xref: /freebsd/sys/netinet/ip_mroute.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  *
55  * $FreeBSD$
56  */
57 
58 #include "opt_inet.h"
59 #include "opt_inet6.h"
60 #include "opt_mac.h"
61 #include "opt_mrouting.h"
62 
63 #define _PIM_VT 1
64 
65 #include <sys/param.h>
66 #include <sys/kernel.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mbuf.h>
70 #include <sys/module.h>
71 #include <sys/priv.h>
72 #include <sys/protosw.h>
73 #include <sys/signalvar.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/time.h>
82 #include <net/if.h>
83 #include <net/netisr.h>
84 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/igmp.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_encap.h>
91 #include <netinet/ip_mroute.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_options.h>
94 #include <netinet/pim.h>
95 #include <netinet/pim_var.h>
96 #include <netinet/udp.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_var.h>
100 #include <netinet6/ip6_mroute.h>
101 #include <netinet6/ip6_var.h>
102 #endif
103 #include <machine/in_cksum.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 /*
108  * Control debugging code for rsvp and multicast routing code.
109  * Can only set them with the debugger.
110  */
111 static u_int    rsvpdebug;		/* non-zero enables debugging	*/
112 
113 static u_int	mrtdebug;		/* any set of the flags below	*/
114 #define		DEBUG_MFC	0x02
115 #define		DEBUG_FORWARD	0x04
116 #define		DEBUG_EXPIRE	0x08
117 #define		DEBUG_XMIT	0x10
118 #define		DEBUG_PIM	0x20
119 
120 #define		VIFI_INVALID	((vifi_t) -1)
121 
122 #define M_HASCL(m)	((m)->m_flags & M_EXT)
123 
124 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
125 
126 /*
127  * Locking.  We use two locks: one for the virtual interface table and
128  * one for the forwarding table.  These locks may be nested in which case
129  * the VIF lock must always be taken first.  Note that each lock is used
130  * to cover not only the specific data structure but also related data
131  * structures.  It may be better to add more fine-grained locking later;
132  * it's not clear how performance-critical this code is.
133  *
134  * XXX: This module could particularly benefit from being cleaned
135  *      up to use the <sys/queue.h> macros.
136  *
137  */
138 
139 static struct mrtstat	mrtstat;
140 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
141     &mrtstat, mrtstat,
142     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
143 
144 static struct mfc	*mfctable[MFCTBLSIZ];
145 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
146     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
147     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
148 
149 static struct mtx mrouter_mtx;
150 #define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
151 #define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
152 #define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
153 #define	MROUTER_LOCK_INIT()	\
154 	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
155 #define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
156 
157 static struct mtx mfc_mtx;
158 #define	MFC_LOCK()	mtx_lock(&mfc_mtx)
159 #define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
160 #define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
161 #define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
162 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
163 
164 static struct vif	viftable[MAXVIFS];
165 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
166     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
167     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
168 
169 static struct mtx vif_mtx;
170 #define	VIF_LOCK()	mtx_lock(&vif_mtx)
171 #define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
172 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
173 #define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
174 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
175 
176 static u_char		nexpire[MFCTBLSIZ];
177 
178 static eventhandler_tag if_detach_event_tag = NULL;
179 
180 static struct callout expire_upcalls_ch;
181 
182 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
183 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
184 
185 #define ENCAP_TTL 64
186 
187 /*
188  * Bandwidth meter variables and constants
189  */
190 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
191 /*
192  * Pending timeouts are stored in a hash table, the key being the
193  * expiration time. Periodically, the entries are analysed and processed.
194  */
195 #define BW_METER_BUCKETS	1024
196 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
197 static struct callout bw_meter_ch;
198 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
199 
200 /*
201  * Pending upcalls are stored in a vector which is flushed when
202  * full, or periodically
203  */
204 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
205 static u_int	bw_upcalls_n; /* # of pending upcalls */
206 static struct callout bw_upcalls_ch;
207 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
208 
209 static struct pimstat pimstat;
210 
211 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
212 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
213     &pimstat, pimstat,
214     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
215 
216 static u_long	pim_squelch_wholepkt = 0;
217 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
218     &pim_squelch_wholepkt, 0,
219     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
220 
221 extern  struct domain inetdomain;
222 struct protosw in_pim_protosw = {
223 	.pr_type =		SOCK_RAW,
224 	.pr_domain =		&inetdomain,
225 	.pr_protocol =		IPPROTO_PIM,
226 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
227 	.pr_input =		pim_input,
228 	.pr_output =		(pr_output_t*)rip_output,
229 	.pr_ctloutput =		rip_ctloutput,
230 	.pr_usrreqs =		&rip_usrreqs
231 };
232 static const struct encaptab *pim_encap_cookie;
233 
234 #ifdef INET6
235 /* ip6_mroute.c glue */
236 extern struct in6_protosw in6_pim_protosw;
237 static const struct encaptab *pim6_encap_cookie;
238 
239 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
240 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
241 extern int X_ip6_mrouter_done(void);
242 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
243 extern int X_mrt6_ioctl(int, caddr_t);
244 #endif
245 
246 static int pim_encapcheck(const struct mbuf *, int, int, void *);
247 
248 /*
249  * Note: the PIM Register encapsulation adds the following in front of a
250  * data packet:
251  *
252  * struct pim_encap_hdr {
253  *    struct ip ip;
254  *    struct pim_encap_pimhdr  pim;
255  * }
256  *
257  */
258 
259 struct pim_encap_pimhdr {
260 	struct pim pim;
261 	uint32_t   flags;
262 };
263 
264 static struct ip pim_encap_iphdr = {
265 #if BYTE_ORDER == LITTLE_ENDIAN
266 	sizeof(struct ip) >> 2,
267 	IPVERSION,
268 #else
269 	IPVERSION,
270 	sizeof(struct ip) >> 2,
271 #endif
272 	0,			/* tos */
273 	sizeof(struct ip),	/* total length */
274 	0,			/* id */
275 	0,			/* frag offset */
276 	ENCAP_TTL,
277 	IPPROTO_PIM,
278 	0,			/* checksum */
279 };
280 
281 static struct pim_encap_pimhdr pim_encap_pimhdr = {
282     {
283 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
284 	0,			/* reserved */
285 	0,			/* checksum */
286     },
287     0				/* flags */
288 };
289 
290 static struct ifnet multicast_register_if;
291 static vifi_t reg_vif_num = VIFI_INVALID;
292 
293 /*
294  * Private variables.
295  */
296 static vifi_t	   numvifs;
297 
298 static u_long	X_ip_mcast_src(int vifi);
299 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
300 			struct mbuf *m, struct ip_moptions *imo);
301 static int	X_ip_mrouter_done(void);
302 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
303 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
304 static int	X_legal_vif_num(int vif);
305 static int	X_mrt_ioctl(int cmd, caddr_t data);
306 
307 static int get_sg_cnt(struct sioc_sg_req *);
308 static int get_vif_cnt(struct sioc_vif_req *);
309 static void if_detached_event(void *arg __unused, struct ifnet *);
310 static int ip_mrouter_init(struct socket *, int);
311 static int add_vif(struct vifctl *);
312 static int del_vif_locked(vifi_t);
313 static int del_vif(vifi_t);
314 static int add_mfc(struct mfcctl2 *);
315 static int del_mfc(struct mfcctl2 *);
316 static int set_api_config(uint32_t *); /* chose API capabilities */
317 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
318 static int set_assert(int);
319 static void expire_upcalls(void *);
320 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
321 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
322 static void send_packet(struct vif *, struct mbuf *);
323 
324 /*
325  * Bandwidth monitoring
326  */
327 static void free_bw_list(struct bw_meter *list);
328 static int add_bw_upcall(struct bw_upcall *);
329 static int del_bw_upcall(struct bw_upcall *);
330 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
331 		struct timeval *nowp);
332 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
333 static void bw_upcalls_send(void);
334 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
335 static void unschedule_bw_meter(struct bw_meter *x);
336 static void bw_meter_process(void);
337 static void expire_bw_upcalls_send(void *);
338 static void expire_bw_meter_process(void *);
339 
340 static int pim_register_send(struct ip *, struct vif *,
341 		struct mbuf *, struct mfc *);
342 static int pim_register_send_rp(struct ip *, struct vif *,
343 		struct mbuf *, struct mfc *);
344 static int pim_register_send_upcall(struct ip *, struct vif *,
345 		struct mbuf *, struct mfc *);
346 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
347 
348 /*
349  * whether or not special PIM assert processing is enabled.
350  */
351 static int pim_assert;
352 /*
353  * Rate limit for assert notification messages, in usec
354  */
355 #define ASSERT_MSG_TIME		3000000
356 
357 /*
358  * Kernel multicast routing API capabilities and setup.
359  * If more API capabilities are added to the kernel, they should be
360  * recorded in `mrt_api_support'.
361  */
362 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
363 					 MRT_MFC_FLAGS_BORDER_VIF |
364 					 MRT_MFC_RP |
365 					 MRT_MFC_BW_UPCALL);
366 static uint32_t mrt_api_config = 0;
367 
368 /*
369  * Hash function for a source, group entry
370  */
371 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
372 			((g) >> 20) ^ ((g) >> 10) ^ (g))
373 
374 /*
375  * Find a route for a given origin IP address and Multicast group address
376  * Statistics are updated by the caller if needed
377  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
378  */
379 static struct mfc *
380 mfc_find(in_addr_t o, in_addr_t g)
381 {
382     struct mfc *rt;
383 
384     MFC_LOCK_ASSERT();
385 
386     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
387 	if ((rt->mfc_origin.s_addr == o) &&
388 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
389 	    break;
390     return rt;
391 }
392 
393 /*
394  * Macros to compute elapsed time efficiently
395  * Borrowed from Van Jacobson's scheduling code
396  */
397 #define TV_DELTA(a, b, delta) {					\
398 	int xxs;						\
399 	delta = (a).tv_usec - (b).tv_usec;			\
400 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
401 		switch (xxs) {					\
402 		case 2:						\
403 		      delta += 1000000;				\
404 		      /* FALLTHROUGH */				\
405 		case 1:						\
406 		      delta += 1000000;				\
407 		      break;					\
408 		default:					\
409 		      delta += (1000000 * xxs);			\
410 		}						\
411 	}							\
412 }
413 
414 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
415 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
416 
417 /*
418  * Handle MRT setsockopt commands to modify the multicast routing tables.
419  */
420 static int
421 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
422 {
423     int	error, optval;
424     vifi_t	vifi;
425     struct	vifctl vifc;
426     struct	mfcctl2 mfc;
427     struct	bw_upcall bw_upcall;
428     uint32_t	i;
429 
430     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
431 	return EPERM;
432 
433     error = 0;
434     switch (sopt->sopt_name) {
435     case MRT_INIT:
436 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
437 	if (error)
438 	    break;
439 	error = ip_mrouter_init(so, optval);
440 	break;
441 
442     case MRT_DONE:
443 	error = ip_mrouter_done();
444 	break;
445 
446     case MRT_ADD_VIF:
447 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
448 	if (error)
449 	    break;
450 	error = add_vif(&vifc);
451 	break;
452 
453     case MRT_DEL_VIF:
454 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
455 	if (error)
456 	    break;
457 	error = del_vif(vifi);
458 	break;
459 
460     case MRT_ADD_MFC:
461     case MRT_DEL_MFC:
462 	/*
463 	 * select data size depending on API version.
464 	 */
465 	if (sopt->sopt_name == MRT_ADD_MFC &&
466 		mrt_api_config & MRT_API_FLAGS_ALL) {
467 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
468 				sizeof(struct mfcctl2));
469 	} else {
470 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
471 				sizeof(struct mfcctl));
472 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
473 			sizeof(mfc) - sizeof(struct mfcctl));
474 	}
475 	if (error)
476 	    break;
477 	if (sopt->sopt_name == MRT_ADD_MFC)
478 	    error = add_mfc(&mfc);
479 	else
480 	    error = del_mfc(&mfc);
481 	break;
482 
483     case MRT_ASSERT:
484 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
485 	if (error)
486 	    break;
487 	set_assert(optval);
488 	break;
489 
490     case MRT_API_CONFIG:
491 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
492 	if (!error)
493 	    error = set_api_config(&i);
494 	if (!error)
495 	    error = sooptcopyout(sopt, &i, sizeof i);
496 	break;
497 
498     case MRT_ADD_BW_UPCALL:
499     case MRT_DEL_BW_UPCALL:
500 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
501 				sizeof bw_upcall);
502 	if (error)
503 	    break;
504 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
505 	    error = add_bw_upcall(&bw_upcall);
506 	else
507 	    error = del_bw_upcall(&bw_upcall);
508 	break;
509 
510     default:
511 	error = EOPNOTSUPP;
512 	break;
513     }
514     return error;
515 }
516 
517 /*
518  * Handle MRT getsockopt commands
519  */
520 static int
521 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
522 {
523     int error;
524     static int version = 0x0305; /* !!! why is this here? XXX */
525 
526     switch (sopt->sopt_name) {
527     case MRT_VERSION:
528 	error = sooptcopyout(sopt, &version, sizeof version);
529 	break;
530 
531     case MRT_ASSERT:
532 	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
533 	break;
534 
535     case MRT_API_SUPPORT:
536 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
537 	break;
538 
539     case MRT_API_CONFIG:
540 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
541 	break;
542 
543     default:
544 	error = EOPNOTSUPP;
545 	break;
546     }
547     return error;
548 }
549 
550 /*
551  * Handle ioctl commands to obtain information from the cache
552  */
553 static int
554 X_mrt_ioctl(int cmd, caddr_t data)
555 {
556     int error = 0;
557 
558     /*
559      * Currently the only function calling this ioctl routine is rtioctl().
560      * Typically, only root can create the raw socket in order to execute
561      * this ioctl method, however the request might be coming from a prison
562      */
563     error = priv_check(curthread, PRIV_NETINET_MROUTE);
564     if (error)
565 	return (error);
566     switch (cmd) {
567     case (SIOCGETVIFCNT):
568 	error = get_vif_cnt((struct sioc_vif_req *)data);
569 	break;
570 
571     case (SIOCGETSGCNT):
572 	error = get_sg_cnt((struct sioc_sg_req *)data);
573 	break;
574 
575     default:
576 	error = EINVAL;
577 	break;
578     }
579     return error;
580 }
581 
582 /*
583  * returns the packet, byte, rpf-failure count for the source group provided
584  */
585 static int
586 get_sg_cnt(struct sioc_sg_req *req)
587 {
588     struct mfc *rt;
589 
590     MFC_LOCK();
591     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
592     if (rt == NULL) {
593 	MFC_UNLOCK();
594 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
595 	return EADDRNOTAVAIL;
596     }
597     req->pktcnt = rt->mfc_pkt_cnt;
598     req->bytecnt = rt->mfc_byte_cnt;
599     req->wrong_if = rt->mfc_wrong_if;
600     MFC_UNLOCK();
601     return 0;
602 }
603 
604 /*
605  * returns the input and output packet and byte counts on the vif provided
606  */
607 static int
608 get_vif_cnt(struct sioc_vif_req *req)
609 {
610     vifi_t vifi = req->vifi;
611 
612     VIF_LOCK();
613     if (vifi >= numvifs) {
614 	VIF_UNLOCK();
615 	return EINVAL;
616     }
617 
618     req->icount = viftable[vifi].v_pkt_in;
619     req->ocount = viftable[vifi].v_pkt_out;
620     req->ibytes = viftable[vifi].v_bytes_in;
621     req->obytes = viftable[vifi].v_bytes_out;
622     VIF_UNLOCK();
623 
624     return 0;
625 }
626 
627 static void
628 ip_mrouter_reset(void)
629 {
630     bzero((caddr_t)mfctable, sizeof(mfctable));
631     bzero((caddr_t)nexpire, sizeof(nexpire));
632 
633     pim_assert = 0;
634     mrt_api_config = 0;
635 
636     callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
637 
638     bw_upcalls_n = 0;
639     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
640     callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
641     callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
642 }
643 
644 static void
645 if_detached_event(void *arg __unused, struct ifnet *ifp)
646 {
647     vifi_t vifi;
648     int i;
649     struct mfc *mfc;
650     struct mfc *nmfc;
651     struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
652     struct rtdetq *pq;
653     struct rtdetq *npq;
654 
655     MROUTER_LOCK();
656     if (ip_mrouter == NULL) {
657 	MROUTER_UNLOCK();
658     }
659 
660     /*
661      * Tear down multicast forwarder state associated with this ifnet.
662      * 1. Walk the vif list, matching vifs against this ifnet.
663      * 2. Walk the multicast forwarding cache (mfc) looking for
664      *    inner matches with this vif's index.
665      * 3. Free any pending mbufs for this mfc.
666      * 4. Free the associated mfc entry and state associated with this vif.
667      *    Be very careful about unlinking from a singly-linked list whose
668      *    "head node" is a pointer in a simple array.
669      * 5. Free vif state. This should disable ALLMULTI on the interface.
670      */
671     VIF_LOCK();
672     MFC_LOCK();
673     for (vifi = 0; vifi < numvifs; vifi++) {
674 	if (viftable[vifi].v_ifp != ifp)
675 		continue;
676 	for (i = 0; i < MFCTBLSIZ; i++) {
677 	    ppmfc = &mfctable[i];
678 	    for (mfc = mfctable[i]; mfc != NULL; ) {
679 		nmfc = mfc->mfc_next;
680 		if (mfc->mfc_parent == vifi) {
681 		    for (pq = mfc->mfc_stall; pq != NULL; ) {
682 			npq = pq->next;
683 			m_freem(pq->m);
684 			free(pq, M_MRTABLE);
685 			pq = npq;
686 		    }
687 		    free_bw_list(mfc->mfc_bw_meter);
688 		    free(mfc, M_MRTABLE);
689 		    *ppmfc = nmfc;
690 		} else {
691 		    ppmfc = &mfc->mfc_next;
692 		}
693 		mfc = nmfc;
694 	    }
695 	}
696 	del_vif_locked(vifi);
697     }
698     MFC_UNLOCK();
699     VIF_UNLOCK();
700 
701     MROUTER_UNLOCK();
702 }
703 
704 /*
705  * Enable multicast routing
706  */
707 static int
708 ip_mrouter_init(struct socket *so, int version)
709 {
710     if (mrtdebug)
711 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
712 	    so->so_type, so->so_proto->pr_protocol);
713 
714     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
715 	return EOPNOTSUPP;
716 
717     if (version != 1)
718 	return ENOPROTOOPT;
719 
720     MROUTER_LOCK();
721 
722     if (ip_mrouter != NULL) {
723 	MROUTER_UNLOCK();
724 	return EADDRINUSE;
725     }
726 
727     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
728         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
729     if (if_detach_event_tag == NULL) {
730 	MROUTER_UNLOCK();
731 	return (ENOMEM);
732     }
733 
734     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
735 
736     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
737 	expire_bw_upcalls_send, NULL);
738     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
739 
740     ip_mrouter = so;
741 
742     MROUTER_UNLOCK();
743 
744     if (mrtdebug)
745 	log(LOG_DEBUG, "ip_mrouter_init\n");
746 
747     return 0;
748 }
749 
750 /*
751  * Disable multicast routing
752  */
753 static int
754 X_ip_mrouter_done(void)
755 {
756     vifi_t vifi;
757     int i;
758     struct ifnet *ifp;
759     struct ifreq ifr;
760     struct mfc *rt;
761     struct rtdetq *rte;
762 
763     MROUTER_LOCK();
764 
765     if (ip_mrouter == NULL) {
766 	MROUTER_UNLOCK();
767 	return EINVAL;
768     }
769 
770     /*
771      * Detach/disable hooks to the reset of the system.
772      */
773     ip_mrouter = NULL;
774     mrt_api_config = 0;
775 
776     VIF_LOCK();
777     /*
778      * For each phyint in use, disable promiscuous reception of all IP
779      * multicasts.
780      */
781     for (vifi = 0; vifi < numvifs; vifi++) {
782 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
783 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
784 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
785 
786 	    so->sin_len = sizeof(struct sockaddr_in);
787 	    so->sin_family = AF_INET;
788 	    so->sin_addr.s_addr = INADDR_ANY;
789 	    ifp = viftable[vifi].v_ifp;
790 	    if_allmulti(ifp, 0);
791 	}
792     }
793     bzero((caddr_t)viftable, sizeof(viftable));
794     numvifs = 0;
795     pim_assert = 0;
796     VIF_UNLOCK();
797     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
798 
799     /*
800      * Free all multicast forwarding cache entries.
801      */
802     callout_stop(&expire_upcalls_ch);
803     callout_stop(&bw_upcalls_ch);
804     callout_stop(&bw_meter_ch);
805 
806     MFC_LOCK();
807     for (i = 0; i < MFCTBLSIZ; i++) {
808 	for (rt = mfctable[i]; rt != NULL; ) {
809 	    struct mfc *nr = rt->mfc_next;
810 
811 	    for (rte = rt->mfc_stall; rte != NULL; ) {
812 		struct rtdetq *n = rte->next;
813 
814 		m_freem(rte->m);
815 		free(rte, M_MRTABLE);
816 		rte = n;
817 	    }
818 	    free_bw_list(rt->mfc_bw_meter);
819 	    free(rt, M_MRTABLE);
820 	    rt = nr;
821 	}
822     }
823     bzero((caddr_t)mfctable, sizeof(mfctable));
824     bzero((caddr_t)nexpire, sizeof(nexpire));
825     bw_upcalls_n = 0;
826     bzero(bw_meter_timers, sizeof(bw_meter_timers));
827     MFC_UNLOCK();
828 
829     reg_vif_num = VIFI_INVALID;
830 
831     MROUTER_UNLOCK();
832 
833     if (mrtdebug)
834 	log(LOG_DEBUG, "ip_mrouter_done\n");
835 
836     return 0;
837 }
838 
839 /*
840  * Set PIM assert processing global
841  */
842 static int
843 set_assert(int i)
844 {
845     if ((i != 1) && (i != 0))
846 	return EINVAL;
847 
848     pim_assert = i;
849 
850     return 0;
851 }
852 
853 /*
854  * Configure API capabilities
855  */
856 int
857 set_api_config(uint32_t *apival)
858 {
859     int i;
860 
861     /*
862      * We can set the API capabilities only if it is the first operation
863      * after MRT_INIT. I.e.:
864      *  - there are no vifs installed
865      *  - pim_assert is not enabled
866      *  - the MFC table is empty
867      */
868     if (numvifs > 0) {
869 	*apival = 0;
870 	return EPERM;
871     }
872     if (pim_assert) {
873 	*apival = 0;
874 	return EPERM;
875     }
876     for (i = 0; i < MFCTBLSIZ; i++) {
877 	if (mfctable[i] != NULL) {
878 	    *apival = 0;
879 	    return EPERM;
880 	}
881     }
882 
883     mrt_api_config = *apival & mrt_api_support;
884     *apival = mrt_api_config;
885 
886     return 0;
887 }
888 
889 /*
890  * Add a vif to the vif table
891  */
892 static int
893 add_vif(struct vifctl *vifcp)
894 {
895     struct vif *vifp = viftable + vifcp->vifc_vifi;
896     struct sockaddr_in sin = {sizeof sin, AF_INET};
897     struct ifaddr *ifa;
898     struct ifnet *ifp;
899     int error;
900 
901     VIF_LOCK();
902     if (vifcp->vifc_vifi >= MAXVIFS) {
903 	VIF_UNLOCK();
904 	return EINVAL;
905     }
906     /* rate limiting is no longer supported by this code */
907     if (vifcp->vifc_rate_limit != 0) {
908 	log(LOG_ERR, "rate limiting is no longer supported\n");
909 	VIF_UNLOCK();
910 	return EINVAL;
911     }
912     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
913 	VIF_UNLOCK();
914 	return EADDRINUSE;
915     }
916     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
917 	VIF_UNLOCK();
918 	return EADDRNOTAVAIL;
919     }
920 
921     /* Find the interface with an address in AF_INET family */
922     if (vifcp->vifc_flags & VIFF_REGISTER) {
923 	/*
924 	 * XXX: Because VIFF_REGISTER does not really need a valid
925 	 * local interface (e.g. it could be 127.0.0.2), we don't
926 	 * check its address.
927 	 */
928 	ifp = NULL;
929     } else {
930 	sin.sin_addr = vifcp->vifc_lcl_addr;
931 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
932 	if (ifa == NULL) {
933 	    VIF_UNLOCK();
934 	    return EADDRNOTAVAIL;
935 	}
936 	ifp = ifa->ifa_ifp;
937     }
938 
939     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
940 	log(LOG_ERR, "tunnels are no longer supported\n");
941 	VIF_UNLOCK();
942 	return EOPNOTSUPP;
943     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
944 	ifp = &multicast_register_if;
945 	if (mrtdebug)
946 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
947 		    (void *)&multicast_register_if);
948 	if (reg_vif_num == VIFI_INVALID) {
949 	    if_initname(&multicast_register_if, "register_vif", 0);
950 	    multicast_register_if.if_flags = IFF_LOOPBACK;
951 	    reg_vif_num = vifcp->vifc_vifi;
952 	}
953     } else {		/* Make sure the interface supports multicast */
954 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
955 	    VIF_UNLOCK();
956 	    return EOPNOTSUPP;
957 	}
958 
959 	/* Enable promiscuous reception of all IP multicasts from the if */
960 	error = if_allmulti(ifp, 1);
961 	if (error) {
962 	    VIF_UNLOCK();
963 	    return error;
964 	}
965     }
966 
967     vifp->v_flags     = vifcp->vifc_flags;
968     vifp->v_threshold = vifcp->vifc_threshold;
969     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
970     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
971     vifp->v_ifp       = ifp;
972     vifp->v_rsvp_on   = 0;
973     vifp->v_rsvpd     = NULL;
974     /* initialize per vif pkt counters */
975     vifp->v_pkt_in    = 0;
976     vifp->v_pkt_out   = 0;
977     vifp->v_bytes_in  = 0;
978     vifp->v_bytes_out = 0;
979     bzero(&vifp->v_route, sizeof(vifp->v_route));
980 
981     /* Adjust numvifs up if the vifi is higher than numvifs */
982     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
983 
984     VIF_UNLOCK();
985 
986     if (mrtdebug)
987 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
988 	    vifcp->vifc_vifi,
989 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
990 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
991 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
992 	    vifcp->vifc_threshold);
993 
994     return 0;
995 }
996 
997 /*
998  * Delete a vif from the vif table
999  */
1000 static int
1001 del_vif_locked(vifi_t vifi)
1002 {
1003     struct vif *vifp;
1004 
1005     VIF_LOCK_ASSERT();
1006 
1007     if (vifi >= numvifs) {
1008 	return EINVAL;
1009     }
1010     vifp = &viftable[vifi];
1011     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1012 	return EADDRNOTAVAIL;
1013     }
1014 
1015     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1016 	if_allmulti(vifp->v_ifp, 0);
1017 
1018     if (vifp->v_flags & VIFF_REGISTER)
1019 	reg_vif_num = VIFI_INVALID;
1020 
1021     bzero((caddr_t)vifp, sizeof (*vifp));
1022 
1023     if (mrtdebug)
1024 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1025 
1026     /* Adjust numvifs down */
1027     for (vifi = numvifs; vifi > 0; vifi--)
1028 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1029 	    break;
1030     numvifs = vifi;
1031 
1032     return 0;
1033 }
1034 
1035 static int
1036 del_vif(vifi_t vifi)
1037 {
1038     int cc;
1039 
1040     VIF_LOCK();
1041     cc = del_vif_locked(vifi);
1042     VIF_UNLOCK();
1043 
1044     return cc;
1045 }
1046 
1047 /*
1048  * update an mfc entry without resetting counters and S,G addresses.
1049  */
1050 static void
1051 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1052 {
1053     int i;
1054 
1055     rt->mfc_parent = mfccp->mfcc_parent;
1056     for (i = 0; i < numvifs; i++) {
1057 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1058 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1059 	    MRT_MFC_FLAGS_ALL;
1060     }
1061     /* set the RP address */
1062     if (mrt_api_config & MRT_MFC_RP)
1063 	rt->mfc_rp = mfccp->mfcc_rp;
1064     else
1065 	rt->mfc_rp.s_addr = INADDR_ANY;
1066 }
1067 
1068 /*
1069  * fully initialize an mfc entry from the parameter.
1070  */
1071 static void
1072 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1073 {
1074     rt->mfc_origin     = mfccp->mfcc_origin;
1075     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1076 
1077     update_mfc_params(rt, mfccp);
1078 
1079     /* initialize pkt counters per src-grp */
1080     rt->mfc_pkt_cnt    = 0;
1081     rt->mfc_byte_cnt   = 0;
1082     rt->mfc_wrong_if   = 0;
1083     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1084 }
1085 
1086 
1087 /*
1088  * Add an mfc entry
1089  */
1090 static int
1091 add_mfc(struct mfcctl2 *mfccp)
1092 {
1093     struct mfc *rt;
1094     u_long hash;
1095     struct rtdetq *rte;
1096     u_short nstl;
1097 
1098     VIF_LOCK();
1099     MFC_LOCK();
1100 
1101     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1102 
1103     /* If an entry already exists, just update the fields */
1104     if (rt) {
1105 	if (mrtdebug & DEBUG_MFC)
1106 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1107 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1108 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1109 		mfccp->mfcc_parent);
1110 
1111 	update_mfc_params(rt, mfccp);
1112 	MFC_UNLOCK();
1113 	VIF_UNLOCK();
1114 	return 0;
1115     }
1116 
1117     /*
1118      * Find the entry for which the upcall was made and update
1119      */
1120     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1121     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1122 
1123 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1124 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1125 		(rt->mfc_stall != NULL)) {
1126 
1127 	    if (nstl++)
1128 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1129 		    "multiple kernel entries",
1130 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1131 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1132 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1133 
1134 	    if (mrtdebug & DEBUG_MFC)
1135 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1136 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1137 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1138 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1139 
1140 	    init_mfc_params(rt, mfccp);
1141 
1142 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1143 	    nexpire[hash]--;
1144 
1145 	    /* free packets Qed at the end of this entry */
1146 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1147 		struct rtdetq *n = rte->next;
1148 
1149 		ip_mdq(rte->m, rte->ifp, rt, -1);
1150 		m_freem(rte->m);
1151 		free(rte, M_MRTABLE);
1152 		rte = n;
1153 	    }
1154 	    rt->mfc_stall = NULL;
1155 	}
1156     }
1157 
1158     /*
1159      * It is possible that an entry is being inserted without an upcall
1160      */
1161     if (nstl == 0) {
1162 	if (mrtdebug & DEBUG_MFC)
1163 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1164 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1165 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1166 		mfccp->mfcc_parent);
1167 
1168 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1169 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1170 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1171 		init_mfc_params(rt, mfccp);
1172 		if (rt->mfc_expire)
1173 		    nexpire[hash]--;
1174 		rt->mfc_expire = 0;
1175 		break; /* XXX */
1176 	    }
1177 	}
1178 	if (rt == NULL) {		/* no upcall, so make a new entry */
1179 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1180 	    if (rt == NULL) {
1181 		MFC_UNLOCK();
1182 		VIF_UNLOCK();
1183 		return ENOBUFS;
1184 	    }
1185 
1186 	    init_mfc_params(rt, mfccp);
1187 	    rt->mfc_expire     = 0;
1188 	    rt->mfc_stall      = NULL;
1189 
1190 	    rt->mfc_bw_meter = NULL;
1191 	    /* insert new entry at head of hash chain */
1192 	    rt->mfc_next = mfctable[hash];
1193 	    mfctable[hash] = rt;
1194 	}
1195     }
1196     MFC_UNLOCK();
1197     VIF_UNLOCK();
1198     return 0;
1199 }
1200 
1201 /*
1202  * Delete an mfc entry
1203  */
1204 static int
1205 del_mfc(struct mfcctl2 *mfccp)
1206 {
1207     struct in_addr	origin;
1208     struct in_addr	mcastgrp;
1209     struct mfc		*rt;
1210     struct mfc		**nptr;
1211     u_long		hash;
1212     struct bw_meter	*list;
1213 
1214     origin = mfccp->mfcc_origin;
1215     mcastgrp = mfccp->mfcc_mcastgrp;
1216 
1217     if (mrtdebug & DEBUG_MFC)
1218 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1219 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1220 
1221     MFC_LOCK();
1222 
1223     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1224     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1225 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1226 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1227 		rt->mfc_stall == NULL)
1228 	    break;
1229     if (rt == NULL) {
1230 	MFC_UNLOCK();
1231 	return EADDRNOTAVAIL;
1232     }
1233 
1234     *nptr = rt->mfc_next;
1235 
1236     /*
1237      * free the bw_meter entries
1238      */
1239     list = rt->mfc_bw_meter;
1240     rt->mfc_bw_meter = NULL;
1241 
1242     free(rt, M_MRTABLE);
1243 
1244     free_bw_list(list);
1245 
1246     MFC_UNLOCK();
1247 
1248     return 0;
1249 }
1250 
1251 /*
1252  * Send a message to the routing daemon on the multicast routing socket
1253  */
1254 static int
1255 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1256 {
1257     if (s) {
1258 	SOCKBUF_LOCK(&s->so_rcv);
1259 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1260 	    NULL) != 0) {
1261 	    sorwakeup_locked(s);
1262 	    return 0;
1263 	}
1264 	SOCKBUF_UNLOCK(&s->so_rcv);
1265     }
1266     m_freem(mm);
1267     return -1;
1268 }
1269 
1270 /*
1271  * IP multicast forwarding function. This function assumes that the packet
1272  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1273  * pointed to by "ifp", and the packet is to be relayed to other networks
1274  * that have members of the packet's destination IP multicast group.
1275  *
1276  * The packet is returned unscathed to the caller, unless it is
1277  * erroneous, in which case a non-zero return value tells the caller to
1278  * discard it.
1279  */
1280 
1281 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1282 
1283 static int
1284 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1285     struct ip_moptions *imo)
1286 {
1287     struct mfc *rt;
1288     int error;
1289     vifi_t vifi;
1290 
1291     if (mrtdebug & DEBUG_FORWARD)
1292 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1293 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1294 	    (void *)ifp);
1295 
1296     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1297 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1298 	/*
1299 	 * Packet arrived via a physical interface or
1300 	 * an encapsulated tunnel or a register_vif.
1301 	 */
1302     } else {
1303 	/*
1304 	 * Packet arrived through a source-route tunnel.
1305 	 * Source-route tunnels are no longer supported.
1306 	 */
1307 	static int last_log;
1308 	if (last_log != time_uptime) {
1309 	    last_log = time_uptime;
1310 	    log(LOG_ERR,
1311 		"ip_mforward: received source-routed packet from %lx\n",
1312 		(u_long)ntohl(ip->ip_src.s_addr));
1313 	}
1314 	return 1;
1315     }
1316 
1317     VIF_LOCK();
1318     MFC_LOCK();
1319     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1320 	if (ip->ip_ttl < MAXTTL)
1321 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1322 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1323 	    struct vif *vifp = viftable + vifi;
1324 
1325 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1326 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1327 		vifi,
1328 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1329 		vifp->v_ifp->if_xname);
1330 	}
1331 	error = ip_mdq(m, ifp, NULL, vifi);
1332 	MFC_UNLOCK();
1333 	VIF_UNLOCK();
1334 	return error;
1335     }
1336     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1337 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1338 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1339 	if (!imo)
1340 	    printf("In fact, no options were specified at all\n");
1341     }
1342 
1343     /*
1344      * Don't forward a packet with time-to-live of zero or one,
1345      * or a packet destined to a local-only group.
1346      */
1347     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1348 	MFC_UNLOCK();
1349 	VIF_UNLOCK();
1350 	return 0;
1351     }
1352 
1353     /*
1354      * Determine forwarding vifs from the forwarding cache table
1355      */
1356     ++mrtstat.mrts_mfc_lookups;
1357     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1358 
1359     /* Entry exists, so forward if necessary */
1360     if (rt != NULL) {
1361 	error = ip_mdq(m, ifp, rt, -1);
1362 	MFC_UNLOCK();
1363 	VIF_UNLOCK();
1364 	return error;
1365     } else {
1366 	/*
1367 	 * If we don't have a route for packet's origin,
1368 	 * Make a copy of the packet & send message to routing daemon
1369 	 */
1370 
1371 	struct mbuf *mb0;
1372 	struct rtdetq *rte;
1373 	u_long hash;
1374 	int hlen = ip->ip_hl << 2;
1375 
1376 	++mrtstat.mrts_mfc_misses;
1377 
1378 	mrtstat.mrts_no_route++;
1379 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1380 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1381 		(u_long)ntohl(ip->ip_src.s_addr),
1382 		(u_long)ntohl(ip->ip_dst.s_addr));
1383 
1384 	/*
1385 	 * Allocate mbufs early so that we don't do extra work if we are
1386 	 * just going to fail anyway.  Make sure to pullup the header so
1387 	 * that other people can't step on it.
1388 	 */
1389 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1390 	if (rte == NULL) {
1391 	    MFC_UNLOCK();
1392 	    VIF_UNLOCK();
1393 	    return ENOBUFS;
1394 	}
1395 	mb0 = m_copypacket(m, M_DONTWAIT);
1396 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1397 	    mb0 = m_pullup(mb0, hlen);
1398 	if (mb0 == NULL) {
1399 	    free(rte, M_MRTABLE);
1400 	    MFC_UNLOCK();
1401 	    VIF_UNLOCK();
1402 	    return ENOBUFS;
1403 	}
1404 
1405 	/* is there an upcall waiting for this flow ? */
1406 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1407 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1408 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1409 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1410 		    (rt->mfc_stall != NULL))
1411 		break;
1412 	}
1413 
1414 	if (rt == NULL) {
1415 	    int i;
1416 	    struct igmpmsg *im;
1417 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1418 	    struct mbuf *mm;
1419 
1420 	    /*
1421 	     * Locate the vifi for the incoming interface for this packet.
1422 	     * If none found, drop packet.
1423 	     */
1424 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1425 		;
1426 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1427 		goto non_fatal;
1428 
1429 	    /* no upcall, so make a new entry */
1430 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1431 	    if (rt == NULL)
1432 		goto fail;
1433 	    /* Make a copy of the header to send to the user level process */
1434 	    mm = m_copy(mb0, 0, hlen);
1435 	    if (mm == NULL)
1436 		goto fail1;
1437 
1438 	    /*
1439 	     * Send message to routing daemon to install
1440 	     * a route into the kernel table
1441 	     */
1442 
1443 	    im = mtod(mm, struct igmpmsg *);
1444 	    im->im_msgtype = IGMPMSG_NOCACHE;
1445 	    im->im_mbz = 0;
1446 	    im->im_vif = vifi;
1447 
1448 	    mrtstat.mrts_upcalls++;
1449 
1450 	    k_igmpsrc.sin_addr = ip->ip_src;
1451 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1452 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1453 		++mrtstat.mrts_upq_sockfull;
1454 fail1:
1455 		free(rt, M_MRTABLE);
1456 fail:
1457 		free(rte, M_MRTABLE);
1458 		m_freem(mb0);
1459 		MFC_UNLOCK();
1460 		VIF_UNLOCK();
1461 		return ENOBUFS;
1462 	    }
1463 
1464 	    /* insert new entry at head of hash chain */
1465 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1466 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1467 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1468 	    nexpire[hash]++;
1469 	    for (i = 0; i < numvifs; i++) {
1470 		rt->mfc_ttls[i] = 0;
1471 		rt->mfc_flags[i] = 0;
1472 	    }
1473 	    rt->mfc_parent = -1;
1474 
1475 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1476 
1477 	    rt->mfc_bw_meter = NULL;
1478 
1479 	    /* link into table */
1480 	    rt->mfc_next   = mfctable[hash];
1481 	    mfctable[hash] = rt;
1482 	    rt->mfc_stall = rte;
1483 
1484 	} else {
1485 	    /* determine if q has overflowed */
1486 	    int npkts = 0;
1487 	    struct rtdetq **p;
1488 
1489 	    /*
1490 	     * XXX ouch! we need to append to the list, but we
1491 	     * only have a pointer to the front, so we have to
1492 	     * scan the entire list every time.
1493 	     */
1494 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1495 		npkts++;
1496 
1497 	    if (npkts > MAX_UPQ) {
1498 		mrtstat.mrts_upq_ovflw++;
1499 non_fatal:
1500 		free(rte, M_MRTABLE);
1501 		m_freem(mb0);
1502 		MFC_UNLOCK();
1503 		VIF_UNLOCK();
1504 		return 0;
1505 	    }
1506 
1507 	    /* Add this entry to the end of the queue */
1508 	    *p = rte;
1509 	}
1510 
1511 	rte->m			= mb0;
1512 	rte->ifp		= ifp;
1513 	rte->next		= NULL;
1514 
1515 	MFC_UNLOCK();
1516 	VIF_UNLOCK();
1517 
1518 	return 0;
1519     }
1520 }
1521 
1522 /*
1523  * Clean up the cache entry if upcall is not serviced
1524  */
1525 static void
1526 expire_upcalls(void *unused)
1527 {
1528     struct rtdetq *rte;
1529     struct mfc *mfc, **nptr;
1530     int i;
1531 
1532     MFC_LOCK();
1533     for (i = 0; i < MFCTBLSIZ; i++) {
1534 	if (nexpire[i] == 0)
1535 	    continue;
1536 	nptr = &mfctable[i];
1537 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1538 	    /*
1539 	     * Skip real cache entries
1540 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1541 	     * If it expires now
1542 	     */
1543 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1544 		    --mfc->mfc_expire == 0) {
1545 		if (mrtdebug & DEBUG_EXPIRE)
1546 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1547 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1548 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1549 		/*
1550 		 * drop all the packets
1551 		 * free the mbuf with the pkt, if, timing info
1552 		 */
1553 		for (rte = mfc->mfc_stall; rte; ) {
1554 		    struct rtdetq *n = rte->next;
1555 
1556 		    m_freem(rte->m);
1557 		    free(rte, M_MRTABLE);
1558 		    rte = n;
1559 		}
1560 		++mrtstat.mrts_cache_cleanups;
1561 		nexpire[i]--;
1562 
1563 		/*
1564 		 * free the bw_meter entries
1565 		 */
1566 		while (mfc->mfc_bw_meter != NULL) {
1567 		    struct bw_meter *x = mfc->mfc_bw_meter;
1568 
1569 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1570 		    free(x, M_BWMETER);
1571 		}
1572 
1573 		*nptr = mfc->mfc_next;
1574 		free(mfc, M_MRTABLE);
1575 	    } else {
1576 		nptr = &mfc->mfc_next;
1577 	    }
1578 	}
1579     }
1580     MFC_UNLOCK();
1581 
1582     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1583 }
1584 
1585 /*
1586  * Packet forwarding routine once entry in the cache is made
1587  */
1588 static int
1589 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1590 {
1591     struct ip  *ip = mtod(m, struct ip *);
1592     vifi_t vifi;
1593     int plen = ip->ip_len;
1594 
1595     VIF_LOCK_ASSERT();
1596 
1597     /*
1598      * If xmt_vif is not -1, send on only the requested vif.
1599      *
1600      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1601      */
1602     if (xmt_vif < numvifs) {
1603 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1604 		pim_register_send(ip, viftable + xmt_vif, m, rt);
1605 	else
1606 		phyint_send(ip, viftable + xmt_vif, m);
1607 	return 1;
1608     }
1609 
1610     /*
1611      * Don't forward if it didn't arrive from the parent vif for its origin.
1612      */
1613     vifi = rt->mfc_parent;
1614     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1615 	/* came in the wrong interface */
1616 	if (mrtdebug & DEBUG_FORWARD)
1617 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1618 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1619 	++mrtstat.mrts_wrong_if;
1620 	++rt->mfc_wrong_if;
1621 	/*
1622 	 * If we are doing PIM assert processing, send a message
1623 	 * to the routing daemon.
1624 	 *
1625 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1626 	 * can complete the SPT switch, regardless of the type
1627 	 * of the iif (broadcast media, GRE tunnel, etc).
1628 	 */
1629 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1630 	    struct timeval now;
1631 	    u_long delta;
1632 
1633 	    if (ifp == &multicast_register_if)
1634 		pimstat.pims_rcv_registers_wrongiif++;
1635 
1636 	    /* Get vifi for the incoming packet */
1637 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1638 		;
1639 	    if (vifi >= numvifs)
1640 		return 0;	/* The iif is not found: ignore the packet. */
1641 
1642 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1643 		return 0;	/* WRONGVIF disabled: ignore the packet */
1644 
1645 	    GET_TIME(now);
1646 
1647 	    TV_DELTA(now, rt->mfc_last_assert, delta);
1648 
1649 	    if (delta > ASSERT_MSG_TIME) {
1650 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1651 		struct igmpmsg *im;
1652 		int hlen = ip->ip_hl << 2;
1653 		struct mbuf *mm = m_copy(m, 0, hlen);
1654 
1655 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1656 		    mm = m_pullup(mm, hlen);
1657 		if (mm == NULL)
1658 		    return ENOBUFS;
1659 
1660 		rt->mfc_last_assert = now;
1661 
1662 		im = mtod(mm, struct igmpmsg *);
1663 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1664 		im->im_mbz		= 0;
1665 		im->im_vif		= vifi;
1666 
1667 		mrtstat.mrts_upcalls++;
1668 
1669 		k_igmpsrc.sin_addr = im->im_src;
1670 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1671 		    log(LOG_WARNING,
1672 			"ip_mforward: ip_mrouter socket queue full\n");
1673 		    ++mrtstat.mrts_upq_sockfull;
1674 		    return ENOBUFS;
1675 		}
1676 	    }
1677 	}
1678 	return 0;
1679     }
1680 
1681     /* If I sourced this packet, it counts as output, else it was input. */
1682     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1683 	viftable[vifi].v_pkt_out++;
1684 	viftable[vifi].v_bytes_out += plen;
1685     } else {
1686 	viftable[vifi].v_pkt_in++;
1687 	viftable[vifi].v_bytes_in += plen;
1688     }
1689     rt->mfc_pkt_cnt++;
1690     rt->mfc_byte_cnt += plen;
1691 
1692     /*
1693      * For each vif, decide if a copy of the packet should be forwarded.
1694      * Forward if:
1695      *		- the ttl exceeds the vif's threshold
1696      *		- there are group members downstream on interface
1697      */
1698     for (vifi = 0; vifi < numvifs; vifi++)
1699 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1700 	    viftable[vifi].v_pkt_out++;
1701 	    viftable[vifi].v_bytes_out += plen;
1702 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1703 		pim_register_send(ip, viftable + vifi, m, rt);
1704 	    else
1705 		phyint_send(ip, viftable + vifi, m);
1706 	}
1707 
1708     /*
1709      * Perform upcall-related bw measuring.
1710      */
1711     if (rt->mfc_bw_meter != NULL) {
1712 	struct bw_meter *x;
1713 	struct timeval now;
1714 
1715 	GET_TIME(now);
1716 	MFC_LOCK_ASSERT();
1717 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1718 	    bw_meter_receive_packet(x, plen, &now);
1719     }
1720 
1721     return 0;
1722 }
1723 
1724 /*
1725  * check if a vif number is legal/ok. This is used by ip_output.
1726  */
1727 static int
1728 X_legal_vif_num(int vif)
1729 {
1730     /* XXX unlocked, matter? */
1731     return (vif >= 0 && vif < numvifs);
1732 }
1733 
1734 /*
1735  * Return the local address used by this vif
1736  */
1737 static u_long
1738 X_ip_mcast_src(int vifi)
1739 {
1740     /* XXX unlocked, matter? */
1741     if (vifi >= 0 && vifi < numvifs)
1742 	return viftable[vifi].v_lcl_addr.s_addr;
1743     else
1744 	return INADDR_ANY;
1745 }
1746 
1747 static void
1748 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1749 {
1750     struct mbuf *mb_copy;
1751     int hlen = ip->ip_hl << 2;
1752 
1753     VIF_LOCK_ASSERT();
1754 
1755     /*
1756      * Make a new reference to the packet; make sure that
1757      * the IP header is actually copied, not just referenced,
1758      * so that ip_output() only scribbles on the copy.
1759      */
1760     mb_copy = m_copypacket(m, M_DONTWAIT);
1761     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1762 	mb_copy = m_pullup(mb_copy, hlen);
1763     if (mb_copy == NULL)
1764 	return;
1765 
1766     send_packet(vifp, mb_copy);
1767 }
1768 
1769 static void
1770 send_packet(struct vif *vifp, struct mbuf *m)
1771 {
1772 	struct ip_moptions imo;
1773 	struct in_multi *imm[2];
1774 	int error;
1775 
1776 	VIF_LOCK_ASSERT();
1777 
1778 	imo.imo_multicast_ifp  = vifp->v_ifp;
1779 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1780 	imo.imo_multicast_loop = 1;
1781 	imo.imo_multicast_vif  = -1;
1782 	imo.imo_num_memberships = 0;
1783 	imo.imo_max_memberships = 2;
1784 	imo.imo_membership  = &imm[0];
1785 
1786 	/*
1787 	 * Re-entrancy should not be a problem here, because
1788 	 * the packets that we send out and are looped back at us
1789 	 * should get rejected because they appear to come from
1790 	 * the loopback interface, thus preventing looping.
1791 	 */
1792 	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1793 	if (mrtdebug & DEBUG_XMIT) {
1794 	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1795 		vifp - viftable, error);
1796 	}
1797 }
1798 
1799 static int
1800 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1801 {
1802     int error, vifi;
1803 
1804     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1805 	return EOPNOTSUPP;
1806 
1807     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1808     if (error)
1809 	return error;
1810 
1811     VIF_LOCK();
1812 
1813     if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1814 	VIF_UNLOCK();
1815 	return EADDRNOTAVAIL;
1816     }
1817 
1818     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1819 	/* Check if socket is available. */
1820 	if (viftable[vifi].v_rsvpd != NULL) {
1821 	    VIF_UNLOCK();
1822 	    return EADDRINUSE;
1823 	}
1824 
1825 	viftable[vifi].v_rsvpd = so;
1826 	/* This may seem silly, but we need to be sure we don't over-increment
1827 	 * the RSVP counter, in case something slips up.
1828 	 */
1829 	if (!viftable[vifi].v_rsvp_on) {
1830 	    viftable[vifi].v_rsvp_on = 1;
1831 	    rsvp_on++;
1832 	}
1833     } else { /* must be VIF_OFF */
1834 	/*
1835 	 * XXX as an additional consistency check, one could make sure
1836 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1837 	 * first parameter is pretty useless.
1838 	 */
1839 	viftable[vifi].v_rsvpd = NULL;
1840 	/*
1841 	 * This may seem silly, but we need to be sure we don't over-decrement
1842 	 * the RSVP counter, in case something slips up.
1843 	 */
1844 	if (viftable[vifi].v_rsvp_on) {
1845 	    viftable[vifi].v_rsvp_on = 0;
1846 	    rsvp_on--;
1847 	}
1848     }
1849     VIF_UNLOCK();
1850     return 0;
1851 }
1852 
1853 static void
1854 X_ip_rsvp_force_done(struct socket *so)
1855 {
1856     int vifi;
1857 
1858     /* Don't bother if it is not the right type of socket. */
1859     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1860 	return;
1861 
1862     VIF_LOCK();
1863 
1864     /* The socket may be attached to more than one vif...this
1865      * is perfectly legal.
1866      */
1867     for (vifi = 0; vifi < numvifs; vifi++) {
1868 	if (viftable[vifi].v_rsvpd == so) {
1869 	    viftable[vifi].v_rsvpd = NULL;
1870 	    /* This may seem silly, but we need to be sure we don't
1871 	     * over-decrement the RSVP counter, in case something slips up.
1872 	     */
1873 	    if (viftable[vifi].v_rsvp_on) {
1874 		viftable[vifi].v_rsvp_on = 0;
1875 		rsvp_on--;
1876 	    }
1877 	}
1878     }
1879 
1880     VIF_UNLOCK();
1881 }
1882 
1883 static void
1884 X_rsvp_input(struct mbuf *m, int off)
1885 {
1886     int vifi;
1887     struct ip *ip = mtod(m, struct ip *);
1888     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1889     struct ifnet *ifp;
1890 
1891     if (rsvpdebug)
1892 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1893 
1894     /* Can still get packets with rsvp_on = 0 if there is a local member
1895      * of the group to which the RSVP packet is addressed.  But in this
1896      * case we want to throw the packet away.
1897      */
1898     if (!rsvp_on) {
1899 	m_freem(m);
1900 	return;
1901     }
1902 
1903     if (rsvpdebug)
1904 	printf("rsvp_input: check vifs\n");
1905 
1906 #ifdef DIAGNOSTIC
1907     M_ASSERTPKTHDR(m);
1908 #endif
1909 
1910     ifp = m->m_pkthdr.rcvif;
1911 
1912     VIF_LOCK();
1913     /* Find which vif the packet arrived on. */
1914     for (vifi = 0; vifi < numvifs; vifi++)
1915 	if (viftable[vifi].v_ifp == ifp)
1916 	    break;
1917 
1918     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1919 	/*
1920 	 * Drop the lock here to avoid holding it across rip_input.
1921 	 * This could make rsvpdebug printfs wrong.  If you care,
1922 	 * record the state of stuff before dropping the lock.
1923 	 */
1924 	VIF_UNLOCK();
1925 	/*
1926 	 * If the old-style non-vif-associated socket is set,
1927 	 * then use it.  Otherwise, drop packet since there
1928 	 * is no specific socket for this vif.
1929 	 */
1930 	if (ip_rsvpd != NULL) {
1931 	    if (rsvpdebug)
1932 		printf("rsvp_input: Sending packet up old-style socket\n");
1933 	    rip_input(m, off);  /* xxx */
1934 	} else {
1935 	    if (rsvpdebug && vifi == numvifs)
1936 		printf("rsvp_input: Can't find vif for packet.\n");
1937 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1938 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1939 	    m_freem(m);
1940 	}
1941 	return;
1942     }
1943     rsvp_src.sin_addr = ip->ip_src;
1944 
1945     if (rsvpdebug && m)
1946 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1947 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1948 
1949     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1950 	if (rsvpdebug)
1951 	    printf("rsvp_input: Failed to append to socket\n");
1952     } else {
1953 	if (rsvpdebug)
1954 	    printf("rsvp_input: send packet up\n");
1955     }
1956     VIF_UNLOCK();
1957 }
1958 
1959 /*
1960  * Code for bandwidth monitors
1961  */
1962 
1963 /*
1964  * Define common interface for timeval-related methods
1965  */
1966 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1967 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1968 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1969 
1970 static uint32_t
1971 compute_bw_meter_flags(struct bw_upcall *req)
1972 {
1973     uint32_t flags = 0;
1974 
1975     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1976 	flags |= BW_METER_UNIT_PACKETS;
1977     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1978 	flags |= BW_METER_UNIT_BYTES;
1979     if (req->bu_flags & BW_UPCALL_GEQ)
1980 	flags |= BW_METER_GEQ;
1981     if (req->bu_flags & BW_UPCALL_LEQ)
1982 	flags |= BW_METER_LEQ;
1983 
1984     return flags;
1985 }
1986 
1987 /*
1988  * Add a bw_meter entry
1989  */
1990 static int
1991 add_bw_upcall(struct bw_upcall *req)
1992 {
1993     struct mfc *mfc;
1994     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1995 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1996     struct timeval now;
1997     struct bw_meter *x;
1998     uint32_t flags;
1999 
2000     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2001 	return EOPNOTSUPP;
2002 
2003     /* Test if the flags are valid */
2004     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2005 	return EINVAL;
2006     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2007 	return EINVAL;
2008     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2009 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2010 	return EINVAL;
2011 
2012     /* Test if the threshold time interval is valid */
2013     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2014 	return EINVAL;
2015 
2016     flags = compute_bw_meter_flags(req);
2017 
2018     /*
2019      * Find if we have already same bw_meter entry
2020      */
2021     MFC_LOCK();
2022     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2023     if (mfc == NULL) {
2024 	MFC_UNLOCK();
2025 	return EADDRNOTAVAIL;
2026     }
2027     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2028 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2029 			   &req->bu_threshold.b_time, ==)) &&
2030 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2031 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2032 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2033 	    MFC_UNLOCK();
2034 	    return 0;		/* XXX Already installed */
2035 	}
2036     }
2037 
2038     /* Allocate the new bw_meter entry */
2039     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2040     if (x == NULL) {
2041 	MFC_UNLOCK();
2042 	return ENOBUFS;
2043     }
2044 
2045     /* Set the new bw_meter entry */
2046     x->bm_threshold.b_time = req->bu_threshold.b_time;
2047     GET_TIME(now);
2048     x->bm_start_time = now;
2049     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2050     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2051     x->bm_measured.b_packets = 0;
2052     x->bm_measured.b_bytes = 0;
2053     x->bm_flags = flags;
2054     x->bm_time_next = NULL;
2055     x->bm_time_hash = BW_METER_BUCKETS;
2056 
2057     /* Add the new bw_meter entry to the front of entries for this MFC */
2058     x->bm_mfc = mfc;
2059     x->bm_mfc_next = mfc->mfc_bw_meter;
2060     mfc->mfc_bw_meter = x;
2061     schedule_bw_meter(x, &now);
2062     MFC_UNLOCK();
2063 
2064     return 0;
2065 }
2066 
2067 static void
2068 free_bw_list(struct bw_meter *list)
2069 {
2070     while (list != NULL) {
2071 	struct bw_meter *x = list;
2072 
2073 	list = list->bm_mfc_next;
2074 	unschedule_bw_meter(x);
2075 	free(x, M_BWMETER);
2076     }
2077 }
2078 
2079 /*
2080  * Delete one or multiple bw_meter entries
2081  */
2082 static int
2083 del_bw_upcall(struct bw_upcall *req)
2084 {
2085     struct mfc *mfc;
2086     struct bw_meter *x;
2087 
2088     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2089 	return EOPNOTSUPP;
2090 
2091     MFC_LOCK();
2092     /* Find the corresponding MFC entry */
2093     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2094     if (mfc == NULL) {
2095 	MFC_UNLOCK();
2096 	return EADDRNOTAVAIL;
2097     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2098 	/*
2099 	 * Delete all bw_meter entries for this mfc
2100 	 */
2101 	struct bw_meter *list;
2102 
2103 	list = mfc->mfc_bw_meter;
2104 	mfc->mfc_bw_meter = NULL;
2105 	free_bw_list(list);
2106 	MFC_UNLOCK();
2107 	return 0;
2108     } else {			/* Delete a single bw_meter entry */
2109 	struct bw_meter *prev;
2110 	uint32_t flags = 0;
2111 
2112 	flags = compute_bw_meter_flags(req);
2113 
2114 	/* Find the bw_meter entry to delete */
2115 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2116 	     prev = x, x = x->bm_mfc_next) {
2117 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2118 			       &req->bu_threshold.b_time, ==)) &&
2119 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2120 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2121 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2122 		break;
2123 	}
2124 	if (x != NULL) { /* Delete entry from the list for this MFC */
2125 	    if (prev != NULL)
2126 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2127 	    else
2128 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2129 
2130 	    unschedule_bw_meter(x);
2131 	    MFC_UNLOCK();
2132 	    /* Free the bw_meter entry */
2133 	    free(x, M_BWMETER);
2134 	    return 0;
2135 	} else {
2136 	    MFC_UNLOCK();
2137 	    return EINVAL;
2138 	}
2139     }
2140     /* NOTREACHED */
2141 }
2142 
2143 /*
2144  * Perform bandwidth measurement processing that may result in an upcall
2145  */
2146 static void
2147 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2148 {
2149     struct timeval delta;
2150 
2151     MFC_LOCK_ASSERT();
2152 
2153     delta = *nowp;
2154     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2155 
2156     if (x->bm_flags & BW_METER_GEQ) {
2157 	/*
2158 	 * Processing for ">=" type of bw_meter entry
2159 	 */
2160 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2161 	    /* Reset the bw_meter entry */
2162 	    x->bm_start_time = *nowp;
2163 	    x->bm_measured.b_packets = 0;
2164 	    x->bm_measured.b_bytes = 0;
2165 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2166 	}
2167 
2168 	/* Record that a packet is received */
2169 	x->bm_measured.b_packets++;
2170 	x->bm_measured.b_bytes += plen;
2171 
2172 	/*
2173 	 * Test if we should deliver an upcall
2174 	 */
2175 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2176 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2177 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2178 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2179 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2180 		/* Prepare an upcall for delivery */
2181 		bw_meter_prepare_upcall(x, nowp);
2182 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2183 	    }
2184 	}
2185     } else if (x->bm_flags & BW_METER_LEQ) {
2186 	/*
2187 	 * Processing for "<=" type of bw_meter entry
2188 	 */
2189 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2190 	    /*
2191 	     * We are behind time with the multicast forwarding table
2192 	     * scanning for "<=" type of bw_meter entries, so test now
2193 	     * if we should deliver an upcall.
2194 	     */
2195 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2196 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2197 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2198 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2199 		/* Prepare an upcall for delivery */
2200 		bw_meter_prepare_upcall(x, nowp);
2201 	    }
2202 	    /* Reschedule the bw_meter entry */
2203 	    unschedule_bw_meter(x);
2204 	    schedule_bw_meter(x, nowp);
2205 	}
2206 
2207 	/* Record that a packet is received */
2208 	x->bm_measured.b_packets++;
2209 	x->bm_measured.b_bytes += plen;
2210 
2211 	/*
2212 	 * Test if we should restart the measuring interval
2213 	 */
2214 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2215 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2216 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2217 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2218 	    /* Don't restart the measuring interval */
2219 	} else {
2220 	    /* Do restart the measuring interval */
2221 	    /*
2222 	     * XXX: note that we don't unschedule and schedule, because this
2223 	     * might be too much overhead per packet. Instead, when we process
2224 	     * all entries for a given timer hash bin, we check whether it is
2225 	     * really a timeout. If not, we reschedule at that time.
2226 	     */
2227 	    x->bm_start_time = *nowp;
2228 	    x->bm_measured.b_packets = 0;
2229 	    x->bm_measured.b_bytes = 0;
2230 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2231 	}
2232     }
2233 }
2234 
2235 /*
2236  * Prepare a bandwidth-related upcall
2237  */
2238 static void
2239 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2240 {
2241     struct timeval delta;
2242     struct bw_upcall *u;
2243 
2244     MFC_LOCK_ASSERT();
2245 
2246     /*
2247      * Compute the measured time interval
2248      */
2249     delta = *nowp;
2250     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2251 
2252     /*
2253      * If there are too many pending upcalls, deliver them now
2254      */
2255     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2256 	bw_upcalls_send();
2257 
2258     /*
2259      * Set the bw_upcall entry
2260      */
2261     u = &bw_upcalls[bw_upcalls_n++];
2262     u->bu_src = x->bm_mfc->mfc_origin;
2263     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2264     u->bu_threshold.b_time = x->bm_threshold.b_time;
2265     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2266     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2267     u->bu_measured.b_time = delta;
2268     u->bu_measured.b_packets = x->bm_measured.b_packets;
2269     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2270     u->bu_flags = 0;
2271     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2272 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2273     if (x->bm_flags & BW_METER_UNIT_BYTES)
2274 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2275     if (x->bm_flags & BW_METER_GEQ)
2276 	u->bu_flags |= BW_UPCALL_GEQ;
2277     if (x->bm_flags & BW_METER_LEQ)
2278 	u->bu_flags |= BW_UPCALL_LEQ;
2279 }
2280 
2281 /*
2282  * Send the pending bandwidth-related upcalls
2283  */
2284 static void
2285 bw_upcalls_send(void)
2286 {
2287     struct mbuf *m;
2288     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2289     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2290     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2291 				      0,		/* unused2 */
2292 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2293 				      0,		/* im_mbz  */
2294 				      0,		/* im_vif  */
2295 				      0,		/* unused3 */
2296 				      { 0 },		/* im_src  */
2297 				      { 0 } };		/* im_dst  */
2298 
2299     MFC_LOCK_ASSERT();
2300 
2301     if (bw_upcalls_n == 0)
2302 	return;			/* No pending upcalls */
2303 
2304     bw_upcalls_n = 0;
2305 
2306     /*
2307      * Allocate a new mbuf, initialize it with the header and
2308      * the payload for the pending calls.
2309      */
2310     MGETHDR(m, M_DONTWAIT, MT_DATA);
2311     if (m == NULL) {
2312 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2313 	return;
2314     }
2315 
2316     m->m_len = m->m_pkthdr.len = 0;
2317     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2318     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2319 
2320     /*
2321      * Send the upcalls
2322      * XXX do we need to set the address in k_igmpsrc ?
2323      */
2324     mrtstat.mrts_upcalls++;
2325     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2326 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2327 	++mrtstat.mrts_upq_sockfull;
2328     }
2329 }
2330 
2331 /*
2332  * Compute the timeout hash value for the bw_meter entries
2333  */
2334 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2335     do {								\
2336 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2337 									\
2338 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2339 	(hash) = next_timeval.tv_sec;					\
2340 	if (next_timeval.tv_usec)					\
2341 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2342 	(hash) %= BW_METER_BUCKETS;					\
2343     } while (0)
2344 
2345 /*
2346  * Schedule a timer to process periodically bw_meter entry of type "<="
2347  * by linking the entry in the proper hash bucket.
2348  */
2349 static void
2350 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2351 {
2352     int time_hash;
2353 
2354     MFC_LOCK_ASSERT();
2355 
2356     if (!(x->bm_flags & BW_METER_LEQ))
2357 	return;		/* XXX: we schedule timers only for "<=" entries */
2358 
2359     /*
2360      * Reset the bw_meter entry
2361      */
2362     x->bm_start_time = *nowp;
2363     x->bm_measured.b_packets = 0;
2364     x->bm_measured.b_bytes = 0;
2365     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2366 
2367     /*
2368      * Compute the timeout hash value and insert the entry
2369      */
2370     BW_METER_TIMEHASH(x, time_hash);
2371     x->bm_time_next = bw_meter_timers[time_hash];
2372     bw_meter_timers[time_hash] = x;
2373     x->bm_time_hash = time_hash;
2374 }
2375 
2376 /*
2377  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2378  * by removing the entry from the proper hash bucket.
2379  */
2380 static void
2381 unschedule_bw_meter(struct bw_meter *x)
2382 {
2383     int time_hash;
2384     struct bw_meter *prev, *tmp;
2385 
2386     MFC_LOCK_ASSERT();
2387 
2388     if (!(x->bm_flags & BW_METER_LEQ))
2389 	return;		/* XXX: we schedule timers only for "<=" entries */
2390 
2391     /*
2392      * Compute the timeout hash value and delete the entry
2393      */
2394     time_hash = x->bm_time_hash;
2395     if (time_hash >= BW_METER_BUCKETS)
2396 	return;		/* Entry was not scheduled */
2397 
2398     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2399 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2400 	if (tmp == x)
2401 	    break;
2402 
2403     if (tmp == NULL)
2404 	panic("unschedule_bw_meter: bw_meter entry not found");
2405 
2406     if (prev != NULL)
2407 	prev->bm_time_next = x->bm_time_next;
2408     else
2409 	bw_meter_timers[time_hash] = x->bm_time_next;
2410 
2411     x->bm_time_next = NULL;
2412     x->bm_time_hash = BW_METER_BUCKETS;
2413 }
2414 
2415 
2416 /*
2417  * Process all "<=" type of bw_meter that should be processed now,
2418  * and for each entry prepare an upcall if necessary. Each processed
2419  * entry is rescheduled again for the (periodic) processing.
2420  *
2421  * This is run periodically (once per second normally). On each round,
2422  * all the potentially matching entries are in the hash slot that we are
2423  * looking at.
2424  */
2425 static void
2426 bw_meter_process()
2427 {
2428     static uint32_t last_tv_sec;	/* last time we processed this */
2429 
2430     uint32_t loops;
2431     int i;
2432     struct timeval now, process_endtime;
2433 
2434     GET_TIME(now);
2435     if (last_tv_sec == now.tv_sec)
2436 	return;		/* nothing to do */
2437 
2438     loops = now.tv_sec - last_tv_sec;
2439     last_tv_sec = now.tv_sec;
2440     if (loops > BW_METER_BUCKETS)
2441 	loops = BW_METER_BUCKETS;
2442 
2443     MFC_LOCK();
2444     /*
2445      * Process all bins of bw_meter entries from the one after the last
2446      * processed to the current one. On entry, i points to the last bucket
2447      * visited, so we need to increment i at the beginning of the loop.
2448      */
2449     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2450 	struct bw_meter *x, *tmp_list;
2451 
2452 	if (++i >= BW_METER_BUCKETS)
2453 	    i = 0;
2454 
2455 	/* Disconnect the list of bw_meter entries from the bin */
2456 	tmp_list = bw_meter_timers[i];
2457 	bw_meter_timers[i] = NULL;
2458 
2459 	/* Process the list of bw_meter entries */
2460 	while (tmp_list != NULL) {
2461 	    x = tmp_list;
2462 	    tmp_list = tmp_list->bm_time_next;
2463 
2464 	    /* Test if the time interval is over */
2465 	    process_endtime = x->bm_start_time;
2466 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2467 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2468 		/* Not yet: reschedule, but don't reset */
2469 		int time_hash;
2470 
2471 		BW_METER_TIMEHASH(x, time_hash);
2472 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2473 		    /*
2474 		     * XXX: somehow the bin processing is a bit ahead of time.
2475 		     * Put the entry in the next bin.
2476 		     */
2477 		    if (++time_hash >= BW_METER_BUCKETS)
2478 			time_hash = 0;
2479 		}
2480 		x->bm_time_next = bw_meter_timers[time_hash];
2481 		bw_meter_timers[time_hash] = x;
2482 		x->bm_time_hash = time_hash;
2483 
2484 		continue;
2485 	    }
2486 
2487 	    /*
2488 	     * Test if we should deliver an upcall
2489 	     */
2490 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2491 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2492 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2493 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2494 		/* Prepare an upcall for delivery */
2495 		bw_meter_prepare_upcall(x, &now);
2496 	    }
2497 
2498 	    /*
2499 	     * Reschedule for next processing
2500 	     */
2501 	    schedule_bw_meter(x, &now);
2502 	}
2503     }
2504 
2505     /* Send all upcalls that are pending delivery */
2506     bw_upcalls_send();
2507 
2508     MFC_UNLOCK();
2509 }
2510 
2511 /*
2512  * A periodic function for sending all upcalls that are pending delivery
2513  */
2514 static void
2515 expire_bw_upcalls_send(void *unused)
2516 {
2517     MFC_LOCK();
2518     bw_upcalls_send();
2519     MFC_UNLOCK();
2520 
2521     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2522 	expire_bw_upcalls_send, NULL);
2523 }
2524 
2525 /*
2526  * A periodic function for periodic scanning of the multicast forwarding
2527  * table for processing all "<=" bw_meter entries.
2528  */
2529 static void
2530 expire_bw_meter_process(void *unused)
2531 {
2532     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2533 	bw_meter_process();
2534 
2535     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2536 }
2537 
2538 /*
2539  * End of bandwidth monitoring code
2540  */
2541 
2542 /*
2543  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2544  *
2545  */
2546 static int
2547 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2548     struct mfc *rt)
2549 {
2550     struct mbuf *mb_copy, *mm;
2551 
2552     if (mrtdebug & DEBUG_PIM)
2553 	log(LOG_DEBUG, "pim_register_send: ");
2554 
2555     /*
2556      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2557      * rendezvous point was unspecified, and we were told not to.
2558      */
2559     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2560 	(rt->mfc_rp.s_addr == INADDR_ANY))
2561 	return 0;
2562 
2563     mb_copy = pim_register_prepare(ip, m);
2564     if (mb_copy == NULL)
2565 	return ENOBUFS;
2566 
2567     /*
2568      * Send all the fragments. Note that the mbuf for each fragment
2569      * is freed by the sending machinery.
2570      */
2571     for (mm = mb_copy; mm; mm = mb_copy) {
2572 	mb_copy = mm->m_nextpkt;
2573 	mm->m_nextpkt = 0;
2574 	mm = m_pullup(mm, sizeof(struct ip));
2575 	if (mm != NULL) {
2576 	    ip = mtod(mm, struct ip *);
2577 	    if ((mrt_api_config & MRT_MFC_RP) &&
2578 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2579 		pim_register_send_rp(ip, vifp, mm, rt);
2580 	    } else {
2581 		pim_register_send_upcall(ip, vifp, mm, rt);
2582 	    }
2583 	}
2584     }
2585 
2586     return 0;
2587 }
2588 
2589 /*
2590  * Return a copy of the data packet that is ready for PIM Register
2591  * encapsulation.
2592  * XXX: Note that in the returned copy the IP header is a valid one.
2593  */
2594 static struct mbuf *
2595 pim_register_prepare(struct ip *ip, struct mbuf *m)
2596 {
2597     struct mbuf *mb_copy = NULL;
2598     int mtu;
2599 
2600     /* Take care of delayed checksums */
2601     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2602 	in_delayed_cksum(m);
2603 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2604     }
2605 
2606     /*
2607      * Copy the old packet & pullup its IP header into the
2608      * new mbuf so we can modify it.
2609      */
2610     mb_copy = m_copypacket(m, M_DONTWAIT);
2611     if (mb_copy == NULL)
2612 	return NULL;
2613     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2614     if (mb_copy == NULL)
2615 	return NULL;
2616 
2617     /* take care of the TTL */
2618     ip = mtod(mb_copy, struct ip *);
2619     --ip->ip_ttl;
2620 
2621     /* Compute the MTU after the PIM Register encapsulation */
2622     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2623 
2624     if (ip->ip_len <= mtu) {
2625 	/* Turn the IP header into a valid one */
2626 	ip->ip_len = htons(ip->ip_len);
2627 	ip->ip_off = htons(ip->ip_off);
2628 	ip->ip_sum = 0;
2629 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2630     } else {
2631 	/* Fragment the packet */
2632 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2633 	    m_freem(mb_copy);
2634 	    return NULL;
2635 	}
2636     }
2637     return mb_copy;
2638 }
2639 
2640 /*
2641  * Send an upcall with the data packet to the user-level process.
2642  */
2643 static int
2644 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2645     struct mbuf *mb_copy, struct mfc *rt)
2646 {
2647     struct mbuf *mb_first;
2648     int len = ntohs(ip->ip_len);
2649     struct igmpmsg *im;
2650     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2651 
2652     VIF_LOCK_ASSERT();
2653 
2654     /*
2655      * Add a new mbuf with an upcall header
2656      */
2657     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2658     if (mb_first == NULL) {
2659 	m_freem(mb_copy);
2660 	return ENOBUFS;
2661     }
2662     mb_first->m_data += max_linkhdr;
2663     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2664     mb_first->m_len = sizeof(struct igmpmsg);
2665     mb_first->m_next = mb_copy;
2666 
2667     /* Send message to routing daemon */
2668     im = mtod(mb_first, struct igmpmsg *);
2669     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2670     im->im_mbz		= 0;
2671     im->im_vif		= vifp - viftable;
2672     im->im_src		= ip->ip_src;
2673     im->im_dst		= ip->ip_dst;
2674 
2675     k_igmpsrc.sin_addr	= ip->ip_src;
2676 
2677     mrtstat.mrts_upcalls++;
2678 
2679     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2680 	if (mrtdebug & DEBUG_PIM)
2681 	    log(LOG_WARNING,
2682 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2683 	++mrtstat.mrts_upq_sockfull;
2684 	return ENOBUFS;
2685     }
2686 
2687     /* Keep statistics */
2688     pimstat.pims_snd_registers_msgs++;
2689     pimstat.pims_snd_registers_bytes += len;
2690 
2691     return 0;
2692 }
2693 
2694 /*
2695  * Encapsulate the data packet in PIM Register message and send it to the RP.
2696  */
2697 static int
2698 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2699     struct mfc *rt)
2700 {
2701     struct mbuf *mb_first;
2702     struct ip *ip_outer;
2703     struct pim_encap_pimhdr *pimhdr;
2704     int len = ntohs(ip->ip_len);
2705     vifi_t vifi = rt->mfc_parent;
2706 
2707     VIF_LOCK_ASSERT();
2708 
2709     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2710 	m_freem(mb_copy);
2711 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2712     }
2713 
2714     /*
2715      * Add a new mbuf with the encapsulating header
2716      */
2717     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2718     if (mb_first == NULL) {
2719 	m_freem(mb_copy);
2720 	return ENOBUFS;
2721     }
2722     mb_first->m_data += max_linkhdr;
2723     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2724     mb_first->m_next = mb_copy;
2725 
2726     mb_first->m_pkthdr.len = len + mb_first->m_len;
2727 
2728     /*
2729      * Fill in the encapsulating IP and PIM header
2730      */
2731     ip_outer = mtod(mb_first, struct ip *);
2732     *ip_outer = pim_encap_iphdr;
2733     ip_outer->ip_id = ip_newid();
2734     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2735     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2736     ip_outer->ip_dst = rt->mfc_rp;
2737     /*
2738      * Copy the inner header TOS to the outer header, and take care of the
2739      * IP_DF bit.
2740      */
2741     ip_outer->ip_tos = ip->ip_tos;
2742     if (ntohs(ip->ip_off) & IP_DF)
2743 	ip_outer->ip_off |= IP_DF;
2744     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2745 					 + sizeof(pim_encap_iphdr));
2746     *pimhdr = pim_encap_pimhdr;
2747     /* If the iif crosses a border, set the Border-bit */
2748     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2749 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2750 
2751     mb_first->m_data += sizeof(pim_encap_iphdr);
2752     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2753     mb_first->m_data -= sizeof(pim_encap_iphdr);
2754 
2755     send_packet(vifp, mb_first);
2756 
2757     /* Keep statistics */
2758     pimstat.pims_snd_registers_msgs++;
2759     pimstat.pims_snd_registers_bytes += len;
2760 
2761     return 0;
2762 }
2763 
2764 /*
2765  * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2766  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2767  * into the kernel.
2768  */
2769 static int
2770 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2771 {
2772 
2773 #ifdef DIAGNOSTIC
2774     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2775 #endif
2776     if (proto != IPPROTO_PIM)
2777 	return 0;	/* not for us; reject the datagram. */
2778 
2779     return 64;		/* claim the datagram. */
2780 }
2781 
2782 /*
2783  * PIM-SMv2 and PIM-DM messages processing.
2784  * Receives and verifies the PIM control messages, and passes them
2785  * up to the listening socket, using rip_input().
2786  * The only message with special processing is the PIM_REGISTER message
2787  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2788  * is passed to if_simloop().
2789  */
2790 void
2791 pim_input(struct mbuf *m, int off)
2792 {
2793     struct ip *ip = mtod(m, struct ip *);
2794     struct pim *pim;
2795     int minlen;
2796     int datalen = ip->ip_len;
2797     int ip_tos;
2798     int iphlen = off;
2799 
2800     /* Keep statistics */
2801     pimstat.pims_rcv_total_msgs++;
2802     pimstat.pims_rcv_total_bytes += datalen;
2803 
2804     /*
2805      * Validate lengths
2806      */
2807     if (datalen < PIM_MINLEN) {
2808 	pimstat.pims_rcv_tooshort++;
2809 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2810 	    datalen, (u_long)ip->ip_src.s_addr);
2811 	m_freem(m);
2812 	return;
2813     }
2814 
2815     /*
2816      * If the packet is at least as big as a REGISTER, go agead
2817      * and grab the PIM REGISTER header size, to avoid another
2818      * possible m_pullup() later.
2819      *
2820      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2821      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2822      */
2823     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2824     /*
2825      * Get the IP and PIM headers in contiguous memory, and
2826      * possibly the PIM REGISTER header.
2827      */
2828     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2829 	(m = m_pullup(m, minlen)) == 0) {
2830 	log(LOG_ERR, "pim_input: m_pullup failure\n");
2831 	return;
2832     }
2833     /* m_pullup() may have given us a new mbuf so reset ip. */
2834     ip = mtod(m, struct ip *);
2835     ip_tos = ip->ip_tos;
2836 
2837     /* adjust mbuf to point to the PIM header */
2838     m->m_data += iphlen;
2839     m->m_len  -= iphlen;
2840     pim = mtod(m, struct pim *);
2841 
2842     /*
2843      * Validate checksum. If PIM REGISTER, exclude the data packet.
2844      *
2845      * XXX: some older PIMv2 implementations don't make this distinction,
2846      * so for compatibility reason perform the checksum over part of the
2847      * message, and if error, then over the whole message.
2848      */
2849     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2850 	/* do nothing, checksum okay */
2851     } else if (in_cksum(m, datalen)) {
2852 	pimstat.pims_rcv_badsum++;
2853 	if (mrtdebug & DEBUG_PIM)
2854 	    log(LOG_DEBUG, "pim_input: invalid checksum");
2855 	m_freem(m);
2856 	return;
2857     }
2858 
2859     /* PIM version check */
2860     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2861 	pimstat.pims_rcv_badversion++;
2862 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2863 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2864 	m_freem(m);
2865 	return;
2866     }
2867 
2868     /* restore mbuf back to the outer IP */
2869     m->m_data -= iphlen;
2870     m->m_len  += iphlen;
2871 
2872     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2873 	/*
2874 	 * Since this is a REGISTER, we'll make a copy of the register
2875 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2876 	 * routing daemon.
2877 	 */
2878 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2879 	struct mbuf *mcp;
2880 	struct ip *encap_ip;
2881 	u_int32_t *reghdr;
2882 	struct ifnet *vifp;
2883 
2884 	VIF_LOCK();
2885 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2886 	    VIF_UNLOCK();
2887 	    if (mrtdebug & DEBUG_PIM)
2888 		log(LOG_DEBUG,
2889 		    "pim_input: register vif not set: %d\n", reg_vif_num);
2890 	    m_freem(m);
2891 	    return;
2892 	}
2893 	/* XXX need refcnt? */
2894 	vifp = viftable[reg_vif_num].v_ifp;
2895 	VIF_UNLOCK();
2896 
2897 	/*
2898 	 * Validate length
2899 	 */
2900 	if (datalen < PIM_REG_MINLEN) {
2901 	    pimstat.pims_rcv_tooshort++;
2902 	    pimstat.pims_rcv_badregisters++;
2903 	    log(LOG_ERR,
2904 		"pim_input: register packet size too small %d from %lx\n",
2905 		datalen, (u_long)ip->ip_src.s_addr);
2906 	    m_freem(m);
2907 	    return;
2908 	}
2909 
2910 	reghdr = (u_int32_t *)(pim + 1);
2911 	encap_ip = (struct ip *)(reghdr + 1);
2912 
2913 	if (mrtdebug & DEBUG_PIM) {
2914 	    log(LOG_DEBUG,
2915 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2916 		(u_long)ntohl(encap_ip->ip_src.s_addr),
2917 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2918 		ntohs(encap_ip->ip_len));
2919 	}
2920 
2921 	/* verify the version number of the inner packet */
2922 	if (encap_ip->ip_v != IPVERSION) {
2923 	    pimstat.pims_rcv_badregisters++;
2924 	    if (mrtdebug & DEBUG_PIM) {
2925 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2926 		    "of the inner packet\n", encap_ip->ip_v);
2927 	    }
2928 	    m_freem(m);
2929 	    return;
2930 	}
2931 
2932 	/* verify the inner packet is destined to a mcast group */
2933 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2934 	    pimstat.pims_rcv_badregisters++;
2935 	    if (mrtdebug & DEBUG_PIM)
2936 		log(LOG_DEBUG,
2937 		    "pim_input: inner packet of register is not "
2938 		    "multicast %lx\n",
2939 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2940 	    m_freem(m);
2941 	    return;
2942 	}
2943 
2944 	/* If a NULL_REGISTER, pass it to the daemon */
2945 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2946 	    goto pim_input_to_daemon;
2947 
2948 	/*
2949 	 * Copy the TOS from the outer IP header to the inner IP header.
2950 	 */
2951 	if (encap_ip->ip_tos != ip_tos) {
2952 	    /* Outer TOS -> inner TOS */
2953 	    encap_ip->ip_tos = ip_tos;
2954 	    /* Recompute the inner header checksum. Sigh... */
2955 
2956 	    /* adjust mbuf to point to the inner IP header */
2957 	    m->m_data += (iphlen + PIM_MINLEN);
2958 	    m->m_len  -= (iphlen + PIM_MINLEN);
2959 
2960 	    encap_ip->ip_sum = 0;
2961 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2962 
2963 	    /* restore mbuf to point back to the outer IP header */
2964 	    m->m_data -= (iphlen + PIM_MINLEN);
2965 	    m->m_len  += (iphlen + PIM_MINLEN);
2966 	}
2967 
2968 	/*
2969 	 * Decapsulate the inner IP packet and loopback to forward it
2970 	 * as a normal multicast packet. Also, make a copy of the
2971 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2972 	 * to pass to the daemon later, so it can take the appropriate
2973 	 * actions (e.g., send back PIM_REGISTER_STOP).
2974 	 * XXX: here m->m_data points to the outer IP header.
2975 	 */
2976 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2977 	if (mcp == NULL) {
2978 	    log(LOG_ERR,
2979 		"pim_input: pim register: could not copy register head\n");
2980 	    m_freem(m);
2981 	    return;
2982 	}
2983 
2984 	/* Keep statistics */
2985 	/* XXX: registers_bytes include only the encap. mcast pkt */
2986 	pimstat.pims_rcv_registers_msgs++;
2987 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2988 
2989 	/*
2990 	 * forward the inner ip packet; point m_data at the inner ip.
2991 	 */
2992 	m_adj(m, iphlen + PIM_MINLEN);
2993 
2994 	if (mrtdebug & DEBUG_PIM) {
2995 	    log(LOG_DEBUG,
2996 		"pim_input: forwarding decapsulated register: "
2997 		"src %lx, dst %lx, vif %d\n",
2998 		(u_long)ntohl(encap_ip->ip_src.s_addr),
2999 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3000 		reg_vif_num);
3001 	}
3002 	/* NB: vifp was collected above; can it change on us? */
3003 	if_simloop(vifp, m, dst.sin_family, 0);
3004 
3005 	/* prepare the register head to send to the mrouting daemon */
3006 	m = mcp;
3007     }
3008 
3009 pim_input_to_daemon:
3010     /*
3011      * Pass the PIM message up to the daemon; if it is a Register message,
3012      * pass the 'head' only up to the daemon. This includes the
3013      * outer IP header, PIM header, PIM-Register header and the
3014      * inner IP header.
3015      * XXX: the outer IP header pkt size of a Register is not adjust to
3016      * reflect the fact that the inner multicast data is truncated.
3017      */
3018     rip_input(m, iphlen);
3019 
3020     return;
3021 }
3022 
3023 /*
3024  * XXX: This is common code for dealing with initialization for both
3025  * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3026  */
3027 static int
3028 ip_mroute_modevent(module_t mod, int type, void *unused)
3029 {
3030     switch (type) {
3031     case MOD_LOAD:
3032 	MROUTER_LOCK_INIT();
3033 	MFC_LOCK_INIT();
3034 	VIF_LOCK_INIT();
3035 	ip_mrouter_reset();
3036 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3037 	    &pim_squelch_wholepkt);
3038 
3039 	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3040 	    pim_encapcheck, &in_pim_protosw, NULL);
3041 	if (pim_encap_cookie == NULL) {
3042 		printf("ip_mroute: unable to attach pim encap\n");
3043 		VIF_LOCK_DESTROY();
3044 		MFC_LOCK_DESTROY();
3045 		MROUTER_LOCK_DESTROY();
3046 		return (EINVAL);
3047 	}
3048 
3049 #ifdef INET6
3050 	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3051 	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3052 	if (pim6_encap_cookie == NULL) {
3053 		printf("ip_mroute: unable to attach pim6 encap\n");
3054 		if (pim_encap_cookie) {
3055 		    encap_detach(pim_encap_cookie);
3056 		    pim_encap_cookie = NULL;
3057 		}
3058 		VIF_LOCK_DESTROY();
3059 		MFC_LOCK_DESTROY();
3060 		MROUTER_LOCK_DESTROY();
3061 		return (EINVAL);
3062 	}
3063 #endif
3064 
3065 	ip_mcast_src = X_ip_mcast_src;
3066 	ip_mforward = X_ip_mforward;
3067 	ip_mrouter_done = X_ip_mrouter_done;
3068 	ip_mrouter_get = X_ip_mrouter_get;
3069 	ip_mrouter_set = X_ip_mrouter_set;
3070 
3071 #ifdef INET6
3072 	ip6_mforward = X_ip6_mforward;
3073 	ip6_mrouter_done = X_ip6_mrouter_done;
3074 	ip6_mrouter_get = X_ip6_mrouter_get;
3075 	ip6_mrouter_set = X_ip6_mrouter_set;
3076 	mrt6_ioctl = X_mrt6_ioctl;
3077 #endif
3078 
3079 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3080 	ip_rsvp_vif = X_ip_rsvp_vif;
3081 
3082 	legal_vif_num = X_legal_vif_num;
3083 	mrt_ioctl = X_mrt_ioctl;
3084 	rsvp_input_p = X_rsvp_input;
3085 	break;
3086 
3087     case MOD_UNLOAD:
3088 	/*
3089 	 * Typically module unload happens after the user-level
3090 	 * process has shutdown the kernel services (the check
3091 	 * below insures someone can't just yank the module out
3092 	 * from under a running process).  But if the module is
3093 	 * just loaded and then unloaded w/o starting up a user
3094 	 * process we still need to cleanup.
3095 	 */
3096 	if (ip_mrouter
3097 #ifdef INET6
3098 	    || ip6_mrouter
3099 #endif
3100 	)
3101 	    return EINVAL;
3102 
3103 #ifdef INET6
3104 	if (pim6_encap_cookie) {
3105 	    encap_detach(pim6_encap_cookie);
3106 	    pim6_encap_cookie = NULL;
3107 	}
3108 	X_ip6_mrouter_done();
3109 	ip6_mforward = NULL;
3110 	ip6_mrouter_done = NULL;
3111 	ip6_mrouter_get = NULL;
3112 	ip6_mrouter_set = NULL;
3113 	mrt6_ioctl = NULL;
3114 #endif
3115 
3116 	if (pim_encap_cookie) {
3117 	    encap_detach(pim_encap_cookie);
3118 	    pim_encap_cookie = NULL;
3119 	}
3120 	X_ip_mrouter_done();
3121 	ip_mcast_src = NULL;
3122 	ip_mforward = NULL;
3123 	ip_mrouter_done = NULL;
3124 	ip_mrouter_get = NULL;
3125 	ip_mrouter_set = NULL;
3126 
3127 	ip_rsvp_force_done = NULL;
3128 	ip_rsvp_vif = NULL;
3129 
3130 	legal_vif_num = NULL;
3131 	mrt_ioctl = NULL;
3132 	rsvp_input_p = NULL;
3133 
3134 	VIF_LOCK_DESTROY();
3135 	MFC_LOCK_DESTROY();
3136 	MROUTER_LOCK_DESTROY();
3137 	break;
3138 
3139     default:
3140 	return EOPNOTSUPP;
3141     }
3142     return 0;
3143 }
3144 
3145 static moduledata_t ip_mroutemod = {
3146     "ip_mroute",
3147     ip_mroute_modevent,
3148     0
3149 };
3150 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3151