1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_private.h> 110 #include <net/if_types.h> 111 #include <net/netisr.h> 112 #include <net/route.h> 113 #include <net/vnet.h> 114 115 #include <netinet/in.h> 116 #include <netinet/igmp.h> 117 #include <netinet/in_systm.h> 118 #include <netinet/in_var.h> 119 #include <netinet/ip.h> 120 #include <netinet/ip_encap.h> 121 #include <netinet/ip_mroute.h> 122 #include <netinet/ip_var.h> 123 #include <netinet/ip_options.h> 124 #include <netinet/pim.h> 125 #include <netinet/pim_var.h> 126 #include <netinet/udp.h> 127 128 #include <machine/in_cksum.h> 129 130 #ifndef KTR_IPMF 131 #define KTR_IPMF KTR_INET 132 #endif 133 134 #define VIFI_INVALID ((vifi_t) -1) 135 136 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 137 138 /* 139 * Locking. We use two locks: one for the virtual interface table and 140 * one for the forwarding table. These locks may be nested in which case 141 * the VIF lock must always be taken first. Note that each lock is used 142 * to cover not only the specific data structure but also related data 143 * structures. 144 */ 145 146 static struct rwlock mrouter_lock; 147 #define MRW_RLOCK() rw_rlock(&mrouter_lock) 148 #define MRW_WLOCK() rw_wlock(&mrouter_lock) 149 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) 150 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) 151 #define MRW_UNLOCK() rw_unlock(&mrouter_lock) 152 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) 153 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) 154 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) 155 #define MRW_WOWNED() rw_wowned(&mrouter_lock) 156 #define MRW_LOCK_INIT() \ 157 rw_init(&mrouter_lock, "IPv4 multicast forwarding") 158 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) 159 160 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 161 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 162 163 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 164 VNET_PCPUSTAT_SYSINIT(mrtstat); 165 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 166 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 167 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 168 "netinet/ip_mroute.h)"); 169 170 VNET_DEFINE_STATIC(u_long, mfchash); 171 #define V_mfchash VNET(mfchash) 172 #define MFCHASH(a, g) \ 173 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 174 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 175 #define MFCHASHSIZE 256 176 177 static u_long mfchashsize; /* Hash size */ 178 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 179 #define V_nexpire VNET(nexpire) 180 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 181 #define V_mfchashtbl VNET(mfchashtbl) 182 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 183 #define V_task_queue VNET(task_queue) 184 VNET_DEFINE_STATIC(struct task, task); 185 #define V_task VNET(task) 186 187 VNET_DEFINE_STATIC(vifi_t, numvifs); 188 #define V_numvifs VNET(numvifs) 189 VNET_DEFINE_STATIC(struct vif *, viftable); 190 #define V_viftable VNET(viftable) 191 192 static eventhandler_tag if_detach_event_tag = NULL; 193 194 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 196 197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 198 #define V_buf_ring_mtx VNET(buf_ring_mtx) 199 200 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 201 #define UPCALL_EXPIRE 6 /* number of timeouts */ 202 203 /* 204 * Bandwidth meter variables and constants 205 */ 206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 207 208 /* 209 * Pending upcalls are stored in a ring which is flushed when 210 * full, or periodically 211 */ 212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 215 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 217 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 218 219 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 220 221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 222 VNET_PCPUSTAT_SYSINIT(pimstat); 223 VNET_PCPUSTAT_SYSUNINIT(pimstat); 224 225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 226 "PIM"); 227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 228 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 229 230 static u_long pim_squelch_wholepkt = 0; 231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 232 &pim_squelch_wholepkt, 0, 233 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 234 235 static const struct encaptab *pim_encap_cookie; 236 static int pim_encapcheck(const struct mbuf *, int, int, void *); 237 static int pim_input(struct mbuf *, int, int, void *); 238 239 extern int in_mcast_loop; 240 241 static const struct encap_config ipv4_encap_cfg = { 242 .proto = IPPROTO_PIM, 243 .min_length = sizeof(struct ip) + PIM_MINLEN, 244 .exact_match = 8, 245 .check = pim_encapcheck, 246 .input = pim_input 247 }; 248 249 /* 250 * Note: the PIM Register encapsulation adds the following in front of a 251 * data packet: 252 * 253 * struct pim_encap_hdr { 254 * struct ip ip; 255 * struct pim_encap_pimhdr pim; 256 * } 257 * 258 */ 259 260 struct pim_encap_pimhdr { 261 struct pim pim; 262 uint32_t flags; 263 }; 264 #define PIM_ENCAP_TTL 64 265 266 static struct ip pim_encap_iphdr = { 267 #if BYTE_ORDER == LITTLE_ENDIAN 268 sizeof(struct ip) >> 2, 269 IPVERSION, 270 #else 271 IPVERSION, 272 sizeof(struct ip) >> 2, 273 #endif 274 0, /* tos */ 275 sizeof(struct ip), /* total length */ 276 0, /* id */ 277 0, /* frag offset */ 278 PIM_ENCAP_TTL, 279 IPPROTO_PIM, 280 0, /* checksum */ 281 }; 282 283 static struct pim_encap_pimhdr pim_encap_pimhdr = { 284 { 285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 286 0, /* reserved */ 287 0, /* checksum */ 288 }, 289 0 /* flags */ 290 }; 291 292 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 293 #define V_reg_vif_num VNET(reg_vif_num) 294 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 295 #define V_multicast_register_if VNET(multicast_register_if) 296 297 /* 298 * Private variables. 299 */ 300 301 static u_long X_ip_mcast_src(int); 302 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 303 struct ip_moptions *); 304 static int X_ip_mrouter_done(void); 305 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 306 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 307 static int X_legal_vif_num(int); 308 static int X_mrt_ioctl(u_long, caddr_t, int); 309 310 static int add_bw_upcall(struct bw_upcall *); 311 static int add_mfc(struct mfcctl2 *); 312 static int add_vif(struct vifctl *); 313 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 314 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 315 struct timeval *); 316 static void bw_upcalls_send(void); 317 static int del_bw_upcall(struct bw_upcall *); 318 static int del_mfc(struct mfcctl2 *); 319 static int del_vif(vifi_t); 320 static int del_vif_locked(vifi_t, struct ifnet **, struct ifnet **); 321 static void expire_bw_upcalls_send(void *); 322 static void expire_mfc(struct mfc *); 323 static void expire_upcalls(void *); 324 static void free_bw_list(struct bw_meter *); 325 static int get_sg_cnt(struct sioc_sg_req *); 326 static int get_vif_cnt(struct sioc_vif_req *); 327 static void if_detached_event(void *, struct ifnet *); 328 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 329 static int ip_mrouter_init(struct socket *, int); 330 static __inline struct mfc * 331 mfc_find(struct in_addr *, struct in_addr *); 332 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 333 static struct mbuf * 334 pim_register_prepare(struct ip *, struct mbuf *); 335 static int pim_register_send(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_rp(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static int pim_register_send_upcall(struct ip *, struct vif *, 340 struct mbuf *, struct mfc *); 341 static void send_packet(struct vif *, struct mbuf *); 342 static int set_api_config(uint32_t *); 343 static int set_assert(int); 344 static int socket_send(struct socket *, struct mbuf *, 345 struct sockaddr_in *); 346 347 /* 348 * Kernel multicast forwarding API capabilities and setup. 349 * If more API capabilities are added to the kernel, they should be 350 * recorded in `mrt_api_support'. 351 */ 352 #define MRT_API_VERSION 0x0305 353 354 static const int mrt_api_version = MRT_API_VERSION; 355 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 356 MRT_MFC_FLAGS_BORDER_VIF | 357 MRT_MFC_RP | 358 MRT_MFC_BW_UPCALL); 359 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 360 #define V_mrt_api_config VNET(mrt_api_config) 361 VNET_DEFINE_STATIC(int, pim_assert_enabled); 362 #define V_pim_assert_enabled VNET(pim_assert_enabled) 363 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 364 365 /* 366 * Find a route for a given origin IP address and multicast group address. 367 * Statistics must be updated by the caller. 368 */ 369 static __inline struct mfc * 370 mfc_find(struct in_addr *o, struct in_addr *g) 371 { 372 struct mfc *rt; 373 374 /* 375 * Might be called both RLOCK and WLOCK. 376 * Check if any, it's caller responsibility 377 * to choose correct option. 378 */ 379 MRW_LOCK_ASSERT(); 380 381 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 382 if (in_hosteq(rt->mfc_origin, *o) && 383 in_hosteq(rt->mfc_mcastgrp, *g) && 384 buf_ring_empty(rt->mfc_stall_ring)) 385 break; 386 } 387 388 return (rt); 389 } 390 391 static __inline struct mfc * 392 mfc_alloc(void) 393 { 394 struct mfc *rt; 395 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 396 if (rt == NULL) 397 return rt; 398 399 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 400 M_NOWAIT, &V_buf_ring_mtx); 401 if (rt->mfc_stall_ring == NULL) { 402 free(rt, M_MRTABLE); 403 return NULL; 404 } 405 406 return rt; 407 } 408 409 /* 410 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 411 */ 412 static int 413 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 414 { 415 int error, optval; 416 vifi_t vifi; 417 struct vifctl vifc; 418 struct mfcctl2 mfc; 419 struct bw_upcall bw_upcall; 420 uint32_t i; 421 422 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 423 return EPERM; 424 425 error = 0; 426 switch (sopt->sopt_name) { 427 case MRT_INIT: 428 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 429 if (error) 430 break; 431 error = ip_mrouter_init(so, optval); 432 break; 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 case MRT_ADD_VIF: 437 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 438 if (error) 439 break; 440 error = add_vif(&vifc); 441 break; 442 case MRT_DEL_VIF: 443 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 444 if (error) 445 break; 446 error = del_vif(vifi); 447 break; 448 case MRT_ADD_MFC: 449 case MRT_DEL_MFC: 450 /* 451 * select data size depending on API version. 452 */ 453 if (sopt->sopt_name == MRT_ADD_MFC && 454 V_mrt_api_config & MRT_API_FLAGS_ALL) { 455 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 456 sizeof(struct mfcctl2)); 457 } else { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 459 sizeof(struct mfcctl)); 460 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 461 sizeof(mfc) - sizeof(struct mfcctl)); 462 } 463 if (error) 464 break; 465 if (sopt->sopt_name == MRT_ADD_MFC) 466 error = add_mfc(&mfc); 467 else 468 error = del_mfc(&mfc); 469 break; 470 471 case MRT_ASSERT: 472 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 473 if (error) 474 break; 475 set_assert(optval); 476 break; 477 478 case MRT_API_CONFIG: 479 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 480 if (!error) 481 error = set_api_config(&i); 482 if (!error) 483 error = sooptcopyout(sopt, &i, sizeof i); 484 break; 485 486 case MRT_ADD_BW_UPCALL: 487 case MRT_DEL_BW_UPCALL: 488 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 489 sizeof bw_upcall); 490 if (error) 491 break; 492 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 493 error = add_bw_upcall(&bw_upcall); 494 else 495 error = del_bw_upcall(&bw_upcall); 496 break; 497 498 default: 499 error = EOPNOTSUPP; 500 break; 501 } 502 return error; 503 } 504 505 /* 506 * Handle MRT getsockopt commands 507 */ 508 static int 509 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 510 { 511 int error; 512 513 switch (sopt->sopt_name) { 514 case MRT_VERSION: 515 error = sooptcopyout(sopt, &mrt_api_version, 516 sizeof mrt_api_version); 517 break; 518 case MRT_ASSERT: 519 error = sooptcopyout(sopt, &V_pim_assert_enabled, 520 sizeof V_pim_assert_enabled); 521 break; 522 case MRT_API_SUPPORT: 523 error = sooptcopyout(sopt, &mrt_api_support, 524 sizeof mrt_api_support); 525 break; 526 case MRT_API_CONFIG: 527 error = sooptcopyout(sopt, &V_mrt_api_config, 528 sizeof V_mrt_api_config); 529 break; 530 default: 531 error = EOPNOTSUPP; 532 break; 533 } 534 return error; 535 } 536 537 /* 538 * Handle ioctl commands to obtain information from the cache 539 */ 540 static int 541 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 542 { 543 int error; 544 545 /* 546 * Currently the only function calling this ioctl routine is rtioctl_fib(). 547 * Typically, only root can create the raw socket in order to execute 548 * this ioctl method, however the request might be coming from a prison 549 */ 550 error = priv_check(curthread, PRIV_NETINET_MROUTE); 551 if (error) 552 return (error); 553 switch (cmd) { 554 case (SIOCGETVIFCNT): 555 error = get_vif_cnt((struct sioc_vif_req *)data); 556 break; 557 558 case (SIOCGETSGCNT): 559 error = get_sg_cnt((struct sioc_sg_req *)data); 560 break; 561 562 default: 563 error = EINVAL; 564 break; 565 } 566 return error; 567 } 568 569 /* 570 * returns the packet, byte, rpf-failure count for the source group provided 571 */ 572 static int 573 get_sg_cnt(struct sioc_sg_req *req) 574 { 575 struct mfc *rt; 576 577 MRW_RLOCK(); 578 rt = mfc_find(&req->src, &req->grp); 579 if (rt == NULL) { 580 MRW_RUNLOCK(); 581 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 582 return EADDRNOTAVAIL; 583 } 584 req->pktcnt = rt->mfc_pkt_cnt; 585 req->bytecnt = rt->mfc_byte_cnt; 586 req->wrong_if = rt->mfc_wrong_if; 587 MRW_RUNLOCK(); 588 return 0; 589 } 590 591 /* 592 * returns the input and output packet and byte counts on the vif provided 593 */ 594 static int 595 get_vif_cnt(struct sioc_vif_req *req) 596 { 597 vifi_t vifi = req->vifi; 598 599 MRW_RLOCK(); 600 if (vifi >= V_numvifs) { 601 MRW_RUNLOCK(); 602 return EINVAL; 603 } 604 605 mtx_lock_spin(&V_viftable[vifi].v_spin); 606 req->icount = V_viftable[vifi].v_pkt_in; 607 req->ocount = V_viftable[vifi].v_pkt_out; 608 req->ibytes = V_viftable[vifi].v_bytes_in; 609 req->obytes = V_viftable[vifi].v_bytes_out; 610 mtx_unlock_spin(&V_viftable[vifi].v_spin); 611 MRW_RUNLOCK(); 612 613 return 0; 614 } 615 616 static void 617 if_detached_event(void *arg __unused, struct ifnet *ifp) 618 { 619 vifi_t vifi; 620 u_long i, vifi_cnt = 0; 621 struct ifnet *free_ptr, *multi_leave; 622 623 MRW_WLOCK(); 624 625 if (V_ip_mrouter == NULL) { 626 MRW_WUNLOCK(); 627 return; 628 } 629 630 /* 631 * Tear down multicast forwarder state associated with this ifnet. 632 * 1. Walk the vif list, matching vifs against this ifnet. 633 * 2. Walk the multicast forwarding cache (mfc) looking for 634 * inner matches with this vif's index. 635 * 3. Expire any matching multicast forwarding cache entries. 636 * 4. Free vif state. This should disable ALLMULTI on the interface. 637 */ 638 restart: 639 for (vifi = 0; vifi < V_numvifs; vifi++) { 640 if (V_viftable[vifi].v_ifp != ifp) 641 continue; 642 for (i = 0; i < mfchashsize; i++) { 643 struct mfc *rt, *nrt; 644 645 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 646 if (rt->mfc_parent == vifi) { 647 expire_mfc(rt); 648 } 649 } 650 } 651 del_vif_locked(vifi, &multi_leave, &free_ptr); 652 if (free_ptr != NULL) 653 vifi_cnt++; 654 if (multi_leave) { 655 MRW_WUNLOCK(); 656 if_allmulti(multi_leave, 0); 657 MRW_WLOCK(); 658 goto restart; 659 } 660 } 661 662 MRW_WUNLOCK(); 663 664 /* 665 * Free IFP. We don't have to use free_ptr here as it is the same 666 * that ifp. Perform free as many times as required in case 667 * refcount is greater than 1. 668 */ 669 for (i = 0; i < vifi_cnt; i++) 670 if_free(ifp); 671 } 672 673 static void 674 ip_mrouter_upcall_thread(void *arg, int pending __unused) 675 { 676 CURVNET_SET((struct vnet *) arg); 677 678 MRW_WLOCK(); 679 bw_upcalls_send(); 680 MRW_WUNLOCK(); 681 682 CURVNET_RESTORE(); 683 } 684 685 /* 686 * Enable multicast forwarding. 687 */ 688 static int 689 ip_mrouter_init(struct socket *so, int version) 690 { 691 692 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 693 694 if (version != 1) 695 return ENOPROTOOPT; 696 697 MRW_WLOCK(); 698 699 if (ip_mrouter_unloading) { 700 MRW_WUNLOCK(); 701 return ENOPROTOOPT; 702 } 703 704 if (V_ip_mrouter != NULL) { 705 MRW_WUNLOCK(); 706 return EADDRINUSE; 707 } 708 709 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 710 HASH_NOWAIT); 711 712 /* Create upcall ring */ 713 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 714 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 715 M_NOWAIT, &V_bw_upcalls_ring_mtx); 716 if (!V_bw_upcalls_ring) { 717 MRW_WUNLOCK(); 718 return (ENOMEM); 719 } 720 721 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 722 taskqueue_cancel(V_task_queue, &V_task, NULL); 723 taskqueue_unblock(V_task_queue); 724 725 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 726 curvnet); 727 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 728 curvnet); 729 730 V_ip_mrouter = so; 731 atomic_add_int(&ip_mrouter_cnt, 1); 732 733 /* This is a mutex required by buf_ring init, but not used internally */ 734 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 735 736 MRW_WUNLOCK(); 737 738 CTR1(KTR_IPMF, "%s: done", __func__); 739 740 return 0; 741 } 742 743 /* 744 * Disable multicast forwarding. 745 */ 746 static int 747 X_ip_mrouter_done(void) 748 { 749 struct ifnet **ifps; 750 int nifp; 751 u_long i; 752 vifi_t vifi; 753 struct bw_upcall *bu; 754 755 if (V_ip_mrouter == NULL) 756 return (EINVAL); 757 758 /* 759 * Detach/disable hooks to the reset of the system. 760 */ 761 V_ip_mrouter = NULL; 762 atomic_subtract_int(&ip_mrouter_cnt, 1); 763 V_mrt_api_config = 0; 764 765 /* 766 * Wait for all epoch sections to complete to ensure 767 * V_ip_mrouter = NULL is visible to others. 768 */ 769 epoch_wait_preempt(net_epoch_preempt); 770 771 /* Stop and drain task queue */ 772 taskqueue_block(V_task_queue); 773 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 774 taskqueue_drain(V_task_queue, &V_task); 775 } 776 777 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 778 779 MRW_WLOCK(); 780 taskqueue_cancel(V_task_queue, &V_task, NULL); 781 782 /* Destroy upcall ring */ 783 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 784 free(bu, M_MRTABLE); 785 } 786 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 787 mtx_destroy(&V_bw_upcalls_ring_mtx); 788 789 /* 790 * For each phyint in use, prepare to disable promiscuous reception 791 * of all IP multicasts. Defer the actual call until the lock is released; 792 * just record the list of interfaces while locked. Some interfaces use 793 * sx locks in their ioctl routines, which is not allowed while holding 794 * a non-sleepable lock. 795 */ 796 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 797 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 798 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 799 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 800 ifps[nifp++] = V_viftable[vifi].v_ifp; 801 } 802 } 803 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 804 V_numvifs = 0; 805 V_pim_assert_enabled = 0; 806 807 callout_stop(&V_expire_upcalls_ch); 808 callout_stop(&V_bw_upcalls_ch); 809 810 /* 811 * Free all multicast forwarding cache entries. 812 * Do not use hashdestroy(), as we must perform other cleanup. 813 */ 814 for (i = 0; i < mfchashsize; i++) { 815 struct mfc *rt, *nrt; 816 817 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 818 expire_mfc(rt); 819 } 820 } 821 free(V_mfchashtbl, M_MRTABLE); 822 V_mfchashtbl = NULL; 823 824 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 825 826 V_reg_vif_num = VIFI_INVALID; 827 828 mtx_destroy(&V_buf_ring_mtx); 829 830 MRW_WUNLOCK(); 831 832 /* 833 * Now drop our claim on promiscuous multicast on the interfaces recorded 834 * above. This is safe to do now because ALLMULTI is reference counted. 835 */ 836 for (vifi = 0; vifi < nifp; vifi++) 837 if_allmulti(ifps[vifi], 0); 838 free(ifps, M_TEMP); 839 840 CTR1(KTR_IPMF, "%s: done", __func__); 841 842 return 0; 843 } 844 845 /* 846 * Set PIM assert processing global 847 */ 848 static int 849 set_assert(int i) 850 { 851 if ((i != 1) && (i != 0)) 852 return EINVAL; 853 854 V_pim_assert_enabled = i; 855 856 return 0; 857 } 858 859 /* 860 * Configure API capabilities 861 */ 862 int 863 set_api_config(uint32_t *apival) 864 { 865 u_long i; 866 867 /* 868 * We can set the API capabilities only if it is the first operation 869 * after MRT_INIT. I.e.: 870 * - there are no vifs installed 871 * - pim_assert is not enabled 872 * - the MFC table is empty 873 */ 874 if (V_numvifs > 0) { 875 *apival = 0; 876 return EPERM; 877 } 878 if (V_pim_assert_enabled) { 879 *apival = 0; 880 return EPERM; 881 } 882 883 MRW_RLOCK(); 884 885 for (i = 0; i < mfchashsize; i++) { 886 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 887 MRW_RUNLOCK(); 888 *apival = 0; 889 return EPERM; 890 } 891 } 892 893 MRW_RUNLOCK(); 894 895 V_mrt_api_config = *apival & mrt_api_support; 896 *apival = V_mrt_api_config; 897 898 return 0; 899 } 900 901 /* 902 * Add a vif to the vif table 903 */ 904 static int 905 add_vif(struct vifctl *vifcp) 906 { 907 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 908 struct sockaddr_in sin = {sizeof sin, AF_INET}; 909 struct ifaddr *ifa; 910 struct ifnet *ifp; 911 int error; 912 913 if (vifcp->vifc_vifi >= MAXVIFS) 914 return EINVAL; 915 /* rate limiting is no longer supported by this code */ 916 if (vifcp->vifc_rate_limit != 0) { 917 log(LOG_ERR, "rate limiting is no longer supported\n"); 918 return EINVAL; 919 } 920 921 if (in_nullhost(vifcp->vifc_lcl_addr)) 922 return EADDRNOTAVAIL; 923 924 /* Find the interface with an address in AF_INET family */ 925 if (vifcp->vifc_flags & VIFF_REGISTER) { 926 /* 927 * XXX: Because VIFF_REGISTER does not really need a valid 928 * local interface (e.g. it could be 127.0.0.2), we don't 929 * check its address. 930 */ 931 ifp = NULL; 932 } else { 933 struct epoch_tracker et; 934 935 sin.sin_addr = vifcp->vifc_lcl_addr; 936 NET_EPOCH_ENTER(et); 937 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 938 if (ifa == NULL) { 939 NET_EPOCH_EXIT(et); 940 return EADDRNOTAVAIL; 941 } 942 ifp = ifa->ifa_ifp; 943 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 944 NET_EPOCH_EXIT(et); 945 } 946 947 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 948 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 949 return EOPNOTSUPP; 950 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 951 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 952 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 953 if (V_reg_vif_num == VIFI_INVALID) { 954 if_initname(V_multicast_register_if, "register_vif", 0); 955 V_reg_vif_num = vifcp->vifc_vifi; 956 } 957 } else { /* Make sure the interface supports multicast */ 958 if ((ifp->if_flags & IFF_MULTICAST) == 0) 959 return EOPNOTSUPP; 960 961 /* Enable promiscuous reception of all IP multicasts from the if */ 962 error = if_allmulti(ifp, 1); 963 if (error) 964 return error; 965 } 966 967 MRW_WLOCK(); 968 969 if (!in_nullhost(vifp->v_lcl_addr)) { 970 if (ifp) 971 V_multicast_register_if = NULL; 972 MRW_WUNLOCK(); 973 if (ifp) 974 if_free(ifp); 975 return EADDRINUSE; 976 } 977 978 vifp->v_flags = vifcp->vifc_flags; 979 vifp->v_threshold = vifcp->vifc_threshold; 980 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 981 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 982 vifp->v_ifp = ifp; 983 /* initialize per vif pkt counters */ 984 vifp->v_pkt_in = 0; 985 vifp->v_pkt_out = 0; 986 vifp->v_bytes_in = 0; 987 vifp->v_bytes_out = 0; 988 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 989 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 990 991 /* Adjust numvifs up if the vifi is higher than numvifs */ 992 if (V_numvifs <= vifcp->vifc_vifi) 993 V_numvifs = vifcp->vifc_vifi + 1; 994 995 MRW_WUNLOCK(); 996 997 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 998 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 999 (int)vifcp->vifc_threshold); 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * Delete a vif from the vif table 1006 */ 1007 static int 1008 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free) 1009 { 1010 struct vif *vifp; 1011 1012 *ifp_free = NULL; 1013 *ifp_multi_leave = NULL; 1014 1015 MRW_WLOCK_ASSERT(); 1016 1017 if (vifi >= V_numvifs) { 1018 return EINVAL; 1019 } 1020 vifp = &V_viftable[vifi]; 1021 if (in_nullhost(vifp->v_lcl_addr)) { 1022 return EADDRNOTAVAIL; 1023 } 1024 1025 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1026 *ifp_multi_leave = vifp->v_ifp; 1027 1028 if (vifp->v_flags & VIFF_REGISTER) { 1029 V_reg_vif_num = VIFI_INVALID; 1030 if (vifp->v_ifp) { 1031 if (vifp->v_ifp == V_multicast_register_if) 1032 V_multicast_register_if = NULL; 1033 *ifp_free = vifp->v_ifp; 1034 } 1035 } 1036 1037 mtx_destroy(&vifp->v_spin); 1038 1039 bzero((caddr_t)vifp, sizeof (*vifp)); 1040 1041 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1042 1043 /* Adjust numvifs down */ 1044 for (vifi = V_numvifs; vifi > 0; vifi--) 1045 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1046 break; 1047 V_numvifs = vifi; 1048 1049 return 0; 1050 } 1051 1052 static int 1053 del_vif(vifi_t vifi) 1054 { 1055 int cc; 1056 struct ifnet *free_ptr, *multi_leave; 1057 1058 MRW_WLOCK(); 1059 cc = del_vif_locked(vifi, &multi_leave, &free_ptr); 1060 MRW_WUNLOCK(); 1061 1062 if (multi_leave) 1063 if_allmulti(multi_leave, 0); 1064 if (free_ptr) { 1065 if_free(free_ptr); 1066 } 1067 1068 return cc; 1069 } 1070 1071 /* 1072 * update an mfc entry without resetting counters and S,G addresses. 1073 */ 1074 static void 1075 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1076 { 1077 int i; 1078 1079 rt->mfc_parent = mfccp->mfcc_parent; 1080 for (i = 0; i < V_numvifs; i++) { 1081 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1082 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1083 MRT_MFC_FLAGS_ALL; 1084 } 1085 /* set the RP address */ 1086 if (V_mrt_api_config & MRT_MFC_RP) 1087 rt->mfc_rp = mfccp->mfcc_rp; 1088 else 1089 rt->mfc_rp.s_addr = INADDR_ANY; 1090 } 1091 1092 /* 1093 * fully initialize an mfc entry from the parameter. 1094 */ 1095 static void 1096 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1097 { 1098 rt->mfc_origin = mfccp->mfcc_origin; 1099 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1100 1101 update_mfc_params(rt, mfccp); 1102 1103 /* initialize pkt counters per src-grp */ 1104 rt->mfc_pkt_cnt = 0; 1105 rt->mfc_byte_cnt = 0; 1106 rt->mfc_wrong_if = 0; 1107 timevalclear(&rt->mfc_last_assert); 1108 } 1109 1110 static void 1111 expire_mfc(struct mfc *rt) 1112 { 1113 struct rtdetq *rte; 1114 1115 MRW_WLOCK_ASSERT(); 1116 1117 free_bw_list(rt->mfc_bw_meter_leq); 1118 free_bw_list(rt->mfc_bw_meter_geq); 1119 1120 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1121 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1122 if (rte) { 1123 m_freem(rte->m); 1124 free(rte, M_MRTABLE); 1125 } 1126 } 1127 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1128 1129 LIST_REMOVE(rt, mfc_hash); 1130 free(rt, M_MRTABLE); 1131 } 1132 1133 /* 1134 * Add an mfc entry 1135 */ 1136 static int 1137 add_mfc(struct mfcctl2 *mfccp) 1138 { 1139 struct mfc *rt; 1140 struct rtdetq *rte; 1141 u_long hash = 0; 1142 u_short nstl; 1143 struct epoch_tracker et; 1144 1145 MRW_WLOCK(); 1146 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1147 1148 /* If an entry already exists, just update the fields */ 1149 if (rt) { 1150 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1151 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1152 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1153 mfccp->mfcc_parent); 1154 update_mfc_params(rt, mfccp); 1155 MRW_WUNLOCK(); 1156 return (0); 1157 } 1158 1159 /* 1160 * Find the entry for which the upcall was made and update 1161 */ 1162 nstl = 0; 1163 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1164 NET_EPOCH_ENTER(et); 1165 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1166 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1167 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1168 !buf_ring_empty(rt->mfc_stall_ring)) { 1169 CTR5(KTR_IPMF, 1170 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1171 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1172 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1173 mfccp->mfcc_parent, 1174 rt->mfc_stall_ring); 1175 if (nstl++) 1176 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1177 1178 init_mfc_params(rt, mfccp); 1179 rt->mfc_expire = 0; /* Don't clean this guy up */ 1180 V_nexpire[hash]--; 1181 1182 /* Free queued packets, but attempt to forward them first. */ 1183 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1184 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1185 if (rte->ifp != NULL) 1186 ip_mdq(rte->m, rte->ifp, rt, -1); 1187 m_freem(rte->m); 1188 free(rte, M_MRTABLE); 1189 } 1190 } 1191 } 1192 NET_EPOCH_EXIT(et); 1193 1194 /* 1195 * It is possible that an entry is being inserted without an upcall 1196 */ 1197 if (nstl == 0) { 1198 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1199 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1200 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1201 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1202 init_mfc_params(rt, mfccp); 1203 if (rt->mfc_expire) 1204 V_nexpire[hash]--; 1205 rt->mfc_expire = 0; 1206 break; /* XXX */ 1207 } 1208 } 1209 1210 if (rt == NULL) { /* no upcall, so make a new entry */ 1211 rt = mfc_alloc(); 1212 if (rt == NULL) { 1213 MRW_WUNLOCK(); 1214 return (ENOBUFS); 1215 } 1216 1217 init_mfc_params(rt, mfccp); 1218 1219 rt->mfc_expire = 0; 1220 rt->mfc_bw_meter_leq = NULL; 1221 rt->mfc_bw_meter_geq = NULL; 1222 1223 /* insert new entry at head of hash chain */ 1224 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1225 } 1226 } 1227 1228 MRW_WUNLOCK(); 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * Delete an mfc entry 1235 */ 1236 static int 1237 del_mfc(struct mfcctl2 *mfccp) 1238 { 1239 struct in_addr origin; 1240 struct in_addr mcastgrp; 1241 struct mfc *rt; 1242 1243 origin = mfccp->mfcc_origin; 1244 mcastgrp = mfccp->mfcc_mcastgrp; 1245 1246 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1247 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1248 1249 MRW_WLOCK(); 1250 1251 rt = mfc_find(&origin, &mcastgrp); 1252 if (rt == NULL) { 1253 MRW_WUNLOCK(); 1254 return EADDRNOTAVAIL; 1255 } 1256 1257 /* 1258 * free the bw_meter entries 1259 */ 1260 free_bw_list(rt->mfc_bw_meter_leq); 1261 rt->mfc_bw_meter_leq = NULL; 1262 free_bw_list(rt->mfc_bw_meter_geq); 1263 rt->mfc_bw_meter_geq = NULL; 1264 1265 LIST_REMOVE(rt, mfc_hash); 1266 free(rt, M_MRTABLE); 1267 1268 MRW_WUNLOCK(); 1269 1270 return (0); 1271 } 1272 1273 /* 1274 * Send a message to the routing daemon on the multicast routing socket. 1275 */ 1276 static int 1277 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1278 { 1279 if (s) { 1280 SOCKBUF_LOCK(&s->so_rcv); 1281 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1282 NULL) != 0) { 1283 sorwakeup_locked(s); 1284 return 0; 1285 } 1286 soroverflow_locked(s); 1287 } 1288 m_freem(mm); 1289 return -1; 1290 } 1291 1292 /* 1293 * IP multicast forwarding function. This function assumes that the packet 1294 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1295 * pointed to by "ifp", and the packet is to be relayed to other networks 1296 * that have members of the packet's destination IP multicast group. 1297 * 1298 * The packet is returned unscathed to the caller, unless it is 1299 * erroneous, in which case a non-zero return value tells the caller to 1300 * discard it. 1301 */ 1302 1303 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1304 1305 static int 1306 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1307 struct ip_moptions *imo) 1308 { 1309 struct mfc *rt; 1310 int error; 1311 vifi_t vifi; 1312 struct mbuf *mb0; 1313 struct rtdetq *rte; 1314 u_long hash; 1315 int hlen; 1316 1317 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1318 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1319 1320 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1321 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1322 /* 1323 * Packet arrived via a physical interface or 1324 * an encapsulated tunnel or a register_vif. 1325 */ 1326 } else { 1327 /* 1328 * Packet arrived through a source-route tunnel. 1329 * Source-route tunnels are no longer supported. 1330 */ 1331 return (1); 1332 } 1333 1334 /* 1335 * BEGIN: MCAST ROUTING HOT PATH 1336 */ 1337 MRW_RLOCK(); 1338 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1339 if (ip->ip_ttl < MAXTTL) 1340 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1341 error = ip_mdq(m, ifp, NULL, vifi); 1342 MRW_RUNLOCK(); 1343 return error; 1344 } 1345 1346 /* 1347 * Don't forward a packet with time-to-live of zero or one, 1348 * or a packet destined to a local-only group. 1349 */ 1350 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1351 MRW_RUNLOCK(); 1352 return 0; 1353 } 1354 1355 mfc_find_retry: 1356 /* 1357 * Determine forwarding vifs from the forwarding cache table 1358 */ 1359 MRTSTAT_INC(mrts_mfc_lookups); 1360 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1361 1362 /* Entry exists, so forward if necessary */ 1363 if (rt != NULL) { 1364 error = ip_mdq(m, ifp, rt, -1); 1365 /* Generic unlock here as we might release R or W lock */ 1366 MRW_UNLOCK(); 1367 return error; 1368 } 1369 1370 /* 1371 * END: MCAST ROUTING HOT PATH 1372 */ 1373 1374 /* Further processing must be done with WLOCK taken */ 1375 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1376 MRW_RUNLOCK(); 1377 MRW_WLOCK(); 1378 goto mfc_find_retry; 1379 } 1380 1381 /* 1382 * If we don't have a route for packet's origin, 1383 * Make a copy of the packet & send message to routing daemon 1384 */ 1385 hlen = ip->ip_hl << 2; 1386 1387 MRTSTAT_INC(mrts_mfc_misses); 1388 MRTSTAT_INC(mrts_no_route); 1389 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1390 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1391 1392 /* 1393 * Allocate mbufs early so that we don't do extra work if we are 1394 * just going to fail anyway. Make sure to pullup the header so 1395 * that other people can't step on it. 1396 */ 1397 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); 1398 if (rte == NULL) { 1399 MRW_WUNLOCK(); 1400 return ENOBUFS; 1401 } 1402 1403 mb0 = m_copypacket(m, M_NOWAIT); 1404 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1405 mb0 = m_pullup(mb0, hlen); 1406 if (mb0 == NULL) { 1407 free(rte, M_MRTABLE); 1408 MRW_WUNLOCK(); 1409 return ENOBUFS; 1410 } 1411 1412 /* is there an upcall waiting for this flow ? */ 1413 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1414 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1415 { 1416 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1417 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1418 !buf_ring_empty(rt->mfc_stall_ring)) 1419 break; 1420 } 1421 1422 if (rt == NULL) { 1423 int i; 1424 struct igmpmsg *im; 1425 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1426 struct mbuf *mm; 1427 1428 /* 1429 * Locate the vifi for the incoming interface for this packet. 1430 * If none found, drop packet. 1431 */ 1432 for (vifi = 0; vifi < V_numvifs && 1433 V_viftable[vifi].v_ifp != ifp; vifi++) 1434 ; 1435 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1436 goto non_fatal; 1437 1438 /* no upcall, so make a new entry */ 1439 rt = mfc_alloc(); 1440 if (rt == NULL) 1441 goto fail; 1442 1443 /* Make a copy of the header to send to the user level process */ 1444 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1445 if (mm == NULL) 1446 goto fail1; 1447 1448 /* 1449 * Send message to routing daemon to install 1450 * a route into the kernel table 1451 */ 1452 1453 im = mtod(mm, struct igmpmsg*); 1454 im->im_msgtype = IGMPMSG_NOCACHE; 1455 im->im_mbz = 0; 1456 im->im_vif = vifi; 1457 1458 MRTSTAT_INC(mrts_upcalls); 1459 1460 k_igmpsrc.sin_addr = ip->ip_src; 1461 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1462 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1463 MRTSTAT_INC(mrts_upq_sockfull); 1464 fail1: free(rt, M_MRTABLE); 1465 fail: free(rte, M_MRTABLE); 1466 m_freem(mb0); 1467 MRW_WUNLOCK(); 1468 return ENOBUFS; 1469 } 1470 1471 /* insert new entry at head of hash chain */ 1472 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1473 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1474 rt->mfc_expire = UPCALL_EXPIRE; 1475 V_nexpire[hash]++; 1476 for (i = 0; i < V_numvifs; i++) { 1477 rt->mfc_ttls[i] = 0; 1478 rt->mfc_flags[i] = 0; 1479 } 1480 rt->mfc_parent = -1; 1481 1482 /* clear the RP address */ 1483 rt->mfc_rp.s_addr = INADDR_ANY; 1484 rt->mfc_bw_meter_leq = NULL; 1485 rt->mfc_bw_meter_geq = NULL; 1486 1487 /* initialize pkt counters per src-grp */ 1488 rt->mfc_pkt_cnt = 0; 1489 rt->mfc_byte_cnt = 0; 1490 rt->mfc_wrong_if = 0; 1491 timevalclear(&rt->mfc_last_assert); 1492 1493 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1494 1495 /* Add RT to hashtable as it didn't exist before */ 1496 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1497 } else { 1498 /* determine if queue has overflowed */ 1499 if (buf_ring_full(rt->mfc_stall_ring)) { 1500 MRTSTAT_INC(mrts_upq_ovflw); 1501 non_fatal: free(rte, M_MRTABLE); 1502 m_freem(mb0); 1503 MRW_WUNLOCK(); 1504 return (0); 1505 } 1506 1507 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1508 } 1509 1510 rte->m = mb0; 1511 rte->ifp = ifp; 1512 1513 MRW_WUNLOCK(); 1514 1515 return 0; 1516 } 1517 1518 /* 1519 * Clean up the cache entry if upcall is not serviced 1520 */ 1521 static void 1522 expire_upcalls(void *arg) 1523 { 1524 u_long i; 1525 1526 CURVNET_SET((struct vnet *) arg); 1527 1528 /*This callout is always run with MRW_WLOCK taken. */ 1529 1530 for (i = 0; i < mfchashsize; i++) { 1531 struct mfc *rt, *nrt; 1532 1533 if (V_nexpire[i] == 0) 1534 continue; 1535 1536 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1537 if (buf_ring_empty(rt->mfc_stall_ring)) 1538 continue; 1539 1540 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1541 continue; 1542 1543 MRTSTAT_INC(mrts_cache_cleanups); 1544 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1545 (u_long)ntohl(rt->mfc_origin.s_addr), 1546 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1547 1548 expire_mfc(rt); 1549 } 1550 } 1551 1552 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1553 curvnet); 1554 1555 CURVNET_RESTORE(); 1556 } 1557 1558 /* 1559 * Packet forwarding routine once entry in the cache is made 1560 */ 1561 static int 1562 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1563 { 1564 struct ip *ip = mtod(m, struct ip *); 1565 vifi_t vifi; 1566 int plen = ntohs(ip->ip_len); 1567 1568 MRW_LOCK_ASSERT(); 1569 NET_EPOCH_ASSERT(); 1570 1571 /* 1572 * If xmt_vif is not -1, send on only the requested vif. 1573 * 1574 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1575 */ 1576 if (xmt_vif < V_numvifs) { 1577 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1578 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1579 else 1580 phyint_send(ip, V_viftable + xmt_vif, m); 1581 return 1; 1582 } 1583 1584 /* 1585 * Don't forward if it didn't arrive from the parent vif for its origin. 1586 */ 1587 vifi = rt->mfc_parent; 1588 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1589 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1590 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1591 MRTSTAT_INC(mrts_wrong_if); 1592 ++rt->mfc_wrong_if; 1593 /* 1594 * If we are doing PIM assert processing, send a message 1595 * to the routing daemon. 1596 * 1597 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1598 * can complete the SPT switch, regardless of the type 1599 * of the iif (broadcast media, GRE tunnel, etc). 1600 */ 1601 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1602 V_viftable[vifi].v_ifp) { 1603 if (ifp == V_multicast_register_if) 1604 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1605 1606 /* Get vifi for the incoming packet */ 1607 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) 1608 ; 1609 if (vifi >= V_numvifs) 1610 return 0; /* The iif is not found: ignore the packet. */ 1611 1612 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1613 return 0; /* WRONGVIF disabled: ignore the packet */ 1614 1615 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1616 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1617 struct igmpmsg *im; 1618 int hlen = ip->ip_hl << 2; 1619 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1620 1621 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1622 mm = m_pullup(mm, hlen); 1623 if (mm == NULL) 1624 return ENOBUFS; 1625 1626 im = mtod(mm, struct igmpmsg *); 1627 im->im_msgtype = IGMPMSG_WRONGVIF; 1628 im->im_mbz = 0; 1629 im->im_vif = vifi; 1630 1631 MRTSTAT_INC(mrts_upcalls); 1632 1633 k_igmpsrc.sin_addr = im->im_src; 1634 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1635 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1636 MRTSTAT_INC(mrts_upq_sockfull); 1637 return ENOBUFS; 1638 } 1639 } 1640 } 1641 return 0; 1642 } 1643 1644 /* If I sourced this packet, it counts as output, else it was input. */ 1645 mtx_lock_spin(&V_viftable[vifi].v_spin); 1646 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1647 V_viftable[vifi].v_pkt_out++; 1648 V_viftable[vifi].v_bytes_out += plen; 1649 } else { 1650 V_viftable[vifi].v_pkt_in++; 1651 V_viftable[vifi].v_bytes_in += plen; 1652 } 1653 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1654 1655 rt->mfc_pkt_cnt++; 1656 rt->mfc_byte_cnt += plen; 1657 1658 /* 1659 * For each vif, decide if a copy of the packet should be forwarded. 1660 * Forward if: 1661 * - the ttl exceeds the vif's threshold 1662 * - there are group members downstream on interface 1663 */ 1664 for (vifi = 0; vifi < V_numvifs; vifi++) 1665 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1666 V_viftable[vifi].v_pkt_out++; 1667 V_viftable[vifi].v_bytes_out += plen; 1668 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1669 pim_register_send(ip, V_viftable + vifi, m, rt); 1670 else 1671 phyint_send(ip, V_viftable + vifi, m); 1672 } 1673 1674 /* 1675 * Perform upcall-related bw measuring. 1676 */ 1677 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1678 struct bw_meter *x; 1679 struct timeval now; 1680 1681 microtime(&now); 1682 /* Process meters for Greater-or-EQual case */ 1683 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1684 bw_meter_geq_receive_packet(x, plen, &now); 1685 1686 /* Process meters for Lower-or-EQual case */ 1687 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1688 /* 1689 * Record that a packet is received. 1690 * Spin lock has to be taken as callout context 1691 * (expire_bw_meter_leq) might modify these fields 1692 * as well 1693 */ 1694 mtx_lock_spin(&x->bm_spin); 1695 x->bm_measured.b_packets++; 1696 x->bm_measured.b_bytes += plen; 1697 mtx_unlock_spin(&x->bm_spin); 1698 } 1699 } 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1706 */ 1707 static int 1708 X_legal_vif_num(int vif) 1709 { 1710 int ret; 1711 1712 ret = 0; 1713 if (vif < 0) 1714 return (ret); 1715 1716 MRW_RLOCK(); 1717 if (vif < V_numvifs) 1718 ret = 1; 1719 MRW_RUNLOCK(); 1720 1721 return (ret); 1722 } 1723 1724 /* 1725 * Return the local address used by this vif 1726 */ 1727 static u_long 1728 X_ip_mcast_src(int vifi) 1729 { 1730 in_addr_t addr; 1731 1732 addr = INADDR_ANY; 1733 if (vifi < 0) 1734 return (addr); 1735 1736 MRW_RLOCK(); 1737 if (vifi < V_numvifs) 1738 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1739 MRW_RUNLOCK(); 1740 1741 return (addr); 1742 } 1743 1744 static void 1745 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1746 { 1747 struct mbuf *mb_copy; 1748 int hlen = ip->ip_hl << 2; 1749 1750 MRW_LOCK_ASSERT(); 1751 1752 /* 1753 * Make a new reference to the packet; make sure that 1754 * the IP header is actually copied, not just referenced, 1755 * so that ip_output() only scribbles on the copy. 1756 */ 1757 mb_copy = m_copypacket(m, M_NOWAIT); 1758 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1759 mb_copy = m_pullup(mb_copy, hlen); 1760 if (mb_copy == NULL) 1761 return; 1762 1763 send_packet(vifp, mb_copy); 1764 } 1765 1766 static void 1767 send_packet(struct vif *vifp, struct mbuf *m) 1768 { 1769 struct ip_moptions imo; 1770 int error __unused; 1771 1772 MRW_LOCK_ASSERT(); 1773 NET_EPOCH_ASSERT(); 1774 1775 imo.imo_multicast_ifp = vifp->v_ifp; 1776 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1777 imo.imo_multicast_loop = !!in_mcast_loop; 1778 imo.imo_multicast_vif = -1; 1779 STAILQ_INIT(&imo.imo_head); 1780 1781 /* 1782 * Re-entrancy should not be a problem here, because 1783 * the packets that we send out and are looped back at us 1784 * should get rejected because they appear to come from 1785 * the loopback interface, thus preventing looping. 1786 */ 1787 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1788 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1789 (ptrdiff_t)(vifp - V_viftable), error); 1790 } 1791 1792 /* 1793 * Stubs for old RSVP socket shim implementation. 1794 */ 1795 1796 static int 1797 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1798 { 1799 1800 return (EOPNOTSUPP); 1801 } 1802 1803 static void 1804 X_ip_rsvp_force_done(struct socket *so __unused) 1805 { 1806 1807 } 1808 1809 static int 1810 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1811 { 1812 struct mbuf *m; 1813 1814 m = *mp; 1815 *mp = NULL; 1816 if (!V_rsvp_on) 1817 m_freem(m); 1818 return (IPPROTO_DONE); 1819 } 1820 1821 /* 1822 * Code for bandwidth monitors 1823 */ 1824 1825 /* 1826 * Define common interface for timeval-related methods 1827 */ 1828 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1829 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1830 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1831 1832 static uint32_t 1833 compute_bw_meter_flags(struct bw_upcall *req) 1834 { 1835 uint32_t flags = 0; 1836 1837 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1838 flags |= BW_METER_UNIT_PACKETS; 1839 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1840 flags |= BW_METER_UNIT_BYTES; 1841 if (req->bu_flags & BW_UPCALL_GEQ) 1842 flags |= BW_METER_GEQ; 1843 if (req->bu_flags & BW_UPCALL_LEQ) 1844 flags |= BW_METER_LEQ; 1845 1846 return flags; 1847 } 1848 1849 static void 1850 expire_bw_meter_leq(void *arg) 1851 { 1852 struct bw_meter *x = arg; 1853 struct timeval now; 1854 /* 1855 * INFO: 1856 * callout is always executed with MRW_WLOCK taken 1857 */ 1858 1859 CURVNET_SET((struct vnet *)x->arg); 1860 1861 microtime(&now); 1862 1863 /* 1864 * Test if we should deliver an upcall 1865 */ 1866 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1867 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1868 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1869 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1870 /* Prepare an upcall for delivery */ 1871 bw_meter_prepare_upcall(x, &now); 1872 } 1873 1874 /* Send all upcalls that are pending delivery */ 1875 taskqueue_enqueue(V_task_queue, &V_task); 1876 1877 /* Reset counters */ 1878 x->bm_start_time = now; 1879 /* Spin lock has to be taken as ip_forward context 1880 * might modify these fields as well 1881 */ 1882 mtx_lock_spin(&x->bm_spin); 1883 x->bm_measured.b_bytes = 0; 1884 x->bm_measured.b_packets = 0; 1885 mtx_unlock_spin(&x->bm_spin); 1886 1887 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1888 1889 CURVNET_RESTORE(); 1890 } 1891 1892 /* 1893 * Add a bw_meter entry 1894 */ 1895 static int 1896 add_bw_upcall(struct bw_upcall *req) 1897 { 1898 struct mfc *mfc; 1899 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1900 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1901 struct timeval now; 1902 struct bw_meter *x, **bwm_ptr; 1903 uint32_t flags; 1904 1905 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1906 return EOPNOTSUPP; 1907 1908 /* Test if the flags are valid */ 1909 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1910 return EINVAL; 1911 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1912 return EINVAL; 1913 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1914 return EINVAL; 1915 1916 /* Test if the threshold time interval is valid */ 1917 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1918 return EINVAL; 1919 1920 flags = compute_bw_meter_flags(req); 1921 1922 /* 1923 * Find if we have already same bw_meter entry 1924 */ 1925 MRW_WLOCK(); 1926 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1927 if (mfc == NULL) { 1928 MRW_WUNLOCK(); 1929 return EADDRNOTAVAIL; 1930 } 1931 1932 /* Choose an appropriate bw_meter list */ 1933 if (req->bu_flags & BW_UPCALL_GEQ) 1934 bwm_ptr = &mfc->mfc_bw_meter_geq; 1935 else 1936 bwm_ptr = &mfc->mfc_bw_meter_leq; 1937 1938 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1939 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1940 &req->bu_threshold.b_time, ==)) 1941 && (x->bm_threshold.b_packets 1942 == req->bu_threshold.b_packets) 1943 && (x->bm_threshold.b_bytes 1944 == req->bu_threshold.b_bytes) 1945 && (x->bm_flags & BW_METER_USER_FLAGS) 1946 == flags) { 1947 MRW_WUNLOCK(); 1948 return 0; /* XXX Already installed */ 1949 } 1950 } 1951 1952 /* Allocate the new bw_meter entry */ 1953 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); 1954 if (x == NULL) { 1955 MRW_WUNLOCK(); 1956 return ENOBUFS; 1957 } 1958 1959 /* Set the new bw_meter entry */ 1960 x->bm_threshold.b_time = req->bu_threshold.b_time; 1961 microtime(&now); 1962 x->bm_start_time = now; 1963 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1964 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1965 x->bm_measured.b_packets = 0; 1966 x->bm_measured.b_bytes = 0; 1967 x->bm_flags = flags; 1968 x->bm_time_next = NULL; 1969 x->bm_mfc = mfc; 1970 x->arg = curvnet; 1971 sprintf(x->bm_spin_name, "BM spin %p", x); 1972 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1973 1974 /* For LEQ case create periodic callout */ 1975 if (req->bu_flags & BW_UPCALL_LEQ) { 1976 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); 1977 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1978 expire_bw_meter_leq, x); 1979 } 1980 1981 /* Add the new bw_meter entry to the front of entries for this MFC */ 1982 x->bm_mfc_next = *bwm_ptr; 1983 *bwm_ptr = x; 1984 1985 MRW_WUNLOCK(); 1986 1987 return 0; 1988 } 1989 1990 static void 1991 free_bw_list(struct bw_meter *list) 1992 { 1993 while (list != NULL) { 1994 struct bw_meter *x = list; 1995 1996 /* MRW_WLOCK must be held here */ 1997 if (x->bm_flags & BW_METER_LEQ) { 1998 callout_drain(&x->bm_meter_callout); 1999 mtx_destroy(&x->bm_spin); 2000 } 2001 2002 list = list->bm_mfc_next; 2003 free(x, M_BWMETER); 2004 } 2005 } 2006 2007 /* 2008 * Delete one or multiple bw_meter entries 2009 */ 2010 static int 2011 del_bw_upcall(struct bw_upcall *req) 2012 { 2013 struct mfc *mfc; 2014 struct bw_meter *x, **bwm_ptr; 2015 2016 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2017 return EOPNOTSUPP; 2018 2019 MRW_WLOCK(); 2020 2021 /* Find the corresponding MFC entry */ 2022 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2023 if (mfc == NULL) { 2024 MRW_WUNLOCK(); 2025 return EADDRNOTAVAIL; 2026 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2027 /* 2028 * Delete all bw_meter entries for this mfc 2029 */ 2030 struct bw_meter *list; 2031 2032 /* Free LEQ list */ 2033 list = mfc->mfc_bw_meter_leq; 2034 mfc->mfc_bw_meter_leq = NULL; 2035 free_bw_list(list); 2036 2037 /* Free GEQ list */ 2038 list = mfc->mfc_bw_meter_geq; 2039 mfc->mfc_bw_meter_geq = NULL; 2040 free_bw_list(list); 2041 MRW_WUNLOCK(); 2042 return 0; 2043 } else { /* Delete a single bw_meter entry */ 2044 struct bw_meter *prev; 2045 uint32_t flags = 0; 2046 2047 flags = compute_bw_meter_flags(req); 2048 2049 /* Choose an appropriate bw_meter list */ 2050 if (req->bu_flags & BW_UPCALL_GEQ) 2051 bwm_ptr = &mfc->mfc_bw_meter_geq; 2052 else 2053 bwm_ptr = &mfc->mfc_bw_meter_leq; 2054 2055 /* Find the bw_meter entry to delete */ 2056 for (prev = NULL, x = *bwm_ptr; x != NULL; 2057 prev = x, x = x->bm_mfc_next) { 2058 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && 2059 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2060 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2061 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2062 break; 2063 } 2064 if (x != NULL) { /* Delete entry from the list for this MFC */ 2065 if (prev != NULL) 2066 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2067 else 2068 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2069 2070 if (req->bu_flags & BW_UPCALL_LEQ) 2071 callout_stop(&x->bm_meter_callout); 2072 2073 MRW_WUNLOCK(); 2074 /* Free the bw_meter entry */ 2075 free(x, M_BWMETER); 2076 return 0; 2077 } else { 2078 MRW_WUNLOCK(); 2079 return EINVAL; 2080 } 2081 } 2082 __assert_unreachable(); 2083 } 2084 2085 /* 2086 * Perform bandwidth measurement processing that may result in an upcall 2087 */ 2088 static void 2089 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2090 { 2091 struct timeval delta; 2092 2093 MRW_LOCK_ASSERT(); 2094 2095 delta = *nowp; 2096 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2097 2098 /* 2099 * Processing for ">=" type of bw_meter entry. 2100 * bm_spin does not have to be hold here as in GEQ 2101 * case this is the only context accessing bm_measured. 2102 */ 2103 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2104 /* Reset the bw_meter entry */ 2105 x->bm_start_time = *nowp; 2106 x->bm_measured.b_packets = 0; 2107 x->bm_measured.b_bytes = 0; 2108 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2109 } 2110 2111 /* Record that a packet is received */ 2112 x->bm_measured.b_packets++; 2113 x->bm_measured.b_bytes += plen; 2114 2115 /* 2116 * Test if we should deliver an upcall 2117 */ 2118 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2119 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2120 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2121 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2122 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2123 /* Prepare an upcall for delivery */ 2124 bw_meter_prepare_upcall(x, nowp); 2125 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2126 } 2127 } 2128 } 2129 2130 /* 2131 * Prepare a bandwidth-related upcall 2132 */ 2133 static void 2134 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2135 { 2136 struct timeval delta; 2137 struct bw_upcall *u; 2138 2139 MRW_LOCK_ASSERT(); 2140 2141 /* 2142 * Compute the measured time interval 2143 */ 2144 delta = *nowp; 2145 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2146 2147 /* 2148 * Set the bw_upcall entry 2149 */ 2150 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2151 if (!u) { 2152 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2153 return; 2154 } 2155 u->bu_src = x->bm_mfc->mfc_origin; 2156 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2157 u->bu_threshold.b_time = x->bm_threshold.b_time; 2158 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2159 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2160 u->bu_measured.b_time = delta; 2161 u->bu_measured.b_packets = x->bm_measured.b_packets; 2162 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2163 u->bu_flags = 0; 2164 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2165 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2166 if (x->bm_flags & BW_METER_UNIT_BYTES) 2167 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2168 if (x->bm_flags & BW_METER_GEQ) 2169 u->bu_flags |= BW_UPCALL_GEQ; 2170 if (x->bm_flags & BW_METER_LEQ) 2171 u->bu_flags |= BW_UPCALL_LEQ; 2172 2173 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2174 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2175 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2176 taskqueue_enqueue(V_task_queue, &V_task); 2177 } 2178 } 2179 /* 2180 * Send the pending bandwidth-related upcalls 2181 */ 2182 static void 2183 bw_upcalls_send(void) 2184 { 2185 struct mbuf *m; 2186 int len = 0; 2187 struct bw_upcall *bu; 2188 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2189 static struct igmpmsg igmpmsg = { 2190 0, /* unused1 */ 2191 0, /* unused2 */ 2192 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2193 0, /* im_mbz */ 2194 0, /* im_vif */ 2195 0, /* unused3 */ 2196 { 0 }, /* im_src */ 2197 { 0 } /* im_dst */ 2198 }; 2199 2200 MRW_LOCK_ASSERT(); 2201 2202 if (buf_ring_empty(V_bw_upcalls_ring)) 2203 return; 2204 2205 /* 2206 * Allocate a new mbuf, initialize it with the header and 2207 * the payload for the pending calls. 2208 */ 2209 m = m_gethdr(M_NOWAIT, MT_DATA); 2210 if (m == NULL) { 2211 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2212 return; 2213 } 2214 2215 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2216 len += sizeof(struct igmpmsg); 2217 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2218 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2219 len += sizeof(struct bw_upcall); 2220 free(bu, M_MRTABLE); 2221 } 2222 2223 /* 2224 * Send the upcalls 2225 * XXX do we need to set the address in k_igmpsrc ? 2226 */ 2227 MRTSTAT_INC(mrts_upcalls); 2228 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2229 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2230 MRTSTAT_INC(mrts_upq_sockfull); 2231 } 2232 } 2233 2234 /* 2235 * A periodic function for sending all upcalls that are pending delivery 2236 */ 2237 static void 2238 expire_bw_upcalls_send(void *arg) 2239 { 2240 CURVNET_SET((struct vnet *) arg); 2241 2242 /* This callout is run with MRW_RLOCK taken */ 2243 2244 bw_upcalls_send(); 2245 2246 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2247 curvnet); 2248 CURVNET_RESTORE(); 2249 } 2250 2251 /* 2252 * End of bandwidth monitoring code 2253 */ 2254 2255 /* 2256 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2257 * 2258 */ 2259 static int 2260 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2261 struct mfc *rt) 2262 { 2263 struct mbuf *mb_copy, *mm; 2264 2265 /* 2266 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2267 * rendezvous point was unspecified, and we were told not to. 2268 */ 2269 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2270 in_nullhost(rt->mfc_rp)) 2271 return 0; 2272 2273 mb_copy = pim_register_prepare(ip, m); 2274 if (mb_copy == NULL) 2275 return ENOBUFS; 2276 2277 /* 2278 * Send all the fragments. Note that the mbuf for each fragment 2279 * is freed by the sending machinery. 2280 */ 2281 for (mm = mb_copy; mm; mm = mb_copy) { 2282 mb_copy = mm->m_nextpkt; 2283 mm->m_nextpkt = 0; 2284 mm = m_pullup(mm, sizeof(struct ip)); 2285 if (mm != NULL) { 2286 ip = mtod(mm, struct ip *); 2287 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2288 pim_register_send_rp(ip, vifp, mm, rt); 2289 } else { 2290 pim_register_send_upcall(ip, vifp, mm, rt); 2291 } 2292 } 2293 } 2294 2295 return 0; 2296 } 2297 2298 /* 2299 * Return a copy of the data packet that is ready for PIM Register 2300 * encapsulation. 2301 * XXX: Note that in the returned copy the IP header is a valid one. 2302 */ 2303 static struct mbuf * 2304 pim_register_prepare(struct ip *ip, struct mbuf *m) 2305 { 2306 struct mbuf *mb_copy = NULL; 2307 int mtu; 2308 2309 /* Take care of delayed checksums */ 2310 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2311 in_delayed_cksum(m); 2312 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2313 } 2314 2315 /* 2316 * Copy the old packet & pullup its IP header into the 2317 * new mbuf so we can modify it. 2318 */ 2319 mb_copy = m_copypacket(m, M_NOWAIT); 2320 if (mb_copy == NULL) 2321 return NULL; 2322 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2323 if (mb_copy == NULL) 2324 return NULL; 2325 2326 /* take care of the TTL */ 2327 ip = mtod(mb_copy, struct ip *); 2328 --ip->ip_ttl; 2329 2330 /* Compute the MTU after the PIM Register encapsulation */ 2331 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2332 2333 if (ntohs(ip->ip_len) <= mtu) { 2334 /* Turn the IP header into a valid one */ 2335 ip->ip_sum = 0; 2336 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2337 } else { 2338 /* Fragment the packet */ 2339 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2340 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2341 m_freem(mb_copy); 2342 return NULL; 2343 } 2344 } 2345 return mb_copy; 2346 } 2347 2348 /* 2349 * Send an upcall with the data packet to the user-level process. 2350 */ 2351 static int 2352 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2353 struct mbuf *mb_copy, struct mfc *rt) 2354 { 2355 struct mbuf *mb_first; 2356 int len = ntohs(ip->ip_len); 2357 struct igmpmsg *im; 2358 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2359 2360 MRW_LOCK_ASSERT(); 2361 2362 /* 2363 * Add a new mbuf with an upcall header 2364 */ 2365 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2366 if (mb_first == NULL) { 2367 m_freem(mb_copy); 2368 return ENOBUFS; 2369 } 2370 mb_first->m_data += max_linkhdr; 2371 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2372 mb_first->m_len = sizeof(struct igmpmsg); 2373 mb_first->m_next = mb_copy; 2374 2375 /* Send message to routing daemon */ 2376 im = mtod(mb_first, struct igmpmsg *); 2377 im->im_msgtype = IGMPMSG_WHOLEPKT; 2378 im->im_mbz = 0; 2379 im->im_vif = vifp - V_viftable; 2380 im->im_src = ip->ip_src; 2381 im->im_dst = ip->ip_dst; 2382 2383 k_igmpsrc.sin_addr = ip->ip_src; 2384 2385 MRTSTAT_INC(mrts_upcalls); 2386 2387 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2388 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2389 MRTSTAT_INC(mrts_upq_sockfull); 2390 return ENOBUFS; 2391 } 2392 2393 /* Keep statistics */ 2394 PIMSTAT_INC(pims_snd_registers_msgs); 2395 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2396 2397 return 0; 2398 } 2399 2400 /* 2401 * Encapsulate the data packet in PIM Register message and send it to the RP. 2402 */ 2403 static int 2404 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2405 struct mfc *rt) 2406 { 2407 struct mbuf *mb_first; 2408 struct ip *ip_outer; 2409 struct pim_encap_pimhdr *pimhdr; 2410 int len = ntohs(ip->ip_len); 2411 vifi_t vifi = rt->mfc_parent; 2412 2413 MRW_LOCK_ASSERT(); 2414 2415 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2416 m_freem(mb_copy); 2417 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2418 } 2419 2420 /* 2421 * Add a new mbuf with the encapsulating header 2422 */ 2423 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2424 if (mb_first == NULL) { 2425 m_freem(mb_copy); 2426 return ENOBUFS; 2427 } 2428 mb_first->m_data += max_linkhdr; 2429 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2430 mb_first->m_next = mb_copy; 2431 2432 mb_first->m_pkthdr.len = len + mb_first->m_len; 2433 2434 /* 2435 * Fill in the encapsulating IP and PIM header 2436 */ 2437 ip_outer = mtod(mb_first, struct ip *); 2438 *ip_outer = pim_encap_iphdr; 2439 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2440 sizeof(pim_encap_pimhdr)); 2441 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2442 ip_outer->ip_dst = rt->mfc_rp; 2443 /* 2444 * Copy the inner header TOS to the outer header, and take care of the 2445 * IP_DF bit. 2446 */ 2447 ip_outer->ip_tos = ip->ip_tos; 2448 if (ip->ip_off & htons(IP_DF)) 2449 ip_outer->ip_off |= htons(IP_DF); 2450 ip_fillid(ip_outer); 2451 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2452 + sizeof(pim_encap_iphdr)); 2453 *pimhdr = pim_encap_pimhdr; 2454 /* If the iif crosses a border, set the Border-bit */ 2455 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2456 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2457 2458 mb_first->m_data += sizeof(pim_encap_iphdr); 2459 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2460 mb_first->m_data -= sizeof(pim_encap_iphdr); 2461 2462 send_packet(vifp, mb_first); 2463 2464 /* Keep statistics */ 2465 PIMSTAT_INC(pims_snd_registers_msgs); 2466 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2467 2468 return 0; 2469 } 2470 2471 /* 2472 * pim_encapcheck() is called by the encap4_input() path at runtime to 2473 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2474 * into the kernel. 2475 */ 2476 static int 2477 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2478 int proto __unused, void *arg __unused) 2479 { 2480 2481 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2482 return (8); /* claim the datagram. */ 2483 } 2484 2485 /* 2486 * PIM-SMv2 and PIM-DM messages processing. 2487 * Receives and verifies the PIM control messages, and passes them 2488 * up to the listening socket, using rip_input(). 2489 * The only message with special processing is the PIM_REGISTER message 2490 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2491 * is passed to if_simloop(). 2492 */ 2493 static int 2494 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2495 { 2496 struct ip *ip = mtod(m, struct ip *); 2497 struct pim *pim; 2498 int iphlen = off; 2499 int minlen; 2500 int datalen = ntohs(ip->ip_len) - iphlen; 2501 int ip_tos; 2502 2503 /* Keep statistics */ 2504 PIMSTAT_INC(pims_rcv_total_msgs); 2505 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2506 2507 /* 2508 * Validate lengths 2509 */ 2510 if (datalen < PIM_MINLEN) { 2511 PIMSTAT_INC(pims_rcv_tooshort); 2512 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2513 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2514 m_freem(m); 2515 return (IPPROTO_DONE); 2516 } 2517 2518 /* 2519 * If the packet is at least as big as a REGISTER, go agead 2520 * and grab the PIM REGISTER header size, to avoid another 2521 * possible m_pullup() later. 2522 * 2523 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2524 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2525 */ 2526 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2527 /* 2528 * Get the IP and PIM headers in contiguous memory, and 2529 * possibly the PIM REGISTER header. 2530 */ 2531 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2532 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2533 return (IPPROTO_DONE); 2534 } 2535 2536 /* m_pullup() may have given us a new mbuf so reset ip. */ 2537 ip = mtod(m, struct ip *); 2538 ip_tos = ip->ip_tos; 2539 2540 /* adjust mbuf to point to the PIM header */ 2541 m->m_data += iphlen; 2542 m->m_len -= iphlen; 2543 pim = mtod(m, struct pim *); 2544 2545 /* 2546 * Validate checksum. If PIM REGISTER, exclude the data packet. 2547 * 2548 * XXX: some older PIMv2 implementations don't make this distinction, 2549 * so for compatibility reason perform the checksum over part of the 2550 * message, and if error, then over the whole message. 2551 */ 2552 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2553 /* do nothing, checksum okay */ 2554 } else if (in_cksum(m, datalen)) { 2555 PIMSTAT_INC(pims_rcv_badsum); 2556 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2557 m_freem(m); 2558 return (IPPROTO_DONE); 2559 } 2560 2561 /* PIM version check */ 2562 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2563 PIMSTAT_INC(pims_rcv_badversion); 2564 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2565 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2566 m_freem(m); 2567 return (IPPROTO_DONE); 2568 } 2569 2570 /* restore mbuf back to the outer IP */ 2571 m->m_data -= iphlen; 2572 m->m_len += iphlen; 2573 2574 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2575 /* 2576 * Since this is a REGISTER, we'll make a copy of the register 2577 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2578 * routing daemon. 2579 */ 2580 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2581 struct mbuf *mcp; 2582 struct ip *encap_ip; 2583 u_int32_t *reghdr; 2584 struct ifnet *vifp; 2585 2586 MRW_RLOCK(); 2587 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2588 MRW_RUNLOCK(); 2589 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2590 (int)V_reg_vif_num); 2591 m_freem(m); 2592 return (IPPROTO_DONE); 2593 } 2594 /* XXX need refcnt? */ 2595 vifp = V_viftable[V_reg_vif_num].v_ifp; 2596 MRW_RUNLOCK(); 2597 2598 /* 2599 * Validate length 2600 */ 2601 if (datalen < PIM_REG_MINLEN) { 2602 PIMSTAT_INC(pims_rcv_tooshort); 2603 PIMSTAT_INC(pims_rcv_badregisters); 2604 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2605 m_freem(m); 2606 return (IPPROTO_DONE); 2607 } 2608 2609 reghdr = (u_int32_t *)(pim + 1); 2610 encap_ip = (struct ip *)(reghdr + 1); 2611 2612 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2613 __func__, ntohl(encap_ip->ip_src.s_addr), 2614 ntohs(encap_ip->ip_len)); 2615 2616 /* verify the version number of the inner packet */ 2617 if (encap_ip->ip_v != IPVERSION) { 2618 PIMSTAT_INC(pims_rcv_badregisters); 2619 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2620 m_freem(m); 2621 return (IPPROTO_DONE); 2622 } 2623 2624 /* verify the inner packet is destined to a mcast group */ 2625 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2626 PIMSTAT_INC(pims_rcv_badregisters); 2627 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2628 ntohl(encap_ip->ip_dst.s_addr)); 2629 m_freem(m); 2630 return (IPPROTO_DONE); 2631 } 2632 2633 /* If a NULL_REGISTER, pass it to the daemon */ 2634 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2635 goto pim_input_to_daemon; 2636 2637 /* 2638 * Copy the TOS from the outer IP header to the inner IP header. 2639 */ 2640 if (encap_ip->ip_tos != ip_tos) { 2641 /* Outer TOS -> inner TOS */ 2642 encap_ip->ip_tos = ip_tos; 2643 /* Recompute the inner header checksum. Sigh... */ 2644 2645 /* adjust mbuf to point to the inner IP header */ 2646 m->m_data += (iphlen + PIM_MINLEN); 2647 m->m_len -= (iphlen + PIM_MINLEN); 2648 2649 encap_ip->ip_sum = 0; 2650 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2651 2652 /* restore mbuf to point back to the outer IP header */ 2653 m->m_data -= (iphlen + PIM_MINLEN); 2654 m->m_len += (iphlen + PIM_MINLEN); 2655 } 2656 2657 /* 2658 * Decapsulate the inner IP packet and loopback to forward it 2659 * as a normal multicast packet. Also, make a copy of the 2660 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2661 * to pass to the daemon later, so it can take the appropriate 2662 * actions (e.g., send back PIM_REGISTER_STOP). 2663 * XXX: here m->m_data points to the outer IP header. 2664 */ 2665 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2666 if (mcp == NULL) { 2667 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2668 m_freem(m); 2669 return (IPPROTO_DONE); 2670 } 2671 2672 /* Keep statistics */ 2673 /* XXX: registers_bytes include only the encap. mcast pkt */ 2674 PIMSTAT_INC(pims_rcv_registers_msgs); 2675 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2676 2677 /* 2678 * forward the inner ip packet; point m_data at the inner ip. 2679 */ 2680 m_adj(m, iphlen + PIM_MINLEN); 2681 2682 CTR4(KTR_IPMF, 2683 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2684 __func__, 2685 (u_long)ntohl(encap_ip->ip_src.s_addr), 2686 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2687 (int)V_reg_vif_num); 2688 2689 /* NB: vifp was collected above; can it change on us? */ 2690 if_simloop(vifp, m, dst.sin_family, 0); 2691 2692 /* prepare the register head to send to the mrouting daemon */ 2693 m = mcp; 2694 } 2695 2696 pim_input_to_daemon: 2697 /* 2698 * Pass the PIM message up to the daemon; if it is a Register message, 2699 * pass the 'head' only up to the daemon. This includes the 2700 * outer IP header, PIM header, PIM-Register header and the 2701 * inner IP header. 2702 * XXX: the outer IP header pkt size of a Register is not adjust to 2703 * reflect the fact that the inner multicast data is truncated. 2704 */ 2705 return (rip_input(&m, &off, proto)); 2706 } 2707 2708 static int 2709 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2710 { 2711 struct mfc *rt; 2712 int error, i; 2713 2714 if (req->newptr) 2715 return (EPERM); 2716 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2717 return (0); 2718 error = sysctl_wire_old_buffer(req, 0); 2719 if (error) 2720 return (error); 2721 2722 MRW_RLOCK(); 2723 for (i = 0; i < mfchashsize; i++) { 2724 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2725 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2726 if (error) 2727 goto out_locked; 2728 } 2729 } 2730 out_locked: 2731 MRW_RUNLOCK(); 2732 return (error); 2733 } 2734 2735 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2736 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2737 "IPv4 Multicast Forwarding Table " 2738 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2739 2740 static int 2741 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2742 { 2743 int error, i; 2744 2745 if (req->newptr) 2746 return (EPERM); 2747 if (V_viftable == NULL) /* XXX unlocked */ 2748 return (0); 2749 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2750 if (error) 2751 return (error); 2752 2753 MRW_RLOCK(); 2754 /* Copy out user-visible portion of vif entry. */ 2755 for (i = 0; i < MAXVIFS; i++) { 2756 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2757 if (error) 2758 break; 2759 } 2760 MRW_RUNLOCK(); 2761 return (error); 2762 } 2763 2764 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2765 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2766 sysctl_viflist, "S,vif[MAXVIFS]", 2767 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2768 2769 static void 2770 vnet_mroute_init(const void *unused __unused) 2771 { 2772 2773 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2774 2775 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2776 M_MRTABLE, M_WAITOK|M_ZERO); 2777 2778 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); 2779 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); 2780 2781 /* Prepare taskqueue */ 2782 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2783 taskqueue_thread_enqueue, &V_task_queue); 2784 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2785 } 2786 2787 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2788 NULL); 2789 2790 static void 2791 vnet_mroute_uninit(const void *unused __unused) 2792 { 2793 2794 /* Taskqueue should be cancelled and drained before freeing */ 2795 taskqueue_free(V_task_queue); 2796 2797 free(V_viftable, M_MRTABLE); 2798 free(V_nexpire, M_MRTABLE); 2799 V_nexpire = NULL; 2800 } 2801 2802 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2803 vnet_mroute_uninit, NULL); 2804 2805 static int 2806 ip_mroute_modevent(module_t mod, int type, void *unused) 2807 { 2808 2809 switch (type) { 2810 case MOD_LOAD: 2811 MRW_LOCK_INIT(); 2812 2813 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2814 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2815 if (if_detach_event_tag == NULL) { 2816 printf("ip_mroute: unable to register " 2817 "ifnet_departure_event handler\n"); 2818 MRW_LOCK_DESTROY(); 2819 return (EINVAL); 2820 } 2821 2822 mfchashsize = MFCHASHSIZE; 2823 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2824 !powerof2(mfchashsize)) { 2825 printf("WARNING: %s not a power of 2; using default\n", 2826 "net.inet.ip.mfchashsize"); 2827 mfchashsize = MFCHASHSIZE; 2828 } 2829 2830 pim_squelch_wholepkt = 0; 2831 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2832 &pim_squelch_wholepkt); 2833 2834 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2835 2836 ip_mcast_src = X_ip_mcast_src; 2837 ip_mforward = X_ip_mforward; 2838 ip_mrouter_done = X_ip_mrouter_done; 2839 ip_mrouter_get = X_ip_mrouter_get; 2840 ip_mrouter_set = X_ip_mrouter_set; 2841 2842 ip_rsvp_force_done = X_ip_rsvp_force_done; 2843 ip_rsvp_vif = X_ip_rsvp_vif; 2844 2845 legal_vif_num = X_legal_vif_num; 2846 mrt_ioctl = X_mrt_ioctl; 2847 rsvp_input_p = X_rsvp_input; 2848 break; 2849 2850 case MOD_UNLOAD: 2851 /* 2852 * Typically module unload happens after the user-level 2853 * process has shutdown the kernel services (the check 2854 * below insures someone can't just yank the module out 2855 * from under a running process). But if the module is 2856 * just loaded and then unloaded w/o starting up a user 2857 * process we still need to cleanup. 2858 */ 2859 MRW_WLOCK(); 2860 if (ip_mrouter_cnt != 0) { 2861 MRW_WUNLOCK(); 2862 return (EINVAL); 2863 } 2864 ip_mrouter_unloading = 1; 2865 MRW_WUNLOCK(); 2866 2867 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2868 2869 if (pim_encap_cookie) { 2870 ip_encap_detach(pim_encap_cookie); 2871 pim_encap_cookie = NULL; 2872 } 2873 2874 ip_mcast_src = NULL; 2875 ip_mforward = NULL; 2876 ip_mrouter_done = NULL; 2877 ip_mrouter_get = NULL; 2878 ip_mrouter_set = NULL; 2879 2880 ip_rsvp_force_done = NULL; 2881 ip_rsvp_vif = NULL; 2882 2883 legal_vif_num = NULL; 2884 mrt_ioctl = NULL; 2885 rsvp_input_p = NULL; 2886 2887 MRW_LOCK_DESTROY(); 2888 break; 2889 2890 default: 2891 return EOPNOTSUPP; 2892 } 2893 return 0; 2894 } 2895 2896 static moduledata_t ip_mroutemod = { 2897 "ip_mroute", 2898 ip_mroute_modevent, 2899 0 2900 }; 2901 2902 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2903