1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_private.h> 110 #include <net/if_types.h> 111 #include <net/netisr.h> 112 #include <net/route.h> 113 #include <net/vnet.h> 114 115 #include <netinet/in.h> 116 #include <netinet/igmp.h> 117 #include <netinet/in_systm.h> 118 #include <netinet/in_var.h> 119 #include <netinet/ip.h> 120 #include <netinet/ip_encap.h> 121 #include <netinet/ip_mroute.h> 122 #include <netinet/ip_var.h> 123 #include <netinet/ip_options.h> 124 #include <netinet/pim.h> 125 #include <netinet/pim_var.h> 126 #include <netinet/udp.h> 127 128 #include <machine/in_cksum.h> 129 130 #ifndef KTR_IPMF 131 #define KTR_IPMF KTR_INET 132 #endif 133 134 #define VIFI_INVALID ((vifi_t) -1) 135 136 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 137 138 /* 139 * Locking. We use two locks: one for the virtual interface table and 140 * one for the forwarding table. These locks may be nested in which case 141 * the VIF lock must always be taken first. Note that each lock is used 142 * to cover not only the specific data structure but also related data 143 * structures. 144 */ 145 146 static struct rwlock mrouter_mtx; 147 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 148 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 149 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 150 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 151 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 152 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 153 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 154 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 155 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 156 #define MRW_LOCK_INIT() \ 157 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 158 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 159 160 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 161 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 162 163 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 164 VNET_PCPUSTAT_SYSINIT(mrtstat); 165 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 166 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 167 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 168 "netinet/ip_mroute.h)"); 169 170 VNET_DEFINE_STATIC(u_long, mfchash); 171 #define V_mfchash VNET(mfchash) 172 #define MFCHASH(a, g) \ 173 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 174 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 175 #define MFCHASHSIZE 256 176 177 static u_long mfchashsize; /* Hash size */ 178 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 179 #define V_nexpire VNET(nexpire) 180 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 181 #define V_mfchashtbl VNET(mfchashtbl) 182 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 183 #define V_task_queue VNET(task_queue) 184 VNET_DEFINE_STATIC(struct task, task); 185 #define V_task VNET(task) 186 187 VNET_DEFINE_STATIC(vifi_t, numvifs); 188 #define V_numvifs VNET(numvifs) 189 VNET_DEFINE_STATIC(struct vif *, viftable); 190 #define V_viftable VNET(viftable) 191 192 static eventhandler_tag if_detach_event_tag = NULL; 193 194 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 196 197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 198 #define V_buf_ring_mtx VNET(buf_ring_mtx) 199 200 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 201 #define UPCALL_EXPIRE 6 /* number of timeouts */ 202 203 /* 204 * Bandwidth meter variables and constants 205 */ 206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 207 208 /* 209 * Pending upcalls are stored in a ring which is flushed when 210 * full, or periodically 211 */ 212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 215 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 217 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 218 219 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 220 221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 222 VNET_PCPUSTAT_SYSINIT(pimstat); 223 VNET_PCPUSTAT_SYSUNINIT(pimstat); 224 225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 226 "PIM"); 227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 228 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 229 230 static u_long pim_squelch_wholepkt = 0; 231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 232 &pim_squelch_wholepkt, 0, 233 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 234 235 static const struct encaptab *pim_encap_cookie; 236 static int pim_encapcheck(const struct mbuf *, int, int, void *); 237 static int pim_input(struct mbuf *, int, int, void *); 238 239 extern int in_mcast_loop; 240 241 static const struct encap_config ipv4_encap_cfg = { 242 .proto = IPPROTO_PIM, 243 .min_length = sizeof(struct ip) + PIM_MINLEN, 244 .exact_match = 8, 245 .check = pim_encapcheck, 246 .input = pim_input 247 }; 248 249 /* 250 * Note: the PIM Register encapsulation adds the following in front of a 251 * data packet: 252 * 253 * struct pim_encap_hdr { 254 * struct ip ip; 255 * struct pim_encap_pimhdr pim; 256 * } 257 * 258 */ 259 260 struct pim_encap_pimhdr { 261 struct pim pim; 262 uint32_t flags; 263 }; 264 #define PIM_ENCAP_TTL 64 265 266 static struct ip pim_encap_iphdr = { 267 #if BYTE_ORDER == LITTLE_ENDIAN 268 sizeof(struct ip) >> 2, 269 IPVERSION, 270 #else 271 IPVERSION, 272 sizeof(struct ip) >> 2, 273 #endif 274 0, /* tos */ 275 sizeof(struct ip), /* total length */ 276 0, /* id */ 277 0, /* frag offset */ 278 PIM_ENCAP_TTL, 279 IPPROTO_PIM, 280 0, /* checksum */ 281 }; 282 283 static struct pim_encap_pimhdr pim_encap_pimhdr = { 284 { 285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 286 0, /* reserved */ 287 0, /* checksum */ 288 }, 289 0 /* flags */ 290 }; 291 292 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 293 #define V_reg_vif_num VNET(reg_vif_num) 294 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 295 #define V_multicast_register_if VNET(multicast_register_if) 296 297 /* 298 * Private variables. 299 */ 300 301 static u_long X_ip_mcast_src(int); 302 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 303 struct ip_moptions *); 304 static int X_ip_mrouter_done(void); 305 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 306 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 307 static int X_legal_vif_num(int); 308 static int X_mrt_ioctl(u_long, caddr_t, int); 309 310 static int add_bw_upcall(struct bw_upcall *); 311 static int add_mfc(struct mfcctl2 *); 312 static int add_vif(struct vifctl *); 313 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 314 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 315 struct timeval *); 316 static void bw_upcalls_send(void); 317 static int del_bw_upcall(struct bw_upcall *); 318 static int del_mfc(struct mfcctl2 *); 319 static int del_vif(vifi_t); 320 static int del_vif_locked(vifi_t, struct ifnet **); 321 static void expire_bw_upcalls_send(void *); 322 static void expire_mfc(struct mfc *); 323 static void expire_upcalls(void *); 324 static void free_bw_list(struct bw_meter *); 325 static int get_sg_cnt(struct sioc_sg_req *); 326 static int get_vif_cnt(struct sioc_vif_req *); 327 static void if_detached_event(void *, struct ifnet *); 328 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 329 static int ip_mrouter_init(struct socket *, int); 330 static __inline struct mfc * 331 mfc_find(struct in_addr *, struct in_addr *); 332 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 333 static struct mbuf * 334 pim_register_prepare(struct ip *, struct mbuf *); 335 static int pim_register_send(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_rp(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static int pim_register_send_upcall(struct ip *, struct vif *, 340 struct mbuf *, struct mfc *); 341 static void send_packet(struct vif *, struct mbuf *); 342 static int set_api_config(uint32_t *); 343 static int set_assert(int); 344 static int socket_send(struct socket *, struct mbuf *, 345 struct sockaddr_in *); 346 347 /* 348 * Kernel multicast forwarding API capabilities and setup. 349 * If more API capabilities are added to the kernel, they should be 350 * recorded in `mrt_api_support'. 351 */ 352 #define MRT_API_VERSION 0x0305 353 354 static const int mrt_api_version = MRT_API_VERSION; 355 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 356 MRT_MFC_FLAGS_BORDER_VIF | 357 MRT_MFC_RP | 358 MRT_MFC_BW_UPCALL); 359 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 360 #define V_mrt_api_config VNET(mrt_api_config) 361 VNET_DEFINE_STATIC(int, pim_assert_enabled); 362 #define V_pim_assert_enabled VNET(pim_assert_enabled) 363 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 364 365 /* 366 * Find a route for a given origin IP address and multicast group address. 367 * Statistics must be updated by the caller. 368 */ 369 static __inline struct mfc * 370 mfc_find(struct in_addr *o, struct in_addr *g) 371 { 372 struct mfc *rt; 373 374 /* 375 * Might be called both RLOCK and WLOCK. 376 * Check if any, it's caller responsibility 377 * to choose correct option. 378 */ 379 MRW_LOCK_ASSERT(); 380 381 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 382 if (in_hosteq(rt->mfc_origin, *o) && 383 in_hosteq(rt->mfc_mcastgrp, *g) && 384 buf_ring_empty(rt->mfc_stall_ring)) 385 break; 386 } 387 388 return (rt); 389 } 390 391 static __inline struct mfc * 392 mfc_alloc(void) 393 { 394 struct mfc *rt; 395 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 396 if (rt == NULL) 397 return rt; 398 399 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 400 M_NOWAIT, &V_buf_ring_mtx); 401 if (rt->mfc_stall_ring == NULL) { 402 free(rt, M_MRTABLE); 403 return NULL; 404 } 405 406 return rt; 407 } 408 409 /* 410 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 411 */ 412 static int 413 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 414 { 415 int error, optval; 416 vifi_t vifi; 417 struct vifctl vifc; 418 struct mfcctl2 mfc; 419 struct bw_upcall bw_upcall; 420 uint32_t i; 421 422 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 423 return EPERM; 424 425 error = 0; 426 switch (sopt->sopt_name) { 427 case MRT_INIT: 428 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 429 if (error) 430 break; 431 error = ip_mrouter_init(so, optval); 432 break; 433 434 case MRT_DONE: 435 error = ip_mrouter_done(); 436 break; 437 438 case MRT_ADD_VIF: 439 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 440 if (error) 441 break; 442 error = add_vif(&vifc); 443 break; 444 445 case MRT_DEL_VIF: 446 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 447 if (error) 448 break; 449 error = del_vif(vifi); 450 break; 451 452 case MRT_ADD_MFC: 453 case MRT_DEL_MFC: 454 /* 455 * select data size depending on API version. 456 */ 457 if (sopt->sopt_name == MRT_ADD_MFC && 458 V_mrt_api_config & MRT_API_FLAGS_ALL) { 459 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 460 sizeof(struct mfcctl2)); 461 } else { 462 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 463 sizeof(struct mfcctl)); 464 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 465 sizeof(mfc) - sizeof(struct mfcctl)); 466 } 467 if (error) 468 break; 469 if (sopt->sopt_name == MRT_ADD_MFC) 470 error = add_mfc(&mfc); 471 else 472 error = del_mfc(&mfc); 473 break; 474 475 case MRT_ASSERT: 476 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 477 if (error) 478 break; 479 set_assert(optval); 480 break; 481 482 case MRT_API_CONFIG: 483 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 484 if (!error) 485 error = set_api_config(&i); 486 if (!error) 487 error = sooptcopyout(sopt, &i, sizeof i); 488 break; 489 490 case MRT_ADD_BW_UPCALL: 491 case MRT_DEL_BW_UPCALL: 492 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 493 sizeof bw_upcall); 494 if (error) 495 break; 496 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 497 error = add_bw_upcall(&bw_upcall); 498 else 499 error = del_bw_upcall(&bw_upcall); 500 break; 501 502 default: 503 error = EOPNOTSUPP; 504 break; 505 } 506 return error; 507 } 508 509 /* 510 * Handle MRT getsockopt commands 511 */ 512 static int 513 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 514 { 515 int error; 516 517 switch (sopt->sopt_name) { 518 case MRT_VERSION: 519 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 520 break; 521 522 case MRT_ASSERT: 523 error = sooptcopyout(sopt, &V_pim_assert_enabled, 524 sizeof V_pim_assert_enabled); 525 break; 526 527 case MRT_API_SUPPORT: 528 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 529 break; 530 531 case MRT_API_CONFIG: 532 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 533 break; 534 535 default: 536 error = EOPNOTSUPP; 537 break; 538 } 539 return error; 540 } 541 542 /* 543 * Handle ioctl commands to obtain information from the cache 544 */ 545 static int 546 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 547 { 548 int error = 0; 549 550 /* 551 * Currently the only function calling this ioctl routine is rtioctl_fib(). 552 * Typically, only root can create the raw socket in order to execute 553 * this ioctl method, however the request might be coming from a prison 554 */ 555 error = priv_check(curthread, PRIV_NETINET_MROUTE); 556 if (error) 557 return (error); 558 switch (cmd) { 559 case (SIOCGETVIFCNT): 560 error = get_vif_cnt((struct sioc_vif_req *)data); 561 break; 562 563 case (SIOCGETSGCNT): 564 error = get_sg_cnt((struct sioc_sg_req *)data); 565 break; 566 567 default: 568 error = EINVAL; 569 break; 570 } 571 return error; 572 } 573 574 /* 575 * returns the packet, byte, rpf-failure count for the source group provided 576 */ 577 static int 578 get_sg_cnt(struct sioc_sg_req *req) 579 { 580 struct mfc *rt; 581 582 MRW_RLOCK(); 583 rt = mfc_find(&req->src, &req->grp); 584 if (rt == NULL) { 585 MRW_RUNLOCK(); 586 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 587 return EADDRNOTAVAIL; 588 } 589 req->pktcnt = rt->mfc_pkt_cnt; 590 req->bytecnt = rt->mfc_byte_cnt; 591 req->wrong_if = rt->mfc_wrong_if; 592 MRW_RUNLOCK(); 593 return 0; 594 } 595 596 /* 597 * returns the input and output packet and byte counts on the vif provided 598 */ 599 static int 600 get_vif_cnt(struct sioc_vif_req *req) 601 { 602 vifi_t vifi = req->vifi; 603 604 MRW_RLOCK(); 605 if (vifi >= V_numvifs) { 606 MRW_RUNLOCK(); 607 return EINVAL; 608 } 609 610 mtx_lock_spin(&V_viftable[vifi].v_spin); 611 req->icount = V_viftable[vifi].v_pkt_in; 612 req->ocount = V_viftable[vifi].v_pkt_out; 613 req->ibytes = V_viftable[vifi].v_bytes_in; 614 req->obytes = V_viftable[vifi].v_bytes_out; 615 mtx_unlock_spin(&V_viftable[vifi].v_spin); 616 MRW_RUNLOCK(); 617 618 return 0; 619 } 620 621 static void 622 if_detached_event(void *arg __unused, struct ifnet *ifp) 623 { 624 vifi_t vifi; 625 u_long i, vifi_cnt = 0; 626 struct ifnet *free_ptr; 627 628 MRW_WLOCK(); 629 630 if (V_ip_mrouter == NULL) { 631 MRW_WUNLOCK(); 632 return; 633 } 634 635 /* 636 * Tear down multicast forwarder state associated with this ifnet. 637 * 1. Walk the vif list, matching vifs against this ifnet. 638 * 2. Walk the multicast forwarding cache (mfc) looking for 639 * inner matches with this vif's index. 640 * 3. Expire any matching multicast forwarding cache entries. 641 * 4. Free vif state. This should disable ALLMULTI on the interface. 642 */ 643 for (vifi = 0; vifi < V_numvifs; vifi++) { 644 if (V_viftable[vifi].v_ifp != ifp) 645 continue; 646 for (i = 0; i < mfchashsize; i++) { 647 struct mfc *rt, *nrt; 648 649 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 650 if (rt->mfc_parent == vifi) { 651 expire_mfc(rt); 652 } 653 } 654 } 655 del_vif_locked(vifi, &free_ptr); 656 if (free_ptr != NULL) 657 vifi_cnt++; 658 } 659 660 MRW_WUNLOCK(); 661 662 /* 663 * Free IFP. We don't have to use free_ptr here as it is the same 664 * that ifp. Perform free as many times as required in case 665 * refcount is greater than 1. 666 */ 667 for (i = 0; i < vifi_cnt; i++) 668 if_free(ifp); 669 } 670 671 static void 672 ip_mrouter_upcall_thread(void *arg, int pending __unused) 673 { 674 CURVNET_SET((struct vnet *) arg); 675 676 MRW_WLOCK(); 677 bw_upcalls_send(); 678 MRW_WUNLOCK(); 679 680 CURVNET_RESTORE(); 681 } 682 683 /* 684 * Enable multicast forwarding. 685 */ 686 static int 687 ip_mrouter_init(struct socket *so, int version) 688 { 689 690 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 691 692 if (version != 1) 693 return ENOPROTOOPT; 694 695 MRW_WLOCK(); 696 697 if (ip_mrouter_unloading) { 698 MRW_WUNLOCK(); 699 return ENOPROTOOPT; 700 } 701 702 if (V_ip_mrouter != NULL) { 703 MRW_WUNLOCK(); 704 return EADDRINUSE; 705 } 706 707 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 708 HASH_NOWAIT); 709 710 /* Create upcall ring */ 711 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 712 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 713 M_NOWAIT, &V_bw_upcalls_ring_mtx); 714 if (!V_bw_upcalls_ring) { 715 MRW_WUNLOCK(); 716 return (ENOMEM); 717 } 718 719 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 720 taskqueue_cancel(V_task_queue, &V_task, NULL); 721 taskqueue_unblock(V_task_queue); 722 723 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 724 curvnet); 725 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 726 curvnet); 727 728 V_ip_mrouter = so; 729 atomic_add_int(&ip_mrouter_cnt, 1); 730 731 /* This is a mutex required by buf_ring init, but not used internally */ 732 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 733 734 MRW_WUNLOCK(); 735 736 CTR1(KTR_IPMF, "%s: done", __func__); 737 738 return 0; 739 } 740 741 /* 742 * Disable multicast forwarding. 743 */ 744 static int 745 X_ip_mrouter_done(void) 746 { 747 struct ifnet **ifps; 748 int nifp; 749 u_long i; 750 vifi_t vifi; 751 struct bw_upcall *bu; 752 753 if (V_ip_mrouter == NULL) 754 return (EINVAL); 755 756 /* 757 * Detach/disable hooks to the reset of the system. 758 */ 759 V_ip_mrouter = NULL; 760 atomic_subtract_int(&ip_mrouter_cnt, 1); 761 V_mrt_api_config = 0; 762 763 /* 764 * Wait for all epoch sections to complete to ensure 765 * V_ip_mrouter = NULL is visible to others. 766 */ 767 epoch_wait_preempt(net_epoch_preempt); 768 769 /* Stop and drain task queue */ 770 taskqueue_block(V_task_queue); 771 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 772 taskqueue_drain(V_task_queue, &V_task); 773 } 774 775 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 776 777 MRW_WLOCK(); 778 taskqueue_cancel(V_task_queue, &V_task, NULL); 779 780 /* Destroy upcall ring */ 781 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 782 free(bu, M_MRTABLE); 783 } 784 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 785 mtx_destroy(&V_bw_upcalls_ring_mtx); 786 787 /* 788 * For each phyint in use, prepare to disable promiscuous reception 789 * of all IP multicasts. Defer the actual call until the lock is released; 790 * just record the list of interfaces while locked. Some interfaces use 791 * sx locks in their ioctl routines, which is not allowed while holding 792 * a non-sleepable lock. 793 */ 794 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 795 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 796 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 797 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 798 ifps[nifp++] = V_viftable[vifi].v_ifp; 799 } 800 } 801 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 802 V_numvifs = 0; 803 V_pim_assert_enabled = 0; 804 805 callout_stop(&V_expire_upcalls_ch); 806 callout_stop(&V_bw_upcalls_ch); 807 808 /* 809 * Free all multicast forwarding cache entries. 810 * Do not use hashdestroy(), as we must perform other cleanup. 811 */ 812 for (i = 0; i < mfchashsize; i++) { 813 struct mfc *rt, *nrt; 814 815 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 816 expire_mfc(rt); 817 } 818 } 819 free(V_mfchashtbl, M_MRTABLE); 820 V_mfchashtbl = NULL; 821 822 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 823 824 V_reg_vif_num = VIFI_INVALID; 825 826 mtx_destroy(&V_buf_ring_mtx); 827 828 MRW_WUNLOCK(); 829 830 /* 831 * Now drop our claim on promiscuous multicast on the interfaces recorded 832 * above. This is safe to do now because ALLMULTI is reference counted. 833 */ 834 for (vifi = 0; vifi < nifp; vifi++) 835 if_allmulti(ifps[vifi], 0); 836 free(ifps, M_TEMP); 837 838 CTR1(KTR_IPMF, "%s: done", __func__); 839 840 return 0; 841 } 842 843 /* 844 * Set PIM assert processing global 845 */ 846 static int 847 set_assert(int i) 848 { 849 if ((i != 1) && (i != 0)) 850 return EINVAL; 851 852 V_pim_assert_enabled = i; 853 854 return 0; 855 } 856 857 /* 858 * Configure API capabilities 859 */ 860 int 861 set_api_config(uint32_t *apival) 862 { 863 u_long i; 864 865 /* 866 * We can set the API capabilities only if it is the first operation 867 * after MRT_INIT. I.e.: 868 * - there are no vifs installed 869 * - pim_assert is not enabled 870 * - the MFC table is empty 871 */ 872 if (V_numvifs > 0) { 873 *apival = 0; 874 return EPERM; 875 } 876 if (V_pim_assert_enabled) { 877 *apival = 0; 878 return EPERM; 879 } 880 881 MRW_RLOCK(); 882 883 for (i = 0; i < mfchashsize; i++) { 884 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 885 MRW_RUNLOCK(); 886 *apival = 0; 887 return EPERM; 888 } 889 } 890 891 MRW_RUNLOCK(); 892 893 V_mrt_api_config = *apival & mrt_api_support; 894 *apival = V_mrt_api_config; 895 896 return 0; 897 } 898 899 /* 900 * Add a vif to the vif table 901 */ 902 static int 903 add_vif(struct vifctl *vifcp) 904 { 905 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 906 struct sockaddr_in sin = {sizeof sin, AF_INET}; 907 struct ifaddr *ifa; 908 struct ifnet *ifp; 909 int error; 910 911 912 if (vifcp->vifc_vifi >= MAXVIFS) 913 return EINVAL; 914 /* rate limiting is no longer supported by this code */ 915 if (vifcp->vifc_rate_limit != 0) { 916 log(LOG_ERR, "rate limiting is no longer supported\n"); 917 return EINVAL; 918 } 919 920 if (in_nullhost(vifcp->vifc_lcl_addr)) 921 return EADDRNOTAVAIL; 922 923 /* Find the interface with an address in AF_INET family */ 924 if (vifcp->vifc_flags & VIFF_REGISTER) { 925 /* 926 * XXX: Because VIFF_REGISTER does not really need a valid 927 * local interface (e.g. it could be 127.0.0.2), we don't 928 * check its address. 929 */ 930 ifp = NULL; 931 } else { 932 struct epoch_tracker et; 933 934 sin.sin_addr = vifcp->vifc_lcl_addr; 935 NET_EPOCH_ENTER(et); 936 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 937 if (ifa == NULL) { 938 NET_EPOCH_EXIT(et); 939 return EADDRNOTAVAIL; 940 } 941 ifp = ifa->ifa_ifp; 942 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 943 NET_EPOCH_EXIT(et); 944 } 945 946 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 947 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 948 return EOPNOTSUPP; 949 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 950 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 951 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 952 if (V_reg_vif_num == VIFI_INVALID) { 953 if_initname(V_multicast_register_if, "register_vif", 0); 954 V_reg_vif_num = vifcp->vifc_vifi; 955 } 956 } else { /* Make sure the interface supports multicast */ 957 if ((ifp->if_flags & IFF_MULTICAST) == 0) 958 return EOPNOTSUPP; 959 960 /* Enable promiscuous reception of all IP multicasts from the if */ 961 error = if_allmulti(ifp, 1); 962 if (error) 963 return error; 964 } 965 966 MRW_WLOCK(); 967 968 if (!in_nullhost(vifp->v_lcl_addr)) { 969 if (ifp) 970 V_multicast_register_if = NULL; 971 MRW_WUNLOCK(); 972 if (ifp) 973 if_free(ifp); 974 return EADDRINUSE; 975 } 976 977 vifp->v_flags = vifcp->vifc_flags; 978 vifp->v_threshold = vifcp->vifc_threshold; 979 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 980 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 981 vifp->v_ifp = ifp; 982 /* initialize per vif pkt counters */ 983 vifp->v_pkt_in = 0; 984 vifp->v_pkt_out = 0; 985 vifp->v_bytes_in = 0; 986 vifp->v_bytes_out = 0; 987 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 988 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 989 990 /* Adjust numvifs up if the vifi is higher than numvifs */ 991 if (V_numvifs <= vifcp->vifc_vifi) 992 V_numvifs = vifcp->vifc_vifi + 1; 993 994 MRW_WUNLOCK(); 995 996 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 997 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 998 (int)vifcp->vifc_threshold); 999 1000 return 0; 1001 } 1002 1003 /* 1004 * Delete a vif from the vif table 1005 */ 1006 static int 1007 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) 1008 { 1009 struct vif *vifp; 1010 1011 *ifp_free = NULL; 1012 1013 MRW_WLOCK_ASSERT(); 1014 1015 if (vifi >= V_numvifs) { 1016 return EINVAL; 1017 } 1018 vifp = &V_viftable[vifi]; 1019 if (in_nullhost(vifp->v_lcl_addr)) { 1020 return EADDRNOTAVAIL; 1021 } 1022 1023 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1024 if_allmulti(vifp->v_ifp, 0); 1025 1026 if (vifp->v_flags & VIFF_REGISTER) { 1027 V_reg_vif_num = VIFI_INVALID; 1028 if (vifp->v_ifp) { 1029 if (vifp->v_ifp == V_multicast_register_if) 1030 V_multicast_register_if = NULL; 1031 *ifp_free = vifp->v_ifp; 1032 } 1033 } 1034 1035 mtx_destroy(&vifp->v_spin); 1036 1037 bzero((caddr_t)vifp, sizeof (*vifp)); 1038 1039 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1040 1041 /* Adjust numvifs down */ 1042 for (vifi = V_numvifs; vifi > 0; vifi--) 1043 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1044 break; 1045 V_numvifs = vifi; 1046 1047 return 0; 1048 } 1049 1050 static int 1051 del_vif(vifi_t vifi) 1052 { 1053 int cc; 1054 struct ifnet *free_ptr; 1055 1056 MRW_WLOCK(); 1057 cc = del_vif_locked(vifi, &free_ptr); 1058 MRW_WUNLOCK(); 1059 1060 if (free_ptr) 1061 if_free(free_ptr); 1062 1063 return cc; 1064 } 1065 1066 /* 1067 * update an mfc entry without resetting counters and S,G addresses. 1068 */ 1069 static void 1070 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1071 { 1072 int i; 1073 1074 rt->mfc_parent = mfccp->mfcc_parent; 1075 for (i = 0; i < V_numvifs; i++) { 1076 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1077 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1078 MRT_MFC_FLAGS_ALL; 1079 } 1080 /* set the RP address */ 1081 if (V_mrt_api_config & MRT_MFC_RP) 1082 rt->mfc_rp = mfccp->mfcc_rp; 1083 else 1084 rt->mfc_rp.s_addr = INADDR_ANY; 1085 } 1086 1087 /* 1088 * fully initialize an mfc entry from the parameter. 1089 */ 1090 static void 1091 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1092 { 1093 rt->mfc_origin = mfccp->mfcc_origin; 1094 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1095 1096 update_mfc_params(rt, mfccp); 1097 1098 /* initialize pkt counters per src-grp */ 1099 rt->mfc_pkt_cnt = 0; 1100 rt->mfc_byte_cnt = 0; 1101 rt->mfc_wrong_if = 0; 1102 timevalclear(&rt->mfc_last_assert); 1103 } 1104 1105 static void 1106 expire_mfc(struct mfc *rt) 1107 { 1108 struct rtdetq *rte; 1109 1110 MRW_WLOCK_ASSERT(); 1111 1112 free_bw_list(rt->mfc_bw_meter_leq); 1113 free_bw_list(rt->mfc_bw_meter_geq); 1114 1115 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1116 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1117 if (rte) { 1118 m_freem(rte->m); 1119 free(rte, M_MRTABLE); 1120 } 1121 } 1122 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1123 1124 LIST_REMOVE(rt, mfc_hash); 1125 free(rt, M_MRTABLE); 1126 } 1127 1128 /* 1129 * Add an mfc entry 1130 */ 1131 static int 1132 add_mfc(struct mfcctl2 *mfccp) 1133 { 1134 struct mfc *rt; 1135 struct rtdetq *rte; 1136 u_long hash = 0; 1137 u_short nstl; 1138 struct epoch_tracker et; 1139 1140 MRW_WLOCK(); 1141 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1142 1143 /* If an entry already exists, just update the fields */ 1144 if (rt) { 1145 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1146 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1147 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1148 mfccp->mfcc_parent); 1149 update_mfc_params(rt, mfccp); 1150 MRW_WUNLOCK(); 1151 return (0); 1152 } 1153 1154 /* 1155 * Find the entry for which the upcall was made and update 1156 */ 1157 nstl = 0; 1158 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1159 NET_EPOCH_ENTER(et); 1160 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1161 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1162 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1163 !buf_ring_empty(rt->mfc_stall_ring)) { 1164 CTR5(KTR_IPMF, 1165 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1166 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1167 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1168 mfccp->mfcc_parent, 1169 rt->mfc_stall_ring); 1170 if (nstl++) 1171 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1172 1173 init_mfc_params(rt, mfccp); 1174 rt->mfc_expire = 0; /* Don't clean this guy up */ 1175 V_nexpire[hash]--; 1176 1177 /* Free queued packets, but attempt to forward them first. */ 1178 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1179 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1180 if (rte->ifp != NULL) 1181 ip_mdq(rte->m, rte->ifp, rt, -1); 1182 m_freem(rte->m); 1183 free(rte, M_MRTABLE); 1184 } 1185 } 1186 } 1187 NET_EPOCH_EXIT(et); 1188 1189 /* 1190 * It is possible that an entry is being inserted without an upcall 1191 */ 1192 if (nstl == 0) { 1193 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1194 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1195 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1196 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1197 init_mfc_params(rt, mfccp); 1198 if (rt->mfc_expire) 1199 V_nexpire[hash]--; 1200 rt->mfc_expire = 0; 1201 break; /* XXX */ 1202 } 1203 } 1204 1205 if (rt == NULL) { /* no upcall, so make a new entry */ 1206 rt = mfc_alloc(); 1207 if (rt == NULL) { 1208 MRW_WUNLOCK(); 1209 return (ENOBUFS); 1210 } 1211 1212 init_mfc_params(rt, mfccp); 1213 1214 rt->mfc_expire = 0; 1215 rt->mfc_bw_meter_leq = NULL; 1216 rt->mfc_bw_meter_geq = NULL; 1217 1218 /* insert new entry at head of hash chain */ 1219 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1220 } 1221 } 1222 1223 MRW_WUNLOCK(); 1224 1225 return (0); 1226 } 1227 1228 /* 1229 * Delete an mfc entry 1230 */ 1231 static int 1232 del_mfc(struct mfcctl2 *mfccp) 1233 { 1234 struct in_addr origin; 1235 struct in_addr mcastgrp; 1236 struct mfc *rt; 1237 1238 origin = mfccp->mfcc_origin; 1239 mcastgrp = mfccp->mfcc_mcastgrp; 1240 1241 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1242 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1243 1244 MRW_WLOCK(); 1245 1246 rt = mfc_find(&origin, &mcastgrp); 1247 if (rt == NULL) { 1248 MRW_WUNLOCK(); 1249 return EADDRNOTAVAIL; 1250 } 1251 1252 /* 1253 * free the bw_meter entries 1254 */ 1255 free_bw_list(rt->mfc_bw_meter_leq); 1256 rt->mfc_bw_meter_leq = NULL; 1257 free_bw_list(rt->mfc_bw_meter_geq); 1258 rt->mfc_bw_meter_geq = NULL; 1259 1260 LIST_REMOVE(rt, mfc_hash); 1261 free(rt, M_MRTABLE); 1262 1263 MRW_WUNLOCK(); 1264 1265 return (0); 1266 } 1267 1268 /* 1269 * Send a message to the routing daemon on the multicast routing socket. 1270 */ 1271 static int 1272 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1273 { 1274 if (s) { 1275 SOCKBUF_LOCK(&s->so_rcv); 1276 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1277 NULL) != 0) { 1278 sorwakeup_locked(s); 1279 return 0; 1280 } 1281 soroverflow_locked(s); 1282 } 1283 m_freem(mm); 1284 return -1; 1285 } 1286 1287 /* 1288 * IP multicast forwarding function. This function assumes that the packet 1289 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1290 * pointed to by "ifp", and the packet is to be relayed to other networks 1291 * that have members of the packet's destination IP multicast group. 1292 * 1293 * The packet is returned unscathed to the caller, unless it is 1294 * erroneous, in which case a non-zero return value tells the caller to 1295 * discard it. 1296 */ 1297 1298 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1299 1300 static int 1301 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1302 struct ip_moptions *imo) 1303 { 1304 struct mfc *rt; 1305 int error; 1306 vifi_t vifi; 1307 struct mbuf *mb0; 1308 struct rtdetq *rte; 1309 u_long hash; 1310 int hlen; 1311 1312 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1313 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1314 1315 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1316 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1317 /* 1318 * Packet arrived via a physical interface or 1319 * an encapsulated tunnel or a register_vif. 1320 */ 1321 } else { 1322 /* 1323 * Packet arrived through a source-route tunnel. 1324 * Source-route tunnels are no longer supported. 1325 */ 1326 return (1); 1327 } 1328 1329 /* 1330 * BEGIN: MCAST ROUTING HOT PATH 1331 */ 1332 MRW_RLOCK(); 1333 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1334 if (ip->ip_ttl < MAXTTL) 1335 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1336 error = ip_mdq(m, ifp, NULL, vifi); 1337 MRW_RUNLOCK(); 1338 return error; 1339 } 1340 1341 /* 1342 * Don't forward a packet with time-to-live of zero or one, 1343 * or a packet destined to a local-only group. 1344 */ 1345 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1346 MRW_RUNLOCK(); 1347 return 0; 1348 } 1349 1350 mfc_find_retry: 1351 /* 1352 * Determine forwarding vifs from the forwarding cache table 1353 */ 1354 MRTSTAT_INC(mrts_mfc_lookups); 1355 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1356 1357 /* Entry exists, so forward if necessary */ 1358 if (rt != NULL) { 1359 error = ip_mdq(m, ifp, rt, -1); 1360 /* Generic unlock here as we might release R or W lock */ 1361 MRW_UNLOCK(); 1362 return error; 1363 } 1364 1365 /* 1366 * END: MCAST ROUTING HOT PATH 1367 */ 1368 1369 /* Further processing must be done with WLOCK taken */ 1370 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1371 MRW_RUNLOCK(); 1372 MRW_WLOCK(); 1373 goto mfc_find_retry; 1374 } 1375 1376 /* 1377 * If we don't have a route for packet's origin, 1378 * Make a copy of the packet & send message to routing daemon 1379 */ 1380 hlen = ip->ip_hl << 2; 1381 1382 MRTSTAT_INC(mrts_mfc_misses); 1383 MRTSTAT_INC(mrts_no_route); 1384 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1385 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1386 1387 /* 1388 * Allocate mbufs early so that we don't do extra work if we are 1389 * just going to fail anyway. Make sure to pullup the header so 1390 * that other people can't step on it. 1391 */ 1392 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1393 M_NOWAIT|M_ZERO); 1394 if (rte == NULL) { 1395 MRW_WUNLOCK(); 1396 return ENOBUFS; 1397 } 1398 1399 mb0 = m_copypacket(m, M_NOWAIT); 1400 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1401 mb0 = m_pullup(mb0, hlen); 1402 if (mb0 == NULL) { 1403 free(rte, M_MRTABLE); 1404 MRW_WUNLOCK(); 1405 return ENOBUFS; 1406 } 1407 1408 /* is there an upcall waiting for this flow ? */ 1409 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1410 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1411 { 1412 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1413 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1414 !buf_ring_empty(rt->mfc_stall_ring)) 1415 break; 1416 } 1417 1418 if (rt == NULL) { 1419 int i; 1420 struct igmpmsg *im; 1421 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1422 struct mbuf *mm; 1423 1424 /* 1425 * Locate the vifi for the incoming interface for this packet. 1426 * If none found, drop packet. 1427 */ 1428 for (vifi = 0; vifi < V_numvifs && 1429 V_viftable[vifi].v_ifp != ifp; vifi++) 1430 ; 1431 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1432 goto non_fatal; 1433 1434 /* no upcall, so make a new entry */ 1435 rt = mfc_alloc(); 1436 if (rt == NULL) 1437 goto fail; 1438 1439 /* Make a copy of the header to send to the user level process */ 1440 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1441 if (mm == NULL) 1442 goto fail1; 1443 1444 /* 1445 * Send message to routing daemon to install 1446 * a route into the kernel table 1447 */ 1448 1449 im = mtod(mm, struct igmpmsg*); 1450 im->im_msgtype = IGMPMSG_NOCACHE; 1451 im->im_mbz = 0; 1452 im->im_vif = vifi; 1453 1454 MRTSTAT_INC(mrts_upcalls); 1455 1456 k_igmpsrc.sin_addr = ip->ip_src; 1457 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1458 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1459 MRTSTAT_INC(mrts_upq_sockfull); 1460 fail1: free(rt, M_MRTABLE); 1461 fail: free(rte, M_MRTABLE); 1462 m_freem(mb0); 1463 MRW_WUNLOCK(); 1464 return ENOBUFS; 1465 } 1466 1467 /* insert new entry at head of hash chain */ 1468 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1469 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1470 rt->mfc_expire = UPCALL_EXPIRE; 1471 V_nexpire[hash]++; 1472 for (i = 0; i < V_numvifs; i++) { 1473 rt->mfc_ttls[i] = 0; 1474 rt->mfc_flags[i] = 0; 1475 } 1476 rt->mfc_parent = -1; 1477 1478 /* clear the RP address */ 1479 rt->mfc_rp.s_addr = INADDR_ANY; 1480 rt->mfc_bw_meter_leq = NULL; 1481 rt->mfc_bw_meter_geq = NULL; 1482 1483 /* initialize pkt counters per src-grp */ 1484 rt->mfc_pkt_cnt = 0; 1485 rt->mfc_byte_cnt = 0; 1486 rt->mfc_wrong_if = 0; 1487 timevalclear(&rt->mfc_last_assert); 1488 1489 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1490 1491 /* Add RT to hashtable as it didn't exist before */ 1492 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1493 } else { 1494 /* determine if queue has overflowed */ 1495 if (buf_ring_full(rt->mfc_stall_ring)) { 1496 MRTSTAT_INC(mrts_upq_ovflw); 1497 non_fatal: free(rte, M_MRTABLE); 1498 m_freem(mb0); 1499 MRW_WUNLOCK(); 1500 return (0); 1501 } 1502 1503 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1504 } 1505 1506 rte->m = mb0; 1507 rte->ifp = ifp; 1508 1509 MRW_WUNLOCK(); 1510 1511 return 0; 1512 } 1513 1514 /* 1515 * Clean up the cache entry if upcall is not serviced 1516 */ 1517 static void 1518 expire_upcalls(void *arg) 1519 { 1520 u_long i; 1521 1522 CURVNET_SET((struct vnet *) arg); 1523 1524 /*This callout is always run with MRW_WLOCK taken. */ 1525 1526 for (i = 0; i < mfchashsize; i++) { 1527 struct mfc *rt, *nrt; 1528 1529 if (V_nexpire[i] == 0) 1530 continue; 1531 1532 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1533 if (buf_ring_empty(rt->mfc_stall_ring)) 1534 continue; 1535 1536 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1537 continue; 1538 1539 MRTSTAT_INC(mrts_cache_cleanups); 1540 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1541 (u_long)ntohl(rt->mfc_origin.s_addr), 1542 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1543 1544 expire_mfc(rt); 1545 } 1546 } 1547 1548 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1549 curvnet); 1550 1551 CURVNET_RESTORE(); 1552 } 1553 1554 /* 1555 * Packet forwarding routine once entry in the cache is made 1556 */ 1557 static int 1558 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1559 { 1560 struct ip *ip = mtod(m, struct ip *); 1561 vifi_t vifi; 1562 int plen = ntohs(ip->ip_len); 1563 1564 MRW_LOCK_ASSERT(); 1565 NET_EPOCH_ASSERT(); 1566 1567 /* 1568 * If xmt_vif is not -1, send on only the requested vif. 1569 * 1570 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1571 */ 1572 if (xmt_vif < V_numvifs) { 1573 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1574 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1575 else 1576 phyint_send(ip, V_viftable + xmt_vif, m); 1577 return 1; 1578 } 1579 1580 /* 1581 * Don't forward if it didn't arrive from the parent vif for its origin. 1582 */ 1583 vifi = rt->mfc_parent; 1584 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1585 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1586 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1587 MRTSTAT_INC(mrts_wrong_if); 1588 ++rt->mfc_wrong_if; 1589 /* 1590 * If we are doing PIM assert processing, send a message 1591 * to the routing daemon. 1592 * 1593 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1594 * can complete the SPT switch, regardless of the type 1595 * of the iif (broadcast media, GRE tunnel, etc). 1596 */ 1597 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1598 V_viftable[vifi].v_ifp) { 1599 if (ifp == V_multicast_register_if) 1600 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1601 1602 /* Get vifi for the incoming packet */ 1603 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1604 vifi++) 1605 ; 1606 if (vifi >= V_numvifs) 1607 return 0; /* The iif is not found: ignore the packet. */ 1608 1609 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1610 return 0; /* WRONGVIF disabled: ignore the packet */ 1611 1612 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1613 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1614 struct igmpmsg *im; 1615 int hlen = ip->ip_hl << 2; 1616 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1617 1618 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1619 mm = m_pullup(mm, hlen); 1620 if (mm == NULL) 1621 return ENOBUFS; 1622 1623 im = mtod(mm, struct igmpmsg *); 1624 im->im_msgtype = IGMPMSG_WRONGVIF; 1625 im->im_mbz = 0; 1626 im->im_vif = vifi; 1627 1628 MRTSTAT_INC(mrts_upcalls); 1629 1630 k_igmpsrc.sin_addr = im->im_src; 1631 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1632 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1633 MRTSTAT_INC(mrts_upq_sockfull); 1634 return ENOBUFS; 1635 } 1636 } 1637 } 1638 return 0; 1639 } 1640 1641 /* If I sourced this packet, it counts as output, else it was input. */ 1642 mtx_lock_spin(&V_viftable[vifi].v_spin); 1643 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1644 V_viftable[vifi].v_pkt_out++; 1645 V_viftable[vifi].v_bytes_out += plen; 1646 } else { 1647 V_viftable[vifi].v_pkt_in++; 1648 V_viftable[vifi].v_bytes_in += plen; 1649 } 1650 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1651 1652 rt->mfc_pkt_cnt++; 1653 rt->mfc_byte_cnt += plen; 1654 1655 /* 1656 * For each vif, decide if a copy of the packet should be forwarded. 1657 * Forward if: 1658 * - the ttl exceeds the vif's threshold 1659 * - there are group members downstream on interface 1660 */ 1661 for (vifi = 0; vifi < V_numvifs; vifi++) 1662 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1663 V_viftable[vifi].v_pkt_out++; 1664 V_viftable[vifi].v_bytes_out += plen; 1665 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1666 pim_register_send(ip, V_viftable + vifi, m, rt); 1667 else 1668 phyint_send(ip, V_viftable + vifi, m); 1669 } 1670 1671 /* 1672 * Perform upcall-related bw measuring. 1673 */ 1674 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1675 struct bw_meter *x; 1676 struct timeval now; 1677 1678 microtime(&now); 1679 /* Process meters for Greater-or-EQual case */ 1680 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1681 bw_meter_geq_receive_packet(x, plen, &now); 1682 1683 /* Process meters for Lower-or-EQual case */ 1684 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1685 /* 1686 * Record that a packet is received. 1687 * Spin lock has to be taken as callout context 1688 * (expire_bw_meter_leq) might modify these fields 1689 * as well 1690 */ 1691 mtx_lock_spin(&x->bm_spin); 1692 x->bm_measured.b_packets++; 1693 x->bm_measured.b_bytes += plen; 1694 mtx_unlock_spin(&x->bm_spin); 1695 } 1696 } 1697 1698 return 0; 1699 } 1700 1701 /* 1702 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1703 */ 1704 static int 1705 X_legal_vif_num(int vif) 1706 { 1707 int ret; 1708 1709 ret = 0; 1710 if (vif < 0) 1711 return (ret); 1712 1713 MRW_RLOCK(); 1714 if (vif < V_numvifs) 1715 ret = 1; 1716 MRW_RUNLOCK(); 1717 1718 return (ret); 1719 } 1720 1721 /* 1722 * Return the local address used by this vif 1723 */ 1724 static u_long 1725 X_ip_mcast_src(int vifi) 1726 { 1727 in_addr_t addr; 1728 1729 addr = INADDR_ANY; 1730 if (vifi < 0) 1731 return (addr); 1732 1733 MRW_RLOCK(); 1734 if (vifi < V_numvifs) 1735 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1736 MRW_RUNLOCK(); 1737 1738 return (addr); 1739 } 1740 1741 static void 1742 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1743 { 1744 struct mbuf *mb_copy; 1745 int hlen = ip->ip_hl << 2; 1746 1747 MRW_LOCK_ASSERT(); 1748 1749 /* 1750 * Make a new reference to the packet; make sure that 1751 * the IP header is actually copied, not just referenced, 1752 * so that ip_output() only scribbles on the copy. 1753 */ 1754 mb_copy = m_copypacket(m, M_NOWAIT); 1755 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1756 mb_copy = m_pullup(mb_copy, hlen); 1757 if (mb_copy == NULL) 1758 return; 1759 1760 send_packet(vifp, mb_copy); 1761 } 1762 1763 static void 1764 send_packet(struct vif *vifp, struct mbuf *m) 1765 { 1766 struct ip_moptions imo; 1767 int error __unused; 1768 1769 MRW_LOCK_ASSERT(); 1770 NET_EPOCH_ASSERT(); 1771 1772 imo.imo_multicast_ifp = vifp->v_ifp; 1773 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1774 imo.imo_multicast_loop = !!in_mcast_loop; 1775 imo.imo_multicast_vif = -1; 1776 STAILQ_INIT(&imo.imo_head); 1777 1778 /* 1779 * Re-entrancy should not be a problem here, because 1780 * the packets that we send out and are looped back at us 1781 * should get rejected because they appear to come from 1782 * the loopback interface, thus preventing looping. 1783 */ 1784 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1785 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1786 (ptrdiff_t)(vifp - V_viftable), error); 1787 } 1788 1789 /* 1790 * Stubs for old RSVP socket shim implementation. 1791 */ 1792 1793 static int 1794 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1795 { 1796 1797 return (EOPNOTSUPP); 1798 } 1799 1800 static void 1801 X_ip_rsvp_force_done(struct socket *so __unused) 1802 { 1803 1804 } 1805 1806 static int 1807 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1808 { 1809 struct mbuf *m; 1810 1811 m = *mp; 1812 *mp = NULL; 1813 if (!V_rsvp_on) 1814 m_freem(m); 1815 return (IPPROTO_DONE); 1816 } 1817 1818 /* 1819 * Code for bandwidth monitors 1820 */ 1821 1822 /* 1823 * Define common interface for timeval-related methods 1824 */ 1825 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1826 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1827 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1828 1829 static uint32_t 1830 compute_bw_meter_flags(struct bw_upcall *req) 1831 { 1832 uint32_t flags = 0; 1833 1834 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1835 flags |= BW_METER_UNIT_PACKETS; 1836 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1837 flags |= BW_METER_UNIT_BYTES; 1838 if (req->bu_flags & BW_UPCALL_GEQ) 1839 flags |= BW_METER_GEQ; 1840 if (req->bu_flags & BW_UPCALL_LEQ) 1841 flags |= BW_METER_LEQ; 1842 1843 return flags; 1844 } 1845 1846 static void 1847 expire_bw_meter_leq(void *arg) 1848 { 1849 struct bw_meter *x = arg; 1850 struct timeval now; 1851 /* 1852 * INFO: 1853 * callout is always executed with MRW_WLOCK taken 1854 */ 1855 1856 CURVNET_SET((struct vnet *)x->arg); 1857 1858 microtime(&now); 1859 1860 /* 1861 * Test if we should deliver an upcall 1862 */ 1863 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1864 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1865 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1866 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1867 /* Prepare an upcall for delivery */ 1868 bw_meter_prepare_upcall(x, &now); 1869 } 1870 1871 /* Send all upcalls that are pending delivery */ 1872 taskqueue_enqueue(V_task_queue, &V_task); 1873 1874 /* Reset counters */ 1875 x->bm_start_time = now; 1876 /* Spin lock has to be taken as ip_forward context 1877 * might modify these fields as well 1878 */ 1879 mtx_lock_spin(&x->bm_spin); 1880 x->bm_measured.b_bytes = 0; 1881 x->bm_measured.b_packets = 0; 1882 mtx_unlock_spin(&x->bm_spin); 1883 1884 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1885 1886 CURVNET_RESTORE(); 1887 } 1888 1889 /* 1890 * Add a bw_meter entry 1891 */ 1892 static int 1893 add_bw_upcall(struct bw_upcall *req) 1894 { 1895 struct mfc *mfc; 1896 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1897 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1898 struct timeval now; 1899 struct bw_meter *x, **bwm_ptr; 1900 uint32_t flags; 1901 1902 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1903 return EOPNOTSUPP; 1904 1905 /* Test if the flags are valid */ 1906 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1907 return EINVAL; 1908 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1909 return EINVAL; 1910 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1911 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1912 return EINVAL; 1913 1914 /* Test if the threshold time interval is valid */ 1915 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1916 return EINVAL; 1917 1918 flags = compute_bw_meter_flags(req); 1919 1920 /* 1921 * Find if we have already same bw_meter entry 1922 */ 1923 MRW_WLOCK(); 1924 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1925 if (mfc == NULL) { 1926 MRW_WUNLOCK(); 1927 return EADDRNOTAVAIL; 1928 } 1929 1930 /* Choose an appropriate bw_meter list */ 1931 if (req->bu_flags & BW_UPCALL_GEQ) 1932 bwm_ptr = &mfc->mfc_bw_meter_geq; 1933 else 1934 bwm_ptr = &mfc->mfc_bw_meter_leq; 1935 1936 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1937 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1938 &req->bu_threshold.b_time, ==)) 1939 && (x->bm_threshold.b_packets 1940 == req->bu_threshold.b_packets) 1941 && (x->bm_threshold.b_bytes 1942 == req->bu_threshold.b_bytes) 1943 && (x->bm_flags & BW_METER_USER_FLAGS) 1944 == flags) { 1945 MRW_WUNLOCK(); 1946 return 0; /* XXX Already installed */ 1947 } 1948 } 1949 1950 /* Allocate the new bw_meter entry */ 1951 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1952 M_ZERO | M_NOWAIT); 1953 if (x == NULL) { 1954 MRW_WUNLOCK(); 1955 return ENOBUFS; 1956 } 1957 1958 /* Set the new bw_meter entry */ 1959 x->bm_threshold.b_time = req->bu_threshold.b_time; 1960 microtime(&now); 1961 x->bm_start_time = now; 1962 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1963 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1964 x->bm_measured.b_packets = 0; 1965 x->bm_measured.b_bytes = 0; 1966 x->bm_flags = flags; 1967 x->bm_time_next = NULL; 1968 x->bm_mfc = mfc; 1969 x->arg = curvnet; 1970 sprintf(x->bm_spin_name, "BM spin %p", x); 1971 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1972 1973 /* For LEQ case create periodic callout */ 1974 if (req->bu_flags & BW_UPCALL_LEQ) { 1975 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1976 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1977 expire_bw_meter_leq, x); 1978 } 1979 1980 /* Add the new bw_meter entry to the front of entries for this MFC */ 1981 x->bm_mfc_next = *bwm_ptr; 1982 *bwm_ptr = x; 1983 1984 MRW_WUNLOCK(); 1985 1986 return 0; 1987 } 1988 1989 static void 1990 free_bw_list(struct bw_meter *list) 1991 { 1992 while (list != NULL) { 1993 struct bw_meter *x = list; 1994 1995 /* MRW_WLOCK must be held here */ 1996 if (x->bm_flags & BW_METER_LEQ) { 1997 callout_drain(&x->bm_meter_callout); 1998 mtx_destroy(&x->bm_spin); 1999 } 2000 2001 list = list->bm_mfc_next; 2002 free(x, M_BWMETER); 2003 } 2004 } 2005 2006 /* 2007 * Delete one or multiple bw_meter entries 2008 */ 2009 static int 2010 del_bw_upcall(struct bw_upcall *req) 2011 { 2012 struct mfc *mfc; 2013 struct bw_meter *x, **bwm_ptr; 2014 2015 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2016 return EOPNOTSUPP; 2017 2018 MRW_WLOCK(); 2019 2020 /* Find the corresponding MFC entry */ 2021 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2022 if (mfc == NULL) { 2023 MRW_WUNLOCK(); 2024 return EADDRNOTAVAIL; 2025 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2026 /* 2027 * Delete all bw_meter entries for this mfc 2028 */ 2029 struct bw_meter *list; 2030 2031 /* Free LEQ list */ 2032 list = mfc->mfc_bw_meter_leq; 2033 mfc->mfc_bw_meter_leq = NULL; 2034 free_bw_list(list); 2035 2036 /* Free GEQ list */ 2037 list = mfc->mfc_bw_meter_geq; 2038 mfc->mfc_bw_meter_geq = NULL; 2039 free_bw_list(list); 2040 MRW_WUNLOCK(); 2041 return 0; 2042 } else { /* Delete a single bw_meter entry */ 2043 struct bw_meter *prev; 2044 uint32_t flags = 0; 2045 2046 flags = compute_bw_meter_flags(req); 2047 2048 /* Choose an appropriate bw_meter list */ 2049 if (req->bu_flags & BW_UPCALL_GEQ) 2050 bwm_ptr = &mfc->mfc_bw_meter_geq; 2051 else 2052 bwm_ptr = &mfc->mfc_bw_meter_leq; 2053 2054 /* Find the bw_meter entry to delete */ 2055 for (prev = NULL, x = *bwm_ptr; x != NULL; 2056 prev = x, x = x->bm_mfc_next) { 2057 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2058 &req->bu_threshold.b_time, ==)) && 2059 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2060 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2061 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2062 break; 2063 } 2064 if (x != NULL) { /* Delete entry from the list for this MFC */ 2065 if (prev != NULL) 2066 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2067 else 2068 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2069 2070 if (req->bu_flags & BW_UPCALL_LEQ) 2071 callout_stop(&x->bm_meter_callout); 2072 2073 MRW_WUNLOCK(); 2074 /* Free the bw_meter entry */ 2075 free(x, M_BWMETER); 2076 return 0; 2077 } else { 2078 MRW_WUNLOCK(); 2079 return EINVAL; 2080 } 2081 } 2082 /* NOTREACHED */ 2083 } 2084 2085 /* 2086 * Perform bandwidth measurement processing that may result in an upcall 2087 */ 2088 static void 2089 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2090 { 2091 struct timeval delta; 2092 2093 MRW_LOCK_ASSERT(); 2094 2095 delta = *nowp; 2096 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2097 2098 /* 2099 * Processing for ">=" type of bw_meter entry. 2100 * bm_spin does not have to be hold here as in GEQ 2101 * case this is the only context accessing bm_measured. 2102 */ 2103 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2104 /* Reset the bw_meter entry */ 2105 x->bm_start_time = *nowp; 2106 x->bm_measured.b_packets = 0; 2107 x->bm_measured.b_bytes = 0; 2108 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2109 } 2110 2111 /* Record that a packet is received */ 2112 x->bm_measured.b_packets++; 2113 x->bm_measured.b_bytes += plen; 2114 2115 /* 2116 * Test if we should deliver an upcall 2117 */ 2118 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2119 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2120 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2121 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2122 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2123 /* Prepare an upcall for delivery */ 2124 bw_meter_prepare_upcall(x, nowp); 2125 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2126 } 2127 } 2128 } 2129 2130 /* 2131 * Prepare a bandwidth-related upcall 2132 */ 2133 static void 2134 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2135 { 2136 struct timeval delta; 2137 struct bw_upcall *u; 2138 2139 MRW_LOCK_ASSERT(); 2140 2141 /* 2142 * Compute the measured time interval 2143 */ 2144 delta = *nowp; 2145 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2146 2147 /* 2148 * Set the bw_upcall entry 2149 */ 2150 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2151 if (!u) { 2152 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2153 return; 2154 } 2155 u->bu_src = x->bm_mfc->mfc_origin; 2156 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2157 u->bu_threshold.b_time = x->bm_threshold.b_time; 2158 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2159 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2160 u->bu_measured.b_time = delta; 2161 u->bu_measured.b_packets = x->bm_measured.b_packets; 2162 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2163 u->bu_flags = 0; 2164 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2165 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2166 if (x->bm_flags & BW_METER_UNIT_BYTES) 2167 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2168 if (x->bm_flags & BW_METER_GEQ) 2169 u->bu_flags |= BW_UPCALL_GEQ; 2170 if (x->bm_flags & BW_METER_LEQ) 2171 u->bu_flags |= BW_UPCALL_LEQ; 2172 2173 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2174 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2175 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2176 taskqueue_enqueue(V_task_queue, &V_task); 2177 } 2178 } 2179 /* 2180 * Send the pending bandwidth-related upcalls 2181 */ 2182 static void 2183 bw_upcalls_send(void) 2184 { 2185 struct mbuf *m; 2186 int len = 0; 2187 struct bw_upcall *bu; 2188 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2189 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2190 0, /* unused2 */ 2191 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2192 0, /* im_mbz */ 2193 0, /* im_vif */ 2194 0, /* unused3 */ 2195 { 0 }, /* im_src */ 2196 { 0 } }; /* im_dst */ 2197 2198 MRW_LOCK_ASSERT(); 2199 2200 if (buf_ring_empty(V_bw_upcalls_ring)) 2201 return; 2202 2203 /* 2204 * Allocate a new mbuf, initialize it with the header and 2205 * the payload for the pending calls. 2206 */ 2207 m = m_gethdr(M_NOWAIT, MT_DATA); 2208 if (m == NULL) { 2209 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2210 return; 2211 } 2212 2213 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2214 len += sizeof(struct igmpmsg); 2215 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2216 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2217 len += sizeof(struct bw_upcall); 2218 free(bu, M_MRTABLE); 2219 } 2220 2221 /* 2222 * Send the upcalls 2223 * XXX do we need to set the address in k_igmpsrc ? 2224 */ 2225 MRTSTAT_INC(mrts_upcalls); 2226 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2227 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2228 MRTSTAT_INC(mrts_upq_sockfull); 2229 } 2230 } 2231 2232 /* 2233 * A periodic function for sending all upcalls that are pending delivery 2234 */ 2235 static void 2236 expire_bw_upcalls_send(void *arg) 2237 { 2238 CURVNET_SET((struct vnet *) arg); 2239 2240 /* This callout is run with MRW_RLOCK taken */ 2241 2242 bw_upcalls_send(); 2243 2244 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2245 curvnet); 2246 CURVNET_RESTORE(); 2247 } 2248 2249 /* 2250 * End of bandwidth monitoring code 2251 */ 2252 2253 /* 2254 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2255 * 2256 */ 2257 static int 2258 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2259 struct mfc *rt) 2260 { 2261 struct mbuf *mb_copy, *mm; 2262 2263 /* 2264 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2265 * rendezvous point was unspecified, and we were told not to. 2266 */ 2267 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2268 in_nullhost(rt->mfc_rp)) 2269 return 0; 2270 2271 mb_copy = pim_register_prepare(ip, m); 2272 if (mb_copy == NULL) 2273 return ENOBUFS; 2274 2275 /* 2276 * Send all the fragments. Note that the mbuf for each fragment 2277 * is freed by the sending machinery. 2278 */ 2279 for (mm = mb_copy; mm; mm = mb_copy) { 2280 mb_copy = mm->m_nextpkt; 2281 mm->m_nextpkt = 0; 2282 mm = m_pullup(mm, sizeof(struct ip)); 2283 if (mm != NULL) { 2284 ip = mtod(mm, struct ip *); 2285 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2286 pim_register_send_rp(ip, vifp, mm, rt); 2287 } else { 2288 pim_register_send_upcall(ip, vifp, mm, rt); 2289 } 2290 } 2291 } 2292 2293 return 0; 2294 } 2295 2296 /* 2297 * Return a copy of the data packet that is ready for PIM Register 2298 * encapsulation. 2299 * XXX: Note that in the returned copy the IP header is a valid one. 2300 */ 2301 static struct mbuf * 2302 pim_register_prepare(struct ip *ip, struct mbuf *m) 2303 { 2304 struct mbuf *mb_copy = NULL; 2305 int mtu; 2306 2307 /* Take care of delayed checksums */ 2308 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2309 in_delayed_cksum(m); 2310 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2311 } 2312 2313 /* 2314 * Copy the old packet & pullup its IP header into the 2315 * new mbuf so we can modify it. 2316 */ 2317 mb_copy = m_copypacket(m, M_NOWAIT); 2318 if (mb_copy == NULL) 2319 return NULL; 2320 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2321 if (mb_copy == NULL) 2322 return NULL; 2323 2324 /* take care of the TTL */ 2325 ip = mtod(mb_copy, struct ip *); 2326 --ip->ip_ttl; 2327 2328 /* Compute the MTU after the PIM Register encapsulation */ 2329 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2330 2331 if (ntohs(ip->ip_len) <= mtu) { 2332 /* Turn the IP header into a valid one */ 2333 ip->ip_sum = 0; 2334 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2335 } else { 2336 /* Fragment the packet */ 2337 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2338 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2339 m_freem(mb_copy); 2340 return NULL; 2341 } 2342 } 2343 return mb_copy; 2344 } 2345 2346 /* 2347 * Send an upcall with the data packet to the user-level process. 2348 */ 2349 static int 2350 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2351 struct mbuf *mb_copy, struct mfc *rt) 2352 { 2353 struct mbuf *mb_first; 2354 int len = ntohs(ip->ip_len); 2355 struct igmpmsg *im; 2356 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2357 2358 MRW_LOCK_ASSERT(); 2359 2360 /* 2361 * Add a new mbuf with an upcall header 2362 */ 2363 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2364 if (mb_first == NULL) { 2365 m_freem(mb_copy); 2366 return ENOBUFS; 2367 } 2368 mb_first->m_data += max_linkhdr; 2369 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2370 mb_first->m_len = sizeof(struct igmpmsg); 2371 mb_first->m_next = mb_copy; 2372 2373 /* Send message to routing daemon */ 2374 im = mtod(mb_first, struct igmpmsg *); 2375 im->im_msgtype = IGMPMSG_WHOLEPKT; 2376 im->im_mbz = 0; 2377 im->im_vif = vifp - V_viftable; 2378 im->im_src = ip->ip_src; 2379 im->im_dst = ip->ip_dst; 2380 2381 k_igmpsrc.sin_addr = ip->ip_src; 2382 2383 MRTSTAT_INC(mrts_upcalls); 2384 2385 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2386 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2387 MRTSTAT_INC(mrts_upq_sockfull); 2388 return ENOBUFS; 2389 } 2390 2391 /* Keep statistics */ 2392 PIMSTAT_INC(pims_snd_registers_msgs); 2393 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2394 2395 return 0; 2396 } 2397 2398 /* 2399 * Encapsulate the data packet in PIM Register message and send it to the RP. 2400 */ 2401 static int 2402 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2403 struct mfc *rt) 2404 { 2405 struct mbuf *mb_first; 2406 struct ip *ip_outer; 2407 struct pim_encap_pimhdr *pimhdr; 2408 int len = ntohs(ip->ip_len); 2409 vifi_t vifi = rt->mfc_parent; 2410 2411 MRW_LOCK_ASSERT(); 2412 2413 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2414 m_freem(mb_copy); 2415 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2416 } 2417 2418 /* 2419 * Add a new mbuf with the encapsulating header 2420 */ 2421 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2422 if (mb_first == NULL) { 2423 m_freem(mb_copy); 2424 return ENOBUFS; 2425 } 2426 mb_first->m_data += max_linkhdr; 2427 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2428 mb_first->m_next = mb_copy; 2429 2430 mb_first->m_pkthdr.len = len + mb_first->m_len; 2431 2432 /* 2433 * Fill in the encapsulating IP and PIM header 2434 */ 2435 ip_outer = mtod(mb_first, struct ip *); 2436 *ip_outer = pim_encap_iphdr; 2437 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2438 sizeof(pim_encap_pimhdr)); 2439 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2440 ip_outer->ip_dst = rt->mfc_rp; 2441 /* 2442 * Copy the inner header TOS to the outer header, and take care of the 2443 * IP_DF bit. 2444 */ 2445 ip_outer->ip_tos = ip->ip_tos; 2446 if (ip->ip_off & htons(IP_DF)) 2447 ip_outer->ip_off |= htons(IP_DF); 2448 ip_fillid(ip_outer); 2449 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2450 + sizeof(pim_encap_iphdr)); 2451 *pimhdr = pim_encap_pimhdr; 2452 /* If the iif crosses a border, set the Border-bit */ 2453 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2454 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2455 2456 mb_first->m_data += sizeof(pim_encap_iphdr); 2457 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2458 mb_first->m_data -= sizeof(pim_encap_iphdr); 2459 2460 send_packet(vifp, mb_first); 2461 2462 /* Keep statistics */ 2463 PIMSTAT_INC(pims_snd_registers_msgs); 2464 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2465 2466 return 0; 2467 } 2468 2469 /* 2470 * pim_encapcheck() is called by the encap4_input() path at runtime to 2471 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2472 * into the kernel. 2473 */ 2474 static int 2475 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2476 int proto __unused, void *arg __unused) 2477 { 2478 2479 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2480 return (8); /* claim the datagram. */ 2481 } 2482 2483 /* 2484 * PIM-SMv2 and PIM-DM messages processing. 2485 * Receives and verifies the PIM control messages, and passes them 2486 * up to the listening socket, using rip_input(). 2487 * The only message with special processing is the PIM_REGISTER message 2488 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2489 * is passed to if_simloop(). 2490 */ 2491 static int 2492 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2493 { 2494 struct ip *ip = mtod(m, struct ip *); 2495 struct pim *pim; 2496 int iphlen = off; 2497 int minlen; 2498 int datalen = ntohs(ip->ip_len) - iphlen; 2499 int ip_tos; 2500 2501 /* Keep statistics */ 2502 PIMSTAT_INC(pims_rcv_total_msgs); 2503 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2504 2505 /* 2506 * Validate lengths 2507 */ 2508 if (datalen < PIM_MINLEN) { 2509 PIMSTAT_INC(pims_rcv_tooshort); 2510 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2511 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2512 m_freem(m); 2513 return (IPPROTO_DONE); 2514 } 2515 2516 /* 2517 * If the packet is at least as big as a REGISTER, go agead 2518 * and grab the PIM REGISTER header size, to avoid another 2519 * possible m_pullup() later. 2520 * 2521 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2522 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2523 */ 2524 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2525 /* 2526 * Get the IP and PIM headers in contiguous memory, and 2527 * possibly the PIM REGISTER header. 2528 */ 2529 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2530 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2531 return (IPPROTO_DONE); 2532 } 2533 2534 /* m_pullup() may have given us a new mbuf so reset ip. */ 2535 ip = mtod(m, struct ip *); 2536 ip_tos = ip->ip_tos; 2537 2538 /* adjust mbuf to point to the PIM header */ 2539 m->m_data += iphlen; 2540 m->m_len -= iphlen; 2541 pim = mtod(m, struct pim *); 2542 2543 /* 2544 * Validate checksum. If PIM REGISTER, exclude the data packet. 2545 * 2546 * XXX: some older PIMv2 implementations don't make this distinction, 2547 * so for compatibility reason perform the checksum over part of the 2548 * message, and if error, then over the whole message. 2549 */ 2550 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2551 /* do nothing, checksum okay */ 2552 } else if (in_cksum(m, datalen)) { 2553 PIMSTAT_INC(pims_rcv_badsum); 2554 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2555 m_freem(m); 2556 return (IPPROTO_DONE); 2557 } 2558 2559 /* PIM version check */ 2560 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2561 PIMSTAT_INC(pims_rcv_badversion); 2562 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2563 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2564 m_freem(m); 2565 return (IPPROTO_DONE); 2566 } 2567 2568 /* restore mbuf back to the outer IP */ 2569 m->m_data -= iphlen; 2570 m->m_len += iphlen; 2571 2572 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2573 /* 2574 * Since this is a REGISTER, we'll make a copy of the register 2575 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2576 * routing daemon. 2577 */ 2578 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2579 struct mbuf *mcp; 2580 struct ip *encap_ip; 2581 u_int32_t *reghdr; 2582 struct ifnet *vifp; 2583 2584 MRW_RLOCK(); 2585 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2586 MRW_RUNLOCK(); 2587 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2588 (int)V_reg_vif_num); 2589 m_freem(m); 2590 return (IPPROTO_DONE); 2591 } 2592 /* XXX need refcnt? */ 2593 vifp = V_viftable[V_reg_vif_num].v_ifp; 2594 MRW_RUNLOCK(); 2595 2596 /* 2597 * Validate length 2598 */ 2599 if (datalen < PIM_REG_MINLEN) { 2600 PIMSTAT_INC(pims_rcv_tooshort); 2601 PIMSTAT_INC(pims_rcv_badregisters); 2602 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2603 m_freem(m); 2604 return (IPPROTO_DONE); 2605 } 2606 2607 reghdr = (u_int32_t *)(pim + 1); 2608 encap_ip = (struct ip *)(reghdr + 1); 2609 2610 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2611 __func__, ntohl(encap_ip->ip_src.s_addr), 2612 ntohs(encap_ip->ip_len)); 2613 2614 /* verify the version number of the inner packet */ 2615 if (encap_ip->ip_v != IPVERSION) { 2616 PIMSTAT_INC(pims_rcv_badregisters); 2617 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2618 m_freem(m); 2619 return (IPPROTO_DONE); 2620 } 2621 2622 /* verify the inner packet is destined to a mcast group */ 2623 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2624 PIMSTAT_INC(pims_rcv_badregisters); 2625 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2626 ntohl(encap_ip->ip_dst.s_addr)); 2627 m_freem(m); 2628 return (IPPROTO_DONE); 2629 } 2630 2631 /* If a NULL_REGISTER, pass it to the daemon */ 2632 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2633 goto pim_input_to_daemon; 2634 2635 /* 2636 * Copy the TOS from the outer IP header to the inner IP header. 2637 */ 2638 if (encap_ip->ip_tos != ip_tos) { 2639 /* Outer TOS -> inner TOS */ 2640 encap_ip->ip_tos = ip_tos; 2641 /* Recompute the inner header checksum. Sigh... */ 2642 2643 /* adjust mbuf to point to the inner IP header */ 2644 m->m_data += (iphlen + PIM_MINLEN); 2645 m->m_len -= (iphlen + PIM_MINLEN); 2646 2647 encap_ip->ip_sum = 0; 2648 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2649 2650 /* restore mbuf to point back to the outer IP header */ 2651 m->m_data -= (iphlen + PIM_MINLEN); 2652 m->m_len += (iphlen + PIM_MINLEN); 2653 } 2654 2655 /* 2656 * Decapsulate the inner IP packet and loopback to forward it 2657 * as a normal multicast packet. Also, make a copy of the 2658 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2659 * to pass to the daemon later, so it can take the appropriate 2660 * actions (e.g., send back PIM_REGISTER_STOP). 2661 * XXX: here m->m_data points to the outer IP header. 2662 */ 2663 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2664 if (mcp == NULL) { 2665 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2666 m_freem(m); 2667 return (IPPROTO_DONE); 2668 } 2669 2670 /* Keep statistics */ 2671 /* XXX: registers_bytes include only the encap. mcast pkt */ 2672 PIMSTAT_INC(pims_rcv_registers_msgs); 2673 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2674 2675 /* 2676 * forward the inner ip packet; point m_data at the inner ip. 2677 */ 2678 m_adj(m, iphlen + PIM_MINLEN); 2679 2680 CTR4(KTR_IPMF, 2681 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2682 __func__, 2683 (u_long)ntohl(encap_ip->ip_src.s_addr), 2684 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2685 (int)V_reg_vif_num); 2686 2687 /* NB: vifp was collected above; can it change on us? */ 2688 if_simloop(vifp, m, dst.sin_family, 0); 2689 2690 /* prepare the register head to send to the mrouting daemon */ 2691 m = mcp; 2692 } 2693 2694 pim_input_to_daemon: 2695 /* 2696 * Pass the PIM message up to the daemon; if it is a Register message, 2697 * pass the 'head' only up to the daemon. This includes the 2698 * outer IP header, PIM header, PIM-Register header and the 2699 * inner IP header. 2700 * XXX: the outer IP header pkt size of a Register is not adjust to 2701 * reflect the fact that the inner multicast data is truncated. 2702 */ 2703 return (rip_input(&m, &off, proto)); 2704 } 2705 2706 static int 2707 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2708 { 2709 struct mfc *rt; 2710 int error, i; 2711 2712 if (req->newptr) 2713 return (EPERM); 2714 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2715 return (0); 2716 error = sysctl_wire_old_buffer(req, 0); 2717 if (error) 2718 return (error); 2719 2720 MRW_RLOCK(); 2721 for (i = 0; i < mfchashsize; i++) { 2722 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2723 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2724 if (error) 2725 goto out_locked; 2726 } 2727 } 2728 out_locked: 2729 MRW_RUNLOCK(); 2730 return (error); 2731 } 2732 2733 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2734 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2735 "IPv4 Multicast Forwarding Table " 2736 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2737 2738 static int 2739 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2740 { 2741 int error, i; 2742 2743 if (req->newptr) 2744 return (EPERM); 2745 if (V_viftable == NULL) /* XXX unlocked */ 2746 return (0); 2747 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2748 if (error) 2749 return (error); 2750 2751 MRW_RLOCK(); 2752 /* Copy out user-visible portion of vif entry. */ 2753 for (i = 0; i < MAXVIFS; i++) { 2754 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2755 if (error) 2756 break; 2757 } 2758 MRW_RUNLOCK(); 2759 return (error); 2760 } 2761 2762 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2763 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2764 sysctl_viflist, "S,vif[MAXVIFS]", 2765 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2766 2767 static void 2768 vnet_mroute_init(const void *unused __unused) 2769 { 2770 2771 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2772 2773 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2774 M_MRTABLE, M_WAITOK|M_ZERO); 2775 2776 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2777 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2778 2779 /* Prepare taskqueue */ 2780 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2781 taskqueue_thread_enqueue, &V_task_queue); 2782 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2783 } 2784 2785 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2786 NULL); 2787 2788 static void 2789 vnet_mroute_uninit(const void *unused __unused) 2790 { 2791 2792 /* Taskqueue should be cancelled and drained before freeing */ 2793 taskqueue_free(V_task_queue); 2794 2795 free(V_viftable, M_MRTABLE); 2796 free(V_nexpire, M_MRTABLE); 2797 V_nexpire = NULL; 2798 } 2799 2800 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2801 vnet_mroute_uninit, NULL); 2802 2803 static int 2804 ip_mroute_modevent(module_t mod, int type, void *unused) 2805 { 2806 2807 switch (type) { 2808 case MOD_LOAD: 2809 MRW_LOCK_INIT(); 2810 2811 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2812 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2813 if (if_detach_event_tag == NULL) { 2814 printf("ip_mroute: unable to register " 2815 "ifnet_departure_event handler\n"); 2816 MRW_LOCK_DESTROY(); 2817 return (EINVAL); 2818 } 2819 2820 mfchashsize = MFCHASHSIZE; 2821 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2822 !powerof2(mfchashsize)) { 2823 printf("WARNING: %s not a power of 2; using default\n", 2824 "net.inet.ip.mfchashsize"); 2825 mfchashsize = MFCHASHSIZE; 2826 } 2827 2828 pim_squelch_wholepkt = 0; 2829 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2830 &pim_squelch_wholepkt); 2831 2832 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2833 if (pim_encap_cookie == NULL) { 2834 printf("ip_mroute: unable to attach pim encap\n"); 2835 MRW_LOCK_DESTROY(); 2836 return (EINVAL); 2837 } 2838 2839 ip_mcast_src = X_ip_mcast_src; 2840 ip_mforward = X_ip_mforward; 2841 ip_mrouter_done = X_ip_mrouter_done; 2842 ip_mrouter_get = X_ip_mrouter_get; 2843 ip_mrouter_set = X_ip_mrouter_set; 2844 2845 ip_rsvp_force_done = X_ip_rsvp_force_done; 2846 ip_rsvp_vif = X_ip_rsvp_vif; 2847 2848 legal_vif_num = X_legal_vif_num; 2849 mrt_ioctl = X_mrt_ioctl; 2850 rsvp_input_p = X_rsvp_input; 2851 break; 2852 2853 case MOD_UNLOAD: 2854 /* 2855 * Typically module unload happens after the user-level 2856 * process has shutdown the kernel services (the check 2857 * below insures someone can't just yank the module out 2858 * from under a running process). But if the module is 2859 * just loaded and then unloaded w/o starting up a user 2860 * process we still need to cleanup. 2861 */ 2862 MRW_WLOCK(); 2863 if (ip_mrouter_cnt != 0) { 2864 MRW_WUNLOCK(); 2865 return (EINVAL); 2866 } 2867 ip_mrouter_unloading = 1; 2868 MRW_WUNLOCK(); 2869 2870 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2871 2872 if (pim_encap_cookie) { 2873 ip_encap_detach(pim_encap_cookie); 2874 pim_encap_cookie = NULL; 2875 } 2876 2877 ip_mcast_src = NULL; 2878 ip_mforward = NULL; 2879 ip_mrouter_done = NULL; 2880 ip_mrouter_get = NULL; 2881 ip_mrouter_set = NULL; 2882 2883 ip_rsvp_force_done = NULL; 2884 ip_rsvp_vif = NULL; 2885 2886 legal_vif_num = NULL; 2887 mrt_ioctl = NULL; 2888 rsvp_input_p = NULL; 2889 2890 MRW_LOCK_DESTROY(); 2891 break; 2892 2893 default: 2894 return EOPNOTSUPP; 2895 } 2896 return 0; 2897 } 2898 2899 static moduledata_t ip_mroutemod = { 2900 "ip_mroute", 2901 ip_mroute_modevent, 2902 0 2903 }; 2904 2905 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2906