1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/lock.h> 81 #include <sys/ktr.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/module.h> 85 #include <sys/priv.h> 86 #include <sys/protosw.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/sockio.h> 91 #include <sys/sx.h> 92 #include <sys/sysctl.h> 93 #include <sys/syslog.h> 94 #include <sys/systm.h> 95 #include <sys/time.h> 96 #include <sys/counter.h> 97 98 #include <net/if.h> 99 #include <net/netisr.h> 100 #include <net/route.h> 101 #include <net/vnet.h> 102 103 #include <netinet/in.h> 104 #include <netinet/igmp.h> 105 #include <netinet/in_systm.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip.h> 108 #include <netinet/ip_encap.h> 109 #include <netinet/ip_mroute.h> 110 #include <netinet/ip_var.h> 111 #include <netinet/ip_options.h> 112 #include <netinet/pim.h> 113 #include <netinet/pim_var.h> 114 #include <netinet/udp.h> 115 116 #include <machine/in_cksum.h> 117 118 #ifndef KTR_IPMF 119 #define KTR_IPMF KTR_INET 120 #endif 121 122 #define VIFI_INVALID ((vifi_t) -1) 123 #define M_HASCL(m) ((m)->m_flags & M_EXT) 124 125 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 126 #define V_last_tv_sec VNET(last_tv_sec) 127 128 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 129 130 /* 131 * Locking. We use two locks: one for the virtual interface table and 132 * one for the forwarding table. These locks may be nested in which case 133 * the VIF lock must always be taken first. Note that each lock is used 134 * to cover not only the specific data structure but also related data 135 * structures. 136 */ 137 138 static struct mtx mrouter_mtx; 139 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 140 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 141 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 142 #define MROUTER_LOCK_INIT() \ 143 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 144 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 145 146 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 147 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 148 149 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 150 VNET_PCPUSTAT_SYSINIT(mrtstat); 151 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 152 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 153 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 154 "netinet/ip_mroute.h)"); 155 156 static VNET_DEFINE(u_long, mfchash); 157 #define V_mfchash VNET(mfchash) 158 #define MFCHASH(a, g) \ 159 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 160 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 161 #define MFCHASHSIZE 256 162 163 static u_long mfchashsize; /* Hash size */ 164 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 165 #define V_nexpire VNET(nexpire) 166 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 167 #define V_mfchashtbl VNET(mfchashtbl) 168 169 static struct mtx mfc_mtx; 170 #define MFC_LOCK() mtx_lock(&mfc_mtx) 171 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 172 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 173 #define MFC_LOCK_INIT() \ 174 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 175 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 176 177 static VNET_DEFINE(vifi_t, numvifs); 178 #define V_numvifs VNET(numvifs) 179 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 180 #define V_viftable VNET(viftable) 181 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 182 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 183 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 184 185 static struct mtx vif_mtx; 186 #define VIF_LOCK() mtx_lock(&vif_mtx) 187 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 188 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 189 #define VIF_LOCK_INIT() \ 190 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 191 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 192 193 static eventhandler_tag if_detach_event_tag = NULL; 194 195 static VNET_DEFINE(struct callout, expire_upcalls_ch); 196 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 197 198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 199 #define UPCALL_EXPIRE 6 /* number of timeouts */ 200 201 /* 202 * Bandwidth meter variables and constants 203 */ 204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 205 /* 206 * Pending timeouts are stored in a hash table, the key being the 207 * expiration time. Periodically, the entries are analysed and processed. 208 */ 209 #define BW_METER_BUCKETS 1024 210 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 211 #define V_bw_meter_timers VNET(bw_meter_timers) 212 static VNET_DEFINE(struct callout, bw_meter_ch); 213 #define V_bw_meter_ch VNET(bw_meter_ch) 214 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 215 216 /* 217 * Pending upcalls are stored in a vector which is flushed when 218 * full, or periodically 219 */ 220 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 221 #define V_bw_upcalls VNET(bw_upcalls) 222 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 223 #define V_bw_upcalls_n VNET(bw_upcalls_n) 224 static VNET_DEFINE(struct callout, bw_upcalls_ch); 225 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 226 227 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 228 229 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 230 VNET_PCPUSTAT_SYSINIT(pimstat); 231 VNET_PCPUSTAT_SYSUNINIT(pimstat); 232 233 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 234 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 235 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 236 237 static u_long pim_squelch_wholepkt = 0; 238 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 239 &pim_squelch_wholepkt, 0, 240 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 241 242 extern struct domain inetdomain; 243 static const struct protosw in_pim_protosw = { 244 .pr_type = SOCK_RAW, 245 .pr_domain = &inetdomain, 246 .pr_protocol = IPPROTO_PIM, 247 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 248 .pr_input = pim_input, 249 .pr_output = (pr_output_t*)rip_output, 250 .pr_ctloutput = rip_ctloutput, 251 .pr_usrreqs = &rip_usrreqs 252 }; 253 static const struct encaptab *pim_encap_cookie; 254 255 static int pim_encapcheck(const struct mbuf *, int, int, void *); 256 257 /* 258 * Note: the PIM Register encapsulation adds the following in front of a 259 * data packet: 260 * 261 * struct pim_encap_hdr { 262 * struct ip ip; 263 * struct pim_encap_pimhdr pim; 264 * } 265 * 266 */ 267 268 struct pim_encap_pimhdr { 269 struct pim pim; 270 uint32_t flags; 271 }; 272 #define PIM_ENCAP_TTL 64 273 274 static struct ip pim_encap_iphdr = { 275 #if BYTE_ORDER == LITTLE_ENDIAN 276 sizeof(struct ip) >> 2, 277 IPVERSION, 278 #else 279 IPVERSION, 280 sizeof(struct ip) >> 2, 281 #endif 282 0, /* tos */ 283 sizeof(struct ip), /* total length */ 284 0, /* id */ 285 0, /* frag offset */ 286 PIM_ENCAP_TTL, 287 IPPROTO_PIM, 288 0, /* checksum */ 289 }; 290 291 static struct pim_encap_pimhdr pim_encap_pimhdr = { 292 { 293 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 294 0, /* reserved */ 295 0, /* checksum */ 296 }, 297 0 /* flags */ 298 }; 299 300 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 301 #define V_reg_vif_num VNET(reg_vif_num) 302 static VNET_DEFINE(struct ifnet, multicast_register_if); 303 #define V_multicast_register_if VNET(multicast_register_if) 304 305 /* 306 * Private variables. 307 */ 308 309 static u_long X_ip_mcast_src(int); 310 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 311 struct ip_moptions *); 312 static int X_ip_mrouter_done(void); 313 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 314 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 315 static int X_legal_vif_num(int); 316 static int X_mrt_ioctl(u_long, caddr_t, int); 317 318 static int add_bw_upcall(struct bw_upcall *); 319 static int add_mfc(struct mfcctl2 *); 320 static int add_vif(struct vifctl *); 321 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 322 static void bw_meter_process(void); 323 static void bw_meter_receive_packet(struct bw_meter *, int, 324 struct timeval *); 325 static void bw_upcalls_send(void); 326 static int del_bw_upcall(struct bw_upcall *); 327 static int del_mfc(struct mfcctl2 *); 328 static int del_vif(vifi_t); 329 static int del_vif_locked(vifi_t); 330 static void expire_bw_meter_process(void *); 331 static void expire_bw_upcalls_send(void *); 332 static void expire_mfc(struct mfc *); 333 static void expire_upcalls(void *); 334 static void free_bw_list(struct bw_meter *); 335 static int get_sg_cnt(struct sioc_sg_req *); 336 static int get_vif_cnt(struct sioc_vif_req *); 337 static void if_detached_event(void *, struct ifnet *); 338 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 339 static int ip_mrouter_init(struct socket *, int); 340 static __inline struct mfc * 341 mfc_find(struct in_addr *, struct in_addr *); 342 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 343 static struct mbuf * 344 pim_register_prepare(struct ip *, struct mbuf *); 345 static int pim_register_send(struct ip *, struct vif *, 346 struct mbuf *, struct mfc *); 347 static int pim_register_send_rp(struct ip *, struct vif *, 348 struct mbuf *, struct mfc *); 349 static int pim_register_send_upcall(struct ip *, struct vif *, 350 struct mbuf *, struct mfc *); 351 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 352 static void send_packet(struct vif *, struct mbuf *); 353 static int set_api_config(uint32_t *); 354 static int set_assert(int); 355 static int socket_send(struct socket *, struct mbuf *, 356 struct sockaddr_in *); 357 static void unschedule_bw_meter(struct bw_meter *); 358 359 /* 360 * Kernel multicast forwarding API capabilities and setup. 361 * If more API capabilities are added to the kernel, they should be 362 * recorded in `mrt_api_support'. 363 */ 364 #define MRT_API_VERSION 0x0305 365 366 static const int mrt_api_version = MRT_API_VERSION; 367 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 368 MRT_MFC_FLAGS_BORDER_VIF | 369 MRT_MFC_RP | 370 MRT_MFC_BW_UPCALL); 371 static VNET_DEFINE(uint32_t, mrt_api_config); 372 #define V_mrt_api_config VNET(mrt_api_config) 373 static VNET_DEFINE(int, pim_assert_enabled); 374 #define V_pim_assert_enabled VNET(pim_assert_enabled) 375 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 376 377 /* 378 * Find a route for a given origin IP address and multicast group address. 379 * Statistics must be updated by the caller. 380 */ 381 static __inline struct mfc * 382 mfc_find(struct in_addr *o, struct in_addr *g) 383 { 384 struct mfc *rt; 385 386 MFC_LOCK_ASSERT(); 387 388 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 389 if (in_hosteq(rt->mfc_origin, *o) && 390 in_hosteq(rt->mfc_mcastgrp, *g) && 391 TAILQ_EMPTY(&rt->mfc_stall)) 392 break; 393 } 394 395 return (rt); 396 } 397 398 /* 399 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 400 */ 401 static int 402 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 403 { 404 int error, optval; 405 vifi_t vifi; 406 struct vifctl vifc; 407 struct mfcctl2 mfc; 408 struct bw_upcall bw_upcall; 409 uint32_t i; 410 411 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 412 return EPERM; 413 414 error = 0; 415 switch (sopt->sopt_name) { 416 case MRT_INIT: 417 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 418 if (error) 419 break; 420 error = ip_mrouter_init(so, optval); 421 break; 422 423 case MRT_DONE: 424 error = ip_mrouter_done(); 425 break; 426 427 case MRT_ADD_VIF: 428 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 429 if (error) 430 break; 431 error = add_vif(&vifc); 432 break; 433 434 case MRT_DEL_VIF: 435 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 436 if (error) 437 break; 438 error = del_vif(vifi); 439 break; 440 441 case MRT_ADD_MFC: 442 case MRT_DEL_MFC: 443 /* 444 * select data size depending on API version. 445 */ 446 if (sopt->sopt_name == MRT_ADD_MFC && 447 V_mrt_api_config & MRT_API_FLAGS_ALL) { 448 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 449 sizeof(struct mfcctl2)); 450 } else { 451 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 452 sizeof(struct mfcctl)); 453 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 454 sizeof(mfc) - sizeof(struct mfcctl)); 455 } 456 if (error) 457 break; 458 if (sopt->sopt_name == MRT_ADD_MFC) 459 error = add_mfc(&mfc); 460 else 461 error = del_mfc(&mfc); 462 break; 463 464 case MRT_ASSERT: 465 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 466 if (error) 467 break; 468 set_assert(optval); 469 break; 470 471 case MRT_API_CONFIG: 472 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 473 if (!error) 474 error = set_api_config(&i); 475 if (!error) 476 error = sooptcopyout(sopt, &i, sizeof i); 477 break; 478 479 case MRT_ADD_BW_UPCALL: 480 case MRT_DEL_BW_UPCALL: 481 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 482 sizeof bw_upcall); 483 if (error) 484 break; 485 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 486 error = add_bw_upcall(&bw_upcall); 487 else 488 error = del_bw_upcall(&bw_upcall); 489 break; 490 491 default: 492 error = EOPNOTSUPP; 493 break; 494 } 495 return error; 496 } 497 498 /* 499 * Handle MRT getsockopt commands 500 */ 501 static int 502 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 503 { 504 int error; 505 506 switch (sopt->sopt_name) { 507 case MRT_VERSION: 508 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 509 break; 510 511 case MRT_ASSERT: 512 error = sooptcopyout(sopt, &V_pim_assert_enabled, 513 sizeof V_pim_assert_enabled); 514 break; 515 516 case MRT_API_SUPPORT: 517 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 518 break; 519 520 case MRT_API_CONFIG: 521 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 522 break; 523 524 default: 525 error = EOPNOTSUPP; 526 break; 527 } 528 return error; 529 } 530 531 /* 532 * Handle ioctl commands to obtain information from the cache 533 */ 534 static int 535 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 536 { 537 int error = 0; 538 539 /* 540 * Currently the only function calling this ioctl routine is rtioctl(). 541 * Typically, only root can create the raw socket in order to execute 542 * this ioctl method, however the request might be coming from a prison 543 */ 544 error = priv_check(curthread, PRIV_NETINET_MROUTE); 545 if (error) 546 return (error); 547 switch (cmd) { 548 case (SIOCGETVIFCNT): 549 error = get_vif_cnt((struct sioc_vif_req *)data); 550 break; 551 552 case (SIOCGETSGCNT): 553 error = get_sg_cnt((struct sioc_sg_req *)data); 554 break; 555 556 default: 557 error = EINVAL; 558 break; 559 } 560 return error; 561 } 562 563 /* 564 * returns the packet, byte, rpf-failure count for the source group provided 565 */ 566 static int 567 get_sg_cnt(struct sioc_sg_req *req) 568 { 569 struct mfc *rt; 570 571 MFC_LOCK(); 572 rt = mfc_find(&req->src, &req->grp); 573 if (rt == NULL) { 574 MFC_UNLOCK(); 575 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 576 return EADDRNOTAVAIL; 577 } 578 req->pktcnt = rt->mfc_pkt_cnt; 579 req->bytecnt = rt->mfc_byte_cnt; 580 req->wrong_if = rt->mfc_wrong_if; 581 MFC_UNLOCK(); 582 return 0; 583 } 584 585 /* 586 * returns the input and output packet and byte counts on the vif provided 587 */ 588 static int 589 get_vif_cnt(struct sioc_vif_req *req) 590 { 591 vifi_t vifi = req->vifi; 592 593 VIF_LOCK(); 594 if (vifi >= V_numvifs) { 595 VIF_UNLOCK(); 596 return EINVAL; 597 } 598 599 req->icount = V_viftable[vifi].v_pkt_in; 600 req->ocount = V_viftable[vifi].v_pkt_out; 601 req->ibytes = V_viftable[vifi].v_bytes_in; 602 req->obytes = V_viftable[vifi].v_bytes_out; 603 VIF_UNLOCK(); 604 605 return 0; 606 } 607 608 static void 609 if_detached_event(void *arg __unused, struct ifnet *ifp) 610 { 611 vifi_t vifi; 612 int i; 613 614 MROUTER_LOCK(); 615 616 if (V_ip_mrouter == NULL) { 617 MROUTER_UNLOCK(); 618 return; 619 } 620 621 VIF_LOCK(); 622 MFC_LOCK(); 623 624 /* 625 * Tear down multicast forwarder state associated with this ifnet. 626 * 1. Walk the vif list, matching vifs against this ifnet. 627 * 2. Walk the multicast forwarding cache (mfc) looking for 628 * inner matches with this vif's index. 629 * 3. Expire any matching multicast forwarding cache entries. 630 * 4. Free vif state. This should disable ALLMULTI on the interface. 631 */ 632 for (vifi = 0; vifi < V_numvifs; vifi++) { 633 if (V_viftable[vifi].v_ifp != ifp) 634 continue; 635 for (i = 0; i < mfchashsize; i++) { 636 struct mfc *rt, *nrt; 637 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 638 nrt = LIST_NEXT(rt, mfc_hash); 639 if (rt->mfc_parent == vifi) { 640 expire_mfc(rt); 641 } 642 } 643 } 644 del_vif_locked(vifi); 645 } 646 647 MFC_UNLOCK(); 648 VIF_UNLOCK(); 649 650 MROUTER_UNLOCK(); 651 } 652 653 /* 654 * Enable multicast forwarding. 655 */ 656 static int 657 ip_mrouter_init(struct socket *so, int version) 658 { 659 660 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 661 so->so_type, so->so_proto->pr_protocol); 662 663 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 664 return EOPNOTSUPP; 665 666 if (version != 1) 667 return ENOPROTOOPT; 668 669 MROUTER_LOCK(); 670 671 if (ip_mrouter_unloading) { 672 MROUTER_UNLOCK(); 673 return ENOPROTOOPT; 674 } 675 676 if (V_ip_mrouter != NULL) { 677 MROUTER_UNLOCK(); 678 return EADDRINUSE; 679 } 680 681 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 682 HASH_NOWAIT); 683 684 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 685 curvnet); 686 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 687 curvnet); 688 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 689 curvnet); 690 691 V_ip_mrouter = so; 692 ip_mrouter_cnt++; 693 694 MROUTER_UNLOCK(); 695 696 CTR1(KTR_IPMF, "%s: done", __func__); 697 698 return 0; 699 } 700 701 /* 702 * Disable multicast forwarding. 703 */ 704 static int 705 X_ip_mrouter_done(void) 706 { 707 vifi_t vifi; 708 int i; 709 struct ifnet *ifp; 710 struct ifreq ifr; 711 712 MROUTER_LOCK(); 713 714 if (V_ip_mrouter == NULL) { 715 MROUTER_UNLOCK(); 716 return EINVAL; 717 } 718 719 /* 720 * Detach/disable hooks to the reset of the system. 721 */ 722 V_ip_mrouter = NULL; 723 ip_mrouter_cnt--; 724 V_mrt_api_config = 0; 725 726 VIF_LOCK(); 727 728 /* 729 * For each phyint in use, disable promiscuous reception of all IP 730 * multicasts. 731 */ 732 for (vifi = 0; vifi < V_numvifs; vifi++) { 733 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 734 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 735 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 736 737 so->sin_len = sizeof(struct sockaddr_in); 738 so->sin_family = AF_INET; 739 so->sin_addr.s_addr = INADDR_ANY; 740 ifp = V_viftable[vifi].v_ifp; 741 if_allmulti(ifp, 0); 742 } 743 } 744 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 745 V_numvifs = 0; 746 V_pim_assert_enabled = 0; 747 748 VIF_UNLOCK(); 749 750 callout_stop(&V_expire_upcalls_ch); 751 callout_stop(&V_bw_upcalls_ch); 752 callout_stop(&V_bw_meter_ch); 753 754 MFC_LOCK(); 755 756 /* 757 * Free all multicast forwarding cache entries. 758 * Do not use hashdestroy(), as we must perform other cleanup. 759 */ 760 for (i = 0; i < mfchashsize; i++) { 761 struct mfc *rt, *nrt; 762 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 763 nrt = LIST_NEXT(rt, mfc_hash); 764 expire_mfc(rt); 765 } 766 } 767 free(V_mfchashtbl, M_MRTABLE); 768 V_mfchashtbl = NULL; 769 770 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 771 772 V_bw_upcalls_n = 0; 773 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 774 775 MFC_UNLOCK(); 776 777 V_reg_vif_num = VIFI_INVALID; 778 779 MROUTER_UNLOCK(); 780 781 CTR1(KTR_IPMF, "%s: done", __func__); 782 783 return 0; 784 } 785 786 /* 787 * Set PIM assert processing global 788 */ 789 static int 790 set_assert(int i) 791 { 792 if ((i != 1) && (i != 0)) 793 return EINVAL; 794 795 V_pim_assert_enabled = i; 796 797 return 0; 798 } 799 800 /* 801 * Configure API capabilities 802 */ 803 int 804 set_api_config(uint32_t *apival) 805 { 806 int i; 807 808 /* 809 * We can set the API capabilities only if it is the first operation 810 * after MRT_INIT. I.e.: 811 * - there are no vifs installed 812 * - pim_assert is not enabled 813 * - the MFC table is empty 814 */ 815 if (V_numvifs > 0) { 816 *apival = 0; 817 return EPERM; 818 } 819 if (V_pim_assert_enabled) { 820 *apival = 0; 821 return EPERM; 822 } 823 824 MFC_LOCK(); 825 826 for (i = 0; i < mfchashsize; i++) { 827 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 828 MFC_UNLOCK(); 829 *apival = 0; 830 return EPERM; 831 } 832 } 833 834 MFC_UNLOCK(); 835 836 V_mrt_api_config = *apival & mrt_api_support; 837 *apival = V_mrt_api_config; 838 839 return 0; 840 } 841 842 /* 843 * Add a vif to the vif table 844 */ 845 static int 846 add_vif(struct vifctl *vifcp) 847 { 848 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 849 struct sockaddr_in sin = {sizeof sin, AF_INET}; 850 struct ifaddr *ifa; 851 struct ifnet *ifp; 852 int error; 853 854 VIF_LOCK(); 855 if (vifcp->vifc_vifi >= MAXVIFS) { 856 VIF_UNLOCK(); 857 return EINVAL; 858 } 859 /* rate limiting is no longer supported by this code */ 860 if (vifcp->vifc_rate_limit != 0) { 861 log(LOG_ERR, "rate limiting is no longer supported\n"); 862 VIF_UNLOCK(); 863 return EINVAL; 864 } 865 if (!in_nullhost(vifp->v_lcl_addr)) { 866 VIF_UNLOCK(); 867 return EADDRINUSE; 868 } 869 if (in_nullhost(vifcp->vifc_lcl_addr)) { 870 VIF_UNLOCK(); 871 return EADDRNOTAVAIL; 872 } 873 874 /* Find the interface with an address in AF_INET family */ 875 if (vifcp->vifc_flags & VIFF_REGISTER) { 876 /* 877 * XXX: Because VIFF_REGISTER does not really need a valid 878 * local interface (e.g. it could be 127.0.0.2), we don't 879 * check its address. 880 */ 881 ifp = NULL; 882 } else { 883 sin.sin_addr = vifcp->vifc_lcl_addr; 884 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 885 if (ifa == NULL) { 886 VIF_UNLOCK(); 887 return EADDRNOTAVAIL; 888 } 889 ifp = ifa->ifa_ifp; 890 ifa_free(ifa); 891 } 892 893 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 894 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 895 VIF_UNLOCK(); 896 return EOPNOTSUPP; 897 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 898 ifp = &V_multicast_register_if; 899 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 900 if (V_reg_vif_num == VIFI_INVALID) { 901 if_initname(&V_multicast_register_if, "register_vif", 0); 902 V_multicast_register_if.if_flags = IFF_LOOPBACK; 903 V_reg_vif_num = vifcp->vifc_vifi; 904 } 905 } else { /* Make sure the interface supports multicast */ 906 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 907 VIF_UNLOCK(); 908 return EOPNOTSUPP; 909 } 910 911 /* Enable promiscuous reception of all IP multicasts from the if */ 912 error = if_allmulti(ifp, 1); 913 if (error) { 914 VIF_UNLOCK(); 915 return error; 916 } 917 } 918 919 vifp->v_flags = vifcp->vifc_flags; 920 vifp->v_threshold = vifcp->vifc_threshold; 921 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 922 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 923 vifp->v_ifp = ifp; 924 /* initialize per vif pkt counters */ 925 vifp->v_pkt_in = 0; 926 vifp->v_pkt_out = 0; 927 vifp->v_bytes_in = 0; 928 vifp->v_bytes_out = 0; 929 930 /* Adjust numvifs up if the vifi is higher than numvifs */ 931 if (V_numvifs <= vifcp->vifc_vifi) 932 V_numvifs = vifcp->vifc_vifi + 1; 933 934 VIF_UNLOCK(); 935 936 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 937 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 938 (int)vifcp->vifc_threshold); 939 940 return 0; 941 } 942 943 /* 944 * Delete a vif from the vif table 945 */ 946 static int 947 del_vif_locked(vifi_t vifi) 948 { 949 struct vif *vifp; 950 951 VIF_LOCK_ASSERT(); 952 953 if (vifi >= V_numvifs) { 954 return EINVAL; 955 } 956 vifp = &V_viftable[vifi]; 957 if (in_nullhost(vifp->v_lcl_addr)) { 958 return EADDRNOTAVAIL; 959 } 960 961 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 962 if_allmulti(vifp->v_ifp, 0); 963 964 if (vifp->v_flags & VIFF_REGISTER) 965 V_reg_vif_num = VIFI_INVALID; 966 967 bzero((caddr_t)vifp, sizeof (*vifp)); 968 969 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 970 971 /* Adjust numvifs down */ 972 for (vifi = V_numvifs; vifi > 0; vifi--) 973 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 974 break; 975 V_numvifs = vifi; 976 977 return 0; 978 } 979 980 static int 981 del_vif(vifi_t vifi) 982 { 983 int cc; 984 985 VIF_LOCK(); 986 cc = del_vif_locked(vifi); 987 VIF_UNLOCK(); 988 989 return cc; 990 } 991 992 /* 993 * update an mfc entry without resetting counters and S,G addresses. 994 */ 995 static void 996 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 997 { 998 int i; 999 1000 rt->mfc_parent = mfccp->mfcc_parent; 1001 for (i = 0; i < V_numvifs; i++) { 1002 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1003 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1004 MRT_MFC_FLAGS_ALL; 1005 } 1006 /* set the RP address */ 1007 if (V_mrt_api_config & MRT_MFC_RP) 1008 rt->mfc_rp = mfccp->mfcc_rp; 1009 else 1010 rt->mfc_rp.s_addr = INADDR_ANY; 1011 } 1012 1013 /* 1014 * fully initialize an mfc entry from the parameter. 1015 */ 1016 static void 1017 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1018 { 1019 rt->mfc_origin = mfccp->mfcc_origin; 1020 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1021 1022 update_mfc_params(rt, mfccp); 1023 1024 /* initialize pkt counters per src-grp */ 1025 rt->mfc_pkt_cnt = 0; 1026 rt->mfc_byte_cnt = 0; 1027 rt->mfc_wrong_if = 0; 1028 timevalclear(&rt->mfc_last_assert); 1029 } 1030 1031 static void 1032 expire_mfc(struct mfc *rt) 1033 { 1034 struct rtdetq *rte, *nrte; 1035 1036 MFC_LOCK_ASSERT(); 1037 1038 free_bw_list(rt->mfc_bw_meter); 1039 1040 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1041 m_freem(rte->m); 1042 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1043 free(rte, M_MRTABLE); 1044 } 1045 1046 LIST_REMOVE(rt, mfc_hash); 1047 free(rt, M_MRTABLE); 1048 } 1049 1050 /* 1051 * Add an mfc entry 1052 */ 1053 static int 1054 add_mfc(struct mfcctl2 *mfccp) 1055 { 1056 struct mfc *rt; 1057 struct rtdetq *rte, *nrte; 1058 u_long hash = 0; 1059 u_short nstl; 1060 1061 VIF_LOCK(); 1062 MFC_LOCK(); 1063 1064 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1065 1066 /* If an entry already exists, just update the fields */ 1067 if (rt) { 1068 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1069 __func__, inet_ntoa(mfccp->mfcc_origin), 1070 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1071 mfccp->mfcc_parent); 1072 update_mfc_params(rt, mfccp); 1073 MFC_UNLOCK(); 1074 VIF_UNLOCK(); 1075 return (0); 1076 } 1077 1078 /* 1079 * Find the entry for which the upcall was made and update 1080 */ 1081 nstl = 0; 1082 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1083 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1084 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1085 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1086 !TAILQ_EMPTY(&rt->mfc_stall)) { 1087 CTR5(KTR_IPMF, 1088 "%s: add mfc orig %s group %lx parent %x qh %p", 1089 __func__, inet_ntoa(mfccp->mfcc_origin), 1090 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1091 mfccp->mfcc_parent, 1092 TAILQ_FIRST(&rt->mfc_stall)); 1093 if (nstl++) 1094 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1095 1096 init_mfc_params(rt, mfccp); 1097 rt->mfc_expire = 0; /* Don't clean this guy up */ 1098 V_nexpire[hash]--; 1099 1100 /* Free queued packets, but attempt to forward them first. */ 1101 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1102 if (rte->ifp != NULL) 1103 ip_mdq(rte->m, rte->ifp, rt, -1); 1104 m_freem(rte->m); 1105 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1106 rt->mfc_nstall--; 1107 free(rte, M_MRTABLE); 1108 } 1109 } 1110 } 1111 1112 /* 1113 * It is possible that an entry is being inserted without an upcall 1114 */ 1115 if (nstl == 0) { 1116 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1117 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1118 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1119 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1120 init_mfc_params(rt, mfccp); 1121 if (rt->mfc_expire) 1122 V_nexpire[hash]--; 1123 rt->mfc_expire = 0; 1124 break; /* XXX */ 1125 } 1126 } 1127 1128 if (rt == NULL) { /* no upcall, so make a new entry */ 1129 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1130 if (rt == NULL) { 1131 MFC_UNLOCK(); 1132 VIF_UNLOCK(); 1133 return (ENOBUFS); 1134 } 1135 1136 init_mfc_params(rt, mfccp); 1137 TAILQ_INIT(&rt->mfc_stall); 1138 rt->mfc_nstall = 0; 1139 1140 rt->mfc_expire = 0; 1141 rt->mfc_bw_meter = NULL; 1142 1143 /* insert new entry at head of hash chain */ 1144 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1145 } 1146 } 1147 1148 MFC_UNLOCK(); 1149 VIF_UNLOCK(); 1150 1151 return (0); 1152 } 1153 1154 /* 1155 * Delete an mfc entry 1156 */ 1157 static int 1158 del_mfc(struct mfcctl2 *mfccp) 1159 { 1160 struct in_addr origin; 1161 struct in_addr mcastgrp; 1162 struct mfc *rt; 1163 1164 origin = mfccp->mfcc_origin; 1165 mcastgrp = mfccp->mfcc_mcastgrp; 1166 1167 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1168 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1169 1170 MFC_LOCK(); 1171 1172 rt = mfc_find(&origin, &mcastgrp); 1173 if (rt == NULL) { 1174 MFC_UNLOCK(); 1175 return EADDRNOTAVAIL; 1176 } 1177 1178 /* 1179 * free the bw_meter entries 1180 */ 1181 free_bw_list(rt->mfc_bw_meter); 1182 rt->mfc_bw_meter = NULL; 1183 1184 LIST_REMOVE(rt, mfc_hash); 1185 free(rt, M_MRTABLE); 1186 1187 MFC_UNLOCK(); 1188 1189 return (0); 1190 } 1191 1192 /* 1193 * Send a message to the routing daemon on the multicast routing socket. 1194 */ 1195 static int 1196 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1197 { 1198 if (s) { 1199 SOCKBUF_LOCK(&s->so_rcv); 1200 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1201 NULL) != 0) { 1202 sorwakeup_locked(s); 1203 return 0; 1204 } 1205 SOCKBUF_UNLOCK(&s->so_rcv); 1206 } 1207 m_freem(mm); 1208 return -1; 1209 } 1210 1211 /* 1212 * IP multicast forwarding function. This function assumes that the packet 1213 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1214 * pointed to by "ifp", and the packet is to be relayed to other networks 1215 * that have members of the packet's destination IP multicast group. 1216 * 1217 * The packet is returned unscathed to the caller, unless it is 1218 * erroneous, in which case a non-zero return value tells the caller to 1219 * discard it. 1220 */ 1221 1222 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1223 1224 static int 1225 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1226 struct ip_moptions *imo) 1227 { 1228 struct mfc *rt; 1229 int error; 1230 vifi_t vifi; 1231 1232 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1233 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1234 1235 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1236 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1237 /* 1238 * Packet arrived via a physical interface or 1239 * an encapsulated tunnel or a register_vif. 1240 */ 1241 } else { 1242 /* 1243 * Packet arrived through a source-route tunnel. 1244 * Source-route tunnels are no longer supported. 1245 */ 1246 return (1); 1247 } 1248 1249 VIF_LOCK(); 1250 MFC_LOCK(); 1251 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1252 if (ip->ip_ttl < MAXTTL) 1253 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1254 error = ip_mdq(m, ifp, NULL, vifi); 1255 MFC_UNLOCK(); 1256 VIF_UNLOCK(); 1257 return error; 1258 } 1259 1260 /* 1261 * Don't forward a packet with time-to-live of zero or one, 1262 * or a packet destined to a local-only group. 1263 */ 1264 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1265 MFC_UNLOCK(); 1266 VIF_UNLOCK(); 1267 return 0; 1268 } 1269 1270 /* 1271 * Determine forwarding vifs from the forwarding cache table 1272 */ 1273 MRTSTAT_INC(mrts_mfc_lookups); 1274 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1275 1276 /* Entry exists, so forward if necessary */ 1277 if (rt != NULL) { 1278 error = ip_mdq(m, ifp, rt, -1); 1279 MFC_UNLOCK(); 1280 VIF_UNLOCK(); 1281 return error; 1282 } else { 1283 /* 1284 * If we don't have a route for packet's origin, 1285 * Make a copy of the packet & send message to routing daemon 1286 */ 1287 1288 struct mbuf *mb0; 1289 struct rtdetq *rte; 1290 u_long hash; 1291 int hlen = ip->ip_hl << 2; 1292 1293 MRTSTAT_INC(mrts_mfc_misses); 1294 MRTSTAT_INC(mrts_no_route); 1295 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1296 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1297 1298 /* 1299 * Allocate mbufs early so that we don't do extra work if we are 1300 * just going to fail anyway. Make sure to pullup the header so 1301 * that other people can't step on it. 1302 */ 1303 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1304 M_NOWAIT|M_ZERO); 1305 if (rte == NULL) { 1306 MFC_UNLOCK(); 1307 VIF_UNLOCK(); 1308 return ENOBUFS; 1309 } 1310 1311 mb0 = m_copypacket(m, M_NOWAIT); 1312 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1313 mb0 = m_pullup(mb0, hlen); 1314 if (mb0 == NULL) { 1315 free(rte, M_MRTABLE); 1316 MFC_UNLOCK(); 1317 VIF_UNLOCK(); 1318 return ENOBUFS; 1319 } 1320 1321 /* is there an upcall waiting for this flow ? */ 1322 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1323 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1324 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1325 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1326 !TAILQ_EMPTY(&rt->mfc_stall)) 1327 break; 1328 } 1329 1330 if (rt == NULL) { 1331 int i; 1332 struct igmpmsg *im; 1333 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1334 struct mbuf *mm; 1335 1336 /* 1337 * Locate the vifi for the incoming interface for this packet. 1338 * If none found, drop packet. 1339 */ 1340 for (vifi = 0; vifi < V_numvifs && 1341 V_viftable[vifi].v_ifp != ifp; vifi++) 1342 ; 1343 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1344 goto non_fatal; 1345 1346 /* no upcall, so make a new entry */ 1347 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1348 if (rt == NULL) 1349 goto fail; 1350 1351 /* Make a copy of the header to send to the user level process */ 1352 mm = m_copy(mb0, 0, hlen); 1353 if (mm == NULL) 1354 goto fail1; 1355 1356 /* 1357 * Send message to routing daemon to install 1358 * a route into the kernel table 1359 */ 1360 1361 im = mtod(mm, struct igmpmsg *); 1362 im->im_msgtype = IGMPMSG_NOCACHE; 1363 im->im_mbz = 0; 1364 im->im_vif = vifi; 1365 1366 MRTSTAT_INC(mrts_upcalls); 1367 1368 k_igmpsrc.sin_addr = ip->ip_src; 1369 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1370 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1371 MRTSTAT_INC(mrts_upq_sockfull); 1372 fail1: 1373 free(rt, M_MRTABLE); 1374 fail: 1375 free(rte, M_MRTABLE); 1376 m_freem(mb0); 1377 MFC_UNLOCK(); 1378 VIF_UNLOCK(); 1379 return ENOBUFS; 1380 } 1381 1382 /* insert new entry at head of hash chain */ 1383 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1384 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1385 rt->mfc_expire = UPCALL_EXPIRE; 1386 V_nexpire[hash]++; 1387 for (i = 0; i < V_numvifs; i++) { 1388 rt->mfc_ttls[i] = 0; 1389 rt->mfc_flags[i] = 0; 1390 } 1391 rt->mfc_parent = -1; 1392 1393 /* clear the RP address */ 1394 rt->mfc_rp.s_addr = INADDR_ANY; 1395 rt->mfc_bw_meter = NULL; 1396 1397 /* initialize pkt counters per src-grp */ 1398 rt->mfc_pkt_cnt = 0; 1399 rt->mfc_byte_cnt = 0; 1400 rt->mfc_wrong_if = 0; 1401 timevalclear(&rt->mfc_last_assert); 1402 1403 TAILQ_INIT(&rt->mfc_stall); 1404 rt->mfc_nstall = 0; 1405 1406 /* link into table */ 1407 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1408 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1409 rt->mfc_nstall++; 1410 1411 } else { 1412 /* determine if queue has overflowed */ 1413 if (rt->mfc_nstall > MAX_UPQ) { 1414 MRTSTAT_INC(mrts_upq_ovflw); 1415 non_fatal: 1416 free(rte, M_MRTABLE); 1417 m_freem(mb0); 1418 MFC_UNLOCK(); 1419 VIF_UNLOCK(); 1420 return (0); 1421 } 1422 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1423 rt->mfc_nstall++; 1424 } 1425 1426 rte->m = mb0; 1427 rte->ifp = ifp; 1428 1429 MFC_UNLOCK(); 1430 VIF_UNLOCK(); 1431 1432 return 0; 1433 } 1434 } 1435 1436 /* 1437 * Clean up the cache entry if upcall is not serviced 1438 */ 1439 static void 1440 expire_upcalls(void *arg) 1441 { 1442 int i; 1443 1444 CURVNET_SET((struct vnet *) arg); 1445 1446 MFC_LOCK(); 1447 1448 for (i = 0; i < mfchashsize; i++) { 1449 struct mfc *rt, *nrt; 1450 1451 if (V_nexpire[i] == 0) 1452 continue; 1453 1454 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 1455 nrt = LIST_NEXT(rt, mfc_hash); 1456 1457 if (TAILQ_EMPTY(&rt->mfc_stall)) 1458 continue; 1459 1460 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1461 continue; 1462 1463 /* 1464 * free the bw_meter entries 1465 */ 1466 while (rt->mfc_bw_meter != NULL) { 1467 struct bw_meter *x = rt->mfc_bw_meter; 1468 1469 rt->mfc_bw_meter = x->bm_mfc_next; 1470 free(x, M_BWMETER); 1471 } 1472 1473 MRTSTAT_INC(mrts_cache_cleanups); 1474 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1475 (u_long)ntohl(rt->mfc_origin.s_addr), 1476 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1477 1478 expire_mfc(rt); 1479 } 1480 } 1481 1482 MFC_UNLOCK(); 1483 1484 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1485 curvnet); 1486 1487 CURVNET_RESTORE(); 1488 } 1489 1490 /* 1491 * Packet forwarding routine once entry in the cache is made 1492 */ 1493 static int 1494 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1495 { 1496 struct ip *ip = mtod(m, struct ip *); 1497 vifi_t vifi; 1498 int plen = ntohs(ip->ip_len); 1499 1500 VIF_LOCK_ASSERT(); 1501 1502 /* 1503 * If xmt_vif is not -1, send on only the requested vif. 1504 * 1505 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1506 */ 1507 if (xmt_vif < V_numvifs) { 1508 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1509 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1510 else 1511 phyint_send(ip, V_viftable + xmt_vif, m); 1512 return 1; 1513 } 1514 1515 /* 1516 * Don't forward if it didn't arrive from the parent vif for its origin. 1517 */ 1518 vifi = rt->mfc_parent; 1519 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1520 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1521 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1522 MRTSTAT_INC(mrts_wrong_if); 1523 ++rt->mfc_wrong_if; 1524 /* 1525 * If we are doing PIM assert processing, send a message 1526 * to the routing daemon. 1527 * 1528 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1529 * can complete the SPT switch, regardless of the type 1530 * of the iif (broadcast media, GRE tunnel, etc). 1531 */ 1532 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1533 V_viftable[vifi].v_ifp) { 1534 1535 if (ifp == &V_multicast_register_if) 1536 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1537 1538 /* Get vifi for the incoming packet */ 1539 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1540 vifi++) 1541 ; 1542 if (vifi >= V_numvifs) 1543 return 0; /* The iif is not found: ignore the packet. */ 1544 1545 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1546 return 0; /* WRONGVIF disabled: ignore the packet */ 1547 1548 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1549 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1550 struct igmpmsg *im; 1551 int hlen = ip->ip_hl << 2; 1552 struct mbuf *mm = m_copy(m, 0, hlen); 1553 1554 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1555 mm = m_pullup(mm, hlen); 1556 if (mm == NULL) 1557 return ENOBUFS; 1558 1559 im = mtod(mm, struct igmpmsg *); 1560 im->im_msgtype = IGMPMSG_WRONGVIF; 1561 im->im_mbz = 0; 1562 im->im_vif = vifi; 1563 1564 MRTSTAT_INC(mrts_upcalls); 1565 1566 k_igmpsrc.sin_addr = im->im_src; 1567 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1568 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1569 MRTSTAT_INC(mrts_upq_sockfull); 1570 return ENOBUFS; 1571 } 1572 } 1573 } 1574 return 0; 1575 } 1576 1577 1578 /* If I sourced this packet, it counts as output, else it was input. */ 1579 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1580 V_viftable[vifi].v_pkt_out++; 1581 V_viftable[vifi].v_bytes_out += plen; 1582 } else { 1583 V_viftable[vifi].v_pkt_in++; 1584 V_viftable[vifi].v_bytes_in += plen; 1585 } 1586 rt->mfc_pkt_cnt++; 1587 rt->mfc_byte_cnt += plen; 1588 1589 /* 1590 * For each vif, decide if a copy of the packet should be forwarded. 1591 * Forward if: 1592 * - the ttl exceeds the vif's threshold 1593 * - there are group members downstream on interface 1594 */ 1595 for (vifi = 0; vifi < V_numvifs; vifi++) 1596 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1597 V_viftable[vifi].v_pkt_out++; 1598 V_viftable[vifi].v_bytes_out += plen; 1599 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1600 pim_register_send(ip, V_viftable + vifi, m, rt); 1601 else 1602 phyint_send(ip, V_viftable + vifi, m); 1603 } 1604 1605 /* 1606 * Perform upcall-related bw measuring. 1607 */ 1608 if (rt->mfc_bw_meter != NULL) { 1609 struct bw_meter *x; 1610 struct timeval now; 1611 1612 microtime(&now); 1613 MFC_LOCK_ASSERT(); 1614 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1615 bw_meter_receive_packet(x, plen, &now); 1616 } 1617 1618 return 0; 1619 } 1620 1621 /* 1622 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1623 */ 1624 static int 1625 X_legal_vif_num(int vif) 1626 { 1627 int ret; 1628 1629 ret = 0; 1630 if (vif < 0) 1631 return (ret); 1632 1633 VIF_LOCK(); 1634 if (vif < V_numvifs) 1635 ret = 1; 1636 VIF_UNLOCK(); 1637 1638 return (ret); 1639 } 1640 1641 /* 1642 * Return the local address used by this vif 1643 */ 1644 static u_long 1645 X_ip_mcast_src(int vifi) 1646 { 1647 in_addr_t addr; 1648 1649 addr = INADDR_ANY; 1650 if (vifi < 0) 1651 return (addr); 1652 1653 VIF_LOCK(); 1654 if (vifi < V_numvifs) 1655 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1656 VIF_UNLOCK(); 1657 1658 return (addr); 1659 } 1660 1661 static void 1662 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1663 { 1664 struct mbuf *mb_copy; 1665 int hlen = ip->ip_hl << 2; 1666 1667 VIF_LOCK_ASSERT(); 1668 1669 /* 1670 * Make a new reference to the packet; make sure that 1671 * the IP header is actually copied, not just referenced, 1672 * so that ip_output() only scribbles on the copy. 1673 */ 1674 mb_copy = m_copypacket(m, M_NOWAIT); 1675 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1676 mb_copy = m_pullup(mb_copy, hlen); 1677 if (mb_copy == NULL) 1678 return; 1679 1680 send_packet(vifp, mb_copy); 1681 } 1682 1683 static void 1684 send_packet(struct vif *vifp, struct mbuf *m) 1685 { 1686 struct ip_moptions imo; 1687 struct in_multi *imm[2]; 1688 int error; 1689 1690 VIF_LOCK_ASSERT(); 1691 1692 imo.imo_multicast_ifp = vifp->v_ifp; 1693 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1694 imo.imo_multicast_loop = 1; 1695 imo.imo_multicast_vif = -1; 1696 imo.imo_num_memberships = 0; 1697 imo.imo_max_memberships = 2; 1698 imo.imo_membership = &imm[0]; 1699 1700 /* 1701 * Re-entrancy should not be a problem here, because 1702 * the packets that we send out and are looped back at us 1703 * should get rejected because they appear to come from 1704 * the loopback interface, thus preventing looping. 1705 */ 1706 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1707 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1708 (ptrdiff_t)(vifp - V_viftable), error); 1709 } 1710 1711 /* 1712 * Stubs for old RSVP socket shim implementation. 1713 */ 1714 1715 static int 1716 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1717 { 1718 1719 return (EOPNOTSUPP); 1720 } 1721 1722 static void 1723 X_ip_rsvp_force_done(struct socket *so __unused) 1724 { 1725 1726 } 1727 1728 static void 1729 X_rsvp_input(struct mbuf *m, int off __unused) 1730 { 1731 1732 if (!V_rsvp_on) 1733 m_freem(m); 1734 } 1735 1736 /* 1737 * Code for bandwidth monitors 1738 */ 1739 1740 /* 1741 * Define common interface for timeval-related methods 1742 */ 1743 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1744 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1745 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1746 1747 static uint32_t 1748 compute_bw_meter_flags(struct bw_upcall *req) 1749 { 1750 uint32_t flags = 0; 1751 1752 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1753 flags |= BW_METER_UNIT_PACKETS; 1754 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1755 flags |= BW_METER_UNIT_BYTES; 1756 if (req->bu_flags & BW_UPCALL_GEQ) 1757 flags |= BW_METER_GEQ; 1758 if (req->bu_flags & BW_UPCALL_LEQ) 1759 flags |= BW_METER_LEQ; 1760 1761 return flags; 1762 } 1763 1764 /* 1765 * Add a bw_meter entry 1766 */ 1767 static int 1768 add_bw_upcall(struct bw_upcall *req) 1769 { 1770 struct mfc *mfc; 1771 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1772 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1773 struct timeval now; 1774 struct bw_meter *x; 1775 uint32_t flags; 1776 1777 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1778 return EOPNOTSUPP; 1779 1780 /* Test if the flags are valid */ 1781 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1782 return EINVAL; 1783 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1784 return EINVAL; 1785 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1786 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1787 return EINVAL; 1788 1789 /* Test if the threshold time interval is valid */ 1790 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1791 return EINVAL; 1792 1793 flags = compute_bw_meter_flags(req); 1794 1795 /* 1796 * Find if we have already same bw_meter entry 1797 */ 1798 MFC_LOCK(); 1799 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1800 if (mfc == NULL) { 1801 MFC_UNLOCK(); 1802 return EADDRNOTAVAIL; 1803 } 1804 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1805 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1806 &req->bu_threshold.b_time, ==)) && 1807 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1808 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1809 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1810 MFC_UNLOCK(); 1811 return 0; /* XXX Already installed */ 1812 } 1813 } 1814 1815 /* Allocate the new bw_meter entry */ 1816 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1817 if (x == NULL) { 1818 MFC_UNLOCK(); 1819 return ENOBUFS; 1820 } 1821 1822 /* Set the new bw_meter entry */ 1823 x->bm_threshold.b_time = req->bu_threshold.b_time; 1824 microtime(&now); 1825 x->bm_start_time = now; 1826 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1827 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1828 x->bm_measured.b_packets = 0; 1829 x->bm_measured.b_bytes = 0; 1830 x->bm_flags = flags; 1831 x->bm_time_next = NULL; 1832 x->bm_time_hash = BW_METER_BUCKETS; 1833 1834 /* Add the new bw_meter entry to the front of entries for this MFC */ 1835 x->bm_mfc = mfc; 1836 x->bm_mfc_next = mfc->mfc_bw_meter; 1837 mfc->mfc_bw_meter = x; 1838 schedule_bw_meter(x, &now); 1839 MFC_UNLOCK(); 1840 1841 return 0; 1842 } 1843 1844 static void 1845 free_bw_list(struct bw_meter *list) 1846 { 1847 while (list != NULL) { 1848 struct bw_meter *x = list; 1849 1850 list = list->bm_mfc_next; 1851 unschedule_bw_meter(x); 1852 free(x, M_BWMETER); 1853 } 1854 } 1855 1856 /* 1857 * Delete one or multiple bw_meter entries 1858 */ 1859 static int 1860 del_bw_upcall(struct bw_upcall *req) 1861 { 1862 struct mfc *mfc; 1863 struct bw_meter *x; 1864 1865 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1866 return EOPNOTSUPP; 1867 1868 MFC_LOCK(); 1869 1870 /* Find the corresponding MFC entry */ 1871 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1872 if (mfc == NULL) { 1873 MFC_UNLOCK(); 1874 return EADDRNOTAVAIL; 1875 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1876 /* 1877 * Delete all bw_meter entries for this mfc 1878 */ 1879 struct bw_meter *list; 1880 1881 list = mfc->mfc_bw_meter; 1882 mfc->mfc_bw_meter = NULL; 1883 free_bw_list(list); 1884 MFC_UNLOCK(); 1885 return 0; 1886 } else { /* Delete a single bw_meter entry */ 1887 struct bw_meter *prev; 1888 uint32_t flags = 0; 1889 1890 flags = compute_bw_meter_flags(req); 1891 1892 /* Find the bw_meter entry to delete */ 1893 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1894 prev = x, x = x->bm_mfc_next) { 1895 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1896 &req->bu_threshold.b_time, ==)) && 1897 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1898 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1899 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1900 break; 1901 } 1902 if (x != NULL) { /* Delete entry from the list for this MFC */ 1903 if (prev != NULL) 1904 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1905 else 1906 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1907 1908 unschedule_bw_meter(x); 1909 MFC_UNLOCK(); 1910 /* Free the bw_meter entry */ 1911 free(x, M_BWMETER); 1912 return 0; 1913 } else { 1914 MFC_UNLOCK(); 1915 return EINVAL; 1916 } 1917 } 1918 /* NOTREACHED */ 1919 } 1920 1921 /* 1922 * Perform bandwidth measurement processing that may result in an upcall 1923 */ 1924 static void 1925 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1926 { 1927 struct timeval delta; 1928 1929 MFC_LOCK_ASSERT(); 1930 1931 delta = *nowp; 1932 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1933 1934 if (x->bm_flags & BW_METER_GEQ) { 1935 /* 1936 * Processing for ">=" type of bw_meter entry 1937 */ 1938 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1939 /* Reset the bw_meter entry */ 1940 x->bm_start_time = *nowp; 1941 x->bm_measured.b_packets = 0; 1942 x->bm_measured.b_bytes = 0; 1943 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1944 } 1945 1946 /* Record that a packet is received */ 1947 x->bm_measured.b_packets++; 1948 x->bm_measured.b_bytes += plen; 1949 1950 /* 1951 * Test if we should deliver an upcall 1952 */ 1953 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1954 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1955 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1956 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1957 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1958 /* Prepare an upcall for delivery */ 1959 bw_meter_prepare_upcall(x, nowp); 1960 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1961 } 1962 } 1963 } else if (x->bm_flags & BW_METER_LEQ) { 1964 /* 1965 * Processing for "<=" type of bw_meter entry 1966 */ 1967 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1968 /* 1969 * We are behind time with the multicast forwarding table 1970 * scanning for "<=" type of bw_meter entries, so test now 1971 * if we should deliver an upcall. 1972 */ 1973 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1974 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1975 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1976 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1977 /* Prepare an upcall for delivery */ 1978 bw_meter_prepare_upcall(x, nowp); 1979 } 1980 /* Reschedule the bw_meter entry */ 1981 unschedule_bw_meter(x); 1982 schedule_bw_meter(x, nowp); 1983 } 1984 1985 /* Record that a packet is received */ 1986 x->bm_measured.b_packets++; 1987 x->bm_measured.b_bytes += plen; 1988 1989 /* 1990 * Test if we should restart the measuring interval 1991 */ 1992 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1993 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1994 (x->bm_flags & BW_METER_UNIT_BYTES && 1995 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1996 /* Don't restart the measuring interval */ 1997 } else { 1998 /* Do restart the measuring interval */ 1999 /* 2000 * XXX: note that we don't unschedule and schedule, because this 2001 * might be too much overhead per packet. Instead, when we process 2002 * all entries for a given timer hash bin, we check whether it is 2003 * really a timeout. If not, we reschedule at that time. 2004 */ 2005 x->bm_start_time = *nowp; 2006 x->bm_measured.b_packets = 0; 2007 x->bm_measured.b_bytes = 0; 2008 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2009 } 2010 } 2011 } 2012 2013 /* 2014 * Prepare a bandwidth-related upcall 2015 */ 2016 static void 2017 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2018 { 2019 struct timeval delta; 2020 struct bw_upcall *u; 2021 2022 MFC_LOCK_ASSERT(); 2023 2024 /* 2025 * Compute the measured time interval 2026 */ 2027 delta = *nowp; 2028 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2029 2030 /* 2031 * If there are too many pending upcalls, deliver them now 2032 */ 2033 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2034 bw_upcalls_send(); 2035 2036 /* 2037 * Set the bw_upcall entry 2038 */ 2039 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2040 u->bu_src = x->bm_mfc->mfc_origin; 2041 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2042 u->bu_threshold.b_time = x->bm_threshold.b_time; 2043 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2044 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2045 u->bu_measured.b_time = delta; 2046 u->bu_measured.b_packets = x->bm_measured.b_packets; 2047 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2048 u->bu_flags = 0; 2049 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2050 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2051 if (x->bm_flags & BW_METER_UNIT_BYTES) 2052 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2053 if (x->bm_flags & BW_METER_GEQ) 2054 u->bu_flags |= BW_UPCALL_GEQ; 2055 if (x->bm_flags & BW_METER_LEQ) 2056 u->bu_flags |= BW_UPCALL_LEQ; 2057 } 2058 2059 /* 2060 * Send the pending bandwidth-related upcalls 2061 */ 2062 static void 2063 bw_upcalls_send(void) 2064 { 2065 struct mbuf *m; 2066 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2067 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2068 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2069 0, /* unused2 */ 2070 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2071 0, /* im_mbz */ 2072 0, /* im_vif */ 2073 0, /* unused3 */ 2074 { 0 }, /* im_src */ 2075 { 0 } }; /* im_dst */ 2076 2077 MFC_LOCK_ASSERT(); 2078 2079 if (V_bw_upcalls_n == 0) 2080 return; /* No pending upcalls */ 2081 2082 V_bw_upcalls_n = 0; 2083 2084 /* 2085 * Allocate a new mbuf, initialize it with the header and 2086 * the payload for the pending calls. 2087 */ 2088 m = m_gethdr(M_NOWAIT, MT_DATA); 2089 if (m == NULL) { 2090 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2091 return; 2092 } 2093 2094 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2095 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2096 2097 /* 2098 * Send the upcalls 2099 * XXX do we need to set the address in k_igmpsrc ? 2100 */ 2101 MRTSTAT_INC(mrts_upcalls); 2102 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2103 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2104 MRTSTAT_INC(mrts_upq_sockfull); 2105 } 2106 } 2107 2108 /* 2109 * Compute the timeout hash value for the bw_meter entries 2110 */ 2111 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2112 do { \ 2113 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2114 \ 2115 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2116 (hash) = next_timeval.tv_sec; \ 2117 if (next_timeval.tv_usec) \ 2118 (hash)++; /* XXX: make sure we don't timeout early */ \ 2119 (hash) %= BW_METER_BUCKETS; \ 2120 } while (0) 2121 2122 /* 2123 * Schedule a timer to process periodically bw_meter entry of type "<=" 2124 * by linking the entry in the proper hash bucket. 2125 */ 2126 static void 2127 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2128 { 2129 int time_hash; 2130 2131 MFC_LOCK_ASSERT(); 2132 2133 if (!(x->bm_flags & BW_METER_LEQ)) 2134 return; /* XXX: we schedule timers only for "<=" entries */ 2135 2136 /* 2137 * Reset the bw_meter entry 2138 */ 2139 x->bm_start_time = *nowp; 2140 x->bm_measured.b_packets = 0; 2141 x->bm_measured.b_bytes = 0; 2142 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2143 2144 /* 2145 * Compute the timeout hash value and insert the entry 2146 */ 2147 BW_METER_TIMEHASH(x, time_hash); 2148 x->bm_time_next = V_bw_meter_timers[time_hash]; 2149 V_bw_meter_timers[time_hash] = x; 2150 x->bm_time_hash = time_hash; 2151 } 2152 2153 /* 2154 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2155 * by removing the entry from the proper hash bucket. 2156 */ 2157 static void 2158 unschedule_bw_meter(struct bw_meter *x) 2159 { 2160 int time_hash; 2161 struct bw_meter *prev, *tmp; 2162 2163 MFC_LOCK_ASSERT(); 2164 2165 if (!(x->bm_flags & BW_METER_LEQ)) 2166 return; /* XXX: we schedule timers only for "<=" entries */ 2167 2168 /* 2169 * Compute the timeout hash value and delete the entry 2170 */ 2171 time_hash = x->bm_time_hash; 2172 if (time_hash >= BW_METER_BUCKETS) 2173 return; /* Entry was not scheduled */ 2174 2175 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2176 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2177 if (tmp == x) 2178 break; 2179 2180 if (tmp == NULL) 2181 panic("unschedule_bw_meter: bw_meter entry not found"); 2182 2183 if (prev != NULL) 2184 prev->bm_time_next = x->bm_time_next; 2185 else 2186 V_bw_meter_timers[time_hash] = x->bm_time_next; 2187 2188 x->bm_time_next = NULL; 2189 x->bm_time_hash = BW_METER_BUCKETS; 2190 } 2191 2192 2193 /* 2194 * Process all "<=" type of bw_meter that should be processed now, 2195 * and for each entry prepare an upcall if necessary. Each processed 2196 * entry is rescheduled again for the (periodic) processing. 2197 * 2198 * This is run periodically (once per second normally). On each round, 2199 * all the potentially matching entries are in the hash slot that we are 2200 * looking at. 2201 */ 2202 static void 2203 bw_meter_process() 2204 { 2205 uint32_t loops; 2206 int i; 2207 struct timeval now, process_endtime; 2208 2209 microtime(&now); 2210 if (V_last_tv_sec == now.tv_sec) 2211 return; /* nothing to do */ 2212 2213 loops = now.tv_sec - V_last_tv_sec; 2214 V_last_tv_sec = now.tv_sec; 2215 if (loops > BW_METER_BUCKETS) 2216 loops = BW_METER_BUCKETS; 2217 2218 MFC_LOCK(); 2219 /* 2220 * Process all bins of bw_meter entries from the one after the last 2221 * processed to the current one. On entry, i points to the last bucket 2222 * visited, so we need to increment i at the beginning of the loop. 2223 */ 2224 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2225 struct bw_meter *x, *tmp_list; 2226 2227 if (++i >= BW_METER_BUCKETS) 2228 i = 0; 2229 2230 /* Disconnect the list of bw_meter entries from the bin */ 2231 tmp_list = V_bw_meter_timers[i]; 2232 V_bw_meter_timers[i] = NULL; 2233 2234 /* Process the list of bw_meter entries */ 2235 while (tmp_list != NULL) { 2236 x = tmp_list; 2237 tmp_list = tmp_list->bm_time_next; 2238 2239 /* Test if the time interval is over */ 2240 process_endtime = x->bm_start_time; 2241 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2242 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2243 /* Not yet: reschedule, but don't reset */ 2244 int time_hash; 2245 2246 BW_METER_TIMEHASH(x, time_hash); 2247 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2248 /* 2249 * XXX: somehow the bin processing is a bit ahead of time. 2250 * Put the entry in the next bin. 2251 */ 2252 if (++time_hash >= BW_METER_BUCKETS) 2253 time_hash = 0; 2254 } 2255 x->bm_time_next = V_bw_meter_timers[time_hash]; 2256 V_bw_meter_timers[time_hash] = x; 2257 x->bm_time_hash = time_hash; 2258 2259 continue; 2260 } 2261 2262 /* 2263 * Test if we should deliver an upcall 2264 */ 2265 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2266 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2267 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2268 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2269 /* Prepare an upcall for delivery */ 2270 bw_meter_prepare_upcall(x, &now); 2271 } 2272 2273 /* 2274 * Reschedule for next processing 2275 */ 2276 schedule_bw_meter(x, &now); 2277 } 2278 } 2279 2280 /* Send all upcalls that are pending delivery */ 2281 bw_upcalls_send(); 2282 2283 MFC_UNLOCK(); 2284 } 2285 2286 /* 2287 * A periodic function for sending all upcalls that are pending delivery 2288 */ 2289 static void 2290 expire_bw_upcalls_send(void *arg) 2291 { 2292 CURVNET_SET((struct vnet *) arg); 2293 2294 MFC_LOCK(); 2295 bw_upcalls_send(); 2296 MFC_UNLOCK(); 2297 2298 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2299 curvnet); 2300 CURVNET_RESTORE(); 2301 } 2302 2303 /* 2304 * A periodic function for periodic scanning of the multicast forwarding 2305 * table for processing all "<=" bw_meter entries. 2306 */ 2307 static void 2308 expire_bw_meter_process(void *arg) 2309 { 2310 CURVNET_SET((struct vnet *) arg); 2311 2312 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2313 bw_meter_process(); 2314 2315 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2316 curvnet); 2317 CURVNET_RESTORE(); 2318 } 2319 2320 /* 2321 * End of bandwidth monitoring code 2322 */ 2323 2324 /* 2325 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2326 * 2327 */ 2328 static int 2329 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2330 struct mfc *rt) 2331 { 2332 struct mbuf *mb_copy, *mm; 2333 2334 /* 2335 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2336 * rendezvous point was unspecified, and we were told not to. 2337 */ 2338 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2339 in_nullhost(rt->mfc_rp)) 2340 return 0; 2341 2342 mb_copy = pim_register_prepare(ip, m); 2343 if (mb_copy == NULL) 2344 return ENOBUFS; 2345 2346 /* 2347 * Send all the fragments. Note that the mbuf for each fragment 2348 * is freed by the sending machinery. 2349 */ 2350 for (mm = mb_copy; mm; mm = mb_copy) { 2351 mb_copy = mm->m_nextpkt; 2352 mm->m_nextpkt = 0; 2353 mm = m_pullup(mm, sizeof(struct ip)); 2354 if (mm != NULL) { 2355 ip = mtod(mm, struct ip *); 2356 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2357 pim_register_send_rp(ip, vifp, mm, rt); 2358 } else { 2359 pim_register_send_upcall(ip, vifp, mm, rt); 2360 } 2361 } 2362 } 2363 2364 return 0; 2365 } 2366 2367 /* 2368 * Return a copy of the data packet that is ready for PIM Register 2369 * encapsulation. 2370 * XXX: Note that in the returned copy the IP header is a valid one. 2371 */ 2372 static struct mbuf * 2373 pim_register_prepare(struct ip *ip, struct mbuf *m) 2374 { 2375 struct mbuf *mb_copy = NULL; 2376 int mtu; 2377 2378 /* Take care of delayed checksums */ 2379 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2380 in_delayed_cksum(m); 2381 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2382 } 2383 2384 /* 2385 * Copy the old packet & pullup its IP header into the 2386 * new mbuf so we can modify it. 2387 */ 2388 mb_copy = m_copypacket(m, M_NOWAIT); 2389 if (mb_copy == NULL) 2390 return NULL; 2391 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2392 if (mb_copy == NULL) 2393 return NULL; 2394 2395 /* take care of the TTL */ 2396 ip = mtod(mb_copy, struct ip *); 2397 --ip->ip_ttl; 2398 2399 /* Compute the MTU after the PIM Register encapsulation */ 2400 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2401 2402 if (ntohs(ip->ip_len) <= mtu) { 2403 /* Turn the IP header into a valid one */ 2404 ip->ip_sum = 0; 2405 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2406 } else { 2407 /* Fragment the packet */ 2408 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2409 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2410 m_freem(mb_copy); 2411 return NULL; 2412 } 2413 } 2414 return mb_copy; 2415 } 2416 2417 /* 2418 * Send an upcall with the data packet to the user-level process. 2419 */ 2420 static int 2421 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2422 struct mbuf *mb_copy, struct mfc *rt) 2423 { 2424 struct mbuf *mb_first; 2425 int len = ntohs(ip->ip_len); 2426 struct igmpmsg *im; 2427 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2428 2429 VIF_LOCK_ASSERT(); 2430 2431 /* 2432 * Add a new mbuf with an upcall header 2433 */ 2434 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2435 if (mb_first == NULL) { 2436 m_freem(mb_copy); 2437 return ENOBUFS; 2438 } 2439 mb_first->m_data += max_linkhdr; 2440 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2441 mb_first->m_len = sizeof(struct igmpmsg); 2442 mb_first->m_next = mb_copy; 2443 2444 /* Send message to routing daemon */ 2445 im = mtod(mb_first, struct igmpmsg *); 2446 im->im_msgtype = IGMPMSG_WHOLEPKT; 2447 im->im_mbz = 0; 2448 im->im_vif = vifp - V_viftable; 2449 im->im_src = ip->ip_src; 2450 im->im_dst = ip->ip_dst; 2451 2452 k_igmpsrc.sin_addr = ip->ip_src; 2453 2454 MRTSTAT_INC(mrts_upcalls); 2455 2456 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2457 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2458 MRTSTAT_INC(mrts_upq_sockfull); 2459 return ENOBUFS; 2460 } 2461 2462 /* Keep statistics */ 2463 PIMSTAT_INC(pims_snd_registers_msgs); 2464 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2465 2466 return 0; 2467 } 2468 2469 /* 2470 * Encapsulate the data packet in PIM Register message and send it to the RP. 2471 */ 2472 static int 2473 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2474 struct mfc *rt) 2475 { 2476 struct mbuf *mb_first; 2477 struct ip *ip_outer; 2478 struct pim_encap_pimhdr *pimhdr; 2479 int len = ntohs(ip->ip_len); 2480 vifi_t vifi = rt->mfc_parent; 2481 2482 VIF_LOCK_ASSERT(); 2483 2484 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2485 m_freem(mb_copy); 2486 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2487 } 2488 2489 /* 2490 * Add a new mbuf with the encapsulating header 2491 */ 2492 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2493 if (mb_first == NULL) { 2494 m_freem(mb_copy); 2495 return ENOBUFS; 2496 } 2497 mb_first->m_data += max_linkhdr; 2498 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2499 mb_first->m_next = mb_copy; 2500 2501 mb_first->m_pkthdr.len = len + mb_first->m_len; 2502 2503 /* 2504 * Fill in the encapsulating IP and PIM header 2505 */ 2506 ip_outer = mtod(mb_first, struct ip *); 2507 *ip_outer = pim_encap_iphdr; 2508 ip_outer->ip_id = ip_newid(); 2509 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2510 sizeof(pim_encap_pimhdr)); 2511 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2512 ip_outer->ip_dst = rt->mfc_rp; 2513 /* 2514 * Copy the inner header TOS to the outer header, and take care of the 2515 * IP_DF bit. 2516 */ 2517 ip_outer->ip_tos = ip->ip_tos; 2518 if (ip->ip_off & htons(IP_DF)) 2519 ip_outer->ip_off |= htons(IP_DF); 2520 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2521 + sizeof(pim_encap_iphdr)); 2522 *pimhdr = pim_encap_pimhdr; 2523 /* If the iif crosses a border, set the Border-bit */ 2524 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2525 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2526 2527 mb_first->m_data += sizeof(pim_encap_iphdr); 2528 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2529 mb_first->m_data -= sizeof(pim_encap_iphdr); 2530 2531 send_packet(vifp, mb_first); 2532 2533 /* Keep statistics */ 2534 PIMSTAT_INC(pims_snd_registers_msgs); 2535 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * pim_encapcheck() is called by the encap4_input() path at runtime to 2542 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2543 * into the kernel. 2544 */ 2545 static int 2546 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2547 { 2548 2549 #ifdef DIAGNOSTIC 2550 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2551 #endif 2552 if (proto != IPPROTO_PIM) 2553 return 0; /* not for us; reject the datagram. */ 2554 2555 return 64; /* claim the datagram. */ 2556 } 2557 2558 /* 2559 * PIM-SMv2 and PIM-DM messages processing. 2560 * Receives and verifies the PIM control messages, and passes them 2561 * up to the listening socket, using rip_input(). 2562 * The only message with special processing is the PIM_REGISTER message 2563 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2564 * is passed to if_simloop(). 2565 */ 2566 void 2567 pim_input(struct mbuf *m, int off) 2568 { 2569 struct ip *ip = mtod(m, struct ip *); 2570 struct pim *pim; 2571 int minlen; 2572 int datalen = ntohs(ip->ip_len); 2573 int ip_tos; 2574 int iphlen = off; 2575 2576 /* Keep statistics */ 2577 PIMSTAT_INC(pims_rcv_total_msgs); 2578 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2579 2580 /* 2581 * Validate lengths 2582 */ 2583 if (datalen < PIM_MINLEN) { 2584 PIMSTAT_INC(pims_rcv_tooshort); 2585 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2586 __func__, datalen, inet_ntoa(ip->ip_src)); 2587 m_freem(m); 2588 return; 2589 } 2590 2591 /* 2592 * If the packet is at least as big as a REGISTER, go agead 2593 * and grab the PIM REGISTER header size, to avoid another 2594 * possible m_pullup() later. 2595 * 2596 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2597 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2598 */ 2599 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2600 /* 2601 * Get the IP and PIM headers in contiguous memory, and 2602 * possibly the PIM REGISTER header. 2603 */ 2604 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2605 (m = m_pullup(m, minlen)) == 0) { 2606 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2607 return; 2608 } 2609 2610 /* m_pullup() may have given us a new mbuf so reset ip. */ 2611 ip = mtod(m, struct ip *); 2612 ip_tos = ip->ip_tos; 2613 2614 /* adjust mbuf to point to the PIM header */ 2615 m->m_data += iphlen; 2616 m->m_len -= iphlen; 2617 pim = mtod(m, struct pim *); 2618 2619 /* 2620 * Validate checksum. If PIM REGISTER, exclude the data packet. 2621 * 2622 * XXX: some older PIMv2 implementations don't make this distinction, 2623 * so for compatibility reason perform the checksum over part of the 2624 * message, and if error, then over the whole message. 2625 */ 2626 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2627 /* do nothing, checksum okay */ 2628 } else if (in_cksum(m, datalen)) { 2629 PIMSTAT_INC(pims_rcv_badsum); 2630 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2631 m_freem(m); 2632 return; 2633 } 2634 2635 /* PIM version check */ 2636 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2637 PIMSTAT_INC(pims_rcv_badversion); 2638 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2639 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2640 m_freem(m); 2641 return; 2642 } 2643 2644 /* restore mbuf back to the outer IP */ 2645 m->m_data -= iphlen; 2646 m->m_len += iphlen; 2647 2648 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2649 /* 2650 * Since this is a REGISTER, we'll make a copy of the register 2651 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2652 * routing daemon. 2653 */ 2654 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2655 struct mbuf *mcp; 2656 struct ip *encap_ip; 2657 u_int32_t *reghdr; 2658 struct ifnet *vifp; 2659 2660 VIF_LOCK(); 2661 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2662 VIF_UNLOCK(); 2663 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2664 (int)V_reg_vif_num); 2665 m_freem(m); 2666 return; 2667 } 2668 /* XXX need refcnt? */ 2669 vifp = V_viftable[V_reg_vif_num].v_ifp; 2670 VIF_UNLOCK(); 2671 2672 /* 2673 * Validate length 2674 */ 2675 if (datalen < PIM_REG_MINLEN) { 2676 PIMSTAT_INC(pims_rcv_tooshort); 2677 PIMSTAT_INC(pims_rcv_badregisters); 2678 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2679 m_freem(m); 2680 return; 2681 } 2682 2683 reghdr = (u_int32_t *)(pim + 1); 2684 encap_ip = (struct ip *)(reghdr + 1); 2685 2686 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2687 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2688 2689 /* verify the version number of the inner packet */ 2690 if (encap_ip->ip_v != IPVERSION) { 2691 PIMSTAT_INC(pims_rcv_badregisters); 2692 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2693 m_freem(m); 2694 return; 2695 } 2696 2697 /* verify the inner packet is destined to a mcast group */ 2698 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2699 PIMSTAT_INC(pims_rcv_badregisters); 2700 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2701 inet_ntoa(encap_ip->ip_dst)); 2702 m_freem(m); 2703 return; 2704 } 2705 2706 /* If a NULL_REGISTER, pass it to the daemon */ 2707 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2708 goto pim_input_to_daemon; 2709 2710 /* 2711 * Copy the TOS from the outer IP header to the inner IP header. 2712 */ 2713 if (encap_ip->ip_tos != ip_tos) { 2714 /* Outer TOS -> inner TOS */ 2715 encap_ip->ip_tos = ip_tos; 2716 /* Recompute the inner header checksum. Sigh... */ 2717 2718 /* adjust mbuf to point to the inner IP header */ 2719 m->m_data += (iphlen + PIM_MINLEN); 2720 m->m_len -= (iphlen + PIM_MINLEN); 2721 2722 encap_ip->ip_sum = 0; 2723 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2724 2725 /* restore mbuf to point back to the outer IP header */ 2726 m->m_data -= (iphlen + PIM_MINLEN); 2727 m->m_len += (iphlen + PIM_MINLEN); 2728 } 2729 2730 /* 2731 * Decapsulate the inner IP packet and loopback to forward it 2732 * as a normal multicast packet. Also, make a copy of the 2733 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2734 * to pass to the daemon later, so it can take the appropriate 2735 * actions (e.g., send back PIM_REGISTER_STOP). 2736 * XXX: here m->m_data points to the outer IP header. 2737 */ 2738 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2739 if (mcp == NULL) { 2740 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2741 m_freem(m); 2742 return; 2743 } 2744 2745 /* Keep statistics */ 2746 /* XXX: registers_bytes include only the encap. mcast pkt */ 2747 PIMSTAT_INC(pims_rcv_registers_msgs); 2748 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2749 2750 /* 2751 * forward the inner ip packet; point m_data at the inner ip. 2752 */ 2753 m_adj(m, iphlen + PIM_MINLEN); 2754 2755 CTR4(KTR_IPMF, 2756 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2757 __func__, 2758 (u_long)ntohl(encap_ip->ip_src.s_addr), 2759 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2760 (int)V_reg_vif_num); 2761 2762 /* NB: vifp was collected above; can it change on us? */ 2763 if_simloop(vifp, m, dst.sin_family, 0); 2764 2765 /* prepare the register head to send to the mrouting daemon */ 2766 m = mcp; 2767 } 2768 2769 pim_input_to_daemon: 2770 /* 2771 * Pass the PIM message up to the daemon; if it is a Register message, 2772 * pass the 'head' only up to the daemon. This includes the 2773 * outer IP header, PIM header, PIM-Register header and the 2774 * inner IP header. 2775 * XXX: the outer IP header pkt size of a Register is not adjust to 2776 * reflect the fact that the inner multicast data is truncated. 2777 */ 2778 rip_input(m, iphlen); 2779 2780 return; 2781 } 2782 2783 static int 2784 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2785 { 2786 struct mfc *rt; 2787 int error, i; 2788 2789 if (req->newptr) 2790 return (EPERM); 2791 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2792 return (0); 2793 error = sysctl_wire_old_buffer(req, 0); 2794 if (error) 2795 return (error); 2796 2797 MFC_LOCK(); 2798 for (i = 0; i < mfchashsize; i++) { 2799 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2800 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2801 if (error) 2802 goto out_locked; 2803 } 2804 } 2805 out_locked: 2806 MFC_UNLOCK(); 2807 return (error); 2808 } 2809 2810 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2811 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2812 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2813 2814 static void 2815 vnet_mroute_init(const void *unused __unused) 2816 { 2817 2818 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2819 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2820 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE); 2821 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE); 2822 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE); 2823 } 2824 2825 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init, 2826 NULL); 2827 2828 static void 2829 vnet_mroute_uninit(const void *unused __unused) 2830 { 2831 2832 FREE(V_nexpire, M_MRTABLE); 2833 V_nexpire = NULL; 2834 } 2835 2836 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 2837 vnet_mroute_uninit, NULL); 2838 2839 static int 2840 ip_mroute_modevent(module_t mod, int type, void *unused) 2841 { 2842 2843 switch (type) { 2844 case MOD_LOAD: 2845 MROUTER_LOCK_INIT(); 2846 2847 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2848 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2849 if (if_detach_event_tag == NULL) { 2850 printf("ip_mroute: unable to register " 2851 "ifnet_departure_event handler\n"); 2852 MROUTER_LOCK_DESTROY(); 2853 return (EINVAL); 2854 } 2855 2856 MFC_LOCK_INIT(); 2857 VIF_LOCK_INIT(); 2858 2859 mfchashsize = MFCHASHSIZE; 2860 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2861 !powerof2(mfchashsize)) { 2862 printf("WARNING: %s not a power of 2; using default\n", 2863 "net.inet.ip.mfchashsize"); 2864 mfchashsize = MFCHASHSIZE; 2865 } 2866 2867 pim_squelch_wholepkt = 0; 2868 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2869 &pim_squelch_wholepkt); 2870 2871 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2872 pim_encapcheck, &in_pim_protosw, NULL); 2873 if (pim_encap_cookie == NULL) { 2874 printf("ip_mroute: unable to attach pim encap\n"); 2875 VIF_LOCK_DESTROY(); 2876 MFC_LOCK_DESTROY(); 2877 MROUTER_LOCK_DESTROY(); 2878 return (EINVAL); 2879 } 2880 2881 ip_mcast_src = X_ip_mcast_src; 2882 ip_mforward = X_ip_mforward; 2883 ip_mrouter_done = X_ip_mrouter_done; 2884 ip_mrouter_get = X_ip_mrouter_get; 2885 ip_mrouter_set = X_ip_mrouter_set; 2886 2887 ip_rsvp_force_done = X_ip_rsvp_force_done; 2888 ip_rsvp_vif = X_ip_rsvp_vif; 2889 2890 legal_vif_num = X_legal_vif_num; 2891 mrt_ioctl = X_mrt_ioctl; 2892 rsvp_input_p = X_rsvp_input; 2893 break; 2894 2895 case MOD_UNLOAD: 2896 /* 2897 * Typically module unload happens after the user-level 2898 * process has shutdown the kernel services (the check 2899 * below insures someone can't just yank the module out 2900 * from under a running process). But if the module is 2901 * just loaded and then unloaded w/o starting up a user 2902 * process we still need to cleanup. 2903 */ 2904 MROUTER_LOCK(); 2905 if (ip_mrouter_cnt != 0) { 2906 MROUTER_UNLOCK(); 2907 return (EINVAL); 2908 } 2909 ip_mrouter_unloading = 1; 2910 MROUTER_UNLOCK(); 2911 2912 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2913 2914 if (pim_encap_cookie) { 2915 encap_detach(pim_encap_cookie); 2916 pim_encap_cookie = NULL; 2917 } 2918 2919 ip_mcast_src = NULL; 2920 ip_mforward = NULL; 2921 ip_mrouter_done = NULL; 2922 ip_mrouter_get = NULL; 2923 ip_mrouter_set = NULL; 2924 2925 ip_rsvp_force_done = NULL; 2926 ip_rsvp_vif = NULL; 2927 2928 legal_vif_num = NULL; 2929 mrt_ioctl = NULL; 2930 rsvp_input_p = NULL; 2931 2932 VIF_LOCK_DESTROY(); 2933 MFC_LOCK_DESTROY(); 2934 MROUTER_LOCK_DESTROY(); 2935 break; 2936 2937 default: 2938 return EOPNOTSUPP; 2939 } 2940 return 0; 2941 } 2942 2943 static moduledata_t ip_mroutemod = { 2944 "ip_mroute", 2945 ip_mroute_modevent, 2946 0 2947 }; 2948 2949 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE); 2950