1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * 53 * MROUTING Revision: 3.5 54 * and PIM-SMv2 and PIM-DM support, advanced API support, 55 * bandwidth metering and signaling 56 */ 57 58 /* 59 * TODO: Prefix functions with ipmf_. 60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 61 * domain attachment (if_afdata) so we can track consumers of that service. 62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 63 * move it to socket options. 64 * TODO: Cleanup LSRR removal further. 65 * TODO: Push RSVP stubs into raw_ip.c. 66 * TODO: Use bitstring.h for vif set. 67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 68 * TODO: Sync ip6_mroute.c with this file. 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_inet.h" 75 #include "opt_mrouting.h" 76 77 #define _PIM_VT 1 78 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/time.h> 99 #include <sys/counter.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/netisr.h> 104 #include <net/route.h> 105 #include <net/vnet.h> 106 107 #include <netinet/in.h> 108 #include <netinet/igmp.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/ip_encap.h> 113 #include <netinet/ip_mroute.h> 114 #include <netinet/ip_var.h> 115 #include <netinet/ip_options.h> 116 #include <netinet/pim.h> 117 #include <netinet/pim_var.h> 118 #include <netinet/udp.h> 119 120 #include <machine/in_cksum.h> 121 122 #ifndef KTR_IPMF 123 #define KTR_IPMF KTR_INET 124 #endif 125 126 #define VIFI_INVALID ((vifi_t) -1) 127 128 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 129 #define V_last_tv_sec VNET(last_tv_sec) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct mtx mrouter_mtx; 142 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 143 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 144 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 145 #define MROUTER_LOCK_INIT() \ 146 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 147 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 148 149 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 151 152 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 153 VNET_PCPUSTAT_SYSINIT(mrtstat); 154 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 156 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 157 "netinet/ip_mroute.h)"); 158 159 static VNET_DEFINE(u_long, mfchash); 160 #define V_mfchash VNET(mfchash) 161 #define MFCHASH(a, g) \ 162 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 163 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 164 #define MFCHASHSIZE 256 165 166 static u_long mfchashsize; /* Hash size */ 167 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 168 #define V_nexpire VNET(nexpire) 169 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 170 #define V_mfchashtbl VNET(mfchashtbl) 171 172 static struct mtx mfc_mtx; 173 #define MFC_LOCK() mtx_lock(&mfc_mtx) 174 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 175 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 176 #define MFC_LOCK_INIT() \ 177 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 178 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 179 180 static VNET_DEFINE(vifi_t, numvifs); 181 #define V_numvifs VNET(numvifs) 182 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 183 #define V_viftable VNET(viftable) 184 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 185 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 186 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 187 188 static struct mtx vif_mtx; 189 #define VIF_LOCK() mtx_lock(&vif_mtx) 190 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 191 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 192 #define VIF_LOCK_INIT() \ 193 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 194 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 195 196 static eventhandler_tag if_detach_event_tag = NULL; 197 198 static VNET_DEFINE(struct callout, expire_upcalls_ch); 199 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 200 201 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 202 #define UPCALL_EXPIRE 6 /* number of timeouts */ 203 204 /* 205 * Bandwidth meter variables and constants 206 */ 207 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 208 /* 209 * Pending timeouts are stored in a hash table, the key being the 210 * expiration time. Periodically, the entries are analysed and processed. 211 */ 212 #define BW_METER_BUCKETS 1024 213 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 214 #define V_bw_meter_timers VNET(bw_meter_timers) 215 static VNET_DEFINE(struct callout, bw_meter_ch); 216 #define V_bw_meter_ch VNET(bw_meter_ch) 217 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 218 219 /* 220 * Pending upcalls are stored in a vector which is flushed when 221 * full, or periodically 222 */ 223 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 224 #define V_bw_upcalls VNET(bw_upcalls) 225 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 226 #define V_bw_upcalls_n VNET(bw_upcalls_n) 227 static VNET_DEFINE(struct callout, bw_upcalls_ch); 228 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 229 230 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 231 232 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 233 VNET_PCPUSTAT_SYSINIT(pimstat); 234 VNET_PCPUSTAT_SYSUNINIT(pimstat); 235 236 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 237 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 238 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 239 240 static u_long pim_squelch_wholepkt = 0; 241 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 242 &pim_squelch_wholepkt, 0, 243 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 244 245 static const struct encaptab *pim_encap_cookie; 246 static int pim_encapcheck(const struct mbuf *, int, int, void *); 247 static int pim_input(struct mbuf *, int, int, void *); 248 249 static const struct encap_config ipv4_encap_cfg = { 250 .proto = IPPROTO_PIM, 251 .min_length = sizeof(struct ip) + PIM_MINLEN, 252 .exact_match = 8, 253 .check = pim_encapcheck, 254 .input = pim_input 255 }; 256 257 /* 258 * Note: the PIM Register encapsulation adds the following in front of a 259 * data packet: 260 * 261 * struct pim_encap_hdr { 262 * struct ip ip; 263 * struct pim_encap_pimhdr pim; 264 * } 265 * 266 */ 267 268 struct pim_encap_pimhdr { 269 struct pim pim; 270 uint32_t flags; 271 }; 272 #define PIM_ENCAP_TTL 64 273 274 static struct ip pim_encap_iphdr = { 275 #if BYTE_ORDER == LITTLE_ENDIAN 276 sizeof(struct ip) >> 2, 277 IPVERSION, 278 #else 279 IPVERSION, 280 sizeof(struct ip) >> 2, 281 #endif 282 0, /* tos */ 283 sizeof(struct ip), /* total length */ 284 0, /* id */ 285 0, /* frag offset */ 286 PIM_ENCAP_TTL, 287 IPPROTO_PIM, 288 0, /* checksum */ 289 }; 290 291 static struct pim_encap_pimhdr pim_encap_pimhdr = { 292 { 293 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 294 0, /* reserved */ 295 0, /* checksum */ 296 }, 297 0 /* flags */ 298 }; 299 300 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 301 #define V_reg_vif_num VNET(reg_vif_num) 302 static VNET_DEFINE(struct ifnet, multicast_register_if); 303 #define V_multicast_register_if VNET(multicast_register_if) 304 305 /* 306 * Private variables. 307 */ 308 309 static u_long X_ip_mcast_src(int); 310 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 311 struct ip_moptions *); 312 static int X_ip_mrouter_done(void); 313 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 314 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 315 static int X_legal_vif_num(int); 316 static int X_mrt_ioctl(u_long, caddr_t, int); 317 318 static int add_bw_upcall(struct bw_upcall *); 319 static int add_mfc(struct mfcctl2 *); 320 static int add_vif(struct vifctl *); 321 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 322 static void bw_meter_process(void); 323 static void bw_meter_receive_packet(struct bw_meter *, int, 324 struct timeval *); 325 static void bw_upcalls_send(void); 326 static int del_bw_upcall(struct bw_upcall *); 327 static int del_mfc(struct mfcctl2 *); 328 static int del_vif(vifi_t); 329 static int del_vif_locked(vifi_t); 330 static void expire_bw_meter_process(void *); 331 static void expire_bw_upcalls_send(void *); 332 static void expire_mfc(struct mfc *); 333 static void expire_upcalls(void *); 334 static void free_bw_list(struct bw_meter *); 335 static int get_sg_cnt(struct sioc_sg_req *); 336 static int get_vif_cnt(struct sioc_vif_req *); 337 static void if_detached_event(void *, struct ifnet *); 338 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 339 static int ip_mrouter_init(struct socket *, int); 340 static __inline struct mfc * 341 mfc_find(struct in_addr *, struct in_addr *); 342 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 343 static struct mbuf * 344 pim_register_prepare(struct ip *, struct mbuf *); 345 static int pim_register_send(struct ip *, struct vif *, 346 struct mbuf *, struct mfc *); 347 static int pim_register_send_rp(struct ip *, struct vif *, 348 struct mbuf *, struct mfc *); 349 static int pim_register_send_upcall(struct ip *, struct vif *, 350 struct mbuf *, struct mfc *); 351 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 352 static void send_packet(struct vif *, struct mbuf *); 353 static int set_api_config(uint32_t *); 354 static int set_assert(int); 355 static int socket_send(struct socket *, struct mbuf *, 356 struct sockaddr_in *); 357 static void unschedule_bw_meter(struct bw_meter *); 358 359 /* 360 * Kernel multicast forwarding API capabilities and setup. 361 * If more API capabilities are added to the kernel, they should be 362 * recorded in `mrt_api_support'. 363 */ 364 #define MRT_API_VERSION 0x0305 365 366 static const int mrt_api_version = MRT_API_VERSION; 367 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 368 MRT_MFC_FLAGS_BORDER_VIF | 369 MRT_MFC_RP | 370 MRT_MFC_BW_UPCALL); 371 static VNET_DEFINE(uint32_t, mrt_api_config); 372 #define V_mrt_api_config VNET(mrt_api_config) 373 static VNET_DEFINE(int, pim_assert_enabled); 374 #define V_pim_assert_enabled VNET(pim_assert_enabled) 375 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 376 377 /* 378 * Find a route for a given origin IP address and multicast group address. 379 * Statistics must be updated by the caller. 380 */ 381 static __inline struct mfc * 382 mfc_find(struct in_addr *o, struct in_addr *g) 383 { 384 struct mfc *rt; 385 386 MFC_LOCK_ASSERT(); 387 388 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 389 if (in_hosteq(rt->mfc_origin, *o) && 390 in_hosteq(rt->mfc_mcastgrp, *g) && 391 TAILQ_EMPTY(&rt->mfc_stall)) 392 break; 393 } 394 395 return (rt); 396 } 397 398 /* 399 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 400 */ 401 static int 402 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 403 { 404 int error, optval; 405 vifi_t vifi; 406 struct vifctl vifc; 407 struct mfcctl2 mfc; 408 struct bw_upcall bw_upcall; 409 uint32_t i; 410 411 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 412 return EPERM; 413 414 error = 0; 415 switch (sopt->sopt_name) { 416 case MRT_INIT: 417 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 418 if (error) 419 break; 420 error = ip_mrouter_init(so, optval); 421 break; 422 423 case MRT_DONE: 424 error = ip_mrouter_done(); 425 break; 426 427 case MRT_ADD_VIF: 428 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 429 if (error) 430 break; 431 error = add_vif(&vifc); 432 break; 433 434 case MRT_DEL_VIF: 435 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 436 if (error) 437 break; 438 error = del_vif(vifi); 439 break; 440 441 case MRT_ADD_MFC: 442 case MRT_DEL_MFC: 443 /* 444 * select data size depending on API version. 445 */ 446 if (sopt->sopt_name == MRT_ADD_MFC && 447 V_mrt_api_config & MRT_API_FLAGS_ALL) { 448 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 449 sizeof(struct mfcctl2)); 450 } else { 451 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 452 sizeof(struct mfcctl)); 453 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 454 sizeof(mfc) - sizeof(struct mfcctl)); 455 } 456 if (error) 457 break; 458 if (sopt->sopt_name == MRT_ADD_MFC) 459 error = add_mfc(&mfc); 460 else 461 error = del_mfc(&mfc); 462 break; 463 464 case MRT_ASSERT: 465 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 466 if (error) 467 break; 468 set_assert(optval); 469 break; 470 471 case MRT_API_CONFIG: 472 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 473 if (!error) 474 error = set_api_config(&i); 475 if (!error) 476 error = sooptcopyout(sopt, &i, sizeof i); 477 break; 478 479 case MRT_ADD_BW_UPCALL: 480 case MRT_DEL_BW_UPCALL: 481 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 482 sizeof bw_upcall); 483 if (error) 484 break; 485 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 486 error = add_bw_upcall(&bw_upcall); 487 else 488 error = del_bw_upcall(&bw_upcall); 489 break; 490 491 default: 492 error = EOPNOTSUPP; 493 break; 494 } 495 return error; 496 } 497 498 /* 499 * Handle MRT getsockopt commands 500 */ 501 static int 502 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 503 { 504 int error; 505 506 switch (sopt->sopt_name) { 507 case MRT_VERSION: 508 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 509 break; 510 511 case MRT_ASSERT: 512 error = sooptcopyout(sopt, &V_pim_assert_enabled, 513 sizeof V_pim_assert_enabled); 514 break; 515 516 case MRT_API_SUPPORT: 517 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 518 break; 519 520 case MRT_API_CONFIG: 521 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 522 break; 523 524 default: 525 error = EOPNOTSUPP; 526 break; 527 } 528 return error; 529 } 530 531 /* 532 * Handle ioctl commands to obtain information from the cache 533 */ 534 static int 535 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 536 { 537 int error = 0; 538 539 /* 540 * Currently the only function calling this ioctl routine is rtioctl_fib(). 541 * Typically, only root can create the raw socket in order to execute 542 * this ioctl method, however the request might be coming from a prison 543 */ 544 error = priv_check(curthread, PRIV_NETINET_MROUTE); 545 if (error) 546 return (error); 547 switch (cmd) { 548 case (SIOCGETVIFCNT): 549 error = get_vif_cnt((struct sioc_vif_req *)data); 550 break; 551 552 case (SIOCGETSGCNT): 553 error = get_sg_cnt((struct sioc_sg_req *)data); 554 break; 555 556 default: 557 error = EINVAL; 558 break; 559 } 560 return error; 561 } 562 563 /* 564 * returns the packet, byte, rpf-failure count for the source group provided 565 */ 566 static int 567 get_sg_cnt(struct sioc_sg_req *req) 568 { 569 struct mfc *rt; 570 571 MFC_LOCK(); 572 rt = mfc_find(&req->src, &req->grp); 573 if (rt == NULL) { 574 MFC_UNLOCK(); 575 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 576 return EADDRNOTAVAIL; 577 } 578 req->pktcnt = rt->mfc_pkt_cnt; 579 req->bytecnt = rt->mfc_byte_cnt; 580 req->wrong_if = rt->mfc_wrong_if; 581 MFC_UNLOCK(); 582 return 0; 583 } 584 585 /* 586 * returns the input and output packet and byte counts on the vif provided 587 */ 588 static int 589 get_vif_cnt(struct sioc_vif_req *req) 590 { 591 vifi_t vifi = req->vifi; 592 593 VIF_LOCK(); 594 if (vifi >= V_numvifs) { 595 VIF_UNLOCK(); 596 return EINVAL; 597 } 598 599 req->icount = V_viftable[vifi].v_pkt_in; 600 req->ocount = V_viftable[vifi].v_pkt_out; 601 req->ibytes = V_viftable[vifi].v_bytes_in; 602 req->obytes = V_viftable[vifi].v_bytes_out; 603 VIF_UNLOCK(); 604 605 return 0; 606 } 607 608 static void 609 if_detached_event(void *arg __unused, struct ifnet *ifp) 610 { 611 vifi_t vifi; 612 u_long i; 613 614 MROUTER_LOCK(); 615 616 if (V_ip_mrouter == NULL) { 617 MROUTER_UNLOCK(); 618 return; 619 } 620 621 VIF_LOCK(); 622 MFC_LOCK(); 623 624 /* 625 * Tear down multicast forwarder state associated with this ifnet. 626 * 1. Walk the vif list, matching vifs against this ifnet. 627 * 2. Walk the multicast forwarding cache (mfc) looking for 628 * inner matches with this vif's index. 629 * 3. Expire any matching multicast forwarding cache entries. 630 * 4. Free vif state. This should disable ALLMULTI on the interface. 631 */ 632 for (vifi = 0; vifi < V_numvifs; vifi++) { 633 if (V_viftable[vifi].v_ifp != ifp) 634 continue; 635 for (i = 0; i < mfchashsize; i++) { 636 struct mfc *rt, *nrt; 637 638 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 639 if (rt->mfc_parent == vifi) { 640 expire_mfc(rt); 641 } 642 } 643 } 644 del_vif_locked(vifi); 645 } 646 647 MFC_UNLOCK(); 648 VIF_UNLOCK(); 649 650 MROUTER_UNLOCK(); 651 } 652 653 /* 654 * Enable multicast forwarding. 655 */ 656 static int 657 ip_mrouter_init(struct socket *so, int version) 658 { 659 660 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 661 so->so_type, so->so_proto->pr_protocol); 662 663 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 664 return EOPNOTSUPP; 665 666 if (version != 1) 667 return ENOPROTOOPT; 668 669 MROUTER_LOCK(); 670 671 if (ip_mrouter_unloading) { 672 MROUTER_UNLOCK(); 673 return ENOPROTOOPT; 674 } 675 676 if (V_ip_mrouter != NULL) { 677 MROUTER_UNLOCK(); 678 return EADDRINUSE; 679 } 680 681 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 682 HASH_NOWAIT); 683 684 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 685 curvnet); 686 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 687 curvnet); 688 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 689 curvnet); 690 691 V_ip_mrouter = so; 692 ip_mrouter_cnt++; 693 694 MROUTER_UNLOCK(); 695 696 CTR1(KTR_IPMF, "%s: done", __func__); 697 698 return 0; 699 } 700 701 /* 702 * Disable multicast forwarding. 703 */ 704 static int 705 X_ip_mrouter_done(void) 706 { 707 struct ifnet *ifp; 708 u_long i; 709 vifi_t vifi; 710 711 MROUTER_LOCK(); 712 713 if (V_ip_mrouter == NULL) { 714 MROUTER_UNLOCK(); 715 return EINVAL; 716 } 717 718 /* 719 * Detach/disable hooks to the reset of the system. 720 */ 721 V_ip_mrouter = NULL; 722 ip_mrouter_cnt--; 723 V_mrt_api_config = 0; 724 725 VIF_LOCK(); 726 727 /* 728 * For each phyint in use, disable promiscuous reception of all IP 729 * multicasts. 730 */ 731 for (vifi = 0; vifi < V_numvifs; vifi++) { 732 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 733 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 734 ifp = V_viftable[vifi].v_ifp; 735 if_allmulti(ifp, 0); 736 } 737 } 738 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 739 V_numvifs = 0; 740 V_pim_assert_enabled = 0; 741 742 VIF_UNLOCK(); 743 744 callout_stop(&V_expire_upcalls_ch); 745 callout_stop(&V_bw_upcalls_ch); 746 callout_stop(&V_bw_meter_ch); 747 748 MFC_LOCK(); 749 750 /* 751 * Free all multicast forwarding cache entries. 752 * Do not use hashdestroy(), as we must perform other cleanup. 753 */ 754 for (i = 0; i < mfchashsize; i++) { 755 struct mfc *rt, *nrt; 756 757 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 758 expire_mfc(rt); 759 } 760 } 761 free(V_mfchashtbl, M_MRTABLE); 762 V_mfchashtbl = NULL; 763 764 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 765 766 V_bw_upcalls_n = 0; 767 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 768 769 MFC_UNLOCK(); 770 771 V_reg_vif_num = VIFI_INVALID; 772 773 MROUTER_UNLOCK(); 774 775 CTR1(KTR_IPMF, "%s: done", __func__); 776 777 return 0; 778 } 779 780 /* 781 * Set PIM assert processing global 782 */ 783 static int 784 set_assert(int i) 785 { 786 if ((i != 1) && (i != 0)) 787 return EINVAL; 788 789 V_pim_assert_enabled = i; 790 791 return 0; 792 } 793 794 /* 795 * Configure API capabilities 796 */ 797 int 798 set_api_config(uint32_t *apival) 799 { 800 u_long i; 801 802 /* 803 * We can set the API capabilities only if it is the first operation 804 * after MRT_INIT. I.e.: 805 * - there are no vifs installed 806 * - pim_assert is not enabled 807 * - the MFC table is empty 808 */ 809 if (V_numvifs > 0) { 810 *apival = 0; 811 return EPERM; 812 } 813 if (V_pim_assert_enabled) { 814 *apival = 0; 815 return EPERM; 816 } 817 818 MFC_LOCK(); 819 820 for (i = 0; i < mfchashsize; i++) { 821 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 822 MFC_UNLOCK(); 823 *apival = 0; 824 return EPERM; 825 } 826 } 827 828 MFC_UNLOCK(); 829 830 V_mrt_api_config = *apival & mrt_api_support; 831 *apival = V_mrt_api_config; 832 833 return 0; 834 } 835 836 /* 837 * Add a vif to the vif table 838 */ 839 static int 840 add_vif(struct vifctl *vifcp) 841 { 842 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 843 struct sockaddr_in sin = {sizeof sin, AF_INET}; 844 struct ifaddr *ifa; 845 struct ifnet *ifp; 846 int error; 847 848 VIF_LOCK(); 849 if (vifcp->vifc_vifi >= MAXVIFS) { 850 VIF_UNLOCK(); 851 return EINVAL; 852 } 853 /* rate limiting is no longer supported by this code */ 854 if (vifcp->vifc_rate_limit != 0) { 855 log(LOG_ERR, "rate limiting is no longer supported\n"); 856 VIF_UNLOCK(); 857 return EINVAL; 858 } 859 if (!in_nullhost(vifp->v_lcl_addr)) { 860 VIF_UNLOCK(); 861 return EADDRINUSE; 862 } 863 if (in_nullhost(vifcp->vifc_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRNOTAVAIL; 866 } 867 868 /* Find the interface with an address in AF_INET family */ 869 if (vifcp->vifc_flags & VIFF_REGISTER) { 870 /* 871 * XXX: Because VIFF_REGISTER does not really need a valid 872 * local interface (e.g. it could be 127.0.0.2), we don't 873 * check its address. 874 */ 875 ifp = NULL; 876 } else { 877 sin.sin_addr = vifcp->vifc_lcl_addr; 878 NET_EPOCH_ENTER(); 879 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 880 if (ifa == NULL) { 881 NET_EPOCH_EXIT(); 882 VIF_UNLOCK(); 883 return EADDRNOTAVAIL; 884 } 885 ifp = ifa->ifa_ifp; 886 NET_EPOCH_EXIT(); 887 } 888 889 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 890 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 891 VIF_UNLOCK(); 892 return EOPNOTSUPP; 893 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 894 ifp = &V_multicast_register_if; 895 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 896 if (V_reg_vif_num == VIFI_INVALID) { 897 if_initname(&V_multicast_register_if, "register_vif", 0); 898 V_multicast_register_if.if_flags = IFF_LOOPBACK; 899 V_reg_vif_num = vifcp->vifc_vifi; 900 } 901 } else { /* Make sure the interface supports multicast */ 902 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 903 VIF_UNLOCK(); 904 return EOPNOTSUPP; 905 } 906 907 /* Enable promiscuous reception of all IP multicasts from the if */ 908 error = if_allmulti(ifp, 1); 909 if (error) { 910 VIF_UNLOCK(); 911 return error; 912 } 913 } 914 915 vifp->v_flags = vifcp->vifc_flags; 916 vifp->v_threshold = vifcp->vifc_threshold; 917 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 918 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 919 vifp->v_ifp = ifp; 920 /* initialize per vif pkt counters */ 921 vifp->v_pkt_in = 0; 922 vifp->v_pkt_out = 0; 923 vifp->v_bytes_in = 0; 924 vifp->v_bytes_out = 0; 925 926 /* Adjust numvifs up if the vifi is higher than numvifs */ 927 if (V_numvifs <= vifcp->vifc_vifi) 928 V_numvifs = vifcp->vifc_vifi + 1; 929 930 VIF_UNLOCK(); 931 932 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 933 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 934 (int)vifcp->vifc_threshold); 935 936 return 0; 937 } 938 939 /* 940 * Delete a vif from the vif table 941 */ 942 static int 943 del_vif_locked(vifi_t vifi) 944 { 945 struct vif *vifp; 946 947 VIF_LOCK_ASSERT(); 948 949 if (vifi >= V_numvifs) { 950 return EINVAL; 951 } 952 vifp = &V_viftable[vifi]; 953 if (in_nullhost(vifp->v_lcl_addr)) { 954 return EADDRNOTAVAIL; 955 } 956 957 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 958 if_allmulti(vifp->v_ifp, 0); 959 960 if (vifp->v_flags & VIFF_REGISTER) 961 V_reg_vif_num = VIFI_INVALID; 962 963 bzero((caddr_t)vifp, sizeof (*vifp)); 964 965 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 966 967 /* Adjust numvifs down */ 968 for (vifi = V_numvifs; vifi > 0; vifi--) 969 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 970 break; 971 V_numvifs = vifi; 972 973 return 0; 974 } 975 976 static int 977 del_vif(vifi_t vifi) 978 { 979 int cc; 980 981 VIF_LOCK(); 982 cc = del_vif_locked(vifi); 983 VIF_UNLOCK(); 984 985 return cc; 986 } 987 988 /* 989 * update an mfc entry without resetting counters and S,G addresses. 990 */ 991 static void 992 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 993 { 994 int i; 995 996 rt->mfc_parent = mfccp->mfcc_parent; 997 for (i = 0; i < V_numvifs; i++) { 998 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 999 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1000 MRT_MFC_FLAGS_ALL; 1001 } 1002 /* set the RP address */ 1003 if (V_mrt_api_config & MRT_MFC_RP) 1004 rt->mfc_rp = mfccp->mfcc_rp; 1005 else 1006 rt->mfc_rp.s_addr = INADDR_ANY; 1007 } 1008 1009 /* 1010 * fully initialize an mfc entry from the parameter. 1011 */ 1012 static void 1013 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1014 { 1015 rt->mfc_origin = mfccp->mfcc_origin; 1016 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1017 1018 update_mfc_params(rt, mfccp); 1019 1020 /* initialize pkt counters per src-grp */ 1021 rt->mfc_pkt_cnt = 0; 1022 rt->mfc_byte_cnt = 0; 1023 rt->mfc_wrong_if = 0; 1024 timevalclear(&rt->mfc_last_assert); 1025 } 1026 1027 static void 1028 expire_mfc(struct mfc *rt) 1029 { 1030 struct rtdetq *rte, *nrte; 1031 1032 MFC_LOCK_ASSERT(); 1033 1034 free_bw_list(rt->mfc_bw_meter); 1035 1036 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1037 m_freem(rte->m); 1038 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1039 free(rte, M_MRTABLE); 1040 } 1041 1042 LIST_REMOVE(rt, mfc_hash); 1043 free(rt, M_MRTABLE); 1044 } 1045 1046 /* 1047 * Add an mfc entry 1048 */ 1049 static int 1050 add_mfc(struct mfcctl2 *mfccp) 1051 { 1052 struct mfc *rt; 1053 struct rtdetq *rte, *nrte; 1054 u_long hash = 0; 1055 u_short nstl; 1056 1057 VIF_LOCK(); 1058 MFC_LOCK(); 1059 1060 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1061 1062 /* If an entry already exists, just update the fields */ 1063 if (rt) { 1064 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1065 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1066 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1067 mfccp->mfcc_parent); 1068 update_mfc_params(rt, mfccp); 1069 MFC_UNLOCK(); 1070 VIF_UNLOCK(); 1071 return (0); 1072 } 1073 1074 /* 1075 * Find the entry for which the upcall was made and update 1076 */ 1077 nstl = 0; 1078 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1079 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1080 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1081 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1082 !TAILQ_EMPTY(&rt->mfc_stall)) { 1083 CTR5(KTR_IPMF, 1084 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1085 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1086 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1087 mfccp->mfcc_parent, 1088 TAILQ_FIRST(&rt->mfc_stall)); 1089 if (nstl++) 1090 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1091 1092 init_mfc_params(rt, mfccp); 1093 rt->mfc_expire = 0; /* Don't clean this guy up */ 1094 V_nexpire[hash]--; 1095 1096 /* Free queued packets, but attempt to forward them first. */ 1097 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1098 if (rte->ifp != NULL) 1099 ip_mdq(rte->m, rte->ifp, rt, -1); 1100 m_freem(rte->m); 1101 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1102 rt->mfc_nstall--; 1103 free(rte, M_MRTABLE); 1104 } 1105 } 1106 } 1107 1108 /* 1109 * It is possible that an entry is being inserted without an upcall 1110 */ 1111 if (nstl == 0) { 1112 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1113 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1114 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1115 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1116 init_mfc_params(rt, mfccp); 1117 if (rt->mfc_expire) 1118 V_nexpire[hash]--; 1119 rt->mfc_expire = 0; 1120 break; /* XXX */ 1121 } 1122 } 1123 1124 if (rt == NULL) { /* no upcall, so make a new entry */ 1125 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1126 if (rt == NULL) { 1127 MFC_UNLOCK(); 1128 VIF_UNLOCK(); 1129 return (ENOBUFS); 1130 } 1131 1132 init_mfc_params(rt, mfccp); 1133 TAILQ_INIT(&rt->mfc_stall); 1134 rt->mfc_nstall = 0; 1135 1136 rt->mfc_expire = 0; 1137 rt->mfc_bw_meter = NULL; 1138 1139 /* insert new entry at head of hash chain */ 1140 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1141 } 1142 } 1143 1144 MFC_UNLOCK(); 1145 VIF_UNLOCK(); 1146 1147 return (0); 1148 } 1149 1150 /* 1151 * Delete an mfc entry 1152 */ 1153 static int 1154 del_mfc(struct mfcctl2 *mfccp) 1155 { 1156 struct in_addr origin; 1157 struct in_addr mcastgrp; 1158 struct mfc *rt; 1159 1160 origin = mfccp->mfcc_origin; 1161 mcastgrp = mfccp->mfcc_mcastgrp; 1162 1163 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1164 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1165 1166 MFC_LOCK(); 1167 1168 rt = mfc_find(&origin, &mcastgrp); 1169 if (rt == NULL) { 1170 MFC_UNLOCK(); 1171 return EADDRNOTAVAIL; 1172 } 1173 1174 /* 1175 * free the bw_meter entries 1176 */ 1177 free_bw_list(rt->mfc_bw_meter); 1178 rt->mfc_bw_meter = NULL; 1179 1180 LIST_REMOVE(rt, mfc_hash); 1181 free(rt, M_MRTABLE); 1182 1183 MFC_UNLOCK(); 1184 1185 return (0); 1186 } 1187 1188 /* 1189 * Send a message to the routing daemon on the multicast routing socket. 1190 */ 1191 static int 1192 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1193 { 1194 if (s) { 1195 SOCKBUF_LOCK(&s->so_rcv); 1196 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1197 NULL) != 0) { 1198 sorwakeup_locked(s); 1199 return 0; 1200 } 1201 SOCKBUF_UNLOCK(&s->so_rcv); 1202 } 1203 m_freem(mm); 1204 return -1; 1205 } 1206 1207 /* 1208 * IP multicast forwarding function. This function assumes that the packet 1209 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1210 * pointed to by "ifp", and the packet is to be relayed to other networks 1211 * that have members of the packet's destination IP multicast group. 1212 * 1213 * The packet is returned unscathed to the caller, unless it is 1214 * erroneous, in which case a non-zero return value tells the caller to 1215 * discard it. 1216 */ 1217 1218 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1219 1220 static int 1221 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1222 struct ip_moptions *imo) 1223 { 1224 struct mfc *rt; 1225 int error; 1226 vifi_t vifi; 1227 1228 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1229 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1230 1231 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1232 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1233 /* 1234 * Packet arrived via a physical interface or 1235 * an encapsulated tunnel or a register_vif. 1236 */ 1237 } else { 1238 /* 1239 * Packet arrived through a source-route tunnel. 1240 * Source-route tunnels are no longer supported. 1241 */ 1242 return (1); 1243 } 1244 1245 VIF_LOCK(); 1246 MFC_LOCK(); 1247 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1248 if (ip->ip_ttl < MAXTTL) 1249 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1250 error = ip_mdq(m, ifp, NULL, vifi); 1251 MFC_UNLOCK(); 1252 VIF_UNLOCK(); 1253 return error; 1254 } 1255 1256 /* 1257 * Don't forward a packet with time-to-live of zero or one, 1258 * or a packet destined to a local-only group. 1259 */ 1260 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1261 MFC_UNLOCK(); 1262 VIF_UNLOCK(); 1263 return 0; 1264 } 1265 1266 /* 1267 * Determine forwarding vifs from the forwarding cache table 1268 */ 1269 MRTSTAT_INC(mrts_mfc_lookups); 1270 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1271 1272 /* Entry exists, so forward if necessary */ 1273 if (rt != NULL) { 1274 error = ip_mdq(m, ifp, rt, -1); 1275 MFC_UNLOCK(); 1276 VIF_UNLOCK(); 1277 return error; 1278 } else { 1279 /* 1280 * If we don't have a route for packet's origin, 1281 * Make a copy of the packet & send message to routing daemon 1282 */ 1283 1284 struct mbuf *mb0; 1285 struct rtdetq *rte; 1286 u_long hash; 1287 int hlen = ip->ip_hl << 2; 1288 1289 MRTSTAT_INC(mrts_mfc_misses); 1290 MRTSTAT_INC(mrts_no_route); 1291 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1292 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1293 1294 /* 1295 * Allocate mbufs early so that we don't do extra work if we are 1296 * just going to fail anyway. Make sure to pullup the header so 1297 * that other people can't step on it. 1298 */ 1299 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1300 M_NOWAIT|M_ZERO); 1301 if (rte == NULL) { 1302 MFC_UNLOCK(); 1303 VIF_UNLOCK(); 1304 return ENOBUFS; 1305 } 1306 1307 mb0 = m_copypacket(m, M_NOWAIT); 1308 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1309 mb0 = m_pullup(mb0, hlen); 1310 if (mb0 == NULL) { 1311 free(rte, M_MRTABLE); 1312 MFC_UNLOCK(); 1313 VIF_UNLOCK(); 1314 return ENOBUFS; 1315 } 1316 1317 /* is there an upcall waiting for this flow ? */ 1318 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1319 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1320 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1321 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1322 !TAILQ_EMPTY(&rt->mfc_stall)) 1323 break; 1324 } 1325 1326 if (rt == NULL) { 1327 int i; 1328 struct igmpmsg *im; 1329 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1330 struct mbuf *mm; 1331 1332 /* 1333 * Locate the vifi for the incoming interface for this packet. 1334 * If none found, drop packet. 1335 */ 1336 for (vifi = 0; vifi < V_numvifs && 1337 V_viftable[vifi].v_ifp != ifp; vifi++) 1338 ; 1339 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1340 goto non_fatal; 1341 1342 /* no upcall, so make a new entry */ 1343 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1344 if (rt == NULL) 1345 goto fail; 1346 1347 /* Make a copy of the header to send to the user level process */ 1348 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1349 if (mm == NULL) 1350 goto fail1; 1351 1352 /* 1353 * Send message to routing daemon to install 1354 * a route into the kernel table 1355 */ 1356 1357 im = mtod(mm, struct igmpmsg *); 1358 im->im_msgtype = IGMPMSG_NOCACHE; 1359 im->im_mbz = 0; 1360 im->im_vif = vifi; 1361 1362 MRTSTAT_INC(mrts_upcalls); 1363 1364 k_igmpsrc.sin_addr = ip->ip_src; 1365 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1366 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1367 MRTSTAT_INC(mrts_upq_sockfull); 1368 fail1: 1369 free(rt, M_MRTABLE); 1370 fail: 1371 free(rte, M_MRTABLE); 1372 m_freem(mb0); 1373 MFC_UNLOCK(); 1374 VIF_UNLOCK(); 1375 return ENOBUFS; 1376 } 1377 1378 /* insert new entry at head of hash chain */ 1379 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1380 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1381 rt->mfc_expire = UPCALL_EXPIRE; 1382 V_nexpire[hash]++; 1383 for (i = 0; i < V_numvifs; i++) { 1384 rt->mfc_ttls[i] = 0; 1385 rt->mfc_flags[i] = 0; 1386 } 1387 rt->mfc_parent = -1; 1388 1389 /* clear the RP address */ 1390 rt->mfc_rp.s_addr = INADDR_ANY; 1391 rt->mfc_bw_meter = NULL; 1392 1393 /* initialize pkt counters per src-grp */ 1394 rt->mfc_pkt_cnt = 0; 1395 rt->mfc_byte_cnt = 0; 1396 rt->mfc_wrong_if = 0; 1397 timevalclear(&rt->mfc_last_assert); 1398 1399 TAILQ_INIT(&rt->mfc_stall); 1400 rt->mfc_nstall = 0; 1401 1402 /* link into table */ 1403 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1404 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1405 rt->mfc_nstall++; 1406 1407 } else { 1408 /* determine if queue has overflowed */ 1409 if (rt->mfc_nstall > MAX_UPQ) { 1410 MRTSTAT_INC(mrts_upq_ovflw); 1411 non_fatal: 1412 free(rte, M_MRTABLE); 1413 m_freem(mb0); 1414 MFC_UNLOCK(); 1415 VIF_UNLOCK(); 1416 return (0); 1417 } 1418 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1419 rt->mfc_nstall++; 1420 } 1421 1422 rte->m = mb0; 1423 rte->ifp = ifp; 1424 1425 MFC_UNLOCK(); 1426 VIF_UNLOCK(); 1427 1428 return 0; 1429 } 1430 } 1431 1432 /* 1433 * Clean up the cache entry if upcall is not serviced 1434 */ 1435 static void 1436 expire_upcalls(void *arg) 1437 { 1438 u_long i; 1439 1440 CURVNET_SET((struct vnet *) arg); 1441 1442 MFC_LOCK(); 1443 1444 for (i = 0; i < mfchashsize; i++) { 1445 struct mfc *rt, *nrt; 1446 1447 if (V_nexpire[i] == 0) 1448 continue; 1449 1450 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1451 if (TAILQ_EMPTY(&rt->mfc_stall)) 1452 continue; 1453 1454 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1455 continue; 1456 1457 /* 1458 * free the bw_meter entries 1459 */ 1460 while (rt->mfc_bw_meter != NULL) { 1461 struct bw_meter *x = rt->mfc_bw_meter; 1462 1463 rt->mfc_bw_meter = x->bm_mfc_next; 1464 free(x, M_BWMETER); 1465 } 1466 1467 MRTSTAT_INC(mrts_cache_cleanups); 1468 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1469 (u_long)ntohl(rt->mfc_origin.s_addr), 1470 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1471 1472 expire_mfc(rt); 1473 } 1474 } 1475 1476 MFC_UNLOCK(); 1477 1478 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1479 curvnet); 1480 1481 CURVNET_RESTORE(); 1482 } 1483 1484 /* 1485 * Packet forwarding routine once entry in the cache is made 1486 */ 1487 static int 1488 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1489 { 1490 struct ip *ip = mtod(m, struct ip *); 1491 vifi_t vifi; 1492 int plen = ntohs(ip->ip_len); 1493 1494 VIF_LOCK_ASSERT(); 1495 1496 /* 1497 * If xmt_vif is not -1, send on only the requested vif. 1498 * 1499 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1500 */ 1501 if (xmt_vif < V_numvifs) { 1502 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1503 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1504 else 1505 phyint_send(ip, V_viftable + xmt_vif, m); 1506 return 1; 1507 } 1508 1509 /* 1510 * Don't forward if it didn't arrive from the parent vif for its origin. 1511 */ 1512 vifi = rt->mfc_parent; 1513 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1514 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1515 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1516 MRTSTAT_INC(mrts_wrong_if); 1517 ++rt->mfc_wrong_if; 1518 /* 1519 * If we are doing PIM assert processing, send a message 1520 * to the routing daemon. 1521 * 1522 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1523 * can complete the SPT switch, regardless of the type 1524 * of the iif (broadcast media, GRE tunnel, etc). 1525 */ 1526 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1527 V_viftable[vifi].v_ifp) { 1528 1529 if (ifp == &V_multicast_register_if) 1530 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1531 1532 /* Get vifi for the incoming packet */ 1533 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1534 vifi++) 1535 ; 1536 if (vifi >= V_numvifs) 1537 return 0; /* The iif is not found: ignore the packet. */ 1538 1539 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1540 return 0; /* WRONGVIF disabled: ignore the packet */ 1541 1542 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1543 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1544 struct igmpmsg *im; 1545 int hlen = ip->ip_hl << 2; 1546 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1547 1548 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1549 mm = m_pullup(mm, hlen); 1550 if (mm == NULL) 1551 return ENOBUFS; 1552 1553 im = mtod(mm, struct igmpmsg *); 1554 im->im_msgtype = IGMPMSG_WRONGVIF; 1555 im->im_mbz = 0; 1556 im->im_vif = vifi; 1557 1558 MRTSTAT_INC(mrts_upcalls); 1559 1560 k_igmpsrc.sin_addr = im->im_src; 1561 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1562 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1563 MRTSTAT_INC(mrts_upq_sockfull); 1564 return ENOBUFS; 1565 } 1566 } 1567 } 1568 return 0; 1569 } 1570 1571 1572 /* If I sourced this packet, it counts as output, else it was input. */ 1573 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1574 V_viftable[vifi].v_pkt_out++; 1575 V_viftable[vifi].v_bytes_out += plen; 1576 } else { 1577 V_viftable[vifi].v_pkt_in++; 1578 V_viftable[vifi].v_bytes_in += plen; 1579 } 1580 rt->mfc_pkt_cnt++; 1581 rt->mfc_byte_cnt += plen; 1582 1583 /* 1584 * For each vif, decide if a copy of the packet should be forwarded. 1585 * Forward if: 1586 * - the ttl exceeds the vif's threshold 1587 * - there are group members downstream on interface 1588 */ 1589 for (vifi = 0; vifi < V_numvifs; vifi++) 1590 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1591 V_viftable[vifi].v_pkt_out++; 1592 V_viftable[vifi].v_bytes_out += plen; 1593 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1594 pim_register_send(ip, V_viftable + vifi, m, rt); 1595 else 1596 phyint_send(ip, V_viftable + vifi, m); 1597 } 1598 1599 /* 1600 * Perform upcall-related bw measuring. 1601 */ 1602 if (rt->mfc_bw_meter != NULL) { 1603 struct bw_meter *x; 1604 struct timeval now; 1605 1606 microtime(&now); 1607 MFC_LOCK_ASSERT(); 1608 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1609 bw_meter_receive_packet(x, plen, &now); 1610 } 1611 1612 return 0; 1613 } 1614 1615 /* 1616 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1617 */ 1618 static int 1619 X_legal_vif_num(int vif) 1620 { 1621 int ret; 1622 1623 ret = 0; 1624 if (vif < 0) 1625 return (ret); 1626 1627 VIF_LOCK(); 1628 if (vif < V_numvifs) 1629 ret = 1; 1630 VIF_UNLOCK(); 1631 1632 return (ret); 1633 } 1634 1635 /* 1636 * Return the local address used by this vif 1637 */ 1638 static u_long 1639 X_ip_mcast_src(int vifi) 1640 { 1641 in_addr_t addr; 1642 1643 addr = INADDR_ANY; 1644 if (vifi < 0) 1645 return (addr); 1646 1647 VIF_LOCK(); 1648 if (vifi < V_numvifs) 1649 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1650 VIF_UNLOCK(); 1651 1652 return (addr); 1653 } 1654 1655 static void 1656 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1657 { 1658 struct mbuf *mb_copy; 1659 int hlen = ip->ip_hl << 2; 1660 1661 VIF_LOCK_ASSERT(); 1662 1663 /* 1664 * Make a new reference to the packet; make sure that 1665 * the IP header is actually copied, not just referenced, 1666 * so that ip_output() only scribbles on the copy. 1667 */ 1668 mb_copy = m_copypacket(m, M_NOWAIT); 1669 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1670 mb_copy = m_pullup(mb_copy, hlen); 1671 if (mb_copy == NULL) 1672 return; 1673 1674 send_packet(vifp, mb_copy); 1675 } 1676 1677 static void 1678 send_packet(struct vif *vifp, struct mbuf *m) 1679 { 1680 struct ip_moptions imo; 1681 struct in_multi *imm[2]; 1682 int error __unused; 1683 1684 VIF_LOCK_ASSERT(); 1685 1686 imo.imo_multicast_ifp = vifp->v_ifp; 1687 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1688 imo.imo_multicast_loop = 1; 1689 imo.imo_multicast_vif = -1; 1690 imo.imo_num_memberships = 0; 1691 imo.imo_max_memberships = 2; 1692 imo.imo_membership = &imm[0]; 1693 1694 /* 1695 * Re-entrancy should not be a problem here, because 1696 * the packets that we send out and are looped back at us 1697 * should get rejected because they appear to come from 1698 * the loopback interface, thus preventing looping. 1699 */ 1700 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1701 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1702 (ptrdiff_t)(vifp - V_viftable), error); 1703 } 1704 1705 /* 1706 * Stubs for old RSVP socket shim implementation. 1707 */ 1708 1709 static int 1710 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1711 { 1712 1713 return (EOPNOTSUPP); 1714 } 1715 1716 static void 1717 X_ip_rsvp_force_done(struct socket *so __unused) 1718 { 1719 1720 } 1721 1722 static int 1723 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1724 { 1725 struct mbuf *m; 1726 1727 m = *mp; 1728 *mp = NULL; 1729 if (!V_rsvp_on) 1730 m_freem(m); 1731 return (IPPROTO_DONE); 1732 } 1733 1734 /* 1735 * Code for bandwidth monitors 1736 */ 1737 1738 /* 1739 * Define common interface for timeval-related methods 1740 */ 1741 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1742 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1743 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1744 1745 static uint32_t 1746 compute_bw_meter_flags(struct bw_upcall *req) 1747 { 1748 uint32_t flags = 0; 1749 1750 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1751 flags |= BW_METER_UNIT_PACKETS; 1752 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1753 flags |= BW_METER_UNIT_BYTES; 1754 if (req->bu_flags & BW_UPCALL_GEQ) 1755 flags |= BW_METER_GEQ; 1756 if (req->bu_flags & BW_UPCALL_LEQ) 1757 flags |= BW_METER_LEQ; 1758 1759 return flags; 1760 } 1761 1762 /* 1763 * Add a bw_meter entry 1764 */ 1765 static int 1766 add_bw_upcall(struct bw_upcall *req) 1767 { 1768 struct mfc *mfc; 1769 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1770 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1771 struct timeval now; 1772 struct bw_meter *x; 1773 uint32_t flags; 1774 1775 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1776 return EOPNOTSUPP; 1777 1778 /* Test if the flags are valid */ 1779 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1780 return EINVAL; 1781 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1782 return EINVAL; 1783 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1784 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1785 return EINVAL; 1786 1787 /* Test if the threshold time interval is valid */ 1788 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1789 return EINVAL; 1790 1791 flags = compute_bw_meter_flags(req); 1792 1793 /* 1794 * Find if we have already same bw_meter entry 1795 */ 1796 MFC_LOCK(); 1797 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1798 if (mfc == NULL) { 1799 MFC_UNLOCK(); 1800 return EADDRNOTAVAIL; 1801 } 1802 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1803 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1804 &req->bu_threshold.b_time, ==)) && 1805 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1806 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1807 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1808 MFC_UNLOCK(); 1809 return 0; /* XXX Already installed */ 1810 } 1811 } 1812 1813 /* Allocate the new bw_meter entry */ 1814 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1815 if (x == NULL) { 1816 MFC_UNLOCK(); 1817 return ENOBUFS; 1818 } 1819 1820 /* Set the new bw_meter entry */ 1821 x->bm_threshold.b_time = req->bu_threshold.b_time; 1822 microtime(&now); 1823 x->bm_start_time = now; 1824 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1825 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1826 x->bm_measured.b_packets = 0; 1827 x->bm_measured.b_bytes = 0; 1828 x->bm_flags = flags; 1829 x->bm_time_next = NULL; 1830 x->bm_time_hash = BW_METER_BUCKETS; 1831 1832 /* Add the new bw_meter entry to the front of entries for this MFC */ 1833 x->bm_mfc = mfc; 1834 x->bm_mfc_next = mfc->mfc_bw_meter; 1835 mfc->mfc_bw_meter = x; 1836 schedule_bw_meter(x, &now); 1837 MFC_UNLOCK(); 1838 1839 return 0; 1840 } 1841 1842 static void 1843 free_bw_list(struct bw_meter *list) 1844 { 1845 while (list != NULL) { 1846 struct bw_meter *x = list; 1847 1848 list = list->bm_mfc_next; 1849 unschedule_bw_meter(x); 1850 free(x, M_BWMETER); 1851 } 1852 } 1853 1854 /* 1855 * Delete one or multiple bw_meter entries 1856 */ 1857 static int 1858 del_bw_upcall(struct bw_upcall *req) 1859 { 1860 struct mfc *mfc; 1861 struct bw_meter *x; 1862 1863 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1864 return EOPNOTSUPP; 1865 1866 MFC_LOCK(); 1867 1868 /* Find the corresponding MFC entry */ 1869 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1870 if (mfc == NULL) { 1871 MFC_UNLOCK(); 1872 return EADDRNOTAVAIL; 1873 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1874 /* 1875 * Delete all bw_meter entries for this mfc 1876 */ 1877 struct bw_meter *list; 1878 1879 list = mfc->mfc_bw_meter; 1880 mfc->mfc_bw_meter = NULL; 1881 free_bw_list(list); 1882 MFC_UNLOCK(); 1883 return 0; 1884 } else { /* Delete a single bw_meter entry */ 1885 struct bw_meter *prev; 1886 uint32_t flags = 0; 1887 1888 flags = compute_bw_meter_flags(req); 1889 1890 /* Find the bw_meter entry to delete */ 1891 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1892 prev = x, x = x->bm_mfc_next) { 1893 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1894 &req->bu_threshold.b_time, ==)) && 1895 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1896 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1897 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1898 break; 1899 } 1900 if (x != NULL) { /* Delete entry from the list for this MFC */ 1901 if (prev != NULL) 1902 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1903 else 1904 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1905 1906 unschedule_bw_meter(x); 1907 MFC_UNLOCK(); 1908 /* Free the bw_meter entry */ 1909 free(x, M_BWMETER); 1910 return 0; 1911 } else { 1912 MFC_UNLOCK(); 1913 return EINVAL; 1914 } 1915 } 1916 /* NOTREACHED */ 1917 } 1918 1919 /* 1920 * Perform bandwidth measurement processing that may result in an upcall 1921 */ 1922 static void 1923 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1924 { 1925 struct timeval delta; 1926 1927 MFC_LOCK_ASSERT(); 1928 1929 delta = *nowp; 1930 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1931 1932 if (x->bm_flags & BW_METER_GEQ) { 1933 /* 1934 * Processing for ">=" type of bw_meter entry 1935 */ 1936 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1937 /* Reset the bw_meter entry */ 1938 x->bm_start_time = *nowp; 1939 x->bm_measured.b_packets = 0; 1940 x->bm_measured.b_bytes = 0; 1941 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1942 } 1943 1944 /* Record that a packet is received */ 1945 x->bm_measured.b_packets++; 1946 x->bm_measured.b_bytes += plen; 1947 1948 /* 1949 * Test if we should deliver an upcall 1950 */ 1951 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1952 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1953 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1954 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1955 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1956 /* Prepare an upcall for delivery */ 1957 bw_meter_prepare_upcall(x, nowp); 1958 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1959 } 1960 } 1961 } else if (x->bm_flags & BW_METER_LEQ) { 1962 /* 1963 * Processing for "<=" type of bw_meter entry 1964 */ 1965 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1966 /* 1967 * We are behind time with the multicast forwarding table 1968 * scanning for "<=" type of bw_meter entries, so test now 1969 * if we should deliver an upcall. 1970 */ 1971 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1972 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1973 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1974 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1975 /* Prepare an upcall for delivery */ 1976 bw_meter_prepare_upcall(x, nowp); 1977 } 1978 /* Reschedule the bw_meter entry */ 1979 unschedule_bw_meter(x); 1980 schedule_bw_meter(x, nowp); 1981 } 1982 1983 /* Record that a packet is received */ 1984 x->bm_measured.b_packets++; 1985 x->bm_measured.b_bytes += plen; 1986 1987 /* 1988 * Test if we should restart the measuring interval 1989 */ 1990 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1991 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1992 (x->bm_flags & BW_METER_UNIT_BYTES && 1993 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1994 /* Don't restart the measuring interval */ 1995 } else { 1996 /* Do restart the measuring interval */ 1997 /* 1998 * XXX: note that we don't unschedule and schedule, because this 1999 * might be too much overhead per packet. Instead, when we process 2000 * all entries for a given timer hash bin, we check whether it is 2001 * really a timeout. If not, we reschedule at that time. 2002 */ 2003 x->bm_start_time = *nowp; 2004 x->bm_measured.b_packets = 0; 2005 x->bm_measured.b_bytes = 0; 2006 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2007 } 2008 } 2009 } 2010 2011 /* 2012 * Prepare a bandwidth-related upcall 2013 */ 2014 static void 2015 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2016 { 2017 struct timeval delta; 2018 struct bw_upcall *u; 2019 2020 MFC_LOCK_ASSERT(); 2021 2022 /* 2023 * Compute the measured time interval 2024 */ 2025 delta = *nowp; 2026 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2027 2028 /* 2029 * If there are too many pending upcalls, deliver them now 2030 */ 2031 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2032 bw_upcalls_send(); 2033 2034 /* 2035 * Set the bw_upcall entry 2036 */ 2037 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2038 u->bu_src = x->bm_mfc->mfc_origin; 2039 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2040 u->bu_threshold.b_time = x->bm_threshold.b_time; 2041 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2042 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2043 u->bu_measured.b_time = delta; 2044 u->bu_measured.b_packets = x->bm_measured.b_packets; 2045 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2046 u->bu_flags = 0; 2047 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2048 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2049 if (x->bm_flags & BW_METER_UNIT_BYTES) 2050 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2051 if (x->bm_flags & BW_METER_GEQ) 2052 u->bu_flags |= BW_UPCALL_GEQ; 2053 if (x->bm_flags & BW_METER_LEQ) 2054 u->bu_flags |= BW_UPCALL_LEQ; 2055 } 2056 2057 /* 2058 * Send the pending bandwidth-related upcalls 2059 */ 2060 static void 2061 bw_upcalls_send(void) 2062 { 2063 struct mbuf *m; 2064 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2065 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2066 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2067 0, /* unused2 */ 2068 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2069 0, /* im_mbz */ 2070 0, /* im_vif */ 2071 0, /* unused3 */ 2072 { 0 }, /* im_src */ 2073 { 0 } }; /* im_dst */ 2074 2075 MFC_LOCK_ASSERT(); 2076 2077 if (V_bw_upcalls_n == 0) 2078 return; /* No pending upcalls */ 2079 2080 V_bw_upcalls_n = 0; 2081 2082 /* 2083 * Allocate a new mbuf, initialize it with the header and 2084 * the payload for the pending calls. 2085 */ 2086 m = m_gethdr(M_NOWAIT, MT_DATA); 2087 if (m == NULL) { 2088 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2089 return; 2090 } 2091 2092 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2093 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2094 2095 /* 2096 * Send the upcalls 2097 * XXX do we need to set the address in k_igmpsrc ? 2098 */ 2099 MRTSTAT_INC(mrts_upcalls); 2100 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2101 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2102 MRTSTAT_INC(mrts_upq_sockfull); 2103 } 2104 } 2105 2106 /* 2107 * Compute the timeout hash value for the bw_meter entries 2108 */ 2109 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2110 do { \ 2111 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2112 \ 2113 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2114 (hash) = next_timeval.tv_sec; \ 2115 if (next_timeval.tv_usec) \ 2116 (hash)++; /* XXX: make sure we don't timeout early */ \ 2117 (hash) %= BW_METER_BUCKETS; \ 2118 } while (0) 2119 2120 /* 2121 * Schedule a timer to process periodically bw_meter entry of type "<=" 2122 * by linking the entry in the proper hash bucket. 2123 */ 2124 static void 2125 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2126 { 2127 int time_hash; 2128 2129 MFC_LOCK_ASSERT(); 2130 2131 if (!(x->bm_flags & BW_METER_LEQ)) 2132 return; /* XXX: we schedule timers only for "<=" entries */ 2133 2134 /* 2135 * Reset the bw_meter entry 2136 */ 2137 x->bm_start_time = *nowp; 2138 x->bm_measured.b_packets = 0; 2139 x->bm_measured.b_bytes = 0; 2140 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2141 2142 /* 2143 * Compute the timeout hash value and insert the entry 2144 */ 2145 BW_METER_TIMEHASH(x, time_hash); 2146 x->bm_time_next = V_bw_meter_timers[time_hash]; 2147 V_bw_meter_timers[time_hash] = x; 2148 x->bm_time_hash = time_hash; 2149 } 2150 2151 /* 2152 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2153 * by removing the entry from the proper hash bucket. 2154 */ 2155 static void 2156 unschedule_bw_meter(struct bw_meter *x) 2157 { 2158 int time_hash; 2159 struct bw_meter *prev, *tmp; 2160 2161 MFC_LOCK_ASSERT(); 2162 2163 if (!(x->bm_flags & BW_METER_LEQ)) 2164 return; /* XXX: we schedule timers only for "<=" entries */ 2165 2166 /* 2167 * Compute the timeout hash value and delete the entry 2168 */ 2169 time_hash = x->bm_time_hash; 2170 if (time_hash >= BW_METER_BUCKETS) 2171 return; /* Entry was not scheduled */ 2172 2173 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2174 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2175 if (tmp == x) 2176 break; 2177 2178 if (tmp == NULL) 2179 panic("unschedule_bw_meter: bw_meter entry not found"); 2180 2181 if (prev != NULL) 2182 prev->bm_time_next = x->bm_time_next; 2183 else 2184 V_bw_meter_timers[time_hash] = x->bm_time_next; 2185 2186 x->bm_time_next = NULL; 2187 x->bm_time_hash = BW_METER_BUCKETS; 2188 } 2189 2190 2191 /* 2192 * Process all "<=" type of bw_meter that should be processed now, 2193 * and for each entry prepare an upcall if necessary. Each processed 2194 * entry is rescheduled again for the (periodic) processing. 2195 * 2196 * This is run periodically (once per second normally). On each round, 2197 * all the potentially matching entries are in the hash slot that we are 2198 * looking at. 2199 */ 2200 static void 2201 bw_meter_process() 2202 { 2203 uint32_t loops; 2204 int i; 2205 struct timeval now, process_endtime; 2206 2207 microtime(&now); 2208 if (V_last_tv_sec == now.tv_sec) 2209 return; /* nothing to do */ 2210 2211 loops = now.tv_sec - V_last_tv_sec; 2212 V_last_tv_sec = now.tv_sec; 2213 if (loops > BW_METER_BUCKETS) 2214 loops = BW_METER_BUCKETS; 2215 2216 MFC_LOCK(); 2217 /* 2218 * Process all bins of bw_meter entries from the one after the last 2219 * processed to the current one. On entry, i points to the last bucket 2220 * visited, so we need to increment i at the beginning of the loop. 2221 */ 2222 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2223 struct bw_meter *x, *tmp_list; 2224 2225 if (++i >= BW_METER_BUCKETS) 2226 i = 0; 2227 2228 /* Disconnect the list of bw_meter entries from the bin */ 2229 tmp_list = V_bw_meter_timers[i]; 2230 V_bw_meter_timers[i] = NULL; 2231 2232 /* Process the list of bw_meter entries */ 2233 while (tmp_list != NULL) { 2234 x = tmp_list; 2235 tmp_list = tmp_list->bm_time_next; 2236 2237 /* Test if the time interval is over */ 2238 process_endtime = x->bm_start_time; 2239 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2240 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2241 /* Not yet: reschedule, but don't reset */ 2242 int time_hash; 2243 2244 BW_METER_TIMEHASH(x, time_hash); 2245 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2246 /* 2247 * XXX: somehow the bin processing is a bit ahead of time. 2248 * Put the entry in the next bin. 2249 */ 2250 if (++time_hash >= BW_METER_BUCKETS) 2251 time_hash = 0; 2252 } 2253 x->bm_time_next = V_bw_meter_timers[time_hash]; 2254 V_bw_meter_timers[time_hash] = x; 2255 x->bm_time_hash = time_hash; 2256 2257 continue; 2258 } 2259 2260 /* 2261 * Test if we should deliver an upcall 2262 */ 2263 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2264 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2265 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2266 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2267 /* Prepare an upcall for delivery */ 2268 bw_meter_prepare_upcall(x, &now); 2269 } 2270 2271 /* 2272 * Reschedule for next processing 2273 */ 2274 schedule_bw_meter(x, &now); 2275 } 2276 } 2277 2278 /* Send all upcalls that are pending delivery */ 2279 bw_upcalls_send(); 2280 2281 MFC_UNLOCK(); 2282 } 2283 2284 /* 2285 * A periodic function for sending all upcalls that are pending delivery 2286 */ 2287 static void 2288 expire_bw_upcalls_send(void *arg) 2289 { 2290 CURVNET_SET((struct vnet *) arg); 2291 2292 MFC_LOCK(); 2293 bw_upcalls_send(); 2294 MFC_UNLOCK(); 2295 2296 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2297 curvnet); 2298 CURVNET_RESTORE(); 2299 } 2300 2301 /* 2302 * A periodic function for periodic scanning of the multicast forwarding 2303 * table for processing all "<=" bw_meter entries. 2304 */ 2305 static void 2306 expire_bw_meter_process(void *arg) 2307 { 2308 CURVNET_SET((struct vnet *) arg); 2309 2310 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2311 bw_meter_process(); 2312 2313 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2314 curvnet); 2315 CURVNET_RESTORE(); 2316 } 2317 2318 /* 2319 * End of bandwidth monitoring code 2320 */ 2321 2322 /* 2323 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2324 * 2325 */ 2326 static int 2327 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2328 struct mfc *rt) 2329 { 2330 struct mbuf *mb_copy, *mm; 2331 2332 /* 2333 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2334 * rendezvous point was unspecified, and we were told not to. 2335 */ 2336 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2337 in_nullhost(rt->mfc_rp)) 2338 return 0; 2339 2340 mb_copy = pim_register_prepare(ip, m); 2341 if (mb_copy == NULL) 2342 return ENOBUFS; 2343 2344 /* 2345 * Send all the fragments. Note that the mbuf for each fragment 2346 * is freed by the sending machinery. 2347 */ 2348 for (mm = mb_copy; mm; mm = mb_copy) { 2349 mb_copy = mm->m_nextpkt; 2350 mm->m_nextpkt = 0; 2351 mm = m_pullup(mm, sizeof(struct ip)); 2352 if (mm != NULL) { 2353 ip = mtod(mm, struct ip *); 2354 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2355 pim_register_send_rp(ip, vifp, mm, rt); 2356 } else { 2357 pim_register_send_upcall(ip, vifp, mm, rt); 2358 } 2359 } 2360 } 2361 2362 return 0; 2363 } 2364 2365 /* 2366 * Return a copy of the data packet that is ready for PIM Register 2367 * encapsulation. 2368 * XXX: Note that in the returned copy the IP header is a valid one. 2369 */ 2370 static struct mbuf * 2371 pim_register_prepare(struct ip *ip, struct mbuf *m) 2372 { 2373 struct mbuf *mb_copy = NULL; 2374 int mtu; 2375 2376 /* Take care of delayed checksums */ 2377 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2378 in_delayed_cksum(m); 2379 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2380 } 2381 2382 /* 2383 * Copy the old packet & pullup its IP header into the 2384 * new mbuf so we can modify it. 2385 */ 2386 mb_copy = m_copypacket(m, M_NOWAIT); 2387 if (mb_copy == NULL) 2388 return NULL; 2389 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2390 if (mb_copy == NULL) 2391 return NULL; 2392 2393 /* take care of the TTL */ 2394 ip = mtod(mb_copy, struct ip *); 2395 --ip->ip_ttl; 2396 2397 /* Compute the MTU after the PIM Register encapsulation */ 2398 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2399 2400 if (ntohs(ip->ip_len) <= mtu) { 2401 /* Turn the IP header into a valid one */ 2402 ip->ip_sum = 0; 2403 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2404 } else { 2405 /* Fragment the packet */ 2406 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2407 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2408 m_freem(mb_copy); 2409 return NULL; 2410 } 2411 } 2412 return mb_copy; 2413 } 2414 2415 /* 2416 * Send an upcall with the data packet to the user-level process. 2417 */ 2418 static int 2419 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2420 struct mbuf *mb_copy, struct mfc *rt) 2421 { 2422 struct mbuf *mb_first; 2423 int len = ntohs(ip->ip_len); 2424 struct igmpmsg *im; 2425 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2426 2427 VIF_LOCK_ASSERT(); 2428 2429 /* 2430 * Add a new mbuf with an upcall header 2431 */ 2432 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2433 if (mb_first == NULL) { 2434 m_freem(mb_copy); 2435 return ENOBUFS; 2436 } 2437 mb_first->m_data += max_linkhdr; 2438 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2439 mb_first->m_len = sizeof(struct igmpmsg); 2440 mb_first->m_next = mb_copy; 2441 2442 /* Send message to routing daemon */ 2443 im = mtod(mb_first, struct igmpmsg *); 2444 im->im_msgtype = IGMPMSG_WHOLEPKT; 2445 im->im_mbz = 0; 2446 im->im_vif = vifp - V_viftable; 2447 im->im_src = ip->ip_src; 2448 im->im_dst = ip->ip_dst; 2449 2450 k_igmpsrc.sin_addr = ip->ip_src; 2451 2452 MRTSTAT_INC(mrts_upcalls); 2453 2454 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2455 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2456 MRTSTAT_INC(mrts_upq_sockfull); 2457 return ENOBUFS; 2458 } 2459 2460 /* Keep statistics */ 2461 PIMSTAT_INC(pims_snd_registers_msgs); 2462 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2463 2464 return 0; 2465 } 2466 2467 /* 2468 * Encapsulate the data packet in PIM Register message and send it to the RP. 2469 */ 2470 static int 2471 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2472 struct mfc *rt) 2473 { 2474 struct mbuf *mb_first; 2475 struct ip *ip_outer; 2476 struct pim_encap_pimhdr *pimhdr; 2477 int len = ntohs(ip->ip_len); 2478 vifi_t vifi = rt->mfc_parent; 2479 2480 VIF_LOCK_ASSERT(); 2481 2482 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2483 m_freem(mb_copy); 2484 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2485 } 2486 2487 /* 2488 * Add a new mbuf with the encapsulating header 2489 */ 2490 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2491 if (mb_first == NULL) { 2492 m_freem(mb_copy); 2493 return ENOBUFS; 2494 } 2495 mb_first->m_data += max_linkhdr; 2496 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2497 mb_first->m_next = mb_copy; 2498 2499 mb_first->m_pkthdr.len = len + mb_first->m_len; 2500 2501 /* 2502 * Fill in the encapsulating IP and PIM header 2503 */ 2504 ip_outer = mtod(mb_first, struct ip *); 2505 *ip_outer = pim_encap_iphdr; 2506 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2507 sizeof(pim_encap_pimhdr)); 2508 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2509 ip_outer->ip_dst = rt->mfc_rp; 2510 /* 2511 * Copy the inner header TOS to the outer header, and take care of the 2512 * IP_DF bit. 2513 */ 2514 ip_outer->ip_tos = ip->ip_tos; 2515 if (ip->ip_off & htons(IP_DF)) 2516 ip_outer->ip_off |= htons(IP_DF); 2517 ip_fillid(ip_outer); 2518 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2519 + sizeof(pim_encap_iphdr)); 2520 *pimhdr = pim_encap_pimhdr; 2521 /* If the iif crosses a border, set the Border-bit */ 2522 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2523 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2524 2525 mb_first->m_data += sizeof(pim_encap_iphdr); 2526 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2527 mb_first->m_data -= sizeof(pim_encap_iphdr); 2528 2529 send_packet(vifp, mb_first); 2530 2531 /* Keep statistics */ 2532 PIMSTAT_INC(pims_snd_registers_msgs); 2533 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2534 2535 return 0; 2536 } 2537 2538 /* 2539 * pim_encapcheck() is called by the encap4_input() path at runtime to 2540 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2541 * into the kernel. 2542 */ 2543 static int 2544 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2545 int proto __unused, void *arg __unused) 2546 { 2547 2548 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2549 return (8); /* claim the datagram. */ 2550 } 2551 2552 /* 2553 * PIM-SMv2 and PIM-DM messages processing. 2554 * Receives and verifies the PIM control messages, and passes them 2555 * up to the listening socket, using rip_input(). 2556 * The only message with special processing is the PIM_REGISTER message 2557 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2558 * is passed to if_simloop(). 2559 */ 2560 static int 2561 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2562 { 2563 struct ip *ip = mtod(m, struct ip *); 2564 struct pim *pim; 2565 int iphlen = off; 2566 int minlen; 2567 int datalen = ntohs(ip->ip_len) - iphlen; 2568 int ip_tos; 2569 2570 /* Keep statistics */ 2571 PIMSTAT_INC(pims_rcv_total_msgs); 2572 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2573 2574 /* 2575 * Validate lengths 2576 */ 2577 if (datalen < PIM_MINLEN) { 2578 PIMSTAT_INC(pims_rcv_tooshort); 2579 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2580 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2581 m_freem(m); 2582 return (IPPROTO_DONE); 2583 } 2584 2585 /* 2586 * If the packet is at least as big as a REGISTER, go agead 2587 * and grab the PIM REGISTER header size, to avoid another 2588 * possible m_pullup() later. 2589 * 2590 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2591 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2592 */ 2593 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2594 /* 2595 * Get the IP and PIM headers in contiguous memory, and 2596 * possibly the PIM REGISTER header. 2597 */ 2598 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2599 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2600 return (IPPROTO_DONE); 2601 } 2602 2603 /* m_pullup() may have given us a new mbuf so reset ip. */ 2604 ip = mtod(m, struct ip *); 2605 ip_tos = ip->ip_tos; 2606 2607 /* adjust mbuf to point to the PIM header */ 2608 m->m_data += iphlen; 2609 m->m_len -= iphlen; 2610 pim = mtod(m, struct pim *); 2611 2612 /* 2613 * Validate checksum. If PIM REGISTER, exclude the data packet. 2614 * 2615 * XXX: some older PIMv2 implementations don't make this distinction, 2616 * so for compatibility reason perform the checksum over part of the 2617 * message, and if error, then over the whole message. 2618 */ 2619 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2620 /* do nothing, checksum okay */ 2621 } else if (in_cksum(m, datalen)) { 2622 PIMSTAT_INC(pims_rcv_badsum); 2623 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2624 m_freem(m); 2625 return (IPPROTO_DONE); 2626 } 2627 2628 /* PIM version check */ 2629 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2630 PIMSTAT_INC(pims_rcv_badversion); 2631 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2632 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2633 m_freem(m); 2634 return (IPPROTO_DONE); 2635 } 2636 2637 /* restore mbuf back to the outer IP */ 2638 m->m_data -= iphlen; 2639 m->m_len += iphlen; 2640 2641 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2642 /* 2643 * Since this is a REGISTER, we'll make a copy of the register 2644 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2645 * routing daemon. 2646 */ 2647 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2648 struct mbuf *mcp; 2649 struct ip *encap_ip; 2650 u_int32_t *reghdr; 2651 struct ifnet *vifp; 2652 2653 VIF_LOCK(); 2654 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2655 VIF_UNLOCK(); 2656 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2657 (int)V_reg_vif_num); 2658 m_freem(m); 2659 return (IPPROTO_DONE); 2660 } 2661 /* XXX need refcnt? */ 2662 vifp = V_viftable[V_reg_vif_num].v_ifp; 2663 VIF_UNLOCK(); 2664 2665 /* 2666 * Validate length 2667 */ 2668 if (datalen < PIM_REG_MINLEN) { 2669 PIMSTAT_INC(pims_rcv_tooshort); 2670 PIMSTAT_INC(pims_rcv_badregisters); 2671 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2672 m_freem(m); 2673 return (IPPROTO_DONE); 2674 } 2675 2676 reghdr = (u_int32_t *)(pim + 1); 2677 encap_ip = (struct ip *)(reghdr + 1); 2678 2679 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2680 __func__, ntohl(encap_ip->ip_src.s_addr), 2681 ntohs(encap_ip->ip_len)); 2682 2683 /* verify the version number of the inner packet */ 2684 if (encap_ip->ip_v != IPVERSION) { 2685 PIMSTAT_INC(pims_rcv_badregisters); 2686 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2687 m_freem(m); 2688 return (IPPROTO_DONE); 2689 } 2690 2691 /* verify the inner packet is destined to a mcast group */ 2692 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2693 PIMSTAT_INC(pims_rcv_badregisters); 2694 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2695 ntohl(encap_ip->ip_dst.s_addr)); 2696 m_freem(m); 2697 return (IPPROTO_DONE); 2698 } 2699 2700 /* If a NULL_REGISTER, pass it to the daemon */ 2701 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2702 goto pim_input_to_daemon; 2703 2704 /* 2705 * Copy the TOS from the outer IP header to the inner IP header. 2706 */ 2707 if (encap_ip->ip_tos != ip_tos) { 2708 /* Outer TOS -> inner TOS */ 2709 encap_ip->ip_tos = ip_tos; 2710 /* Recompute the inner header checksum. Sigh... */ 2711 2712 /* adjust mbuf to point to the inner IP header */ 2713 m->m_data += (iphlen + PIM_MINLEN); 2714 m->m_len -= (iphlen + PIM_MINLEN); 2715 2716 encap_ip->ip_sum = 0; 2717 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2718 2719 /* restore mbuf to point back to the outer IP header */ 2720 m->m_data -= (iphlen + PIM_MINLEN); 2721 m->m_len += (iphlen + PIM_MINLEN); 2722 } 2723 2724 /* 2725 * Decapsulate the inner IP packet and loopback to forward it 2726 * as a normal multicast packet. Also, make a copy of the 2727 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2728 * to pass to the daemon later, so it can take the appropriate 2729 * actions (e.g., send back PIM_REGISTER_STOP). 2730 * XXX: here m->m_data points to the outer IP header. 2731 */ 2732 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2733 if (mcp == NULL) { 2734 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2735 m_freem(m); 2736 return (IPPROTO_DONE); 2737 } 2738 2739 /* Keep statistics */ 2740 /* XXX: registers_bytes include only the encap. mcast pkt */ 2741 PIMSTAT_INC(pims_rcv_registers_msgs); 2742 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2743 2744 /* 2745 * forward the inner ip packet; point m_data at the inner ip. 2746 */ 2747 m_adj(m, iphlen + PIM_MINLEN); 2748 2749 CTR4(KTR_IPMF, 2750 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2751 __func__, 2752 (u_long)ntohl(encap_ip->ip_src.s_addr), 2753 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2754 (int)V_reg_vif_num); 2755 2756 /* NB: vifp was collected above; can it change on us? */ 2757 if_simloop(vifp, m, dst.sin_family, 0); 2758 2759 /* prepare the register head to send to the mrouting daemon */ 2760 m = mcp; 2761 } 2762 2763 pim_input_to_daemon: 2764 /* 2765 * Pass the PIM message up to the daemon; if it is a Register message, 2766 * pass the 'head' only up to the daemon. This includes the 2767 * outer IP header, PIM header, PIM-Register header and the 2768 * inner IP header. 2769 * XXX: the outer IP header pkt size of a Register is not adjust to 2770 * reflect the fact that the inner multicast data is truncated. 2771 */ 2772 return (rip_input(&m, &off, proto)); 2773 } 2774 2775 static int 2776 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2777 { 2778 struct mfc *rt; 2779 int error, i; 2780 2781 if (req->newptr) 2782 return (EPERM); 2783 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2784 return (0); 2785 error = sysctl_wire_old_buffer(req, 0); 2786 if (error) 2787 return (error); 2788 2789 MFC_LOCK(); 2790 for (i = 0; i < mfchashsize; i++) { 2791 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2792 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2793 if (error) 2794 goto out_locked; 2795 } 2796 } 2797 out_locked: 2798 MFC_UNLOCK(); 2799 return (error); 2800 } 2801 2802 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2803 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2804 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2805 2806 static void 2807 vnet_mroute_init(const void *unused __unused) 2808 { 2809 2810 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2811 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2812 callout_init(&V_expire_upcalls_ch, 1); 2813 callout_init(&V_bw_upcalls_ch, 1); 2814 callout_init(&V_bw_meter_ch, 1); 2815 } 2816 2817 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2818 NULL); 2819 2820 static void 2821 vnet_mroute_uninit(const void *unused __unused) 2822 { 2823 2824 free(V_nexpire, M_MRTABLE); 2825 V_nexpire = NULL; 2826 } 2827 2828 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2829 vnet_mroute_uninit, NULL); 2830 2831 static int 2832 ip_mroute_modevent(module_t mod, int type, void *unused) 2833 { 2834 2835 switch (type) { 2836 case MOD_LOAD: 2837 MROUTER_LOCK_INIT(); 2838 2839 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2840 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2841 if (if_detach_event_tag == NULL) { 2842 printf("ip_mroute: unable to register " 2843 "ifnet_departure_event handler\n"); 2844 MROUTER_LOCK_DESTROY(); 2845 return (EINVAL); 2846 } 2847 2848 MFC_LOCK_INIT(); 2849 VIF_LOCK_INIT(); 2850 2851 mfchashsize = MFCHASHSIZE; 2852 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2853 !powerof2(mfchashsize)) { 2854 printf("WARNING: %s not a power of 2; using default\n", 2855 "net.inet.ip.mfchashsize"); 2856 mfchashsize = MFCHASHSIZE; 2857 } 2858 2859 pim_squelch_wholepkt = 0; 2860 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2861 &pim_squelch_wholepkt); 2862 2863 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2864 if (pim_encap_cookie == NULL) { 2865 printf("ip_mroute: unable to attach pim encap\n"); 2866 VIF_LOCK_DESTROY(); 2867 MFC_LOCK_DESTROY(); 2868 MROUTER_LOCK_DESTROY(); 2869 return (EINVAL); 2870 } 2871 2872 ip_mcast_src = X_ip_mcast_src; 2873 ip_mforward = X_ip_mforward; 2874 ip_mrouter_done = X_ip_mrouter_done; 2875 ip_mrouter_get = X_ip_mrouter_get; 2876 ip_mrouter_set = X_ip_mrouter_set; 2877 2878 ip_rsvp_force_done = X_ip_rsvp_force_done; 2879 ip_rsvp_vif = X_ip_rsvp_vif; 2880 2881 legal_vif_num = X_legal_vif_num; 2882 mrt_ioctl = X_mrt_ioctl; 2883 rsvp_input_p = X_rsvp_input; 2884 break; 2885 2886 case MOD_UNLOAD: 2887 /* 2888 * Typically module unload happens after the user-level 2889 * process has shutdown the kernel services (the check 2890 * below insures someone can't just yank the module out 2891 * from under a running process). But if the module is 2892 * just loaded and then unloaded w/o starting up a user 2893 * process we still need to cleanup. 2894 */ 2895 MROUTER_LOCK(); 2896 if (ip_mrouter_cnt != 0) { 2897 MROUTER_UNLOCK(); 2898 return (EINVAL); 2899 } 2900 ip_mrouter_unloading = 1; 2901 MROUTER_UNLOCK(); 2902 2903 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2904 2905 if (pim_encap_cookie) { 2906 ip_encap_detach(pim_encap_cookie); 2907 pim_encap_cookie = NULL; 2908 } 2909 2910 ip_mcast_src = NULL; 2911 ip_mforward = NULL; 2912 ip_mrouter_done = NULL; 2913 ip_mrouter_get = NULL; 2914 ip_mrouter_set = NULL; 2915 2916 ip_rsvp_force_done = NULL; 2917 ip_rsvp_vif = NULL; 2918 2919 legal_vif_num = NULL; 2920 mrt_ioctl = NULL; 2921 rsvp_input_p = NULL; 2922 2923 VIF_LOCK_DESTROY(); 2924 MFC_LOCK_DESTROY(); 2925 MROUTER_LOCK_DESTROY(); 2926 break; 2927 2928 default: 2929 return EOPNOTSUPP; 2930 } 2931 return 0; 2932 } 2933 2934 static moduledata_t ip_mroutemod = { 2935 "ip_mroute", 2936 ip_mroute_modevent, 2937 0 2938 }; 2939 2940 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2941