmt_vif is not -1, send on only the requested vif.
1569      *
1570      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1571      */
1572     if (xmt_vif < V_numvifs) {
1573 	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1574 		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1575 	else
1576 		phyint_send(ip, V_viftable + xmt_vif, m);
1577 	return 1;
1578     }
1579 
1580     /*
1581      * Don't forward if it didn't arrive from the parent vif for its origin.
1582      */
1583     vifi = rt->mfc_parent;
1584     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1585 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1586 	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1587 	MRTSTAT_INC(mrts_wrong_if);
1588 	++rt->mfc_wrong_if;
1589 	/*
1590 	 * If we are doing PIM assert processing, send a message
1591 	 * to the routing daemon.
1592 	 *
1593 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1594 	 * can complete the SPT switch, regardless of the type
1595 	 * of the iif (broadcast media, GRE tunnel, etc).
1596 	 */
1597 	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1598 	    V_viftable[vifi].v_ifp) {
1599 	    if (ifp == V_multicast_register_if)
1600 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1601 
1602 	    /* Get vifi for the incoming packet */
1603 	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1604 		vifi++)
1605 		;
1606 	    if (vifi >= V_numvifs)
1607 		return 0;	/* The iif is not found: ignore the packet. */
1608 
1609 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1610 		return 0;	/* WRONGVIF disabled: ignore the packet */
1611 
1612 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1613 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1614 		struct igmpmsg *im;
1615 		int hlen = ip->ip_hl << 2;
1616 		struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1617 
1618 		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1619 		    mm = m_pullup(mm, hlen);
1620 		if (mm == NULL)
1621 		    return ENOBUFS;
1622 
1623 		im = mtod(mm, struct igmpmsg *);
1624 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1625 		im->im_mbz		= 0;
1626 		im->im_vif		= vifi;
1627 
1628 		MRTSTAT_INC(mrts_upcalls);
1629 
1630 		k_igmpsrc.sin_addr = im->im_src;
1631 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1632 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1633 		    MRTSTAT_INC(mrts_upq_sockfull);
1634 		    return ENOBUFS;
1635 		}
1636 	    }
1637 	}
1638 	return 0;
1639     }
1640 
1641     /* If I sourced this packet, it counts as output, else it was input. */
1642     mtx_lock_spin(&V_viftable[vifi].v_spin);
1643     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1644 	V_viftable[vifi].v_pkt_out++;
1645 	V_viftable[vifi].v_bytes_out += plen;
1646     } else {
1647 	V_viftable[vifi].v_pkt_in++;
1648 	V_viftable[vifi].v_bytes_in += plen;
1649     }
1650     mtx_unlock_spin(&V_viftable[vifi].v_spin);
1651 
1652     rt->mfc_pkt_cnt++;
1653     rt->mfc_byte_cnt += plen;
1654 
1655     /*
1656      * For each vif, decide if a copy of the packet should be forwarded.
1657      * Forward if:
1658      *		- the ttl exceeds the vif's threshold
1659      *		- there are group members downstream on interface
1660      */
1661     for (vifi = 0; vifi < V_numvifs; vifi++)
1662 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1663 	    V_viftable[vifi].v_pkt_out++;
1664 	    V_viftable[vifi].v_bytes_out += plen;
1665 	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1666 		pim_register_send(ip, V_viftable + vifi, m, rt);
1667 	    else
1668 		phyint_send(ip, V_viftable + vifi, m);
1669 	}
1670 
1671     /*
1672      * Perform upcall-related bw measuring.
1673      */
1674     if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1675 	struct bw_meter *x;
1676 	struct timeval now;
1677 
1678 	microtime(&now);
1679 	/* Process meters for Greater-or-EQual case */
1680 	for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1681 		bw_meter_geq_receive_packet(x, plen, &now);
1682 
1683 	/* Process meters for Lower-or-EQual case */
1684 	for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1685 		/*
1686 		 * Record that a packet is received.
1687 		 * Spin lock has to be taken as callout context
1688 		 * (expire_bw_meter_leq) might modify these fields
1689 		 * as well
1690 		 */
1691 		mtx_lock_spin(&x->bm_spin);
1692 		x->bm_measured.b_packets++;
1693 		x->bm_measured.b_bytes += plen;
1694 		mtx_unlock_spin(&x->bm_spin);
1695 	}
1696     }
1697 
1698     return 0;
1699 }
1700 
1701 /*
1702  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1703  */
1704 static int
1705 X_legal_vif_num(int vif)
1706 {
1707 	int ret;
1708 
1709 	ret = 0;
1710 	if (vif < 0)
1711 		return (ret);
1712 
1713 	MRW_RLOCK();
1714 	if (vif < V_numvifs)
1715 		ret = 1;
1716 	MRW_RUNLOCK();
1717 
1718 	return (ret);
1719 }
1720 
1721 /*
1722  * Return the local address used by this vif
1723  */
1724 static u_long
1725 X_ip_mcast_src(int vifi)
1726 {
1727 	in_addr_t addr;
1728 
1729 	addr = INADDR_ANY;
1730 	if (vifi < 0)
1731 		return (addr);
1732 
1733 	MRW_RLOCK();
1734 	if (vifi < V_numvifs)
1735 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1736 	MRW_RUNLOCK();
1737 
1738 	return (addr);
1739 }
1740 
1741 static void
1742 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1743 {
1744     struct mbuf *mb_copy;
1745     int hlen = ip->ip_hl << 2;
1746 
1747     MRW_LOCK_ASSERT();
1748 
1749     /*
1750      * Make a new reference to the packet; make sure that
1751      * the IP header is actually copied, not just referenced,
1752      * so that ip_output() only scribbles on the copy.
1753      */
1754     mb_copy = m_copypacket(m, M_NOWAIT);
1755     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1756 	mb_copy = m_pullup(mb_copy, hlen);
1757     if (mb_copy == NULL)
1758 	return;
1759 
1760     send_packet(vifp, mb_copy);
1761 }
1762 
1763 static void
1764 send_packet(struct vif *vifp, struct mbuf *m)
1765 {
1766 	struct ip_moptions imo;
1767 	int error __unused;
1768 
1769 	MRW_LOCK_ASSERT();
1770 	NET_EPOCH_ASSERT();
1771 
1772 	imo.imo_multicast_ifp  = vifp->v_ifp;
1773 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1774 	imo.imo_multicast_loop = !!in_mcast_loop;
1775 	imo.imo_multicast_vif  = -1;
1776 	STAILQ_INIT(&imo.imo_head);
1777 
1778 	/*
1779 	 * Re-entrancy should not be a problem here, because
1780 	 * the packets that we send out and are looped back at us
1781 	 * should get rejected because they appear to come from
1782 	 * the loopback interface, thus preventing looping.
1783 	 */
1784 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1785 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1786 	    (ptrdiff_t)(vifp - V_viftable), error);
1787 }
1788 
1789 /*
1790  * Stubs for old RSVP socket shim implementation.
1791  */
1792 
1793 static int
1794 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1795 {
1796 
1797 	return (EOPNOTSUPP);
1798 }
1799 
1800 static void
1801 X_ip_rsvp_force_done(struct socket *so __unused)
1802 {
1803 
1804 }
1805 
1806 static int
1807 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1808 {
1809 	struct mbuf *m;
1810 
1811 	m = *mp;
1812 	*mp = NULL;
1813 	if (!V_rsvp_on)
1814 		m_freem(m);
1815 	return (IPPROTO_DONE);
1816 }
1817 
1818 /*
1819  * Code for bandwidth monitors
1820  */
1821 
1822 /*
1823  * Define common interface for timeval-related methods
1824  */
1825 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1826 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1827 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1828 
1829 static uint32_t
1830 compute_bw_meter_flags(struct bw_upcall *req)
1831 {
1832     uint32_t flags = 0;
1833 
1834     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1835 	flags |= BW_METER_UNIT_PACKETS;
1836     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1837 	flags |= BW_METER_UNIT_BYTES;
1838     if (req->bu_flags & BW_UPCALL_GEQ)
1839 	flags |= BW_METER_GEQ;
1840     if (req->bu_flags & BW_UPCALL_LEQ)
1841 	flags |= BW_METER_LEQ;
1842 
1843     return flags;
1844 }
1845 
1846 static void
1847 expire_bw_meter_leq(void *arg)
1848 {
1849 	struct bw_meter *x = arg;
1850 	struct timeval now;
1851 	/*
1852 	 * INFO:
1853 	 * callout is always executed with MRW_WLOCK taken
1854 	 */
1855 
1856 	CURVNET_SET((struct vnet *)x->arg);
1857 
1858 	microtime(&now);
1859 
1860 	/*
1861 	 * Test if we should deliver an upcall
1862 	 */
1863 	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1864 	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1865 	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1866 	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1867 		/* Prepare an upcall for delivery */
1868 		bw_meter_prepare_upcall(x, &now);
1869 	}
1870 
1871 	/* Send all upcalls that are pending delivery */
1872 	taskqueue_enqueue(V_task_queue, &V_task);
1873 
1874 	/* Reset counters */
1875 	x->bm_start_time = now;
1876 	/* Spin lock has to be taken as ip_forward context
1877 	 * might modify these fields as well
1878 	 */
1879 	mtx_lock_spin(&x->bm_spin);
1880 	x->bm_measured.b_bytes = 0;
1881 	x->bm_measured.b_packets = 0;
1882 	mtx_unlock_spin(&x->bm_spin);
1883 
1884 	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1885 
1886 	CURVNET_RESTORE();
1887 }
1888 
1889 /*
1890  * Add a bw_meter entry
1891  */
1892 static int
1893 add_bw_upcall(struct bw_upcall *req)
1894 {
1895 	struct mfc *mfc;
1896 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1897 	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1898 	struct timeval now;
1899 	struct bw_meter *x, **bwm_ptr;
1900 	uint32_t flags;
1901 
1902 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1903 		return EOPNOTSUPP;
1904 
1905 	/* Test if the flags are valid */
1906 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1907 		return EINVAL;
1908 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1909 		return EINVAL;
1910 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1911 			== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1912 		return EINVAL;
1913 
1914 	/* Test if the threshold time interval is valid */
1915 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1916 		return EINVAL;
1917 
1918 	flags = compute_bw_meter_flags(req);
1919 
1920 	/*
1921 	 * Find if we have already same bw_meter entry
1922 	 */
1923 	MRW_WLOCK();
1924 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1925 	if (mfc == NULL) {
1926 		MRW_WUNLOCK();
1927 		return EADDRNOTAVAIL;
1928 	}
1929 
1930 	/* Choose an appropriate bw_meter list */
1931 	if (req->bu_flags & BW_UPCALL_GEQ)
1932 		bwm_ptr = &mfc->mfc_bw_meter_geq;
1933 	else
1934 		bwm_ptr = &mfc->mfc_bw_meter_leq;
1935 
1936 	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1937 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1938 		    &req->bu_threshold.b_time, ==))
1939 		    && (x->bm_threshold.b_packets
1940 		    == req->bu_threshold.b_packets)
1941 		    && (x->bm_threshold.b_bytes
1942 		    == req->bu_threshold.b_bytes)
1943 		    && (x->bm_flags & BW_METER_USER_FLAGS)
1944 		    == flags) {
1945 			MRW_WUNLOCK();
1946 			return 0; /* XXX Already installed */
1947 		}
1948 	}
1949 
1950 	/* Allocate the new bw_meter entry */
1951 	x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER,
1952 	    M_ZERO | M_NOWAIT);
1953 	if (x == NULL) {
1954 		MRW_WUNLOCK();
1955 		return ENOBUFS;
1956 	}
1957 
1958 	/* Set the new bw_meter entry */
1959 	x->bm_threshold.b_time = req->bu_threshold.b_time;
1960 	microtime(&now);
1961 	x->bm_start_time = now;
1962 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1963 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1964 	x->bm_measured.b_packets = 0;
1965 	x->bm_measured.b_bytes = 0;
1966 	x->bm_flags = flags;
1967 	x->bm_time_next = NULL;
1968 	x->bm_mfc = mfc;
1969 	x->arg = curvnet;
1970 	sprintf(x->bm_spin_name, "BM spin %p", x);
1971 	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1972 
1973 	/* For LEQ case create periodic callout */
1974 	if (req->bu_flags & BW_UPCALL_LEQ) {
1975 		callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK);
1976 		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1977 		    expire_bw_meter_leq, x);
1978 	}
1979 
1980 	/* Add the new bw_meter entry to the front of entries for this MFC */
1981 	x->bm_mfc_next = *bwm_ptr;
1982 	*bwm_ptr = x;
1983 
1984 	MRW_WUNLOCK();
1985 
1986 	return 0;
1987 }
1988 
1989 static void
1990 free_bw_list(struct bw_meter *list)
1991 {
1992     while (list != NULL) {
1993 	struct bw_meter *x = list;
1994 
1995 	/* MRW_WLOCK must be held here */
1996 	if (x->bm_flags & BW_METER_LEQ) {
1997 		callout_drain(&x->bm_meter_callout);
1998 		mtx_destroy(&x->bm_spin);
1999 	}
2000 
2001 	list = list->bm_mfc_next;
2002 	free(x, M_BWMETER);
2003     }
2004 }
2005 
2006 /*
2007  * Delete one or multiple bw_meter entries
2008  */
2009 static int
2010 del_bw_upcall(struct bw_upcall *req)
2011 {
2012     struct mfc *mfc;
2013     struct bw_meter *x, **bwm_ptr;
2014 
2015     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
2016 	return EOPNOTSUPP;
2017 
2018     MRW_WLOCK();
2019 
2020     /* Find the corresponding MFC entry */
2021     mfc = mfc_find(&req->bu_src, &req->bu_dst);
2022     if (mfc == NULL) {
2023 	MRW_WUNLOCK();
2024 	return EADDRNOTAVAIL;
2025     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2026 	/*
2027 	 * Delete all bw_meter entries for this mfc
2028 	 */
2029 	struct bw_meter *list;
2030 
2031 	/* Free LEQ list */
2032 	list = mfc->mfc_bw_meter_leq;
2033 	mfc->mfc_bw_meter_leq = NULL;
2034 	free_bw_list(list);
2035 
2036 	/* Free GEQ list */
2037 	list = mfc->mfc_bw_meter_geq;
2038 	mfc->mfc_bw_meter_geq = NULL;
2039 	free_bw_list(list);
2040 	MRW_WUNLOCK();
2041 	return 0;
2042     } else {			/* Delete a single bw_meter entry */
2043 	struct bw_meter *prev;
2044 	uint32_t flags = 0;
2045 
2046 	flags = compute_bw_meter_flags(req);
2047 
2048 	/* Choose an appropriate bw_meter list */
2049 	if (req->bu_flags & BW_UPCALL_GEQ)
2050 		bwm_ptr = &mfc->mfc_bw_meter_geq;
2051 	else
2052 		bwm_ptr = &mfc->mfc_bw_meter_leq;
2053 
2054 	/* Find the bw_meter entry to delete */
2055 	for (prev = NULL, x = *bwm_ptr; x != NULL;
2056 	     prev = x, x = x->bm_mfc_next) {
2057 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2058 			       &req->bu_threshold.b_time, ==)) &&
2059 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2060 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2061 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2062 		break;
2063 	}
2064 	if (x != NULL) { /* Delete entry from the list for this MFC */
2065 	    if (prev != NULL)
2066 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2067 	    else
2068 		*bwm_ptr = x->bm_mfc_next;/* new head of list */
2069 
2070 	    if (req->bu_flags & BW_UPCALL_LEQ)
2071 		    callout_stop(&x->bm_meter_callout);
2072 
2073 	    MRW_WUNLOCK();
2074 	    /* Free the bw_meter entry */
2075 	    free(x, M_BWMETER);
2076 	    return 0;
2077 	} else {
2078 	    MRW_WUNLOCK();
2079 	    return EINVAL;
2080 	}
2081     }
2082     /* NOTREACHED */
2083 }
2084 
2085 /*
2086  * Perform bandwidth measurement processing that may result in an upcall
2087  */
2088 static void
2089 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2090 {
2091 	struct timeval delta;
2092 
2093 	MRW_LOCK_ASSERT();
2094 
2095 	delta = *nowp;
2096 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2097 
2098 	/*
2099 	 * Processing for ">=" type of bw_meter entry.
2100 	 * bm_spin does not have to be hold here as in GEQ
2101 	 * case this is the only context accessing bm_measured.
2102 	 */
2103 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2104 	    /* Reset the bw_meter entry */
2105 	    x->bm_start_time = *nowp;
2106 	    x->bm_measured.b_packets = 0;
2107 	    x->bm_measured.b_bytes = 0;
2108 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2109 	}
2110 
2111 	/* Record that a packet is received */
2112 	x->bm_measured.b_packets++;
2113 	x->bm_measured.b_bytes += plen;
2114 
2115 	/*
2116 	 * Test if we should deliver an upcall
2117 	 */
2118 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2119 		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2120 		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2121 		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2122 		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2123 			/* Prepare an upcall for delivery */
2124 			bw_meter_prepare_upcall(x, nowp);
2125 			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2126 		}
2127 	}
2128 }
2129 
2130 /*
2131  * Prepare a bandwidth-related upcall
2132  */
2133 static void
2134 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2135 {
2136 	struct timeval delta;
2137 	struct bw_upcall *u;
2138 
2139 	MRW_LOCK_ASSERT();
2140 
2141 	/*
2142 	 * Compute the measured time interval
2143 	 */
2144 	delta = *nowp;
2145 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2146 
2147 	/*
2148 	 * Set the bw_upcall entry
2149 	 */
2150 	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2151 	if (!u) {
2152 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2153 		return;
2154 	}
2155 	u->bu_src = x->bm_mfc->mfc_origin;
2156 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2157 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2158 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2159 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2160 	u->bu_measured.b_time = delta;
2161 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2162 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2163 	u->bu_flags = 0;
2164 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2165 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2166 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2167 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2168 	if (x->bm_flags & BW_METER_GEQ)
2169 		u->bu_flags |= BW_UPCALL_GEQ;
2170 	if (x->bm_flags & BW_METER_LEQ)
2171 		u->bu_flags |= BW_UPCALL_LEQ;
2172 
2173 	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2174 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2175 	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2176 		taskqueue_enqueue(V_task_queue, &V_task);
2177 	}
2178 }
2179 /*
2180  * Send the pending bandwidth-related upcalls
2181  */
2182 static void
2183 bw_upcalls_send(void)
2184 {
2185     struct mbuf *m;
2186     int len = 0;
2187     struct bw_upcall *bu;
2188     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2189     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2190 				      0,		/* unused2 */
2191 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2192 				      0,		/* im_mbz  */
2193 				      0,		/* im_vif  */
2194 				      0,		/* unused3 */
2195 				      { 0 },		/* im_src  */
2196 				      { 0 } };		/* im_dst  */
2197 
2198     MRW_LOCK_ASSERT();
2199 
2200     if (buf_ring_empty(V_bw_upcalls_ring))
2201 	return;
2202 
2203     /*
2204      * Allocate a new mbuf, initialize it with the header and
2205      * the payload for the pending calls.
2206      */
2207     m = m_gethdr(M_NOWAIT, MT_DATA);
2208     if (m == NULL) {
2209 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2210 	return;
2211     }
2212 
2213     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2214     len += sizeof(struct igmpmsg);
2215     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2216 	m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2217 	len += sizeof(struct bw_upcall);
2218 	free(bu, M_MRTABLE);
2219     }
2220 
2221     /*
2222      * Send the upcalls
2223      * XXX do we need to set the address in k_igmpsrc ?
2224      */
2225     MRTSTAT_INC(mrts_upcalls);
2226     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2227 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2228 	MRTSTAT_INC(mrts_upq_sockfull);
2229     }
2230 }
2231 
2232 /*
2233  * A periodic function for sending all upcalls that are pending delivery
2234  */
2235 static void
2236 expire_bw_upcalls_send(void *arg)
2237 {
2238     CURVNET_SET((struct vnet *) arg);
2239 
2240     /* This callout is run with MRW_RLOCK taken */
2241 
2242     bw_upcalls_send();
2243 
2244     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2245 	curvnet);
2246     CURVNET_RESTORE();
2247 }
2248 
2249 /*
2250  * End of bandwidth monitoring code
2251  */
2252 
2253 /*
2254  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2255  *
2256  */
2257 static int
2258 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2259     struct mfc *rt)
2260 {
2261     struct mbuf *mb_copy, *mm;
2262 
2263     /*
2264      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2265      * rendezvous point was unspecified, and we were told not to.
2266      */
2267     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2268 	in_nullhost(rt->mfc_rp))
2269 	return 0;
2270 
2271     mb_copy = pim_register_prepare(ip, m);
2272     if (mb_copy == NULL)
2273 	return ENOBUFS;
2274 
2275     /*
2276      * Send all the fragments. Note that the mbuf for each fragment
2277      * is freed by the sending machinery.
2278      */
2279     for (mm = mb_copy; mm; mm = mb_copy) {
2280 	mb_copy = mm->m_nextpkt;
2281 	mm->m_nextpkt = 0;
2282 	mm = m_pullup(mm, sizeof(struct ip));
2283 	if (mm != NULL) {
2284 	    ip = mtod(mm, struct ip *);
2285 	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2286 		pim_register_send_rp(ip, vifp, mm, rt);
2287 	    } else {
2288 		pim_register_send_upcall(ip, vifp, mm, rt);
2289 	    }
2290 	}
2291     }
2292 
2293     return 0;
2294 }
2295 
2296 /*
2297  * Return a copy of the data packet that is ready for PIM Register
2298  * encapsulation.
2299  * XXX: Note that in the returned copy the IP header is a valid one.
2300  */
2301 static struct mbuf *
2302 pim_register_prepare(struct ip *ip, struct mbuf *m)
2303 {
2304     struct mbuf *mb_copy = NULL;
2305     int mtu;
2306 
2307     /* Take care of delayed checksums */
2308     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2309 	in_delayed_cksum(m);
2310 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2311     }
2312 
2313     /*
2314      * Copy the old packet & pullup its IP header into the
2315      * new mbuf so we can modify it.
2316      */
2317     mb_copy = m_copypacket(m, M_NOWAIT);
2318     if (mb_copy == NULL)
2319 	return NULL;
2320     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2321     if (mb_copy == NULL)
2322 	return NULL;
2323 
2324     /* take care of the TTL */
2325     ip = mtod(mb_copy, struct ip *);
2326     --ip->ip_ttl;
2327 
2328     /* Compute the MTU after the PIM Register encapsulation */
2329     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2330 
2331     if (ntohs(ip->ip_len) <= mtu) {
2332 	/* Turn the IP header into a valid one */
2333 	ip->ip_sum = 0;
2334 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2335     } else {
2336 	/* Fragment the packet */
2337 	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2338 	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2339 	    m_freem(mb_copy);
2340 	    return NULL;
2341 	}
2342     }
2343     return mb_copy;
2344 }
2345 
2346 /*
2347  * Send an upcall with the data packet to the user-level process.
2348  */
2349 static int
2350 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2351     struct mbuf *mb_copy, struct mfc *rt)
2352 {
2353     struct mbuf *mb_first;
2354     int len = ntohs(ip->ip_len);
2355     struct igmpmsg *im;
2356     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2357 
2358     MRW_LOCK_ASSERT();
2359 
2360     /*
2361      * Add a new mbuf with an upcall header
2362      */
2363     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2364     if (mb_first == NULL) {
2365 	m_freem(mb_copy);
2366 	return ENOBUFS;
2367     }
2368     mb_first->m_data += max_linkhdr;
2369     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2370     mb_first->m_len = sizeof(struct igmpmsg);
2371     mb_first->m_next = mb_copy;
2372 
2373     /* Send message to routing daemon */
2374     im = mtod(mb_first, struct igmpmsg *);
2375     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2376     im->im_mbz		= 0;
2377     im->im_vif		= vifp - V_viftable;
2378     im->im_src		= ip->ip_src;
2379     im->im_dst		= ip->ip_dst;
2380 
2381     k_igmpsrc.sin_addr	= ip->ip_src;
2382 
2383     MRTSTAT_INC(mrts_upcalls);
2384 
2385     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2386 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2387 	MRTSTAT_INC(mrts_upq_sockfull);
2388 	return ENOBUFS;
2389     }
2390 
2391     /* Keep statistics */
2392     PIMSTAT_INC(pims_snd_registers_msgs);
2393     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2394 
2395     return 0;
2396 }
2397 
2398 /*
2399  * Encapsulate the data packet in PIM Register message and send it to the RP.
2400  */
2401 static int
2402 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2403     struct mfc *rt)
2404 {
2405     struct mbuf *mb_first;
2406     struct ip *ip_outer;
2407     struct pim_encap_pimhdr *pimhdr;
2408     int len = ntohs(ip->ip_len);
2409     vifi_t vifi = rt->mfc_parent;
2410 
2411     MRW_LOCK_ASSERT();
2412 
2413     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2414 	m_freem(mb_copy);
2415 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2416     }
2417 
2418     /*
2419      * Add a new mbuf with the encapsulating header
2420      */
2421     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2422     if (mb_first == NULL) {
2423 	m_freem(mb_copy);
2424 	return ENOBUFS;
2425     }
2426     mb_first->m_data += max_linkhdr;
2427     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2428     mb_first->m_next = mb_copy;
2429 
2430     mb_first->m_pkthdr.len = len + mb_first->m_len;
2431 
2432     /*
2433      * Fill in the encapsulating IP and PIM header
2434      */
2435     ip_outer = mtod(mb_first, struct ip *);
2436     *ip_outer = pim_encap_iphdr;
2437     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2438 	sizeof(pim_encap_pimhdr));
2439     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2440     ip_outer->ip_dst = rt->mfc_rp;
2441     /*
2442      * Copy the inner header TOS to the outer header, and take care of the
2443      * IP_DF bit.
2444      */
2445     ip_outer->ip_tos = ip->ip_tos;
2446     if (ip->ip_off & htons(IP_DF))
2447 	ip_outer->ip_off |= htons(IP_DF);
2448     ip_fillid(ip_outer);
2449     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2450 					 + sizeof(pim_encap_iphdr));
2451     *pimhdr = pim_encap_pimhdr;
2452     /* If the iif crosses a border, set the Border-bit */
2453     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2454 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2455 
2456     mb_first->m_data += sizeof(pim_encap_iphdr);
2457     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2458     mb_first->m_data -= sizeof(pim_encap_iphdr);
2459 
2460     send_packet(vifp, mb_first);
2461 
2462     /* Keep statistics */
2463     PIMSTAT_INC(pims_snd_registers_msgs);
2464     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2465 
2466     return 0;
2467 }
2468 
2469 /*
2470  * pim_encapcheck() is called by the encap4_input() path at runtime to
2471  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2472  * into the kernel.
2473  */
2474 static int
2475 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2476     int proto __unused, void *arg __unused)
2477 {
2478 
2479     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2480     return (8);		/* claim the datagram. */
2481 }
2482 
2483 /*
2484  * PIM-SMv2 and PIM-DM messages processing.
2485  * Receives and verifies the PIM control messages, and passes them
2486  * up to the listening socket, using rip_input().
2487  * The only message with special processing is the PIM_REGISTER message
2488  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2489  * is passed to if_simloop().
2490  */
2491 static int
2492 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2493 {
2494     struct ip *ip = mtod(m, struct ip *);
2495     struct pim *pim;
2496     int iphlen = off;
2497     int minlen;
2498     int datalen = ntohs(ip->ip_len) - iphlen;
2499     int ip_tos;
2500 
2501     /* Keep statistics */
2502     PIMSTAT_INC(pims_rcv_total_msgs);
2503     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2504 
2505     /*
2506      * Validate lengths
2507      */
2508     if (datalen < PIM_MINLEN) {
2509 	PIMSTAT_INC(pims_rcv_tooshort);
2510 	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2511 	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2512 	m_freem(m);
2513 	return (IPPROTO_DONE);
2514     }
2515 
2516     /*
2517      * If the packet is at least as big as a REGISTER, go agead
2518      * and grab the PIM REGISTER header size, to avoid another
2519      * possible m_pullup() later.
2520      *
2521      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2522      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2523      */
2524     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2525     /*
2526      * Get the IP and PIM headers in contiguous memory, and
2527      * possibly the PIM REGISTER header.
2528      */
2529     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2530 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2531 	return (IPPROTO_DONE);
2532     }
2533 
2534     /* m_pullup() may have given us a new mbuf so reset ip. */
2535     ip = mtod(m, struct ip *);
2536     ip_tos = ip->ip_tos;
2537 
2538     /* adjust mbuf to point to the PIM header */
2539     m->m_data += iphlen;
2540     m->m_len  -= iphlen;
2541     pim = mtod(m, struct pim *);
2542 
2543     /*
2544      * Validate checksum. If PIM REGISTER, exclude the data packet.
2545      *
2546      * XXX: some older PIMv2 implementations don't make this distinction,
2547      * so for compatibility reason perform the checksum over part of the
2548      * message, and if error, then over the whole message.
2549      */
2550     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2551 	/* do nothing, checksum okay */
2552     } else if (in_cksum(m, datalen)) {
2553 	PIMSTAT_INC(pims_rcv_badsum);
2554 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2555 	m_freem(m);
2556 	return (IPPROTO_DONE);
2557     }
2558 
2559     /* PIM version check */
2560     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2561 	PIMSTAT_INC(pims_rcv_badversion);
2562 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2563 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2564 	m_freem(m);
2565 	return (IPPROTO_DONE);
2566     }
2567 
2568     /* restore mbuf back to the outer IP */
2569     m->m_data -= iphlen;
2570     m->m_len  += iphlen;
2571 
2572     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2573 	/*
2574 	 * Since this is a REGISTER, we'll make a copy of the register
2575 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2576 	 * routing daemon.
2577 	 */
2578 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2579 	struct mbuf *mcp;
2580 	struct ip *encap_ip;
2581 	u_int32_t *reghdr;
2582 	struct ifnet *vifp;
2583 
2584 	MRW_RLOCK();
2585 	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2586 	    MRW_RUNLOCK();
2587 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2588 		(int)V_reg_vif_num);
2589 	    m_freem(m);
2590 	    return (IPPROTO_DONE);
2591 	}
2592 	/* XXX need refcnt? */
2593 	vifp = V_viftable[V_reg_vif_num].v_ifp;
2594 	MRW_RUNLOCK();
2595 
2596 	/*
2597 	 * Validate length
2598 	 */
2599 	if (datalen < PIM_REG_MINLEN) {
2600 	    PIMSTAT_INC(pims_rcv_tooshort);
2601 	    PIMSTAT_INC(pims_rcv_badregisters);
2602 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2603 	    m_freem(m);
2604 	    return (IPPROTO_DONE);
2605 	}
2606 
2607 	reghdr = (u_int32_t *)(pim + 1);
2608 	encap_ip = (struct ip *)(reghdr + 1);
2609 
2610 	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2611 	    __func__, ntohl(encap_ip->ip_src.s_addr),
2612 	    ntohs(encap_ip->ip_len));
2613 
2614 	/* verify the version number of the inner packet */
2615 	if (encap_ip->ip_v != IPVERSION) {
2616 	    PIMSTAT_INC(pims_rcv_badregisters);
2617 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2618 	    m_freem(m);
2619 	    return (IPPROTO_DONE);
2620 	}
2621 
2622 	/* verify the inner packet is destined to a mcast group */
2623 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2624 	    PIMSTAT_INC(pims_rcv_badregisters);
2625 	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2626 		ntohl(encap_ip->ip_dst.s_addr));
2627 	    m_freem(m);
2628 	    return (IPPROTO_DONE);
2629 	}
2630 
2631 	/* If a NULL_REGISTER, pass it to the daemon */
2632 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2633 	    goto pim_input_to_daemon;
2634 
2635 	/*
2636 	 * Copy the TOS from the outer IP header to the inner IP header.
2637 	 */
2638 	if (encap_ip->ip_tos != ip_tos) {
2639 	    /* Outer TOS -> inner TOS */
2640 	    encap_ip->ip_tos = ip_tos;
2641 	    /* Recompute the inner header checksum. Sigh... */
2642 
2643 	    /* adjust mbuf to point to the inner IP header */
2644 	    m->m_data += (iphlen + PIM_MINLEN);
2645 	    m->m_len  -= (iphlen + PIM_MINLEN);
2646 
2647 	    encap_ip->ip_sum = 0;
2648 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2649 
2650 	    /* restore mbuf to point back to the outer IP header */
2651 	    m->m_data -= (iphlen + PIM_MINLEN);
2652 	    m->m_len  += (iphlen + PIM_MINLEN);
2653 	}
2654 
2655 	/*
2656 	 * Decapsulate the inner IP packet and loopback to forward it
2657 	 * as a normal multicast packet. Also, make a copy of the
2658 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2659 	 * to pass to the daemon later, so it can take the appropriate
2660 	 * actions (e.g., send back PIM_REGISTER_STOP).
2661 	 * XXX: here m->m_data points to the outer IP header.
2662 	 */
2663 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2664 	if (mcp == NULL) {
2665 	    CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2666 	    m_freem(m);
2667 	    return (IPPROTO_DONE);
2668 	}
2669 
2670 	/* Keep statistics */
2671 	/* XXX: registers_bytes include only the encap. mcast pkt */
2672 	PIMSTAT_INC(pims_rcv_registers_msgs);
2673 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2674 
2675 	/*
2676 	 * forward the inner ip packet; point m_data at the inner ip.
2677 	 */
2678 	m_adj(m, iphlen + PIM_MINLEN);
2679 
2680 	CTR4(KTR_IPMF,
2681 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2682 	    __func__,
2683 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2684 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2685 	    (int)V_reg_vif_num);
2686 
2687 	/* NB: vifp was collected above; can it change on us? */
2688 	if_simloop(vifp, m, dst.sin_family, 0);
2689 
2690 	/* prepare the register head to send to the mrouting daemon */
2691 	m = mcp;
2692     }
2693 
2694 pim_input_to_daemon:
2695     /*
2696      * Pass the PIM message up to the daemon; if it is a Register message,
2697      * pass the 'head' only up to the daemon. This includes the
2698      * outer IP header, PIM header, PIM-Register header and the
2699      * inner IP header.
2700      * XXX: the outer IP header pkt size of a Register is not adjust to
2701      * reflect the fact that the inner multicast data is truncated.
2702      */
2703     return (rip_input(&m, &off, proto));
2704 }
2705 
2706 static int
2707 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2708 {
2709 	struct mfc	*rt;
2710 	int		 error, i;
2711 
2712 	if (req->newptr)
2713 		return (EPERM);
2714 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2715 		return (0);
2716 	error = sysctl_wire_old_buffer(req, 0);
2717 	if (error)
2718 		return (error);
2719 
2720 	MRW_RLOCK();
2721 	for (i = 0; i < mfchashsize; i++) {
2722 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2723 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2724 			if (error)
2725 				goto out_locked;
2726 		}
2727 	}
2728 out_locked:
2729 	MRW_RUNLOCK();
2730 	return (error);
2731 }
2732 
2733 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2734     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2735     "IPv4 Multicast Forwarding Table "
2736     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2737 
2738 static int
2739 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2740 {
2741 	int error, i;
2742 
2743 	if (req->newptr)
2744 		return (EPERM);
2745 	if (V_viftable == NULL)		/* XXX unlocked */
2746 		return (0);
2747 	error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
2748 	if (error)
2749 		return (error);
2750 
2751 	MRW_RLOCK();
2752 	/* Copy out user-visible portion of vif entry. */
2753 	for (i = 0; i < MAXVIFS; i++) {
2754 		error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
2755 		if (error)
2756 			break;
2757 	}
2758 	MRW_RUNLOCK();
2759 	return (error);
2760 }
2761 
2762 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2763     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2764     sysctl_viflist, "S,vif[MAXVIFS]",
2765     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2766 
2767 static void
2768 vnet_mroute_init(const void *unused __unused)
2769 {
2770 
2771 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2772 
2773 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2774 	    M_MRTABLE, M_WAITOK|M_ZERO);
2775 
2776 	callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0);
2777 	callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0);
2778 
2779 	/* Prepare taskqueue */
2780 	V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2781 		    taskqueue_thread_enqueue, &V_task_queue);
2782 	taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2783 }
2784 
2785 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2786 	NULL);
2787 
2788 static void
2789 vnet_mroute_uninit(const void *unused __unused)
2790 {
2791 
2792 	/* Taskqueue should be cancelled and drained before freeing */
2793 	taskqueue_free(V_task_queue);
2794 
2795 	free(V_viftable, M_MRTABLE);
2796 	free(V_nexpire, M_MRTABLE);
2797 	V_nexpire = NULL;
2798 }
2799 
2800 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2801 	vnet_mroute_uninit, NULL);
2802 
2803 static int
2804 ip_mroute_modevent(module_t mod, int type, void *unused)
2805 {
2806 
2807     switch (type) {
2808     case MOD_LOAD:
2809 	MRW_LOCK_INIT();
2810 
2811 	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2812 	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2813 	if (if_detach_event_tag == NULL) {
2814 		printf("ip_mroute: unable to register "
2815 		    "ifnet_departure_event handler\n");
2816 		MRW_LOCK_DESTROY();
2817 		return (EINVAL);
2818 	}
2819 
2820 	mfchashsize = MFCHASHSIZE;
2821 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2822 	    !powerof2(mfchashsize)) {
2823 		printf("WARNING: %s not a power of 2; using default\n",
2824 		    "net.inet.ip.mfchashsize");
2825 		mfchashsize = MFCHASHSIZE;
2826 	}
2827 
2828 	pim_squelch_wholepkt = 0;
2829 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2830 	    &pim_squelch_wholepkt);
2831 
2832 	pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2833 	if (pim_encap_cookie == NULL) {
2834 		printf("ip_mroute: unable to attach pim encap\n");
2835 		MRW_LOCK_DESTROY();
2836 		return (EINVAL);
2837 	}
2838 
2839 	ip_mcast_src = X_ip_mcast_src;
2840 	ip_mforward = X_ip_mforward;
2841 	ip_mrouter_done = X_ip_mrouter_done;
2842 	ip_mrouter_get = X_ip_mrouter_get;
2843 	ip_mrouter_set = X_ip_mrouter_set;
2844 
2845 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2846 	ip_rsvp_vif = X_ip_rsvp_vif;
2847 
2848 	legal_vif_num = X_legal_vif_num;
2849 	mrt_ioctl = X_mrt_ioctl;
2850 	rsvp_input_p = X_rsvp_input;
2851 	break;
2852 
2853     case MOD_UNLOAD:
2854 	/*
2855 	 * Typically module unload happens after the user-level
2856 	 * process has shutdown the kernel services (the check
2857 	 * below insures someone can't just yank the module out
2858 	 * from under a running process).  But if the module is
2859 	 * just loaded and then unloaded w/o starting up a user
2860 	 * process we still need to cleanup.
2861 	 */
2862 	MRW_WLOCK();
2863 	if (ip_mrouter_cnt != 0) {
2864 	    MRW_WUNLOCK();
2865 	    return (EINVAL);
2866 	}
2867 	ip_mrouter_unloading = 1;
2868 	MRW_WUNLOCK();
2869 
2870 	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2871 
2872 	if (pim_encap_cookie) {
2873 	    ip_encap_detach(pim_encap_cookie);
2874 	    pim_encap_cookie = NULL;
2875 	}
2876 
2877 	ip_mcast_src = NULL;
2878 	ip_mforward = NULL;
2879 	ip_mrouter_done = NULL;
2880 	ip_mrouter_get = NULL;
2881 	ip_mrouter_set = NULL;
2882 
2883 	ip_rsvp_force_done = NULL;
2884 	ip_rsvp_vif = NULL;
2885 
2886 	legal_vif_num = NULL;
2887 	mrt_ioctl = NULL;
2888 	rsvp_input_p = NULL;
2889 
2890 	MRW_LOCK_DESTROY();
2891 	break;
2892 
2893     default:
2894 	return EOPNOTSUPP;
2895     }
2896     return 0;
2897 }
2898 
2899 static moduledata_t ip_mroutemod = {
2900     "ip_mroute",
2901     ip_mroute_modevent,
2902     0
2903 };
2904 
2905 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2906