xref: /freebsd/sys/netinet/ip_mroute.c (revision bfe691b2f75de2224c7ceb304ebcdef2b42d4179)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  *
55  * $FreeBSD$
56  */
57 
58 #include "opt_inet.h"
59 #include "opt_inet6.h"
60 #include "opt_mac.h"
61 #include "opt_mrouting.h"
62 
63 #define _PIM_VT 1
64 
65 #include <sys/param.h>
66 #include <sys/kernel.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mbuf.h>
70 #include <sys/module.h>
71 #include <sys/priv.h>
72 #include <sys/protosw.h>
73 #include <sys/signalvar.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/time.h>
82 #include <net/if.h>
83 #include <net/netisr.h>
84 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/igmp.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_encap.h>
91 #include <netinet/ip_mroute.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_options.h>
94 #include <netinet/pim.h>
95 #include <netinet/pim_var.h>
96 #include <netinet/udp.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_var.h>
100 #include <netinet6/ip6_mroute.h>
101 #include <netinet6/ip6_var.h>
102 #endif
103 #include <machine/in_cksum.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 /*
108  * Control debugging code for rsvp and multicast routing code.
109  * Can only set them with the debugger.
110  */
111 static u_int    rsvpdebug;		/* non-zero enables debugging	*/
112 
113 static u_int	mrtdebug;		/* any set of the flags below	*/
114 #define		DEBUG_MFC	0x02
115 #define		DEBUG_FORWARD	0x04
116 #define		DEBUG_EXPIRE	0x08
117 #define		DEBUG_XMIT	0x10
118 #define		DEBUG_PIM	0x20
119 
120 #define		VIFI_INVALID	((vifi_t) -1)
121 
122 #define M_HASCL(m)	((m)->m_flags & M_EXT)
123 
124 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
125 
126 /*
127  * Locking.  We use two locks: one for the virtual interface table and
128  * one for the forwarding table.  These locks may be nested in which case
129  * the VIF lock must always be taken first.  Note that each lock is used
130  * to cover not only the specific data structure but also related data
131  * structures.  It may be better to add more fine-grained locking later;
132  * it's not clear how performance-critical this code is.
133  *
134  * XXX: This module could particularly benefit from being cleaned
135  *      up to use the <sys/queue.h> macros.
136  *
137  */
138 
139 static struct mrtstat	mrtstat;
140 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
141     &mrtstat, mrtstat,
142     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
143 
144 static struct mfc	*mfctable[MFCTBLSIZ];
145 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
146     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
147     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
148 
149 static struct mtx mrouter_mtx;
150 #define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
151 #define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
152 #define	MROUTER_LOCK_ASSERT()	do {					\
153 	mtx_assert(&mrouter_mtx, MA_OWNED);				\
154 	NET_ASSERT_GIANT();						\
155 } while (0)
156 #define	MROUTER_LOCK_INIT()	\
157 	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
158 #define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
159 
160 static struct mtx mfc_mtx;
161 #define	MFC_LOCK()	mtx_lock(&mfc_mtx)
162 #define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
163 #define	MFC_LOCK_ASSERT()	do {					\
164 	mtx_assert(&mfc_mtx, MA_OWNED);					\
165 	NET_ASSERT_GIANT();						\
166 } while (0)
167 #define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
168 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
169 
170 static struct vif	viftable[MAXVIFS];
171 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
172     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
173     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
174 
175 static struct mtx vif_mtx;
176 #define	VIF_LOCK()	mtx_lock(&vif_mtx)
177 #define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
178 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
179 #define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
180 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181 
182 static u_char		nexpire[MFCTBLSIZ];
183 
184 static eventhandler_tag if_detach_event_tag = NULL;
185 
186 static struct callout expire_upcalls_ch;
187 
188 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
189 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
190 
191 #define ENCAP_TTL 64
192 
193 /*
194  * Bandwidth meter variables and constants
195  */
196 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
197 /*
198  * Pending timeouts are stored in a hash table, the key being the
199  * expiration time. Periodically, the entries are analysed and processed.
200  */
201 #define BW_METER_BUCKETS	1024
202 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
203 static struct callout bw_meter_ch;
204 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
205 
206 /*
207  * Pending upcalls are stored in a vector which is flushed when
208  * full, or periodically
209  */
210 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
211 static u_int	bw_upcalls_n; /* # of pending upcalls */
212 static struct callout bw_upcalls_ch;
213 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
214 
215 static struct pimstat pimstat;
216 
217 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
218 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
219     &pimstat, pimstat,
220     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
221 
222 static u_long	pim_squelch_wholepkt = 0;
223 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
224     &pim_squelch_wholepkt, 0,
225     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
226 
227 extern  struct domain inetdomain;
228 struct protosw in_pim_protosw = {
229 	.pr_type =		SOCK_RAW,
230 	.pr_domain =		&inetdomain,
231 	.pr_protocol =		IPPROTO_PIM,
232 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
233 	.pr_input =		pim_input,
234 	.pr_output =		(pr_output_t*)rip_output,
235 	.pr_ctloutput =		rip_ctloutput,
236 	.pr_usrreqs =		&rip_usrreqs
237 };
238 static const struct encaptab *pim_encap_cookie;
239 
240 #ifdef INET6
241 /* ip6_mroute.c glue */
242 extern struct in6_protosw in6_pim_protosw;
243 static const struct encaptab *pim6_encap_cookie;
244 
245 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
246 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
247 extern int X_ip6_mrouter_done(void);
248 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
249 extern int X_mrt6_ioctl(int, caddr_t);
250 #endif
251 
252 static int pim_encapcheck(const struct mbuf *, int, int, void *);
253 
254 /*
255  * Note: the PIM Register encapsulation adds the following in front of a
256  * data packet:
257  *
258  * struct pim_encap_hdr {
259  *    struct ip ip;
260  *    struct pim_encap_pimhdr  pim;
261  * }
262  *
263  */
264 
265 struct pim_encap_pimhdr {
266 	struct pim pim;
267 	uint32_t   flags;
268 };
269 
270 static struct ip pim_encap_iphdr = {
271 #if BYTE_ORDER == LITTLE_ENDIAN
272 	sizeof(struct ip) >> 2,
273 	IPVERSION,
274 #else
275 	IPVERSION,
276 	sizeof(struct ip) >> 2,
277 #endif
278 	0,			/* tos */
279 	sizeof(struct ip),	/* total length */
280 	0,			/* id */
281 	0,			/* frag offset */
282 	ENCAP_TTL,
283 	IPPROTO_PIM,
284 	0,			/* checksum */
285 };
286 
287 static struct pim_encap_pimhdr pim_encap_pimhdr = {
288     {
289 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
290 	0,			/* reserved */
291 	0,			/* checksum */
292     },
293     0				/* flags */
294 };
295 
296 static struct ifnet multicast_register_if;
297 static vifi_t reg_vif_num = VIFI_INVALID;
298 
299 /*
300  * Private variables.
301  */
302 static vifi_t	   numvifs;
303 
304 static u_long	X_ip_mcast_src(int vifi);
305 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
306 			struct mbuf *m, struct ip_moptions *imo);
307 static int	X_ip_mrouter_done(void);
308 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
309 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
310 static int	X_legal_vif_num(int vif);
311 static int	X_mrt_ioctl(int cmd, caddr_t data);
312 
313 static int get_sg_cnt(struct sioc_sg_req *);
314 static int get_vif_cnt(struct sioc_vif_req *);
315 static void if_detached_event(void *arg __unused, struct ifnet *);
316 static int ip_mrouter_init(struct socket *, int);
317 static int add_vif(struct vifctl *);
318 static int del_vif_locked(vifi_t);
319 static int del_vif(vifi_t);
320 static int add_mfc(struct mfcctl2 *);
321 static int del_mfc(struct mfcctl2 *);
322 static int set_api_config(uint32_t *); /* chose API capabilities */
323 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
324 static int set_assert(int);
325 static void expire_upcalls(void *);
326 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
327 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
328 static void send_packet(struct vif *, struct mbuf *);
329 
330 /*
331  * Bandwidth monitoring
332  */
333 static void free_bw_list(struct bw_meter *list);
334 static int add_bw_upcall(struct bw_upcall *);
335 static int del_bw_upcall(struct bw_upcall *);
336 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
337 		struct timeval *nowp);
338 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
339 static void bw_upcalls_send(void);
340 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
341 static void unschedule_bw_meter(struct bw_meter *x);
342 static void bw_meter_process(void);
343 static void expire_bw_upcalls_send(void *);
344 static void expire_bw_meter_process(void *);
345 
346 static int pim_register_send(struct ip *, struct vif *,
347 		struct mbuf *, struct mfc *);
348 static int pim_register_send_rp(struct ip *, struct vif *,
349 		struct mbuf *, struct mfc *);
350 static int pim_register_send_upcall(struct ip *, struct vif *,
351 		struct mbuf *, struct mfc *);
352 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
353 
354 /*
355  * whether or not special PIM assert processing is enabled.
356  */
357 static int pim_assert;
358 /*
359  * Rate limit for assert notification messages, in usec
360  */
361 #define ASSERT_MSG_TIME		3000000
362 
363 /*
364  * Kernel multicast routing API capabilities and setup.
365  * If more API capabilities are added to the kernel, they should be
366  * recorded in `mrt_api_support'.
367  */
368 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
369 					 MRT_MFC_FLAGS_BORDER_VIF |
370 					 MRT_MFC_RP |
371 					 MRT_MFC_BW_UPCALL);
372 static uint32_t mrt_api_config = 0;
373 
374 /*
375  * Hash function for a source, group entry
376  */
377 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
378 			((g) >> 20) ^ ((g) >> 10) ^ (g))
379 
380 /*
381  * Find a route for a given origin IP address and Multicast group address
382  * Statistics are updated by the caller if needed
383  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
384  */
385 static struct mfc *
386 mfc_find(in_addr_t o, in_addr_t g)
387 {
388     struct mfc *rt;
389 
390     MFC_LOCK_ASSERT();
391 
392     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
393 	if ((rt->mfc_origin.s_addr == o) &&
394 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
395 	    break;
396     return rt;
397 }
398 
399 /*
400  * Macros to compute elapsed time efficiently
401  * Borrowed from Van Jacobson's scheduling code
402  */
403 #define TV_DELTA(a, b, delta) {					\
404 	int xxs;						\
405 	delta = (a).tv_usec - (b).tv_usec;			\
406 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
407 		switch (xxs) {					\
408 		case 2:						\
409 		      delta += 1000000;				\
410 		      /* FALLTHROUGH */				\
411 		case 1:						\
412 		      delta += 1000000;				\
413 		      break;					\
414 		default:					\
415 		      delta += (1000000 * xxs);			\
416 		}						\
417 	}							\
418 }
419 
420 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
421 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
422 
423 /*
424  * Handle MRT setsockopt commands to modify the multicast routing tables.
425  */
426 static int
427 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
428 {
429     int	error, optval;
430     vifi_t	vifi;
431     struct	vifctl vifc;
432     struct	mfcctl2 mfc;
433     struct	bw_upcall bw_upcall;
434     uint32_t	i;
435 
436     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
437 	return EPERM;
438 
439     error = 0;
440     switch (sopt->sopt_name) {
441     case MRT_INIT:
442 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443 	if (error)
444 	    break;
445 	error = ip_mrouter_init(so, optval);
446 	break;
447 
448     case MRT_DONE:
449 	error = ip_mrouter_done();
450 	break;
451 
452     case MRT_ADD_VIF:
453 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
454 	if (error)
455 	    break;
456 	error = add_vif(&vifc);
457 	break;
458 
459     case MRT_DEL_VIF:
460 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
461 	if (error)
462 	    break;
463 	error = del_vif(vifi);
464 	break;
465 
466     case MRT_ADD_MFC:
467     case MRT_DEL_MFC:
468 	/*
469 	 * select data size depending on API version.
470 	 */
471 	if (sopt->sopt_name == MRT_ADD_MFC &&
472 		mrt_api_config & MRT_API_FLAGS_ALL) {
473 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
474 				sizeof(struct mfcctl2));
475 	} else {
476 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
477 				sizeof(struct mfcctl));
478 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
479 			sizeof(mfc) - sizeof(struct mfcctl));
480 	}
481 	if (error)
482 	    break;
483 	if (sopt->sopt_name == MRT_ADD_MFC)
484 	    error = add_mfc(&mfc);
485 	else
486 	    error = del_mfc(&mfc);
487 	break;
488 
489     case MRT_ASSERT:
490 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
491 	if (error)
492 	    break;
493 	set_assert(optval);
494 	break;
495 
496     case MRT_API_CONFIG:
497 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
498 	if (!error)
499 	    error = set_api_config(&i);
500 	if (!error)
501 	    error = sooptcopyout(sopt, &i, sizeof i);
502 	break;
503 
504     case MRT_ADD_BW_UPCALL:
505     case MRT_DEL_BW_UPCALL:
506 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
507 				sizeof bw_upcall);
508 	if (error)
509 	    break;
510 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
511 	    error = add_bw_upcall(&bw_upcall);
512 	else
513 	    error = del_bw_upcall(&bw_upcall);
514 	break;
515 
516     default:
517 	error = EOPNOTSUPP;
518 	break;
519     }
520     return error;
521 }
522 
523 /*
524  * Handle MRT getsockopt commands
525  */
526 static int
527 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
528 {
529     int error;
530     static int version = 0x0305; /* !!! why is this here? XXX */
531 
532     switch (sopt->sopt_name) {
533     case MRT_VERSION:
534 	error = sooptcopyout(sopt, &version, sizeof version);
535 	break;
536 
537     case MRT_ASSERT:
538 	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
539 	break;
540 
541     case MRT_API_SUPPORT:
542 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
543 	break;
544 
545     case MRT_API_CONFIG:
546 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
547 	break;
548 
549     default:
550 	error = EOPNOTSUPP;
551 	break;
552     }
553     return error;
554 }
555 
556 /*
557  * Handle ioctl commands to obtain information from the cache
558  */
559 static int
560 X_mrt_ioctl(int cmd, caddr_t data)
561 {
562     int error = 0;
563 
564     /*
565      * Currently the only function calling this ioctl routine is rtioctl().
566      * Typically, only root can create the raw socket in order to execute
567      * this ioctl method, however the request might be coming from a prison
568      */
569     error = priv_check(curthread, PRIV_NETINET_MROUTE);
570     if (error)
571 	return (error);
572     switch (cmd) {
573     case (SIOCGETVIFCNT):
574 	error = get_vif_cnt((struct sioc_vif_req *)data);
575 	break;
576 
577     case (SIOCGETSGCNT):
578 	error = get_sg_cnt((struct sioc_sg_req *)data);
579 	break;
580 
581     default:
582 	error = EINVAL;
583 	break;
584     }
585     return error;
586 }
587 
588 /*
589  * returns the packet, byte, rpf-failure count for the source group provided
590  */
591 static int
592 get_sg_cnt(struct sioc_sg_req *req)
593 {
594     struct mfc *rt;
595 
596     MFC_LOCK();
597     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
598     if (rt == NULL) {
599 	MFC_UNLOCK();
600 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
601 	return EADDRNOTAVAIL;
602     }
603     req->pktcnt = rt->mfc_pkt_cnt;
604     req->bytecnt = rt->mfc_byte_cnt;
605     req->wrong_if = rt->mfc_wrong_if;
606     MFC_UNLOCK();
607     return 0;
608 }
609 
610 /*
611  * returns the input and output packet and byte counts on the vif provided
612  */
613 static int
614 get_vif_cnt(struct sioc_vif_req *req)
615 {
616     vifi_t vifi = req->vifi;
617 
618     VIF_LOCK();
619     if (vifi >= numvifs) {
620 	VIF_UNLOCK();
621 	return EINVAL;
622     }
623 
624     req->icount = viftable[vifi].v_pkt_in;
625     req->ocount = viftable[vifi].v_pkt_out;
626     req->ibytes = viftable[vifi].v_bytes_in;
627     req->obytes = viftable[vifi].v_bytes_out;
628     VIF_UNLOCK();
629 
630     return 0;
631 }
632 
633 static void
634 ip_mrouter_reset(void)
635 {
636     bzero((caddr_t)mfctable, sizeof(mfctable));
637     bzero((caddr_t)nexpire, sizeof(nexpire));
638 
639     pim_assert = 0;
640     mrt_api_config = 0;
641 
642     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
643 
644     bw_upcalls_n = 0;
645     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
646     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
647     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
648 }
649 
650 static void
651 if_detached_event(void *arg __unused, struct ifnet *ifp)
652 {
653     vifi_t vifi;
654     int i;
655     struct mfc *mfc;
656     struct mfc *nmfc;
657     struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
658     struct rtdetq *pq;
659     struct rtdetq *npq;
660 
661     MROUTER_LOCK();
662     if (ip_mrouter == NULL) {
663 	MROUTER_UNLOCK();
664     }
665 
666     /*
667      * Tear down multicast forwarder state associated with this ifnet.
668      * 1. Walk the vif list, matching vifs against this ifnet.
669      * 2. Walk the multicast forwarding cache (mfc) looking for
670      *    inner matches with this vif's index.
671      * 3. Free any pending mbufs for this mfc.
672      * 4. Free the associated mfc entry and state associated with this vif.
673      *    Be very careful about unlinking from a singly-linked list whose
674      *    "head node" is a pointer in a simple array.
675      * 5. Free vif state. This should disable ALLMULTI on the interface.
676      */
677     VIF_LOCK();
678     MFC_LOCK();
679     for (vifi = 0; vifi < numvifs; vifi++) {
680 	if (viftable[vifi].v_ifp != ifp)
681 		continue;
682 	for (i = 0; i < MFCTBLSIZ; i++) {
683 	    ppmfc = &mfctable[i];
684 	    for (mfc = mfctable[i]; mfc != NULL; ) {
685 		nmfc = mfc->mfc_next;
686 		if (mfc->mfc_parent == vifi) {
687 		    for (pq = mfc->mfc_stall; pq != NULL; ) {
688 			npq = pq->next;
689 			m_freem(pq->m);
690 			free(pq, M_MRTABLE);
691 			pq = npq;
692 		    }
693 		    free_bw_list(mfc->mfc_bw_meter);
694 		    free(mfc, M_MRTABLE);
695 		    *ppmfc = nmfc;
696 		} else {
697 		    ppmfc = &mfc->mfc_next;
698 		}
699 		mfc = nmfc;
700 	    }
701 	}
702 	del_vif_locked(vifi);
703     }
704     MFC_UNLOCK();
705     VIF_UNLOCK();
706 
707     MROUTER_UNLOCK();
708 }
709 
710 /*
711  * Enable multicast routing
712  */
713 static int
714 ip_mrouter_init(struct socket *so, int version)
715 {
716     if (mrtdebug)
717 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
718 	    so->so_type, so->so_proto->pr_protocol);
719 
720     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
721 	return EOPNOTSUPP;
722 
723     if (version != 1)
724 	return ENOPROTOOPT;
725 
726     MROUTER_LOCK();
727 
728     if (ip_mrouter != NULL) {
729 	MROUTER_UNLOCK();
730 	return EADDRINUSE;
731     }
732 
733     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
734         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
735     if (if_detach_event_tag == NULL) {
736 	MROUTER_UNLOCK();
737 	return (ENOMEM);
738     }
739 
740     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
741 
742     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
743 	expire_bw_upcalls_send, NULL);
744     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
745 
746     ip_mrouter = so;
747 
748     MROUTER_UNLOCK();
749 
750     if (mrtdebug)
751 	log(LOG_DEBUG, "ip_mrouter_init\n");
752 
753     return 0;
754 }
755 
756 /*
757  * Disable multicast routing
758  */
759 static int
760 X_ip_mrouter_done(void)
761 {
762     vifi_t vifi;
763     int i;
764     struct ifnet *ifp;
765     struct ifreq ifr;
766     struct mfc *rt;
767     struct rtdetq *rte;
768 
769     MROUTER_LOCK();
770 
771     if (ip_mrouter == NULL) {
772 	MROUTER_UNLOCK();
773 	return EINVAL;
774     }
775 
776     /*
777      * Detach/disable hooks to the reset of the system.
778      */
779     ip_mrouter = NULL;
780     mrt_api_config = 0;
781 
782     VIF_LOCK();
783     /*
784      * For each phyint in use, disable promiscuous reception of all IP
785      * multicasts.
786      */
787     for (vifi = 0; vifi < numvifs; vifi++) {
788 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
789 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
790 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
791 
792 	    so->sin_len = sizeof(struct sockaddr_in);
793 	    so->sin_family = AF_INET;
794 	    so->sin_addr.s_addr = INADDR_ANY;
795 	    ifp = viftable[vifi].v_ifp;
796 	    if_allmulti(ifp, 0);
797 	}
798     }
799     bzero((caddr_t)viftable, sizeof(viftable));
800     numvifs = 0;
801     pim_assert = 0;
802     VIF_UNLOCK();
803     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
804 
805     /*
806      * Free all multicast forwarding cache entries.
807      */
808     callout_stop(&expire_upcalls_ch);
809     callout_stop(&bw_upcalls_ch);
810     callout_stop(&bw_meter_ch);
811 
812     MFC_LOCK();
813     for (i = 0; i < MFCTBLSIZ; i++) {
814 	for (rt = mfctable[i]; rt != NULL; ) {
815 	    struct mfc *nr = rt->mfc_next;
816 
817 	    for (rte = rt->mfc_stall; rte != NULL; ) {
818 		struct rtdetq *n = rte->next;
819 
820 		m_freem(rte->m);
821 		free(rte, M_MRTABLE);
822 		rte = n;
823 	    }
824 	    free_bw_list(rt->mfc_bw_meter);
825 	    free(rt, M_MRTABLE);
826 	    rt = nr;
827 	}
828     }
829     bzero((caddr_t)mfctable, sizeof(mfctable));
830     bzero((caddr_t)nexpire, sizeof(nexpire));
831     bw_upcalls_n = 0;
832     bzero(bw_meter_timers, sizeof(bw_meter_timers));
833     MFC_UNLOCK();
834 
835     reg_vif_num = VIFI_INVALID;
836 
837     MROUTER_UNLOCK();
838 
839     if (mrtdebug)
840 	log(LOG_DEBUG, "ip_mrouter_done\n");
841 
842     return 0;
843 }
844 
845 /*
846  * Set PIM assert processing global
847  */
848 static int
849 set_assert(int i)
850 {
851     if ((i != 1) && (i != 0))
852 	return EINVAL;
853 
854     pim_assert = i;
855 
856     return 0;
857 }
858 
859 /*
860  * Configure API capabilities
861  */
862 int
863 set_api_config(uint32_t *apival)
864 {
865     int i;
866 
867     /*
868      * We can set the API capabilities only if it is the first operation
869      * after MRT_INIT. I.e.:
870      *  - there are no vifs installed
871      *  - pim_assert is not enabled
872      *  - the MFC table is empty
873      */
874     if (numvifs > 0) {
875 	*apival = 0;
876 	return EPERM;
877     }
878     if (pim_assert) {
879 	*apival = 0;
880 	return EPERM;
881     }
882     for (i = 0; i < MFCTBLSIZ; i++) {
883 	if (mfctable[i] != NULL) {
884 	    *apival = 0;
885 	    return EPERM;
886 	}
887     }
888 
889     mrt_api_config = *apival & mrt_api_support;
890     *apival = mrt_api_config;
891 
892     return 0;
893 }
894 
895 /*
896  * Add a vif to the vif table
897  */
898 static int
899 add_vif(struct vifctl *vifcp)
900 {
901     struct vif *vifp = viftable + vifcp->vifc_vifi;
902     struct sockaddr_in sin = {sizeof sin, AF_INET};
903     struct ifaddr *ifa;
904     struct ifnet *ifp;
905     int error;
906 
907     VIF_LOCK();
908     if (vifcp->vifc_vifi >= MAXVIFS) {
909 	VIF_UNLOCK();
910 	return EINVAL;
911     }
912     /* rate limiting is no longer supported by this code */
913     if (vifcp->vifc_rate_limit != 0) {
914 	log(LOG_ERR, "rate limiting is no longer supported\n");
915 	VIF_UNLOCK();
916 	return EINVAL;
917     }
918     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
919 	VIF_UNLOCK();
920 	return EADDRINUSE;
921     }
922     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
923 	VIF_UNLOCK();
924 	return EADDRNOTAVAIL;
925     }
926 
927     /* Find the interface with an address in AF_INET family */
928     if (vifcp->vifc_flags & VIFF_REGISTER) {
929 	/*
930 	 * XXX: Because VIFF_REGISTER does not really need a valid
931 	 * local interface (e.g. it could be 127.0.0.2), we don't
932 	 * check its address.
933 	 */
934 	ifp = NULL;
935     } else {
936 	sin.sin_addr = vifcp->vifc_lcl_addr;
937 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
938 	if (ifa == NULL) {
939 	    VIF_UNLOCK();
940 	    return EADDRNOTAVAIL;
941 	}
942 	ifp = ifa->ifa_ifp;
943     }
944 
945     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
946 	log(LOG_ERR, "tunnels are no longer supported\n");
947 	VIF_UNLOCK();
948 	return EOPNOTSUPP;
949     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
950 	ifp = &multicast_register_if;
951 	if (mrtdebug)
952 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
953 		    (void *)&multicast_register_if);
954 	if (reg_vif_num == VIFI_INVALID) {
955 	    if_initname(&multicast_register_if, "register_vif", 0);
956 	    multicast_register_if.if_flags = IFF_LOOPBACK;
957 	    reg_vif_num = vifcp->vifc_vifi;
958 	}
959     } else {		/* Make sure the interface supports multicast */
960 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
961 	    VIF_UNLOCK();
962 	    return EOPNOTSUPP;
963 	}
964 
965 	/* Enable promiscuous reception of all IP multicasts from the if */
966 	error = if_allmulti(ifp, 1);
967 	if (error) {
968 	    VIF_UNLOCK();
969 	    return error;
970 	}
971     }
972 
973     vifp->v_flags     = vifcp->vifc_flags;
974     vifp->v_threshold = vifcp->vifc_threshold;
975     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
976     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
977     vifp->v_ifp       = ifp;
978     vifp->v_rsvp_on   = 0;
979     vifp->v_rsvpd     = NULL;
980     /* initialize per vif pkt counters */
981     vifp->v_pkt_in    = 0;
982     vifp->v_pkt_out   = 0;
983     vifp->v_bytes_in  = 0;
984     vifp->v_bytes_out = 0;
985     bzero(&vifp->v_route, sizeof(vifp->v_route));
986 
987     /* Adjust numvifs up if the vifi is higher than numvifs */
988     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
989 
990     VIF_UNLOCK();
991 
992     if (mrtdebug)
993 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
994 	    vifcp->vifc_vifi,
995 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
996 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
997 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
998 	    vifcp->vifc_threshold);
999 
1000     return 0;
1001 }
1002 
1003 /*
1004  * Delete a vif from the vif table
1005  */
1006 static int
1007 del_vif_locked(vifi_t vifi)
1008 {
1009     struct vif *vifp;
1010 
1011     VIF_LOCK_ASSERT();
1012 
1013     if (vifi >= numvifs) {
1014 	return EINVAL;
1015     }
1016     vifp = &viftable[vifi];
1017     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1018 	return EADDRNOTAVAIL;
1019     }
1020 
1021     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1022 	if_allmulti(vifp->v_ifp, 0);
1023 
1024     if (vifp->v_flags & VIFF_REGISTER)
1025 	reg_vif_num = VIFI_INVALID;
1026 
1027     bzero((caddr_t)vifp, sizeof (*vifp));
1028 
1029     if (mrtdebug)
1030 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1031 
1032     /* Adjust numvifs down */
1033     for (vifi = numvifs; vifi > 0; vifi--)
1034 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1035 	    break;
1036     numvifs = vifi;
1037 
1038     return 0;
1039 }
1040 
1041 static int
1042 del_vif(vifi_t vifi)
1043 {
1044     int cc;
1045 
1046     VIF_LOCK();
1047     cc = del_vif_locked(vifi);
1048     VIF_UNLOCK();
1049 
1050     return cc;
1051 }
1052 
1053 /*
1054  * update an mfc entry without resetting counters and S,G addresses.
1055  */
1056 static void
1057 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1058 {
1059     int i;
1060 
1061     rt->mfc_parent = mfccp->mfcc_parent;
1062     for (i = 0; i < numvifs; i++) {
1063 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1064 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1065 	    MRT_MFC_FLAGS_ALL;
1066     }
1067     /* set the RP address */
1068     if (mrt_api_config & MRT_MFC_RP)
1069 	rt->mfc_rp = mfccp->mfcc_rp;
1070     else
1071 	rt->mfc_rp.s_addr = INADDR_ANY;
1072 }
1073 
1074 /*
1075  * fully initialize an mfc entry from the parameter.
1076  */
1077 static void
1078 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1079 {
1080     rt->mfc_origin     = mfccp->mfcc_origin;
1081     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1082 
1083     update_mfc_params(rt, mfccp);
1084 
1085     /* initialize pkt counters per src-grp */
1086     rt->mfc_pkt_cnt    = 0;
1087     rt->mfc_byte_cnt   = 0;
1088     rt->mfc_wrong_if   = 0;
1089     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1090 }
1091 
1092 
1093 /*
1094  * Add an mfc entry
1095  */
1096 static int
1097 add_mfc(struct mfcctl2 *mfccp)
1098 {
1099     struct mfc *rt;
1100     u_long hash;
1101     struct rtdetq *rte;
1102     u_short nstl;
1103 
1104     VIF_LOCK();
1105     MFC_LOCK();
1106 
1107     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1108 
1109     /* If an entry already exists, just update the fields */
1110     if (rt) {
1111 	if (mrtdebug & DEBUG_MFC)
1112 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1113 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1114 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1115 		mfccp->mfcc_parent);
1116 
1117 	update_mfc_params(rt, mfccp);
1118 	MFC_UNLOCK();
1119 	VIF_UNLOCK();
1120 	return 0;
1121     }
1122 
1123     /*
1124      * Find the entry for which the upcall was made and update
1125      */
1126     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1127     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1128 
1129 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1130 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1131 		(rt->mfc_stall != NULL)) {
1132 
1133 	    if (nstl++)
1134 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1135 		    "multiple kernel entries",
1136 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1137 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1138 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1139 
1140 	    if (mrtdebug & DEBUG_MFC)
1141 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1142 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1143 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1144 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1145 
1146 	    init_mfc_params(rt, mfccp);
1147 
1148 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1149 	    nexpire[hash]--;
1150 
1151 	    /* free packets Qed at the end of this entry */
1152 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1153 		struct rtdetq *n = rte->next;
1154 
1155 		ip_mdq(rte->m, rte->ifp, rt, -1);
1156 		m_freem(rte->m);
1157 		free(rte, M_MRTABLE);
1158 		rte = n;
1159 	    }
1160 	    rt->mfc_stall = NULL;
1161 	}
1162     }
1163 
1164     /*
1165      * It is possible that an entry is being inserted without an upcall
1166      */
1167     if (nstl == 0) {
1168 	if (mrtdebug & DEBUG_MFC)
1169 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1170 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1171 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1172 		mfccp->mfcc_parent);
1173 
1174 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1175 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1176 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1177 		init_mfc_params(rt, mfccp);
1178 		if (rt->mfc_expire)
1179 		    nexpire[hash]--;
1180 		rt->mfc_expire = 0;
1181 		break; /* XXX */
1182 	    }
1183 	}
1184 	if (rt == NULL) {		/* no upcall, so make a new entry */
1185 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1186 	    if (rt == NULL) {
1187 		MFC_UNLOCK();
1188 		VIF_UNLOCK();
1189 		return ENOBUFS;
1190 	    }
1191 
1192 	    init_mfc_params(rt, mfccp);
1193 	    rt->mfc_expire     = 0;
1194 	    rt->mfc_stall      = NULL;
1195 
1196 	    rt->mfc_bw_meter = NULL;
1197 	    /* insert new entry at head of hash chain */
1198 	    rt->mfc_next = mfctable[hash];
1199 	    mfctable[hash] = rt;
1200 	}
1201     }
1202     MFC_UNLOCK();
1203     VIF_UNLOCK();
1204     return 0;
1205 }
1206 
1207 /*
1208  * Delete an mfc entry
1209  */
1210 static int
1211 del_mfc(struct mfcctl2 *mfccp)
1212 {
1213     struct in_addr	origin;
1214     struct in_addr	mcastgrp;
1215     struct mfc		*rt;
1216     struct mfc		**nptr;
1217     u_long		hash;
1218     struct bw_meter	*list;
1219 
1220     origin = mfccp->mfcc_origin;
1221     mcastgrp = mfccp->mfcc_mcastgrp;
1222 
1223     if (mrtdebug & DEBUG_MFC)
1224 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1225 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1226 
1227     MFC_LOCK();
1228 
1229     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1230     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1231 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1232 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1233 		rt->mfc_stall == NULL)
1234 	    break;
1235     if (rt == NULL) {
1236 	MFC_UNLOCK();
1237 	return EADDRNOTAVAIL;
1238     }
1239 
1240     *nptr = rt->mfc_next;
1241 
1242     /*
1243      * free the bw_meter entries
1244      */
1245     list = rt->mfc_bw_meter;
1246     rt->mfc_bw_meter = NULL;
1247 
1248     free(rt, M_MRTABLE);
1249 
1250     free_bw_list(list);
1251 
1252     MFC_UNLOCK();
1253 
1254     return 0;
1255 }
1256 
1257 /*
1258  * Send a message to the routing daemon on the multicast routing socket
1259  */
1260 static int
1261 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1262 {
1263     if (s) {
1264 	SOCKBUF_LOCK(&s->so_rcv);
1265 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1266 	    NULL) != 0) {
1267 	    sorwakeup_locked(s);
1268 	    return 0;
1269 	}
1270 	SOCKBUF_UNLOCK(&s->so_rcv);
1271     }
1272     m_freem(mm);
1273     return -1;
1274 }
1275 
1276 /*
1277  * IP multicast forwarding function. This function assumes that the packet
1278  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1279  * pointed to by "ifp", and the packet is to be relayed to other networks
1280  * that have members of the packet's destination IP multicast group.
1281  *
1282  * The packet is returned unscathed to the caller, unless it is
1283  * erroneous, in which case a non-zero return value tells the caller to
1284  * discard it.
1285  */
1286 
1287 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1288 
1289 static int
1290 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1291     struct ip_moptions *imo)
1292 {
1293     struct mfc *rt;
1294     int error;
1295     vifi_t vifi;
1296 
1297     if (mrtdebug & DEBUG_FORWARD)
1298 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1299 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1300 	    (void *)ifp);
1301 
1302     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1303 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1304 	/*
1305 	 * Packet arrived via a physical interface or
1306 	 * an encapsulated tunnel or a register_vif.
1307 	 */
1308     } else {
1309 	/*
1310 	 * Packet arrived through a source-route tunnel.
1311 	 * Source-route tunnels are no longer supported.
1312 	 */
1313 	static int last_log;
1314 	if (last_log != time_uptime) {
1315 	    last_log = time_uptime;
1316 	    log(LOG_ERR,
1317 		"ip_mforward: received source-routed packet from %lx\n",
1318 		(u_long)ntohl(ip->ip_src.s_addr));
1319 	}
1320 	return 1;
1321     }
1322 
1323     VIF_LOCK();
1324     MFC_LOCK();
1325     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1326 	if (ip->ip_ttl < MAXTTL)
1327 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1328 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1329 	    struct vif *vifp = viftable + vifi;
1330 
1331 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1332 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1333 		vifi,
1334 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1335 		vifp->v_ifp->if_xname);
1336 	}
1337 	error = ip_mdq(m, ifp, NULL, vifi);
1338 	MFC_UNLOCK();
1339 	VIF_UNLOCK();
1340 	return error;
1341     }
1342     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1343 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1344 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1345 	if (!imo)
1346 	    printf("In fact, no options were specified at all\n");
1347     }
1348 
1349     /*
1350      * Don't forward a packet with time-to-live of zero or one,
1351      * or a packet destined to a local-only group.
1352      */
1353     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1354 	MFC_UNLOCK();
1355 	VIF_UNLOCK();
1356 	return 0;
1357     }
1358 
1359     /*
1360      * Determine forwarding vifs from the forwarding cache table
1361      */
1362     ++mrtstat.mrts_mfc_lookups;
1363     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1364 
1365     /* Entry exists, so forward if necessary */
1366     if (rt != NULL) {
1367 	error = ip_mdq(m, ifp, rt, -1);
1368 	MFC_UNLOCK();
1369 	VIF_UNLOCK();
1370 	return error;
1371     } else {
1372 	/*
1373 	 * If we don't have a route for packet's origin,
1374 	 * Make a copy of the packet & send message to routing daemon
1375 	 */
1376 
1377 	struct mbuf *mb0;
1378 	struct rtdetq *rte;
1379 	u_long hash;
1380 	int hlen = ip->ip_hl << 2;
1381 
1382 	++mrtstat.mrts_mfc_misses;
1383 
1384 	mrtstat.mrts_no_route++;
1385 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1386 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1387 		(u_long)ntohl(ip->ip_src.s_addr),
1388 		(u_long)ntohl(ip->ip_dst.s_addr));
1389 
1390 	/*
1391 	 * Allocate mbufs early so that we don't do extra work if we are
1392 	 * just going to fail anyway.  Make sure to pullup the header so
1393 	 * that other people can't step on it.
1394 	 */
1395 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1396 	if (rte == NULL) {
1397 	    MFC_UNLOCK();
1398 	    VIF_UNLOCK();
1399 	    return ENOBUFS;
1400 	}
1401 	mb0 = m_copypacket(m, M_DONTWAIT);
1402 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1403 	    mb0 = m_pullup(mb0, hlen);
1404 	if (mb0 == NULL) {
1405 	    free(rte, M_MRTABLE);
1406 	    MFC_UNLOCK();
1407 	    VIF_UNLOCK();
1408 	    return ENOBUFS;
1409 	}
1410 
1411 	/* is there an upcall waiting for this flow ? */
1412 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1413 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1414 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1415 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1416 		    (rt->mfc_stall != NULL))
1417 		break;
1418 	}
1419 
1420 	if (rt == NULL) {
1421 	    int i;
1422 	    struct igmpmsg *im;
1423 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1424 	    struct mbuf *mm;
1425 
1426 	    /*
1427 	     * Locate the vifi for the incoming interface for this packet.
1428 	     * If none found, drop packet.
1429 	     */
1430 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1431 		;
1432 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1433 		goto non_fatal;
1434 
1435 	    /* no upcall, so make a new entry */
1436 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1437 	    if (rt == NULL)
1438 		goto fail;
1439 	    /* Make a copy of the header to send to the user level process */
1440 	    mm = m_copy(mb0, 0, hlen);
1441 	    if (mm == NULL)
1442 		goto fail1;
1443 
1444 	    /*
1445 	     * Send message to routing daemon to install
1446 	     * a route into the kernel table
1447 	     */
1448 
1449 	    im = mtod(mm, struct igmpmsg *);
1450 	    im->im_msgtype = IGMPMSG_NOCACHE;
1451 	    im->im_mbz = 0;
1452 	    im->im_vif = vifi;
1453 
1454 	    mrtstat.mrts_upcalls++;
1455 
1456 	    k_igmpsrc.sin_addr = ip->ip_src;
1457 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1458 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1459 		++mrtstat.mrts_upq_sockfull;
1460 fail1:
1461 		free(rt, M_MRTABLE);
1462 fail:
1463 		free(rte, M_MRTABLE);
1464 		m_freem(mb0);
1465 		MFC_UNLOCK();
1466 		VIF_UNLOCK();
1467 		return ENOBUFS;
1468 	    }
1469 
1470 	    /* insert new entry at head of hash chain */
1471 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1472 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1473 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1474 	    nexpire[hash]++;
1475 	    for (i = 0; i < numvifs; i++) {
1476 		rt->mfc_ttls[i] = 0;
1477 		rt->mfc_flags[i] = 0;
1478 	    }
1479 	    rt->mfc_parent = -1;
1480 
1481 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1482 
1483 	    rt->mfc_bw_meter = NULL;
1484 
1485 	    /* link into table */
1486 	    rt->mfc_next   = mfctable[hash];
1487 	    mfctable[hash] = rt;
1488 	    rt->mfc_stall = rte;
1489 
1490 	} else {
1491 	    /* determine if q has overflowed */
1492 	    int npkts = 0;
1493 	    struct rtdetq **p;
1494 
1495 	    /*
1496 	     * XXX ouch! we need to append to the list, but we
1497 	     * only have a pointer to the front, so we have to
1498 	     * scan the entire list every time.
1499 	     */
1500 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1501 		npkts++;
1502 
1503 	    if (npkts > MAX_UPQ) {
1504 		mrtstat.mrts_upq_ovflw++;
1505 non_fatal:
1506 		free(rte, M_MRTABLE);
1507 		m_freem(mb0);
1508 		MFC_UNLOCK();
1509 		VIF_UNLOCK();
1510 		return 0;
1511 	    }
1512 
1513 	    /* Add this entry to the end of the queue */
1514 	    *p = rte;
1515 	}
1516 
1517 	rte->m			= mb0;
1518 	rte->ifp		= ifp;
1519 	rte->next		= NULL;
1520 
1521 	MFC_UNLOCK();
1522 	VIF_UNLOCK();
1523 
1524 	return 0;
1525     }
1526 }
1527 
1528 /*
1529  * Clean up the cache entry if upcall is not serviced
1530  */
1531 static void
1532 expire_upcalls(void *unused)
1533 {
1534     struct rtdetq *rte;
1535     struct mfc *mfc, **nptr;
1536     int i;
1537 
1538     MFC_LOCK();
1539     for (i = 0; i < MFCTBLSIZ; i++) {
1540 	if (nexpire[i] == 0)
1541 	    continue;
1542 	nptr = &mfctable[i];
1543 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1544 	    /*
1545 	     * Skip real cache entries
1546 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1547 	     * If it expires now
1548 	     */
1549 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1550 		    --mfc->mfc_expire == 0) {
1551 		if (mrtdebug & DEBUG_EXPIRE)
1552 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1553 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1554 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1555 		/*
1556 		 * drop all the packets
1557 		 * free the mbuf with the pkt, if, timing info
1558 		 */
1559 		for (rte = mfc->mfc_stall; rte; ) {
1560 		    struct rtdetq *n = rte->next;
1561 
1562 		    m_freem(rte->m);
1563 		    free(rte, M_MRTABLE);
1564 		    rte = n;
1565 		}
1566 		++mrtstat.mrts_cache_cleanups;
1567 		nexpire[i]--;
1568 
1569 		/*
1570 		 * free the bw_meter entries
1571 		 */
1572 		while (mfc->mfc_bw_meter != NULL) {
1573 		    struct bw_meter *x = mfc->mfc_bw_meter;
1574 
1575 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1576 		    free(x, M_BWMETER);
1577 		}
1578 
1579 		*nptr = mfc->mfc_next;
1580 		free(mfc, M_MRTABLE);
1581 	    } else {
1582 		nptr = &mfc->mfc_next;
1583 	    }
1584 	}
1585     }
1586     MFC_UNLOCK();
1587 
1588     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1589 }
1590 
1591 /*
1592  * Packet forwarding routine once entry in the cache is made
1593  */
1594 static int
1595 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1596 {
1597     struct ip  *ip = mtod(m, struct ip *);
1598     vifi_t vifi;
1599     int plen = ip->ip_len;
1600 
1601     VIF_LOCK_ASSERT();
1602 
1603     /*
1604      * If xmt_vif is not -1, send on only the requested vif.
1605      *
1606      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1607      */
1608     if (xmt_vif < numvifs) {
1609 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1610 		pim_register_send(ip, viftable + xmt_vif, m, rt);
1611 	else
1612 		phyint_send(ip, viftable + xmt_vif, m);
1613 	return 1;
1614     }
1615 
1616     /*
1617      * Don't forward if it didn't arrive from the parent vif for its origin.
1618      */
1619     vifi = rt->mfc_parent;
1620     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1621 	/* came in the wrong interface */
1622 	if (mrtdebug & DEBUG_FORWARD)
1623 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1624 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1625 	++mrtstat.mrts_wrong_if;
1626 	++rt->mfc_wrong_if;
1627 	/*
1628 	 * If we are doing PIM assert processing, send a message
1629 	 * to the routing daemon.
1630 	 *
1631 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1632 	 * can complete the SPT switch, regardless of the type
1633 	 * of the iif (broadcast media, GRE tunnel, etc).
1634 	 */
1635 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1636 	    struct timeval now;
1637 	    u_long delta;
1638 
1639 	    if (ifp == &multicast_register_if)
1640 		pimstat.pims_rcv_registers_wrongiif++;
1641 
1642 	    /* Get vifi for the incoming packet */
1643 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1644 		;
1645 	    if (vifi >= numvifs)
1646 		return 0;	/* The iif is not found: ignore the packet. */
1647 
1648 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1649 		return 0;	/* WRONGVIF disabled: ignore the packet */
1650 
1651 	    GET_TIME(now);
1652 
1653 	    TV_DELTA(now, rt->mfc_last_assert, delta);
1654 
1655 	    if (delta > ASSERT_MSG_TIME) {
1656 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1657 		struct igmpmsg *im;
1658 		int hlen = ip->ip_hl << 2;
1659 		struct mbuf *mm = m_copy(m, 0, hlen);
1660 
1661 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1662 		    mm = m_pullup(mm, hlen);
1663 		if (mm == NULL)
1664 		    return ENOBUFS;
1665 
1666 		rt->mfc_last_assert = now;
1667 
1668 		im = mtod(mm, struct igmpmsg *);
1669 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1670 		im->im_mbz		= 0;
1671 		im->im_vif		= vifi;
1672 
1673 		mrtstat.mrts_upcalls++;
1674 
1675 		k_igmpsrc.sin_addr = im->im_src;
1676 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1677 		    log(LOG_WARNING,
1678 			"ip_mforward: ip_mrouter socket queue full\n");
1679 		    ++mrtstat.mrts_upq_sockfull;
1680 		    return ENOBUFS;
1681 		}
1682 	    }
1683 	}
1684 	return 0;
1685     }
1686 
1687     /* If I sourced this packet, it counts as output, else it was input. */
1688     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1689 	viftable[vifi].v_pkt_out++;
1690 	viftable[vifi].v_bytes_out += plen;
1691     } else {
1692 	viftable[vifi].v_pkt_in++;
1693 	viftable[vifi].v_bytes_in += plen;
1694     }
1695     rt->mfc_pkt_cnt++;
1696     rt->mfc_byte_cnt += plen;
1697 
1698     /*
1699      * For each vif, decide if a copy of the packet should be forwarded.
1700      * Forward if:
1701      *		- the ttl exceeds the vif's threshold
1702      *		- there are group members downstream on interface
1703      */
1704     for (vifi = 0; vifi < numvifs; vifi++)
1705 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1706 	    viftable[vifi].v_pkt_out++;
1707 	    viftable[vifi].v_bytes_out += plen;
1708 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1709 		pim_register_send(ip, viftable + vifi, m, rt);
1710 	    else
1711 		phyint_send(ip, viftable + vifi, m);
1712 	}
1713 
1714     /*
1715      * Perform upcall-related bw measuring.
1716      */
1717     if (rt->mfc_bw_meter != NULL) {
1718 	struct bw_meter *x;
1719 	struct timeval now;
1720 
1721 	GET_TIME(now);
1722 	MFC_LOCK_ASSERT();
1723 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1724 	    bw_meter_receive_packet(x, plen, &now);
1725     }
1726 
1727     return 0;
1728 }
1729 
1730 /*
1731  * check if a vif number is legal/ok. This is used by ip_output.
1732  */
1733 static int
1734 X_legal_vif_num(int vif)
1735 {
1736     /* XXX unlocked, matter? */
1737     return (vif >= 0 && vif < numvifs);
1738 }
1739 
1740 /*
1741  * Return the local address used by this vif
1742  */
1743 static u_long
1744 X_ip_mcast_src(int vifi)
1745 {
1746     /* XXX unlocked, matter? */
1747     if (vifi >= 0 && vifi < numvifs)
1748 	return viftable[vifi].v_lcl_addr.s_addr;
1749     else
1750 	return INADDR_ANY;
1751 }
1752 
1753 static void
1754 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1755 {
1756     struct mbuf *mb_copy;
1757     int hlen = ip->ip_hl << 2;
1758 
1759     VIF_LOCK_ASSERT();
1760 
1761     /*
1762      * Make a new reference to the packet; make sure that
1763      * the IP header is actually copied, not just referenced,
1764      * so that ip_output() only scribbles on the copy.
1765      */
1766     mb_copy = m_copypacket(m, M_DONTWAIT);
1767     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1768 	mb_copy = m_pullup(mb_copy, hlen);
1769     if (mb_copy == NULL)
1770 	return;
1771 
1772     send_packet(vifp, mb_copy);
1773 }
1774 
1775 static void
1776 send_packet(struct vif *vifp, struct mbuf *m)
1777 {
1778 	struct ip_moptions imo;
1779 	struct in_multi *imm[2];
1780 	int error;
1781 
1782 	VIF_LOCK_ASSERT();
1783 
1784 	imo.imo_multicast_ifp  = vifp->v_ifp;
1785 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1786 	imo.imo_multicast_loop = 1;
1787 	imo.imo_multicast_vif  = -1;
1788 	imo.imo_num_memberships = 0;
1789 	imo.imo_max_memberships = 2;
1790 	imo.imo_membership  = &imm[0];
1791 
1792 	/*
1793 	 * Re-entrancy should not be a problem here, because
1794 	 * the packets that we send out and are looped back at us
1795 	 * should get rejected because they appear to come from
1796 	 * the loopback interface, thus preventing looping.
1797 	 */
1798 	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1799 	if (mrtdebug & DEBUG_XMIT) {
1800 	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1801 		vifp - viftable, error);
1802 	}
1803 }
1804 
1805 static int
1806 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1807 {
1808     int error, vifi;
1809 
1810     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1811 	return EOPNOTSUPP;
1812 
1813     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1814     if (error)
1815 	return error;
1816 
1817     VIF_LOCK();
1818 
1819     if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1820 	VIF_UNLOCK();
1821 	return EADDRNOTAVAIL;
1822     }
1823 
1824     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1825 	/* Check if socket is available. */
1826 	if (viftable[vifi].v_rsvpd != NULL) {
1827 	    VIF_UNLOCK();
1828 	    return EADDRINUSE;
1829 	}
1830 
1831 	viftable[vifi].v_rsvpd = so;
1832 	/* This may seem silly, but we need to be sure we don't over-increment
1833 	 * the RSVP counter, in case something slips up.
1834 	 */
1835 	if (!viftable[vifi].v_rsvp_on) {
1836 	    viftable[vifi].v_rsvp_on = 1;
1837 	    rsvp_on++;
1838 	}
1839     } else { /* must be VIF_OFF */
1840 	/*
1841 	 * XXX as an additional consistency check, one could make sure
1842 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1843 	 * first parameter is pretty useless.
1844 	 */
1845 	viftable[vifi].v_rsvpd = NULL;
1846 	/*
1847 	 * This may seem silly, but we need to be sure we don't over-decrement
1848 	 * the RSVP counter, in case something slips up.
1849 	 */
1850 	if (viftable[vifi].v_rsvp_on) {
1851 	    viftable[vifi].v_rsvp_on = 0;
1852 	    rsvp_on--;
1853 	}
1854     }
1855     VIF_UNLOCK();
1856     return 0;
1857 }
1858 
1859 static void
1860 X_ip_rsvp_force_done(struct socket *so)
1861 {
1862     int vifi;
1863 
1864     /* Don't bother if it is not the right type of socket. */
1865     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1866 	return;
1867 
1868     VIF_LOCK();
1869 
1870     /* The socket may be attached to more than one vif...this
1871      * is perfectly legal.
1872      */
1873     for (vifi = 0; vifi < numvifs; vifi++) {
1874 	if (viftable[vifi].v_rsvpd == so) {
1875 	    viftable[vifi].v_rsvpd = NULL;
1876 	    /* This may seem silly, but we need to be sure we don't
1877 	     * over-decrement the RSVP counter, in case something slips up.
1878 	     */
1879 	    if (viftable[vifi].v_rsvp_on) {
1880 		viftable[vifi].v_rsvp_on = 0;
1881 		rsvp_on--;
1882 	    }
1883 	}
1884     }
1885 
1886     VIF_UNLOCK();
1887 }
1888 
1889 static void
1890 X_rsvp_input(struct mbuf *m, int off)
1891 {
1892     int vifi;
1893     struct ip *ip = mtod(m, struct ip *);
1894     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1895     struct ifnet *ifp;
1896 
1897     if (rsvpdebug)
1898 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1899 
1900     /* Can still get packets with rsvp_on = 0 if there is a local member
1901      * of the group to which the RSVP packet is addressed.  But in this
1902      * case we want to throw the packet away.
1903      */
1904     if (!rsvp_on) {
1905 	m_freem(m);
1906 	return;
1907     }
1908 
1909     if (rsvpdebug)
1910 	printf("rsvp_input: check vifs\n");
1911 
1912 #ifdef DIAGNOSTIC
1913     M_ASSERTPKTHDR(m);
1914 #endif
1915 
1916     ifp = m->m_pkthdr.rcvif;
1917 
1918     VIF_LOCK();
1919     /* Find which vif the packet arrived on. */
1920     for (vifi = 0; vifi < numvifs; vifi++)
1921 	if (viftable[vifi].v_ifp == ifp)
1922 	    break;
1923 
1924     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1925 	/*
1926 	 * Drop the lock here to avoid holding it across rip_input.
1927 	 * This could make rsvpdebug printfs wrong.  If you care,
1928 	 * record the state of stuff before dropping the lock.
1929 	 */
1930 	VIF_UNLOCK();
1931 	/*
1932 	 * If the old-style non-vif-associated socket is set,
1933 	 * then use it.  Otherwise, drop packet since there
1934 	 * is no specific socket for this vif.
1935 	 */
1936 	if (ip_rsvpd != NULL) {
1937 	    if (rsvpdebug)
1938 		printf("rsvp_input: Sending packet up old-style socket\n");
1939 	    rip_input(m, off);  /* xxx */
1940 	} else {
1941 	    if (rsvpdebug && vifi == numvifs)
1942 		printf("rsvp_input: Can't find vif for packet.\n");
1943 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1944 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1945 	    m_freem(m);
1946 	}
1947 	return;
1948     }
1949     rsvp_src.sin_addr = ip->ip_src;
1950 
1951     if (rsvpdebug && m)
1952 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1953 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1954 
1955     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1956 	if (rsvpdebug)
1957 	    printf("rsvp_input: Failed to append to socket\n");
1958     } else {
1959 	if (rsvpdebug)
1960 	    printf("rsvp_input: send packet up\n");
1961     }
1962     VIF_UNLOCK();
1963 }
1964 
1965 /*
1966  * Code for bandwidth monitors
1967  */
1968 
1969 /*
1970  * Define common interface for timeval-related methods
1971  */
1972 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1973 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1974 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1975 
1976 static uint32_t
1977 compute_bw_meter_flags(struct bw_upcall *req)
1978 {
1979     uint32_t flags = 0;
1980 
1981     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1982 	flags |= BW_METER_UNIT_PACKETS;
1983     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1984 	flags |= BW_METER_UNIT_BYTES;
1985     if (req->bu_flags & BW_UPCALL_GEQ)
1986 	flags |= BW_METER_GEQ;
1987     if (req->bu_flags & BW_UPCALL_LEQ)
1988 	flags |= BW_METER_LEQ;
1989 
1990     return flags;
1991 }
1992 
1993 /*
1994  * Add a bw_meter entry
1995  */
1996 static int
1997 add_bw_upcall(struct bw_upcall *req)
1998 {
1999     struct mfc *mfc;
2000     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2001 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2002     struct timeval now;
2003     struct bw_meter *x;
2004     uint32_t flags;
2005 
2006     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2007 	return EOPNOTSUPP;
2008 
2009     /* Test if the flags are valid */
2010     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2011 	return EINVAL;
2012     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2013 	return EINVAL;
2014     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2015 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2016 	return EINVAL;
2017 
2018     /* Test if the threshold time interval is valid */
2019     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2020 	return EINVAL;
2021 
2022     flags = compute_bw_meter_flags(req);
2023 
2024     /*
2025      * Find if we have already same bw_meter entry
2026      */
2027     MFC_LOCK();
2028     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2029     if (mfc == NULL) {
2030 	MFC_UNLOCK();
2031 	return EADDRNOTAVAIL;
2032     }
2033     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2034 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2035 			   &req->bu_threshold.b_time, ==)) &&
2036 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2037 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2038 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2039 	    MFC_UNLOCK();
2040 	    return 0;		/* XXX Already installed */
2041 	}
2042     }
2043 
2044     /* Allocate the new bw_meter entry */
2045     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2046     if (x == NULL) {
2047 	MFC_UNLOCK();
2048 	return ENOBUFS;
2049     }
2050 
2051     /* Set the new bw_meter entry */
2052     x->bm_threshold.b_time = req->bu_threshold.b_time;
2053     GET_TIME(now);
2054     x->bm_start_time = now;
2055     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2056     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2057     x->bm_measured.b_packets = 0;
2058     x->bm_measured.b_bytes = 0;
2059     x->bm_flags = flags;
2060     x->bm_time_next = NULL;
2061     x->bm_time_hash = BW_METER_BUCKETS;
2062 
2063     /* Add the new bw_meter entry to the front of entries for this MFC */
2064     x->bm_mfc = mfc;
2065     x->bm_mfc_next = mfc->mfc_bw_meter;
2066     mfc->mfc_bw_meter = x;
2067     schedule_bw_meter(x, &now);
2068     MFC_UNLOCK();
2069 
2070     return 0;
2071 }
2072 
2073 static void
2074 free_bw_list(struct bw_meter *list)
2075 {
2076     while (list != NULL) {
2077 	struct bw_meter *x = list;
2078 
2079 	list = list->bm_mfc_next;
2080 	unschedule_bw_meter(x);
2081 	free(x, M_BWMETER);
2082     }
2083 }
2084 
2085 /*
2086  * Delete one or multiple bw_meter entries
2087  */
2088 static int
2089 del_bw_upcall(struct bw_upcall *req)
2090 {
2091     struct mfc *mfc;
2092     struct bw_meter *x;
2093 
2094     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2095 	return EOPNOTSUPP;
2096 
2097     MFC_LOCK();
2098     /* Find the corresponding MFC entry */
2099     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2100     if (mfc == NULL) {
2101 	MFC_UNLOCK();
2102 	return EADDRNOTAVAIL;
2103     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2104 	/*
2105 	 * Delete all bw_meter entries for this mfc
2106 	 */
2107 	struct bw_meter *list;
2108 
2109 	list = mfc->mfc_bw_meter;
2110 	mfc->mfc_bw_meter = NULL;
2111 	free_bw_list(list);
2112 	MFC_UNLOCK();
2113 	return 0;
2114     } else {			/* Delete a single bw_meter entry */
2115 	struct bw_meter *prev;
2116 	uint32_t flags = 0;
2117 
2118 	flags = compute_bw_meter_flags(req);
2119 
2120 	/* Find the bw_meter entry to delete */
2121 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2122 	     prev = x, x = x->bm_mfc_next) {
2123 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2124 			       &req->bu_threshold.b_time, ==)) &&
2125 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2126 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2127 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2128 		break;
2129 	}
2130 	if (x != NULL) { /* Delete entry from the list for this MFC */
2131 	    if (prev != NULL)
2132 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2133 	    else
2134 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2135 
2136 	    unschedule_bw_meter(x);
2137 	    MFC_UNLOCK();
2138 	    /* Free the bw_meter entry */
2139 	    free(x, M_BWMETER);
2140 	    return 0;
2141 	} else {
2142 	    MFC_UNLOCK();
2143 	    return EINVAL;
2144 	}
2145     }
2146     /* NOTREACHED */
2147 }
2148 
2149 /*
2150  * Perform bandwidth measurement processing that may result in an upcall
2151  */
2152 static void
2153 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2154 {
2155     struct timeval delta;
2156 
2157     MFC_LOCK_ASSERT();
2158 
2159     delta = *nowp;
2160     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2161 
2162     if (x->bm_flags & BW_METER_GEQ) {
2163 	/*
2164 	 * Processing for ">=" type of bw_meter entry
2165 	 */
2166 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2167 	    /* Reset the bw_meter entry */
2168 	    x->bm_start_time = *nowp;
2169 	    x->bm_measured.b_packets = 0;
2170 	    x->bm_measured.b_bytes = 0;
2171 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2172 	}
2173 
2174 	/* Record that a packet is received */
2175 	x->bm_measured.b_packets++;
2176 	x->bm_measured.b_bytes += plen;
2177 
2178 	/*
2179 	 * Test if we should deliver an upcall
2180 	 */
2181 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2182 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2183 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2184 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2185 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2186 		/* Prepare an upcall for delivery */
2187 		bw_meter_prepare_upcall(x, nowp);
2188 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2189 	    }
2190 	}
2191     } else if (x->bm_flags & BW_METER_LEQ) {
2192 	/*
2193 	 * Processing for "<=" type of bw_meter entry
2194 	 */
2195 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2196 	    /*
2197 	     * We are behind time with the multicast forwarding table
2198 	     * scanning for "<=" type of bw_meter entries, so test now
2199 	     * if we should deliver an upcall.
2200 	     */
2201 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2202 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2203 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2204 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2205 		/* Prepare an upcall for delivery */
2206 		bw_meter_prepare_upcall(x, nowp);
2207 	    }
2208 	    /* Reschedule the bw_meter entry */
2209 	    unschedule_bw_meter(x);
2210 	    schedule_bw_meter(x, nowp);
2211 	}
2212 
2213 	/* Record that a packet is received */
2214 	x->bm_measured.b_packets++;
2215 	x->bm_measured.b_bytes += plen;
2216 
2217 	/*
2218 	 * Test if we should restart the measuring interval
2219 	 */
2220 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2221 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2222 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2223 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2224 	    /* Don't restart the measuring interval */
2225 	} else {
2226 	    /* Do restart the measuring interval */
2227 	    /*
2228 	     * XXX: note that we don't unschedule and schedule, because this
2229 	     * might be too much overhead per packet. Instead, when we process
2230 	     * all entries for a given timer hash bin, we check whether it is
2231 	     * really a timeout. If not, we reschedule at that time.
2232 	     */
2233 	    x->bm_start_time = *nowp;
2234 	    x->bm_measured.b_packets = 0;
2235 	    x->bm_measured.b_bytes = 0;
2236 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2237 	}
2238     }
2239 }
2240 
2241 /*
2242  * Prepare a bandwidth-related upcall
2243  */
2244 static void
2245 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2246 {
2247     struct timeval delta;
2248     struct bw_upcall *u;
2249 
2250     MFC_LOCK_ASSERT();
2251 
2252     /*
2253      * Compute the measured time interval
2254      */
2255     delta = *nowp;
2256     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2257 
2258     /*
2259      * If there are too many pending upcalls, deliver them now
2260      */
2261     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2262 	bw_upcalls_send();
2263 
2264     /*
2265      * Set the bw_upcall entry
2266      */
2267     u = &bw_upcalls[bw_upcalls_n++];
2268     u->bu_src = x->bm_mfc->mfc_origin;
2269     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2270     u->bu_threshold.b_time = x->bm_threshold.b_time;
2271     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2272     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2273     u->bu_measured.b_time = delta;
2274     u->bu_measured.b_packets = x->bm_measured.b_packets;
2275     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2276     u->bu_flags = 0;
2277     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2278 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2279     if (x->bm_flags & BW_METER_UNIT_BYTES)
2280 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2281     if (x->bm_flags & BW_METER_GEQ)
2282 	u->bu_flags |= BW_UPCALL_GEQ;
2283     if (x->bm_flags & BW_METER_LEQ)
2284 	u->bu_flags |= BW_UPCALL_LEQ;
2285 }
2286 
2287 /*
2288  * Send the pending bandwidth-related upcalls
2289  */
2290 static void
2291 bw_upcalls_send(void)
2292 {
2293     struct mbuf *m;
2294     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2295     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2296     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2297 				      0,		/* unused2 */
2298 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2299 				      0,		/* im_mbz  */
2300 				      0,		/* im_vif  */
2301 				      0,		/* unused3 */
2302 				      { 0 },		/* im_src  */
2303 				      { 0 } };		/* im_dst  */
2304 
2305     MFC_LOCK_ASSERT();
2306 
2307     if (bw_upcalls_n == 0)
2308 	return;			/* No pending upcalls */
2309 
2310     bw_upcalls_n = 0;
2311 
2312     /*
2313      * Allocate a new mbuf, initialize it with the header and
2314      * the payload for the pending calls.
2315      */
2316     MGETHDR(m, M_DONTWAIT, MT_DATA);
2317     if (m == NULL) {
2318 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2319 	return;
2320     }
2321 
2322     m->m_len = m->m_pkthdr.len = 0;
2323     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2324     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2325 
2326     /*
2327      * Send the upcalls
2328      * XXX do we need to set the address in k_igmpsrc ?
2329      */
2330     mrtstat.mrts_upcalls++;
2331     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2332 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2333 	++mrtstat.mrts_upq_sockfull;
2334     }
2335 }
2336 
2337 /*
2338  * Compute the timeout hash value for the bw_meter entries
2339  */
2340 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2341     do {								\
2342 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2343 									\
2344 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2345 	(hash) = next_timeval.tv_sec;					\
2346 	if (next_timeval.tv_usec)					\
2347 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2348 	(hash) %= BW_METER_BUCKETS;					\
2349     } while (0)
2350 
2351 /*
2352  * Schedule a timer to process periodically bw_meter entry of type "<="
2353  * by linking the entry in the proper hash bucket.
2354  */
2355 static void
2356 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2357 {
2358     int time_hash;
2359 
2360     MFC_LOCK_ASSERT();
2361 
2362     if (!(x->bm_flags & BW_METER_LEQ))
2363 	return;		/* XXX: we schedule timers only for "<=" entries */
2364 
2365     /*
2366      * Reset the bw_meter entry
2367      */
2368     x->bm_start_time = *nowp;
2369     x->bm_measured.b_packets = 0;
2370     x->bm_measured.b_bytes = 0;
2371     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2372 
2373     /*
2374      * Compute the timeout hash value and insert the entry
2375      */
2376     BW_METER_TIMEHASH(x, time_hash);
2377     x->bm_time_next = bw_meter_timers[time_hash];
2378     bw_meter_timers[time_hash] = x;
2379     x->bm_time_hash = time_hash;
2380 }
2381 
2382 /*
2383  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2384  * by removing the entry from the proper hash bucket.
2385  */
2386 static void
2387 unschedule_bw_meter(struct bw_meter *x)
2388 {
2389     int time_hash;
2390     struct bw_meter *prev, *tmp;
2391 
2392     MFC_LOCK_ASSERT();
2393 
2394     if (!(x->bm_flags & BW_METER_LEQ))
2395 	return;		/* XXX: we schedule timers only for "<=" entries */
2396 
2397     /*
2398      * Compute the timeout hash value and delete the entry
2399      */
2400     time_hash = x->bm_time_hash;
2401     if (time_hash >= BW_METER_BUCKETS)
2402 	return;		/* Entry was not scheduled */
2403 
2404     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2405 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2406 	if (tmp == x)
2407 	    break;
2408 
2409     if (tmp == NULL)
2410 	panic("unschedule_bw_meter: bw_meter entry not found");
2411 
2412     if (prev != NULL)
2413 	prev->bm_time_next = x->bm_time_next;
2414     else
2415 	bw_meter_timers[time_hash] = x->bm_time_next;
2416 
2417     x->bm_time_next = NULL;
2418     x->bm_time_hash = BW_METER_BUCKETS;
2419 }
2420 
2421 
2422 /*
2423  * Process all "<=" type of bw_meter that should be processed now,
2424  * and for each entry prepare an upcall if necessary. Each processed
2425  * entry is rescheduled again for the (periodic) processing.
2426  *
2427  * This is run periodically (once per second normally). On each round,
2428  * all the potentially matching entries are in the hash slot that we are
2429  * looking at.
2430  */
2431 static void
2432 bw_meter_process()
2433 {
2434     static uint32_t last_tv_sec;	/* last time we processed this */
2435 
2436     uint32_t loops;
2437     int i;
2438     struct timeval now, process_endtime;
2439 
2440     GET_TIME(now);
2441     if (last_tv_sec == now.tv_sec)
2442 	return;		/* nothing to do */
2443 
2444     loops = now.tv_sec - last_tv_sec;
2445     last_tv_sec = now.tv_sec;
2446     if (loops > BW_METER_BUCKETS)
2447 	loops = BW_METER_BUCKETS;
2448 
2449     MFC_LOCK();
2450     /*
2451      * Process all bins of bw_meter entries from the one after the last
2452      * processed to the current one. On entry, i points to the last bucket
2453      * visited, so we need to increment i at the beginning of the loop.
2454      */
2455     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2456 	struct bw_meter *x, *tmp_list;
2457 
2458 	if (++i >= BW_METER_BUCKETS)
2459 	    i = 0;
2460 
2461 	/* Disconnect the list of bw_meter entries from the bin */
2462 	tmp_list = bw_meter_timers[i];
2463 	bw_meter_timers[i] = NULL;
2464 
2465 	/* Process the list of bw_meter entries */
2466 	while (tmp_list != NULL) {
2467 	    x = tmp_list;
2468 	    tmp_list = tmp_list->bm_time_next;
2469 
2470 	    /* Test if the time interval is over */
2471 	    process_endtime = x->bm_start_time;
2472 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2473 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2474 		/* Not yet: reschedule, but don't reset */
2475 		int time_hash;
2476 
2477 		BW_METER_TIMEHASH(x, time_hash);
2478 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2479 		    /*
2480 		     * XXX: somehow the bin processing is a bit ahead of time.
2481 		     * Put the entry in the next bin.
2482 		     */
2483 		    if (++time_hash >= BW_METER_BUCKETS)
2484 			time_hash = 0;
2485 		}
2486 		x->bm_time_next = bw_meter_timers[time_hash];
2487 		bw_meter_timers[time_hash] = x;
2488 		x->bm_time_hash = time_hash;
2489 
2490 		continue;
2491 	    }
2492 
2493 	    /*
2494 	     * Test if we should deliver an upcall
2495 	     */
2496 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2497 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2498 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2499 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2500 		/* Prepare an upcall for delivery */
2501 		bw_meter_prepare_upcall(x, &now);
2502 	    }
2503 
2504 	    /*
2505 	     * Reschedule for next processing
2506 	     */
2507 	    schedule_bw_meter(x, &now);
2508 	}
2509     }
2510 
2511     /* Send all upcalls that are pending delivery */
2512     bw_upcalls_send();
2513 
2514     MFC_UNLOCK();
2515 }
2516 
2517 /*
2518  * A periodic function for sending all upcalls that are pending delivery
2519  */
2520 static void
2521 expire_bw_upcalls_send(void *unused)
2522 {
2523     MFC_LOCK();
2524     bw_upcalls_send();
2525     MFC_UNLOCK();
2526 
2527     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2528 	expire_bw_upcalls_send, NULL);
2529 }
2530 
2531 /*
2532  * A periodic function for periodic scanning of the multicast forwarding
2533  * table for processing all "<=" bw_meter entries.
2534  */
2535 static void
2536 expire_bw_meter_process(void *unused)
2537 {
2538     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2539 	bw_meter_process();
2540 
2541     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2542 }
2543 
2544 /*
2545  * End of bandwidth monitoring code
2546  */
2547 
2548 /*
2549  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2550  *
2551  */
2552 static int
2553 pim_register_send(struct ip *ip, struct vif *vifp,
2554 	struct mbuf *m, struct mfc *rt)
2555 {
2556     struct mbuf *mb_copy, *mm;
2557 
2558     if (mrtdebug & DEBUG_PIM)
2559 	log(LOG_DEBUG, "pim_register_send: ");
2560 
2561     /*
2562      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2563      * rendezvous point was unspecified, and we were told not to.
2564      */
2565     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2566 	(rt->mfc_rp.s_addr == INADDR_ANY))
2567 	return 0;
2568 
2569     mb_copy = pim_register_prepare(ip, m);
2570     if (mb_copy == NULL)
2571 	return ENOBUFS;
2572 
2573     /*
2574      * Send all the fragments. Note that the mbuf for each fragment
2575      * is freed by the sending machinery.
2576      */
2577     for (mm = mb_copy; mm; mm = mb_copy) {
2578 	mb_copy = mm->m_nextpkt;
2579 	mm->m_nextpkt = 0;
2580 	mm = m_pullup(mm, sizeof(struct ip));
2581 	if (mm != NULL) {
2582 	    ip = mtod(mm, struct ip *);
2583 	    if ((mrt_api_config & MRT_MFC_RP) &&
2584 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2585 		pim_register_send_rp(ip, vifp, mm, rt);
2586 	    } else {
2587 		pim_register_send_upcall(ip, vifp, mm, rt);
2588 	    }
2589 	}
2590     }
2591 
2592     return 0;
2593 }
2594 
2595 /*
2596  * Return a copy of the data packet that is ready for PIM Register
2597  * encapsulation.
2598  * XXX: Note that in the returned copy the IP header is a valid one.
2599  */
2600 static struct mbuf *
2601 pim_register_prepare(struct ip *ip, struct mbuf *m)
2602 {
2603     struct mbuf *mb_copy = NULL;
2604     int mtu;
2605 
2606     /* Take care of delayed checksums */
2607     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2608 	in_delayed_cksum(m);
2609 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2610     }
2611 
2612     /*
2613      * Copy the old packet & pullup its IP header into the
2614      * new mbuf so we can modify it.
2615      */
2616     mb_copy = m_copypacket(m, M_DONTWAIT);
2617     if (mb_copy == NULL)
2618 	return NULL;
2619     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2620     if (mb_copy == NULL)
2621 	return NULL;
2622 
2623     /* take care of the TTL */
2624     ip = mtod(mb_copy, struct ip *);
2625     --ip->ip_ttl;
2626 
2627     /* Compute the MTU after the PIM Register encapsulation */
2628     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2629 
2630     if (ip->ip_len <= mtu) {
2631 	/* Turn the IP header into a valid one */
2632 	ip->ip_len = htons(ip->ip_len);
2633 	ip->ip_off = htons(ip->ip_off);
2634 	ip->ip_sum = 0;
2635 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2636     } else {
2637 	/* Fragment the packet */
2638 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2639 	    m_freem(mb_copy);
2640 	    return NULL;
2641 	}
2642     }
2643     return mb_copy;
2644 }
2645 
2646 /*
2647  * Send an upcall with the data packet to the user-level process.
2648  */
2649 static int
2650 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2651 	struct mbuf *mb_copy, struct mfc *rt)
2652 {
2653     struct mbuf *mb_first;
2654     int len = ntohs(ip->ip_len);
2655     struct igmpmsg *im;
2656     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2657 
2658     VIF_LOCK_ASSERT();
2659 
2660     /*
2661      * Add a new mbuf with an upcall header
2662      */
2663     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2664     if (mb_first == NULL) {
2665 	m_freem(mb_copy);
2666 	return ENOBUFS;
2667     }
2668     mb_first->m_data += max_linkhdr;
2669     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2670     mb_first->m_len = sizeof(struct igmpmsg);
2671     mb_first->m_next = mb_copy;
2672 
2673     /* Send message to routing daemon */
2674     im = mtod(mb_first, struct igmpmsg *);
2675     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2676     im->im_mbz		= 0;
2677     im->im_vif		= vifp - viftable;
2678     im->im_src		= ip->ip_src;
2679     im->im_dst		= ip->ip_dst;
2680 
2681     k_igmpsrc.sin_addr	= ip->ip_src;
2682 
2683     mrtstat.mrts_upcalls++;
2684 
2685     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2686 	if (mrtdebug & DEBUG_PIM)
2687 	    log(LOG_WARNING,
2688 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2689 	++mrtstat.mrts_upq_sockfull;
2690 	return ENOBUFS;
2691     }
2692 
2693     /* Keep statistics */
2694     pimstat.pims_snd_registers_msgs++;
2695     pimstat.pims_snd_registers_bytes += len;
2696 
2697     return 0;
2698 }
2699 
2700 /*
2701  * Encapsulate the data packet in PIM Register message and send it to the RP.
2702  */
2703 static int
2704 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2705 	struct mbuf *mb_copy, struct mfc *rt)
2706 {
2707     struct mbuf *mb_first;
2708     struct ip *ip_outer;
2709     struct pim_encap_pimhdr *pimhdr;
2710     int len = ntohs(ip->ip_len);
2711     vifi_t vifi = rt->mfc_parent;
2712 
2713     VIF_LOCK_ASSERT();
2714 
2715     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2716 	m_freem(mb_copy);
2717 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2718     }
2719 
2720     /*
2721      * Add a new mbuf with the encapsulating header
2722      */
2723     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2724     if (mb_first == NULL) {
2725 	m_freem(mb_copy);
2726 	return ENOBUFS;
2727     }
2728     mb_first->m_data += max_linkhdr;
2729     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2730     mb_first->m_next = mb_copy;
2731 
2732     mb_first->m_pkthdr.len = len + mb_first->m_len;
2733 
2734     /*
2735      * Fill in the encapsulating IP and PIM header
2736      */
2737     ip_outer = mtod(mb_first, struct ip *);
2738     *ip_outer = pim_encap_iphdr;
2739     ip_outer->ip_id = ip_newid();
2740     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2741     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2742     ip_outer->ip_dst = rt->mfc_rp;
2743     /*
2744      * Copy the inner header TOS to the outer header, and take care of the
2745      * IP_DF bit.
2746      */
2747     ip_outer->ip_tos = ip->ip_tos;
2748     if (ntohs(ip->ip_off) & IP_DF)
2749 	ip_outer->ip_off |= IP_DF;
2750     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2751 					 + sizeof(pim_encap_iphdr));
2752     *pimhdr = pim_encap_pimhdr;
2753     /* If the iif crosses a border, set the Border-bit */
2754     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2755 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2756 
2757     mb_first->m_data += sizeof(pim_encap_iphdr);
2758     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2759     mb_first->m_data -= sizeof(pim_encap_iphdr);
2760 
2761     send_packet(vifp, mb_first);
2762 
2763     /* Keep statistics */
2764     pimstat.pims_snd_registers_msgs++;
2765     pimstat.pims_snd_registers_bytes += len;
2766 
2767     return 0;
2768 }
2769 
2770 /*
2771  * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2772  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2773  * into the kernel.
2774  */
2775 static int
2776 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2777 {
2778 
2779 #ifdef DIAGNOSTIC
2780     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2781 #endif
2782     if (proto != IPPROTO_PIM)
2783 	return 0;	/* not for us; reject the datagram. */
2784 
2785     return 64;		/* claim the datagram. */
2786 }
2787 
2788 /*
2789  * PIM-SMv2 and PIM-DM messages processing.
2790  * Receives and verifies the PIM control messages, and passes them
2791  * up to the listening socket, using rip_input().
2792  * The only message with special processing is the PIM_REGISTER message
2793  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2794  * is passed to if_simloop().
2795  */
2796 void
2797 pim_input(struct mbuf *m, int off)
2798 {
2799     struct ip *ip = mtod(m, struct ip *);
2800     struct pim *pim;
2801     int minlen;
2802     int datalen = ip->ip_len;
2803     int ip_tos;
2804     int iphlen = off;
2805 
2806     /* Keep statistics */
2807     pimstat.pims_rcv_total_msgs++;
2808     pimstat.pims_rcv_total_bytes += datalen;
2809 
2810     /*
2811      * Validate lengths
2812      */
2813     if (datalen < PIM_MINLEN) {
2814 	pimstat.pims_rcv_tooshort++;
2815 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2816 	    datalen, (u_long)ip->ip_src.s_addr);
2817 	m_freem(m);
2818 	return;
2819     }
2820 
2821     /*
2822      * If the packet is at least as big as a REGISTER, go agead
2823      * and grab the PIM REGISTER header size, to avoid another
2824      * possible m_pullup() later.
2825      *
2826      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2827      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2828      */
2829     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2830     /*
2831      * Get the IP and PIM headers in contiguous memory, and
2832      * possibly the PIM REGISTER header.
2833      */
2834     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2835 	(m = m_pullup(m, minlen)) == 0) {
2836 	log(LOG_ERR, "pim_input: m_pullup failure\n");
2837 	return;
2838     }
2839     /* m_pullup() may have given us a new mbuf so reset ip. */
2840     ip = mtod(m, struct ip *);
2841     ip_tos = ip->ip_tos;
2842 
2843     /* adjust mbuf to point to the PIM header */
2844     m->m_data += iphlen;
2845     m->m_len  -= iphlen;
2846     pim = mtod(m, struct pim *);
2847 
2848     /*
2849      * Validate checksum. If PIM REGISTER, exclude the data packet.
2850      *
2851      * XXX: some older PIMv2 implementations don't make this distinction,
2852      * so for compatibility reason perform the checksum over part of the
2853      * message, and if error, then over the whole message.
2854      */
2855     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2856 	/* do nothing, checksum okay */
2857     } else if (in_cksum(m, datalen)) {
2858 	pimstat.pims_rcv_badsum++;
2859 	if (mrtdebug & DEBUG_PIM)
2860 	    log(LOG_DEBUG, "pim_input: invalid checksum");
2861 	m_freem(m);
2862 	return;
2863     }
2864 
2865     /* PIM version check */
2866     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2867 	pimstat.pims_rcv_badversion++;
2868 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2869 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2870 	m_freem(m);
2871 	return;
2872     }
2873 
2874     /* restore mbuf back to the outer IP */
2875     m->m_data -= iphlen;
2876     m->m_len  += iphlen;
2877 
2878     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2879 	/*
2880 	 * Since this is a REGISTER, we'll make a copy of the register
2881 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2882 	 * routing daemon.
2883 	 */
2884 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2885 	struct mbuf *mcp;
2886 	struct ip *encap_ip;
2887 	u_int32_t *reghdr;
2888 	struct ifnet *vifp;
2889 
2890 	VIF_LOCK();
2891 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2892 	    VIF_UNLOCK();
2893 	    if (mrtdebug & DEBUG_PIM)
2894 		log(LOG_DEBUG,
2895 		    "pim_input: register vif not set: %d\n", reg_vif_num);
2896 	    m_freem(m);
2897 	    return;
2898 	}
2899 	/* XXX need refcnt? */
2900 	vifp = viftable[reg_vif_num].v_ifp;
2901 	VIF_UNLOCK();
2902 
2903 	/*
2904 	 * Validate length
2905 	 */
2906 	if (datalen < PIM_REG_MINLEN) {
2907 	    pimstat.pims_rcv_tooshort++;
2908 	    pimstat.pims_rcv_badregisters++;
2909 	    log(LOG_ERR,
2910 		"pim_input: register packet size too small %d from %lx\n",
2911 		datalen, (u_long)ip->ip_src.s_addr);
2912 	    m_freem(m);
2913 	    return;
2914 	}
2915 
2916 	reghdr = (u_int32_t *)(pim + 1);
2917 	encap_ip = (struct ip *)(reghdr + 1);
2918 
2919 	if (mrtdebug & DEBUG_PIM) {
2920 	    log(LOG_DEBUG,
2921 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2922 		(u_long)ntohl(encap_ip->ip_src.s_addr),
2923 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2924 		ntohs(encap_ip->ip_len));
2925 	}
2926 
2927 	/* verify the version number of the inner packet */
2928 	if (encap_ip->ip_v != IPVERSION) {
2929 	    pimstat.pims_rcv_badregisters++;
2930 	    if (mrtdebug & DEBUG_PIM) {
2931 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2932 		    "of the inner packet\n", encap_ip->ip_v);
2933 	    }
2934 	    m_freem(m);
2935 	    return;
2936 	}
2937 
2938 	/* verify the inner packet is destined to a mcast group */
2939 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2940 	    pimstat.pims_rcv_badregisters++;
2941 	    if (mrtdebug & DEBUG_PIM)
2942 		log(LOG_DEBUG,
2943 		    "pim_input: inner packet of register is not "
2944 		    "multicast %lx\n",
2945 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2946 	    m_freem(m);
2947 	    return;
2948 	}
2949 
2950 	/* If a NULL_REGISTER, pass it to the daemon */
2951 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2952 	    goto pim_input_to_daemon;
2953 
2954 	/*
2955 	 * Copy the TOS from the outer IP header to the inner IP header.
2956 	 */
2957 	if (encap_ip->ip_tos != ip_tos) {
2958 	    /* Outer TOS -> inner TOS */
2959 	    encap_ip->ip_tos = ip_tos;
2960 	    /* Recompute the inner header checksum. Sigh... */
2961 
2962 	    /* adjust mbuf to point to the inner IP header */
2963 	    m->m_data += (iphlen + PIM_MINLEN);
2964 	    m->m_len  -= (iphlen + PIM_MINLEN);
2965 
2966 	    encap_ip->ip_sum = 0;
2967 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2968 
2969 	    /* restore mbuf to point back to the outer IP header */
2970 	    m->m_data -= (iphlen + PIM_MINLEN);
2971 	    m->m_len  += (iphlen + PIM_MINLEN);
2972 	}
2973 
2974 	/*
2975 	 * Decapsulate the inner IP packet and loopback to forward it
2976 	 * as a normal multicast packet. Also, make a copy of the
2977 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2978 	 * to pass to the daemon later, so it can take the appropriate
2979 	 * actions (e.g., send back PIM_REGISTER_STOP).
2980 	 * XXX: here m->m_data points to the outer IP header.
2981 	 */
2982 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2983 	if (mcp == NULL) {
2984 	    log(LOG_ERR,
2985 		"pim_input: pim register: could not copy register head\n");
2986 	    m_freem(m);
2987 	    return;
2988 	}
2989 
2990 	/* Keep statistics */
2991 	/* XXX: registers_bytes include only the encap. mcast pkt */
2992 	pimstat.pims_rcv_registers_msgs++;
2993 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2994 
2995 	/*
2996 	 * forward the inner ip packet; point m_data at the inner ip.
2997 	 */
2998 	m_adj(m, iphlen + PIM_MINLEN);
2999 
3000 	if (mrtdebug & DEBUG_PIM) {
3001 	    log(LOG_DEBUG,
3002 		"pim_input: forwarding decapsulated register: "
3003 		"src %lx, dst %lx, vif %d\n",
3004 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3005 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3006 		reg_vif_num);
3007 	}
3008 	/* NB: vifp was collected above; can it change on us? */
3009 	if_simloop(vifp, m, dst.sin_family, 0);
3010 
3011 	/* prepare the register head to send to the mrouting daemon */
3012 	m = mcp;
3013     }
3014 
3015 pim_input_to_daemon:
3016     /*
3017      * Pass the PIM message up to the daemon; if it is a Register message,
3018      * pass the 'head' only up to the daemon. This includes the
3019      * outer IP header, PIM header, PIM-Register header and the
3020      * inner IP header.
3021      * XXX: the outer IP header pkt size of a Register is not adjust to
3022      * reflect the fact that the inner multicast data is truncated.
3023      */
3024     rip_input(m, iphlen);
3025 
3026     return;
3027 }
3028 
3029 /*
3030  * XXX: This is common code for dealing with initialization for both
3031  * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3032  */
3033 static int
3034 ip_mroute_modevent(module_t mod, int type, void *unused)
3035 {
3036     switch (type) {
3037     case MOD_LOAD:
3038 	MROUTER_LOCK_INIT();
3039 	MFC_LOCK_INIT();
3040 	VIF_LOCK_INIT();
3041 	ip_mrouter_reset();
3042 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3043 	    &pim_squelch_wholepkt);
3044 
3045 	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3046 	    pim_encapcheck, &in_pim_protosw, NULL);
3047 	if (pim_encap_cookie == NULL) {
3048 		printf("ip_mroute: unable to attach pim encap\n");
3049 		VIF_LOCK_DESTROY();
3050 		MFC_LOCK_DESTROY();
3051 		MROUTER_LOCK_DESTROY();
3052 		return (EINVAL);
3053 	}
3054 
3055 #ifdef INET6
3056 	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3057 	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3058 	if (pim6_encap_cookie == NULL) {
3059 		printf("ip_mroute: unable to attach pim6 encap\n");
3060 		if (pim_encap_cookie) {
3061 		    encap_detach(pim_encap_cookie);
3062 		    pim_encap_cookie = NULL;
3063 		}
3064 		VIF_LOCK_DESTROY();
3065 		MFC_LOCK_DESTROY();
3066 		MROUTER_LOCK_DESTROY();
3067 		return (EINVAL);
3068 	}
3069 #endif
3070 
3071 	ip_mcast_src = X_ip_mcast_src;
3072 	ip_mforward = X_ip_mforward;
3073 	ip_mrouter_done = X_ip_mrouter_done;
3074 	ip_mrouter_get = X_ip_mrouter_get;
3075 	ip_mrouter_set = X_ip_mrouter_set;
3076 
3077 #ifdef INET6
3078 	ip6_mforward = X_ip6_mforward;
3079 	ip6_mrouter_done = X_ip6_mrouter_done;
3080 	ip6_mrouter_get = X_ip6_mrouter_get;
3081 	ip6_mrouter_set = X_ip6_mrouter_set;
3082 	mrt6_ioctl = X_mrt6_ioctl;
3083 #endif
3084 
3085 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3086 	ip_rsvp_vif = X_ip_rsvp_vif;
3087 
3088 	legal_vif_num = X_legal_vif_num;
3089 	mrt_ioctl = X_mrt_ioctl;
3090 	rsvp_input_p = X_rsvp_input;
3091 	break;
3092 
3093     case MOD_UNLOAD:
3094 	/*
3095 	 * Typically module unload happens after the user-level
3096 	 * process has shutdown the kernel services (the check
3097 	 * below insures someone can't just yank the module out
3098 	 * from under a running process).  But if the module is
3099 	 * just loaded and then unloaded w/o starting up a user
3100 	 * process we still need to cleanup.
3101 	 */
3102 	if (ip_mrouter
3103 #ifdef INET6
3104 	    || ip6_mrouter
3105 #endif
3106 	)
3107 	    return EINVAL;
3108 
3109 #ifdef INET6
3110 	if (pim6_encap_cookie) {
3111 	    encap_detach(pim6_encap_cookie);
3112 	    pim6_encap_cookie = NULL;
3113 	}
3114 	X_ip6_mrouter_done();
3115 	ip6_mforward = NULL;
3116 	ip6_mrouter_done = NULL;
3117 	ip6_mrouter_get = NULL;
3118 	ip6_mrouter_set = NULL;
3119 	mrt6_ioctl = NULL;
3120 #endif
3121 
3122 	if (pim_encap_cookie) {
3123 	    encap_detach(pim_encap_cookie);
3124 	    pim_encap_cookie = NULL;
3125 	}
3126 	X_ip_mrouter_done();
3127 	ip_mcast_src = NULL;
3128 	ip_mforward = NULL;
3129 	ip_mrouter_done = NULL;
3130 	ip_mrouter_get = NULL;
3131 	ip_mrouter_set = NULL;
3132 
3133 	ip_rsvp_force_done = NULL;
3134 	ip_rsvp_vif = NULL;
3135 
3136 	legal_vif_num = NULL;
3137 	mrt_ioctl = NULL;
3138 	rsvp_input_p = NULL;
3139 
3140 	VIF_LOCK_DESTROY();
3141 	MFC_LOCK_DESTROY();
3142 	MROUTER_LOCK_DESTROY();
3143 	break;
3144 
3145     default:
3146 	return EOPNOTSUPP;
3147     }
3148     return 0;
3149 }
3150 
3151 static moduledata_t ip_mroutemod = {
3152     "ip_mroute",
3153     ip_mroute_modevent,
3154     0
3155 };
3156 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3157