1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 #include <sys/cdefs.h> 57 __FBSDID("$FreeBSD$"); 58 59 #include "opt_inet.h" 60 #include "opt_inet6.h" 61 #include "opt_mac.h" 62 #include "opt_mrouting.h" 63 64 #define _PIM_VT 1 65 66 #include <sys/param.h> 67 #include <sys/kernel.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/module.h> 72 #include <sys/priv.h> 73 #include <sys/protosw.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/sx.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/systm.h> 82 #include <sys/time.h> 83 #include <sys/vimage.h> 84 #include <net/if.h> 85 #include <net/netisr.h> 86 #include <net/route.h> 87 #include <netinet/in.h> 88 #include <netinet/igmp.h> 89 #include <netinet/in_systm.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip.h> 92 #include <netinet/ip_encap.h> 93 #include <netinet/ip_mroute.h> 94 #include <netinet/ip_var.h> 95 #include <netinet/ip_options.h> 96 #include <netinet/pim.h> 97 #include <netinet/pim_var.h> 98 #include <netinet/udp.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet6/ip6_mroute.h> 103 #include <netinet6/ip6_var.h> 104 #endif 105 #include <machine/in_cksum.h> 106 107 #include <security/mac/mac_framework.h> 108 109 /* 110 * Control debugging code for rsvp and multicast routing code. 111 * Can only set them with the debugger. 112 */ 113 static u_int rsvpdebug; /* non-zero enables debugging */ 114 115 static u_int mrtdebug; /* any set of the flags below */ 116 #define DEBUG_MFC 0x02 117 #define DEBUG_FORWARD 0x04 118 #define DEBUG_EXPIRE 0x08 119 #define DEBUG_XMIT 0x10 120 #define DEBUG_PIM 0x20 121 122 #define VIFI_INVALID ((vifi_t) -1) 123 124 #define M_HASCL(m) ((m)->m_flags & M_EXT) 125 126 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); 127 128 /* 129 * Locking. We use two locks: one for the virtual interface table and 130 * one for the forwarding table. These locks may be nested in which case 131 * the VIF lock must always be taken first. Note that each lock is used 132 * to cover not only the specific data structure but also related data 133 * structures. It may be better to add more fine-grained locking later; 134 * it's not clear how performance-critical this code is. 135 * 136 * XXX: This module could particularly benefit from being cleaned 137 * up to use the <sys/queue.h> macros. 138 * 139 */ 140 141 static struct mrtstat mrtstat; 142 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 143 &mrtstat, mrtstat, 144 "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)"); 145 146 static struct mfc *mfctable[MFCTBLSIZ]; 147 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 148 &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]", 149 "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)"); 150 151 static struct mtx mrouter_mtx; 152 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 153 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 154 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 155 #define MROUTER_LOCK_INIT() \ 156 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 157 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 158 159 static struct mtx mfc_mtx; 160 #define MFC_LOCK() mtx_lock(&mfc_mtx) 161 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 162 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 163 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF) 164 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 165 166 static struct vif viftable[MAXVIFS]; 167 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 168 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 169 "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 170 171 static struct mtx vif_mtx; 172 #define VIF_LOCK() mtx_lock(&vif_mtx) 173 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 174 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 175 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF) 176 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 177 178 static u_char nexpire[MFCTBLSIZ]; 179 180 static eventhandler_tag if_detach_event_tag = NULL; 181 182 static struct callout expire_upcalls_ch; 183 184 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 185 #define UPCALL_EXPIRE 6 /* number of timeouts */ 186 187 #define ENCAP_TTL 64 188 189 /* 190 * Bandwidth meter variables and constants 191 */ 192 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 193 /* 194 * Pending timeouts are stored in a hash table, the key being the 195 * expiration time. Periodically, the entries are analysed and processed. 196 */ 197 #define BW_METER_BUCKETS 1024 198 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 199 static struct callout bw_meter_ch; 200 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 201 202 /* 203 * Pending upcalls are stored in a vector which is flushed when 204 * full, or periodically 205 */ 206 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 207 static u_int bw_upcalls_n; /* # of pending upcalls */ 208 static struct callout bw_upcalls_ch; 209 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 210 211 static struct pimstat pimstat; 212 213 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 214 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 215 &pimstat, pimstat, 216 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 217 218 static u_long pim_squelch_wholepkt = 0; 219 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 220 &pim_squelch_wholepkt, 0, 221 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 222 223 extern struct domain inetdomain; 224 struct protosw in_pim_protosw = { 225 .pr_type = SOCK_RAW, 226 .pr_domain = &inetdomain, 227 .pr_protocol = IPPROTO_PIM, 228 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 229 .pr_input = pim_input, 230 .pr_output = (pr_output_t*)rip_output, 231 .pr_ctloutput = rip_ctloutput, 232 .pr_usrreqs = &rip_usrreqs 233 }; 234 static const struct encaptab *pim_encap_cookie; 235 236 #ifdef INET6 237 /* ip6_mroute.c glue */ 238 extern struct in6_protosw in6_pim_protosw; 239 static const struct encaptab *pim6_encap_cookie; 240 241 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *); 242 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *); 243 extern int X_ip6_mrouter_done(void); 244 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *); 245 extern int X_mrt6_ioctl(int, caddr_t); 246 #endif 247 248 static int pim_encapcheck(const struct mbuf *, int, int, void *); 249 250 /* 251 * Note: the PIM Register encapsulation adds the following in front of a 252 * data packet: 253 * 254 * struct pim_encap_hdr { 255 * struct ip ip; 256 * struct pim_encap_pimhdr pim; 257 * } 258 * 259 */ 260 261 struct pim_encap_pimhdr { 262 struct pim pim; 263 uint32_t flags; 264 }; 265 266 static struct ip pim_encap_iphdr = { 267 #if BYTE_ORDER == LITTLE_ENDIAN 268 sizeof(struct ip) >> 2, 269 IPVERSION, 270 #else 271 IPVERSION, 272 sizeof(struct ip) >> 2, 273 #endif 274 0, /* tos */ 275 sizeof(struct ip), /* total length */ 276 0, /* id */ 277 0, /* frag offset */ 278 ENCAP_TTL, 279 IPPROTO_PIM, 280 0, /* checksum */ 281 }; 282 283 static struct pim_encap_pimhdr pim_encap_pimhdr = { 284 { 285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 286 0, /* reserved */ 287 0, /* checksum */ 288 }, 289 0 /* flags */ 290 }; 291 292 static struct ifnet multicast_register_if; 293 static vifi_t reg_vif_num = VIFI_INVALID; 294 295 /* 296 * Private variables. 297 */ 298 static vifi_t numvifs; 299 300 static u_long X_ip_mcast_src(int vifi); 301 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, 302 struct mbuf *m, struct ip_moptions *imo); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m); 305 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m); 306 static int X_legal_vif_num(int vif); 307 static int X_mrt_ioctl(int cmd, caddr_t data, int fibnum); 308 309 static int get_sg_cnt(struct sioc_sg_req *); 310 static int get_vif_cnt(struct sioc_vif_req *); 311 static void if_detached_event(void *arg __unused, struct ifnet *); 312 static int ip_mrouter_init(struct socket *, int); 313 static int add_vif(struct vifctl *); 314 static int del_vif_locked(vifi_t); 315 static int del_vif(vifi_t); 316 static int add_mfc(struct mfcctl2 *); 317 static int del_mfc(struct mfcctl2 *); 318 static int set_api_config(uint32_t *); /* chose API capabilities */ 319 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 320 static int set_assert(int); 321 static void expire_upcalls(void *); 322 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 323 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 324 static void send_packet(struct vif *, struct mbuf *); 325 326 /* 327 * Bandwidth monitoring 328 */ 329 static void free_bw_list(struct bw_meter *list); 330 static int add_bw_upcall(struct bw_upcall *); 331 static int del_bw_upcall(struct bw_upcall *); 332 static void bw_meter_receive_packet(struct bw_meter *x, int plen, 333 struct timeval *nowp); 334 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp); 335 static void bw_upcalls_send(void); 336 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp); 337 static void unschedule_bw_meter(struct bw_meter *x); 338 static void bw_meter_process(void); 339 static void expire_bw_upcalls_send(void *); 340 static void expire_bw_meter_process(void *); 341 342 static int pim_register_send(struct ip *, struct vif *, 343 struct mbuf *, struct mfc *); 344 static int pim_register_send_rp(struct ip *, struct vif *, 345 struct mbuf *, struct mfc *); 346 static int pim_register_send_upcall(struct ip *, struct vif *, 347 struct mbuf *, struct mfc *); 348 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 349 350 /* 351 * whether or not special PIM assert processing is enabled. 352 */ 353 static int pim_assert; 354 /* 355 * Rate limit for assert notification messages, in usec 356 */ 357 #define ASSERT_MSG_TIME 3000000 358 359 /* 360 * Kernel multicast routing API capabilities and setup. 361 * If more API capabilities are added to the kernel, they should be 362 * recorded in `mrt_api_support'. 363 */ 364 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 365 MRT_MFC_FLAGS_BORDER_VIF | 366 MRT_MFC_RP | 367 MRT_MFC_BW_UPCALL); 368 static uint32_t mrt_api_config = 0; 369 370 /* 371 * Hash function for a source, group entry 372 */ 373 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ 374 ((g) >> 20) ^ ((g) >> 10) ^ (g)) 375 376 /* 377 * Find a route for a given origin IP address and Multicast group address 378 * Statistics are updated by the caller if needed 379 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 380 */ 381 static struct mfc * 382 mfc_find(in_addr_t o, in_addr_t g) 383 { 384 struct mfc *rt; 385 386 MFC_LOCK_ASSERT(); 387 388 for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next) 389 if ((rt->mfc_origin.s_addr == o) && 390 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL)) 391 break; 392 return rt; 393 } 394 395 /* 396 * Macros to compute elapsed time efficiently 397 * Borrowed from Van Jacobson's scheduling code 398 */ 399 #define TV_DELTA(a, b, delta) { \ 400 int xxs; \ 401 delta = (a).tv_usec - (b).tv_usec; \ 402 if ((xxs = (a).tv_sec - (b).tv_sec)) { \ 403 switch (xxs) { \ 404 case 2: \ 405 delta += 1000000; \ 406 /* FALLTHROUGH */ \ 407 case 1: \ 408 delta += 1000000; \ 409 break; \ 410 default: \ 411 delta += (1000000 * xxs); \ 412 } \ 413 } \ 414 } 415 416 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ 417 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) 418 419 /* 420 * Handle MRT setsockopt commands to modify the multicast routing tables. 421 */ 422 static int 423 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 424 { 425 INIT_VNET_INET(curvnet); 426 int error, optval; 427 vifi_t vifi; 428 struct vifctl vifc; 429 struct mfcctl2 mfc; 430 struct bw_upcall bw_upcall; 431 uint32_t i; 432 433 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 434 return EPERM; 435 436 error = 0; 437 switch (sopt->sopt_name) { 438 case MRT_INIT: 439 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 440 if (error) 441 break; 442 error = ip_mrouter_init(so, optval); 443 break; 444 445 case MRT_DONE: 446 error = ip_mrouter_done(); 447 break; 448 449 case MRT_ADD_VIF: 450 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 451 if (error) 452 break; 453 error = add_vif(&vifc); 454 break; 455 456 case MRT_DEL_VIF: 457 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 458 if (error) 459 break; 460 error = del_vif(vifi); 461 break; 462 463 case MRT_ADD_MFC: 464 case MRT_DEL_MFC: 465 /* 466 * select data size depending on API version. 467 */ 468 if (sopt->sopt_name == MRT_ADD_MFC && 469 mrt_api_config & MRT_API_FLAGS_ALL) { 470 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 471 sizeof(struct mfcctl2)); 472 } else { 473 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 474 sizeof(struct mfcctl)); 475 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 476 sizeof(mfc) - sizeof(struct mfcctl)); 477 } 478 if (error) 479 break; 480 if (sopt->sopt_name == MRT_ADD_MFC) 481 error = add_mfc(&mfc); 482 else 483 error = del_mfc(&mfc); 484 break; 485 486 case MRT_ASSERT: 487 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 488 if (error) 489 break; 490 set_assert(optval); 491 break; 492 493 case MRT_API_CONFIG: 494 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 495 if (!error) 496 error = set_api_config(&i); 497 if (!error) 498 error = sooptcopyout(sopt, &i, sizeof i); 499 break; 500 501 case MRT_ADD_BW_UPCALL: 502 case MRT_DEL_BW_UPCALL: 503 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 504 sizeof bw_upcall); 505 if (error) 506 break; 507 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 508 error = add_bw_upcall(&bw_upcall); 509 else 510 error = del_bw_upcall(&bw_upcall); 511 break; 512 513 default: 514 error = EOPNOTSUPP; 515 break; 516 } 517 return error; 518 } 519 520 /* 521 * Handle MRT getsockopt commands 522 */ 523 static int 524 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 525 { 526 int error; 527 static int version = 0x0305; /* !!! why is this here? XXX */ 528 529 switch (sopt->sopt_name) { 530 case MRT_VERSION: 531 error = sooptcopyout(sopt, &version, sizeof version); 532 break; 533 534 case MRT_ASSERT: 535 error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); 536 break; 537 538 case MRT_API_SUPPORT: 539 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 540 break; 541 542 case MRT_API_CONFIG: 543 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 544 break; 545 546 default: 547 error = EOPNOTSUPP; 548 break; 549 } 550 return error; 551 } 552 553 /* 554 * Handle ioctl commands to obtain information from the cache 555 */ 556 static int 557 X_mrt_ioctl(int cmd, caddr_t data, int fibnum) 558 { 559 int error = 0; 560 561 /* 562 * Currently the only function calling this ioctl routine is rtioctl(). 563 * Typically, only root can create the raw socket in order to execute 564 * this ioctl method, however the request might be coming from a prison 565 */ 566 error = priv_check(curthread, PRIV_NETINET_MROUTE); 567 if (error) 568 return (error); 569 switch (cmd) { 570 case (SIOCGETVIFCNT): 571 error = get_vif_cnt((struct sioc_vif_req *)data); 572 break; 573 574 case (SIOCGETSGCNT): 575 error = get_sg_cnt((struct sioc_sg_req *)data); 576 break; 577 578 default: 579 error = EINVAL; 580 break; 581 } 582 return error; 583 } 584 585 /* 586 * returns the packet, byte, rpf-failure count for the source group provided 587 */ 588 static int 589 get_sg_cnt(struct sioc_sg_req *req) 590 { 591 struct mfc *rt; 592 593 MFC_LOCK(); 594 rt = mfc_find(req->src.s_addr, req->grp.s_addr); 595 if (rt == NULL) { 596 MFC_UNLOCK(); 597 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 598 return EADDRNOTAVAIL; 599 } 600 req->pktcnt = rt->mfc_pkt_cnt; 601 req->bytecnt = rt->mfc_byte_cnt; 602 req->wrong_if = rt->mfc_wrong_if; 603 MFC_UNLOCK(); 604 return 0; 605 } 606 607 /* 608 * returns the input and output packet and byte counts on the vif provided 609 */ 610 static int 611 get_vif_cnt(struct sioc_vif_req *req) 612 { 613 vifi_t vifi = req->vifi; 614 615 VIF_LOCK(); 616 if (vifi >= numvifs) { 617 VIF_UNLOCK(); 618 return EINVAL; 619 } 620 621 req->icount = viftable[vifi].v_pkt_in; 622 req->ocount = viftable[vifi].v_pkt_out; 623 req->ibytes = viftable[vifi].v_bytes_in; 624 req->obytes = viftable[vifi].v_bytes_out; 625 VIF_UNLOCK(); 626 627 return 0; 628 } 629 630 static void 631 ip_mrouter_reset(void) 632 { 633 bzero((caddr_t)mfctable, sizeof(mfctable)); 634 bzero((caddr_t)nexpire, sizeof(nexpire)); 635 636 pim_assert = 0; 637 mrt_api_config = 0; 638 639 callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE); 640 641 bw_upcalls_n = 0; 642 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 643 callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE); 644 callout_init(&bw_meter_ch, CALLOUT_MPSAFE); 645 } 646 647 static void 648 if_detached_event(void *arg __unused, struct ifnet *ifp) 649 { 650 INIT_VNET_INET(curvnet); 651 vifi_t vifi; 652 int i; 653 struct mfc *mfc; 654 struct mfc *nmfc; 655 struct mfc **ppmfc; /* Pointer to previous node's next-pointer */ 656 struct rtdetq *pq; 657 struct rtdetq *npq; 658 659 MROUTER_LOCK(); 660 if (V_ip_mrouter == NULL) { 661 MROUTER_UNLOCK(); 662 } 663 664 /* 665 * Tear down multicast forwarder state associated with this ifnet. 666 * 1. Walk the vif list, matching vifs against this ifnet. 667 * 2. Walk the multicast forwarding cache (mfc) looking for 668 * inner matches with this vif's index. 669 * 3. Free any pending mbufs for this mfc. 670 * 4. Free the associated mfc entry and state associated with this vif. 671 * Be very careful about unlinking from a singly-linked list whose 672 * "head node" is a pointer in a simple array. 673 * 5. Free vif state. This should disable ALLMULTI on the interface. 674 */ 675 VIF_LOCK(); 676 MFC_LOCK(); 677 for (vifi = 0; vifi < numvifs; vifi++) { 678 if (viftable[vifi].v_ifp != ifp) 679 continue; 680 for (i = 0; i < MFCTBLSIZ; i++) { 681 ppmfc = &mfctable[i]; 682 for (mfc = mfctable[i]; mfc != NULL; ) { 683 nmfc = mfc->mfc_next; 684 if (mfc->mfc_parent == vifi) { 685 for (pq = mfc->mfc_stall; pq != NULL; ) { 686 npq = pq->next; 687 m_freem(pq->m); 688 free(pq, M_MRTABLE); 689 pq = npq; 690 } 691 free_bw_list(mfc->mfc_bw_meter); 692 free(mfc, M_MRTABLE); 693 *ppmfc = nmfc; 694 } else { 695 ppmfc = &mfc->mfc_next; 696 } 697 mfc = nmfc; 698 } 699 } 700 del_vif_locked(vifi); 701 } 702 MFC_UNLOCK(); 703 VIF_UNLOCK(); 704 705 MROUTER_UNLOCK(); 706 } 707 708 /* 709 * Enable multicast routing 710 */ 711 static int 712 ip_mrouter_init(struct socket *so, int version) 713 { 714 INIT_VNET_INET(curvnet); 715 716 if (mrtdebug) 717 log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 718 so->so_type, so->so_proto->pr_protocol); 719 720 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 721 return EOPNOTSUPP; 722 723 if (version != 1) 724 return ENOPROTOOPT; 725 726 MROUTER_LOCK(); 727 728 if (V_ip_mrouter != NULL) { 729 MROUTER_UNLOCK(); 730 return EADDRINUSE; 731 } 732 733 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 734 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 735 if (if_detach_event_tag == NULL) { 736 MROUTER_UNLOCK(); 737 return (ENOMEM); 738 } 739 740 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 741 742 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 743 expire_bw_upcalls_send, NULL); 744 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 745 746 V_ip_mrouter = so; 747 748 MROUTER_UNLOCK(); 749 750 if (mrtdebug) 751 log(LOG_DEBUG, "ip_mrouter_init\n"); 752 753 return 0; 754 } 755 756 /* 757 * Disable multicast routing 758 */ 759 static int 760 X_ip_mrouter_done(void) 761 { 762 INIT_VNET_INET(curvnet); 763 vifi_t vifi; 764 int i; 765 struct ifnet *ifp; 766 struct ifreq ifr; 767 struct mfc *rt; 768 struct rtdetq *rte; 769 770 MROUTER_LOCK(); 771 772 if (V_ip_mrouter == NULL) { 773 MROUTER_UNLOCK(); 774 return EINVAL; 775 } 776 777 /* 778 * Detach/disable hooks to the reset of the system. 779 */ 780 V_ip_mrouter = NULL; 781 mrt_api_config = 0; 782 783 VIF_LOCK(); 784 /* 785 * For each phyint in use, disable promiscuous reception of all IP 786 * multicasts. 787 */ 788 for (vifi = 0; vifi < numvifs; vifi++) { 789 if (viftable[vifi].v_lcl_addr.s_addr != 0 && 790 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 791 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 792 793 so->sin_len = sizeof(struct sockaddr_in); 794 so->sin_family = AF_INET; 795 so->sin_addr.s_addr = INADDR_ANY; 796 ifp = viftable[vifi].v_ifp; 797 if_allmulti(ifp, 0); 798 } 799 } 800 bzero((caddr_t)viftable, sizeof(viftable)); 801 numvifs = 0; 802 pim_assert = 0; 803 VIF_UNLOCK(); 804 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 805 806 /* 807 * Free all multicast forwarding cache entries. 808 */ 809 callout_stop(&expire_upcalls_ch); 810 callout_stop(&bw_upcalls_ch); 811 callout_stop(&bw_meter_ch); 812 813 MFC_LOCK(); 814 for (i = 0; i < MFCTBLSIZ; i++) { 815 for (rt = mfctable[i]; rt != NULL; ) { 816 struct mfc *nr = rt->mfc_next; 817 818 for (rte = rt->mfc_stall; rte != NULL; ) { 819 struct rtdetq *n = rte->next; 820 821 m_freem(rte->m); 822 free(rte, M_MRTABLE); 823 rte = n; 824 } 825 free_bw_list(rt->mfc_bw_meter); 826 free(rt, M_MRTABLE); 827 rt = nr; 828 } 829 } 830 bzero((caddr_t)mfctable, sizeof(mfctable)); 831 bzero((caddr_t)nexpire, sizeof(nexpire)); 832 bw_upcalls_n = 0; 833 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 834 MFC_UNLOCK(); 835 836 reg_vif_num = VIFI_INVALID; 837 838 MROUTER_UNLOCK(); 839 840 if (mrtdebug) 841 log(LOG_DEBUG, "ip_mrouter_done\n"); 842 843 return 0; 844 } 845 846 /* 847 * Set PIM assert processing global 848 */ 849 static int 850 set_assert(int i) 851 { 852 if ((i != 1) && (i != 0)) 853 return EINVAL; 854 855 pim_assert = i; 856 857 return 0; 858 } 859 860 /* 861 * Configure API capabilities 862 */ 863 int 864 set_api_config(uint32_t *apival) 865 { 866 int i; 867 868 /* 869 * We can set the API capabilities only if it is the first operation 870 * after MRT_INIT. I.e.: 871 * - there are no vifs installed 872 * - pim_assert is not enabled 873 * - the MFC table is empty 874 */ 875 if (numvifs > 0) { 876 *apival = 0; 877 return EPERM; 878 } 879 if (pim_assert) { 880 *apival = 0; 881 return EPERM; 882 } 883 for (i = 0; i < MFCTBLSIZ; i++) { 884 if (mfctable[i] != NULL) { 885 *apival = 0; 886 return EPERM; 887 } 888 } 889 890 mrt_api_config = *apival & mrt_api_support; 891 *apival = mrt_api_config; 892 893 return 0; 894 } 895 896 /* 897 * Add a vif to the vif table 898 */ 899 static int 900 add_vif(struct vifctl *vifcp) 901 { 902 struct vif *vifp = viftable + vifcp->vifc_vifi; 903 struct sockaddr_in sin = {sizeof sin, AF_INET}; 904 struct ifaddr *ifa; 905 struct ifnet *ifp; 906 int error; 907 908 VIF_LOCK(); 909 if (vifcp->vifc_vifi >= MAXVIFS) { 910 VIF_UNLOCK(); 911 return EINVAL; 912 } 913 /* rate limiting is no longer supported by this code */ 914 if (vifcp->vifc_rate_limit != 0) { 915 log(LOG_ERR, "rate limiting is no longer supported\n"); 916 VIF_UNLOCK(); 917 return EINVAL; 918 } 919 if (vifp->v_lcl_addr.s_addr != INADDR_ANY) { 920 VIF_UNLOCK(); 921 return EADDRINUSE; 922 } 923 if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) { 924 VIF_UNLOCK(); 925 return EADDRNOTAVAIL; 926 } 927 928 /* Find the interface with an address in AF_INET family */ 929 if (vifcp->vifc_flags & VIFF_REGISTER) { 930 /* 931 * XXX: Because VIFF_REGISTER does not really need a valid 932 * local interface (e.g. it could be 127.0.0.2), we don't 933 * check its address. 934 */ 935 ifp = NULL; 936 } else { 937 sin.sin_addr = vifcp->vifc_lcl_addr; 938 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 939 if (ifa == NULL) { 940 VIF_UNLOCK(); 941 return EADDRNOTAVAIL; 942 } 943 ifp = ifa->ifa_ifp; 944 } 945 946 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 947 log(LOG_ERR, "tunnels are no longer supported\n"); 948 VIF_UNLOCK(); 949 return EOPNOTSUPP; 950 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 951 ifp = &multicast_register_if; 952 if (mrtdebug) 953 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 954 (void *)&multicast_register_if); 955 if (reg_vif_num == VIFI_INVALID) { 956 if_initname(&multicast_register_if, "register_vif", 0); 957 multicast_register_if.if_flags = IFF_LOOPBACK; 958 reg_vif_num = vifcp->vifc_vifi; 959 } 960 } else { /* Make sure the interface supports multicast */ 961 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 962 VIF_UNLOCK(); 963 return EOPNOTSUPP; 964 } 965 966 /* Enable promiscuous reception of all IP multicasts from the if */ 967 error = if_allmulti(ifp, 1); 968 if (error) { 969 VIF_UNLOCK(); 970 return error; 971 } 972 } 973 974 vifp->v_flags = vifcp->vifc_flags; 975 vifp->v_threshold = vifcp->vifc_threshold; 976 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 977 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 978 vifp->v_ifp = ifp; 979 vifp->v_rsvp_on = 0; 980 vifp->v_rsvpd = NULL; 981 /* initialize per vif pkt counters */ 982 vifp->v_pkt_in = 0; 983 vifp->v_pkt_out = 0; 984 vifp->v_bytes_in = 0; 985 vifp->v_bytes_out = 0; 986 bzero(&vifp->v_route, sizeof(vifp->v_route)); 987 988 /* Adjust numvifs up if the vifi is higher than numvifs */ 989 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; 990 991 VIF_UNLOCK(); 992 993 if (mrtdebug) 994 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n", 995 vifcp->vifc_vifi, 996 (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), 997 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 998 (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), 999 vifcp->vifc_threshold); 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * Delete a vif from the vif table 1006 */ 1007 static int 1008 del_vif_locked(vifi_t vifi) 1009 { 1010 struct vif *vifp; 1011 1012 VIF_LOCK_ASSERT(); 1013 1014 if (vifi >= numvifs) { 1015 return EINVAL; 1016 } 1017 vifp = &viftable[vifi]; 1018 if (vifp->v_lcl_addr.s_addr == INADDR_ANY) { 1019 return EADDRNOTAVAIL; 1020 } 1021 1022 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1023 if_allmulti(vifp->v_ifp, 0); 1024 1025 if (vifp->v_flags & VIFF_REGISTER) 1026 reg_vif_num = VIFI_INVALID; 1027 1028 bzero((caddr_t)vifp, sizeof (*vifp)); 1029 1030 if (mrtdebug) 1031 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); 1032 1033 /* Adjust numvifs down */ 1034 for (vifi = numvifs; vifi > 0; vifi--) 1035 if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY) 1036 break; 1037 numvifs = vifi; 1038 1039 return 0; 1040 } 1041 1042 static int 1043 del_vif(vifi_t vifi) 1044 { 1045 int cc; 1046 1047 VIF_LOCK(); 1048 cc = del_vif_locked(vifi); 1049 VIF_UNLOCK(); 1050 1051 return cc; 1052 } 1053 1054 /* 1055 * update an mfc entry without resetting counters and S,G addresses. 1056 */ 1057 static void 1058 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1059 { 1060 int i; 1061 1062 rt->mfc_parent = mfccp->mfcc_parent; 1063 for (i = 0; i < numvifs; i++) { 1064 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1065 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1066 MRT_MFC_FLAGS_ALL; 1067 } 1068 /* set the RP address */ 1069 if (mrt_api_config & MRT_MFC_RP) 1070 rt->mfc_rp = mfccp->mfcc_rp; 1071 else 1072 rt->mfc_rp.s_addr = INADDR_ANY; 1073 } 1074 1075 /* 1076 * fully initialize an mfc entry from the parameter. 1077 */ 1078 static void 1079 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1080 { 1081 rt->mfc_origin = mfccp->mfcc_origin; 1082 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1083 1084 update_mfc_params(rt, mfccp); 1085 1086 /* initialize pkt counters per src-grp */ 1087 rt->mfc_pkt_cnt = 0; 1088 rt->mfc_byte_cnt = 0; 1089 rt->mfc_wrong_if = 0; 1090 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; 1091 } 1092 1093 1094 /* 1095 * Add an mfc entry 1096 */ 1097 static int 1098 add_mfc(struct mfcctl2 *mfccp) 1099 { 1100 struct mfc *rt; 1101 u_long hash; 1102 struct rtdetq *rte; 1103 u_short nstl; 1104 1105 VIF_LOCK(); 1106 MFC_LOCK(); 1107 1108 rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1109 1110 /* If an entry already exists, just update the fields */ 1111 if (rt) { 1112 if (mrtdebug & DEBUG_MFC) 1113 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", 1114 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1115 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1116 mfccp->mfcc_parent); 1117 1118 update_mfc_params(rt, mfccp); 1119 MFC_UNLOCK(); 1120 VIF_UNLOCK(); 1121 return 0; 1122 } 1123 1124 /* 1125 * Find the entry for which the upcall was made and update 1126 */ 1127 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1128 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { 1129 1130 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1131 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && 1132 (rt->mfc_stall != NULL)) { 1133 1134 if (nstl++) 1135 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", 1136 "multiple kernel entries", 1137 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1138 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1139 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1140 1141 if (mrtdebug & DEBUG_MFC) 1142 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", 1143 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1144 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1145 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1146 1147 init_mfc_params(rt, mfccp); 1148 1149 rt->mfc_expire = 0; /* Don't clean this guy up */ 1150 nexpire[hash]--; 1151 1152 /* free packets Qed at the end of this entry */ 1153 for (rte = rt->mfc_stall; rte != NULL; ) { 1154 struct rtdetq *n = rte->next; 1155 1156 ip_mdq(rte->m, rte->ifp, rt, -1); 1157 m_freem(rte->m); 1158 free(rte, M_MRTABLE); 1159 rte = n; 1160 } 1161 rt->mfc_stall = NULL; 1162 } 1163 } 1164 1165 /* 1166 * It is possible that an entry is being inserted without an upcall 1167 */ 1168 if (nstl == 0) { 1169 if (mrtdebug & DEBUG_MFC) 1170 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", 1171 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1172 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1173 mfccp->mfcc_parent); 1174 1175 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { 1176 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1177 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { 1178 init_mfc_params(rt, mfccp); 1179 if (rt->mfc_expire) 1180 nexpire[hash]--; 1181 rt->mfc_expire = 0; 1182 break; /* XXX */ 1183 } 1184 } 1185 if (rt == NULL) { /* no upcall, so make a new entry */ 1186 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1187 if (rt == NULL) { 1188 MFC_UNLOCK(); 1189 VIF_UNLOCK(); 1190 return ENOBUFS; 1191 } 1192 1193 init_mfc_params(rt, mfccp); 1194 rt->mfc_expire = 0; 1195 rt->mfc_stall = NULL; 1196 1197 rt->mfc_bw_meter = NULL; 1198 /* insert new entry at head of hash chain */ 1199 rt->mfc_next = mfctable[hash]; 1200 mfctable[hash] = rt; 1201 } 1202 } 1203 MFC_UNLOCK(); 1204 VIF_UNLOCK(); 1205 return 0; 1206 } 1207 1208 /* 1209 * Delete an mfc entry 1210 */ 1211 static int 1212 del_mfc(struct mfcctl2 *mfccp) 1213 { 1214 struct in_addr origin; 1215 struct in_addr mcastgrp; 1216 struct mfc *rt; 1217 struct mfc **nptr; 1218 u_long hash; 1219 struct bw_meter *list; 1220 1221 origin = mfccp->mfcc_origin; 1222 mcastgrp = mfccp->mfcc_mcastgrp; 1223 1224 if (mrtdebug & DEBUG_MFC) 1225 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", 1226 (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1227 1228 MFC_LOCK(); 1229 1230 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); 1231 for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next) 1232 if (origin.s_addr == rt->mfc_origin.s_addr && 1233 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && 1234 rt->mfc_stall == NULL) 1235 break; 1236 if (rt == NULL) { 1237 MFC_UNLOCK(); 1238 return EADDRNOTAVAIL; 1239 } 1240 1241 *nptr = rt->mfc_next; 1242 1243 /* 1244 * free the bw_meter entries 1245 */ 1246 list = rt->mfc_bw_meter; 1247 rt->mfc_bw_meter = NULL; 1248 1249 free(rt, M_MRTABLE); 1250 1251 free_bw_list(list); 1252 1253 MFC_UNLOCK(); 1254 1255 return 0; 1256 } 1257 1258 /* 1259 * Send a message to the routing daemon on the multicast routing socket 1260 */ 1261 static int 1262 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1263 { 1264 if (s) { 1265 SOCKBUF_LOCK(&s->so_rcv); 1266 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1267 NULL) != 0) { 1268 sorwakeup_locked(s); 1269 return 0; 1270 } 1271 SOCKBUF_UNLOCK(&s->so_rcv); 1272 } 1273 m_freem(mm); 1274 return -1; 1275 } 1276 1277 /* 1278 * IP multicast forwarding function. This function assumes that the packet 1279 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1280 * pointed to by "ifp", and the packet is to be relayed to other networks 1281 * that have members of the packet's destination IP multicast group. 1282 * 1283 * The packet is returned unscathed to the caller, unless it is 1284 * erroneous, in which case a non-zero return value tells the caller to 1285 * discard it. 1286 */ 1287 1288 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1289 1290 static int 1291 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1292 struct ip_moptions *imo) 1293 { 1294 INIT_VNET_INET(curvnet); 1295 struct mfc *rt; 1296 int error; 1297 vifi_t vifi; 1298 1299 if (mrtdebug & DEBUG_FORWARD) 1300 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", 1301 (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), 1302 (void *)ifp); 1303 1304 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1305 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1306 /* 1307 * Packet arrived via a physical interface or 1308 * an encapsulated tunnel or a register_vif. 1309 */ 1310 } else { 1311 /* 1312 * Packet arrived through a source-route tunnel. 1313 * Source-route tunnels are no longer supported. 1314 */ 1315 static int last_log; 1316 if (last_log != time_uptime) { 1317 last_log = time_uptime; 1318 log(LOG_ERR, 1319 "ip_mforward: received source-routed packet from %lx\n", 1320 (u_long)ntohl(ip->ip_src.s_addr)); 1321 } 1322 return 1; 1323 } 1324 1325 VIF_LOCK(); 1326 MFC_LOCK(); 1327 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1328 if (ip->ip_ttl < MAXTTL) 1329 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1330 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1331 struct vif *vifp = viftable + vifi; 1332 1333 printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n", 1334 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr), 1335 vifi, 1336 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1337 vifp->v_ifp->if_xname); 1338 } 1339 error = ip_mdq(m, ifp, NULL, vifi); 1340 MFC_UNLOCK(); 1341 VIF_UNLOCK(); 1342 return error; 1343 } 1344 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1345 printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", 1346 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr)); 1347 if (!imo) 1348 printf("In fact, no options were specified at all\n"); 1349 } 1350 1351 /* 1352 * Don't forward a packet with time-to-live of zero or one, 1353 * or a packet destined to a local-only group. 1354 */ 1355 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1356 MFC_UNLOCK(); 1357 VIF_UNLOCK(); 1358 return 0; 1359 } 1360 1361 /* 1362 * Determine forwarding vifs from the forwarding cache table 1363 */ 1364 ++mrtstat.mrts_mfc_lookups; 1365 rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1366 1367 /* Entry exists, so forward if necessary */ 1368 if (rt != NULL) { 1369 error = ip_mdq(m, ifp, rt, -1); 1370 MFC_UNLOCK(); 1371 VIF_UNLOCK(); 1372 return error; 1373 } else { 1374 /* 1375 * If we don't have a route for packet's origin, 1376 * Make a copy of the packet & send message to routing daemon 1377 */ 1378 1379 struct mbuf *mb0; 1380 struct rtdetq *rte; 1381 u_long hash; 1382 int hlen = ip->ip_hl << 2; 1383 1384 ++mrtstat.mrts_mfc_misses; 1385 1386 mrtstat.mrts_no_route++; 1387 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1388 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", 1389 (u_long)ntohl(ip->ip_src.s_addr), 1390 (u_long)ntohl(ip->ip_dst.s_addr)); 1391 1392 /* 1393 * Allocate mbufs early so that we don't do extra work if we are 1394 * just going to fail anyway. Make sure to pullup the header so 1395 * that other people can't step on it. 1396 */ 1397 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); 1398 if (rte == NULL) { 1399 MFC_UNLOCK(); 1400 VIF_UNLOCK(); 1401 return ENOBUFS; 1402 } 1403 mb0 = m_copypacket(m, M_DONTWAIT); 1404 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1405 mb0 = m_pullup(mb0, hlen); 1406 if (mb0 == NULL) { 1407 free(rte, M_MRTABLE); 1408 MFC_UNLOCK(); 1409 VIF_UNLOCK(); 1410 return ENOBUFS; 1411 } 1412 1413 /* is there an upcall waiting for this flow ? */ 1414 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1415 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { 1416 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && 1417 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && 1418 (rt->mfc_stall != NULL)) 1419 break; 1420 } 1421 1422 if (rt == NULL) { 1423 int i; 1424 struct igmpmsg *im; 1425 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1426 struct mbuf *mm; 1427 1428 /* 1429 * Locate the vifi for the incoming interface for this packet. 1430 * If none found, drop packet. 1431 */ 1432 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1433 ; 1434 if (vifi >= numvifs) /* vif not found, drop packet */ 1435 goto non_fatal; 1436 1437 /* no upcall, so make a new entry */ 1438 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1439 if (rt == NULL) 1440 goto fail; 1441 /* Make a copy of the header to send to the user level process */ 1442 mm = m_copy(mb0, 0, hlen); 1443 if (mm == NULL) 1444 goto fail1; 1445 1446 /* 1447 * Send message to routing daemon to install 1448 * a route into the kernel table 1449 */ 1450 1451 im = mtod(mm, struct igmpmsg *); 1452 im->im_msgtype = IGMPMSG_NOCACHE; 1453 im->im_mbz = 0; 1454 im->im_vif = vifi; 1455 1456 mrtstat.mrts_upcalls++; 1457 1458 k_igmpsrc.sin_addr = ip->ip_src; 1459 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1460 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); 1461 ++mrtstat.mrts_upq_sockfull; 1462 fail1: 1463 free(rt, M_MRTABLE); 1464 fail: 1465 free(rte, M_MRTABLE); 1466 m_freem(mb0); 1467 MFC_UNLOCK(); 1468 VIF_UNLOCK(); 1469 return ENOBUFS; 1470 } 1471 1472 /* insert new entry at head of hash chain */ 1473 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1474 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1475 rt->mfc_expire = UPCALL_EXPIRE; 1476 nexpire[hash]++; 1477 for (i = 0; i < numvifs; i++) { 1478 rt->mfc_ttls[i] = 0; 1479 rt->mfc_flags[i] = 0; 1480 } 1481 rt->mfc_parent = -1; 1482 1483 rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */ 1484 1485 rt->mfc_bw_meter = NULL; 1486 1487 /* link into table */ 1488 rt->mfc_next = mfctable[hash]; 1489 mfctable[hash] = rt; 1490 rt->mfc_stall = rte; 1491 1492 } else { 1493 /* determine if q has overflowed */ 1494 int npkts = 0; 1495 struct rtdetq **p; 1496 1497 /* 1498 * XXX ouch! we need to append to the list, but we 1499 * only have a pointer to the front, so we have to 1500 * scan the entire list every time. 1501 */ 1502 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1503 npkts++; 1504 1505 if (npkts > MAX_UPQ) { 1506 mrtstat.mrts_upq_ovflw++; 1507 non_fatal: 1508 free(rte, M_MRTABLE); 1509 m_freem(mb0); 1510 MFC_UNLOCK(); 1511 VIF_UNLOCK(); 1512 return 0; 1513 } 1514 1515 /* Add this entry to the end of the queue */ 1516 *p = rte; 1517 } 1518 1519 rte->m = mb0; 1520 rte->ifp = ifp; 1521 rte->next = NULL; 1522 1523 MFC_UNLOCK(); 1524 VIF_UNLOCK(); 1525 1526 return 0; 1527 } 1528 } 1529 1530 /* 1531 * Clean up the cache entry if upcall is not serviced 1532 */ 1533 static void 1534 expire_upcalls(void *unused) 1535 { 1536 struct rtdetq *rte; 1537 struct mfc *mfc, **nptr; 1538 int i; 1539 1540 MFC_LOCK(); 1541 for (i = 0; i < MFCTBLSIZ; i++) { 1542 if (nexpire[i] == 0) 1543 continue; 1544 nptr = &mfctable[i]; 1545 for (mfc = *nptr; mfc != NULL; mfc = *nptr) { 1546 /* 1547 * Skip real cache entries 1548 * Make sure it wasn't marked to not expire (shouldn't happen) 1549 * If it expires now 1550 */ 1551 if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && 1552 --mfc->mfc_expire == 0) { 1553 if (mrtdebug & DEBUG_EXPIRE) 1554 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", 1555 (u_long)ntohl(mfc->mfc_origin.s_addr), 1556 (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); 1557 /* 1558 * drop all the packets 1559 * free the mbuf with the pkt, if, timing info 1560 */ 1561 for (rte = mfc->mfc_stall; rte; ) { 1562 struct rtdetq *n = rte->next; 1563 1564 m_freem(rte->m); 1565 free(rte, M_MRTABLE); 1566 rte = n; 1567 } 1568 ++mrtstat.mrts_cache_cleanups; 1569 nexpire[i]--; 1570 1571 /* 1572 * free the bw_meter entries 1573 */ 1574 while (mfc->mfc_bw_meter != NULL) { 1575 struct bw_meter *x = mfc->mfc_bw_meter; 1576 1577 mfc->mfc_bw_meter = x->bm_mfc_next; 1578 free(x, M_BWMETER); 1579 } 1580 1581 *nptr = mfc->mfc_next; 1582 free(mfc, M_MRTABLE); 1583 } else { 1584 nptr = &mfc->mfc_next; 1585 } 1586 } 1587 } 1588 MFC_UNLOCK(); 1589 1590 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1591 } 1592 1593 /* 1594 * Packet forwarding routine once entry in the cache is made 1595 */ 1596 static int 1597 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1598 { 1599 INIT_VNET_INET(curvnet); 1600 struct ip *ip = mtod(m, struct ip *); 1601 vifi_t vifi; 1602 int plen = ip->ip_len; 1603 1604 VIF_LOCK_ASSERT(); 1605 1606 /* 1607 * If xmt_vif is not -1, send on only the requested vif. 1608 * 1609 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1610 */ 1611 if (xmt_vif < numvifs) { 1612 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1613 pim_register_send(ip, viftable + xmt_vif, m, rt); 1614 else 1615 phyint_send(ip, viftable + xmt_vif, m); 1616 return 1; 1617 } 1618 1619 /* 1620 * Don't forward if it didn't arrive from the parent vif for its origin. 1621 */ 1622 vifi = rt->mfc_parent; 1623 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1624 /* came in the wrong interface */ 1625 if (mrtdebug & DEBUG_FORWARD) 1626 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1627 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); 1628 ++mrtstat.mrts_wrong_if; 1629 ++rt->mfc_wrong_if; 1630 /* 1631 * If we are doing PIM assert processing, send a message 1632 * to the routing daemon. 1633 * 1634 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1635 * can complete the SPT switch, regardless of the type 1636 * of the iif (broadcast media, GRE tunnel, etc). 1637 */ 1638 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1639 struct timeval now; 1640 u_long delta; 1641 1642 if (ifp == &multicast_register_if) 1643 pimstat.pims_rcv_registers_wrongiif++; 1644 1645 /* Get vifi for the incoming packet */ 1646 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1647 ; 1648 if (vifi >= numvifs) 1649 return 0; /* The iif is not found: ignore the packet. */ 1650 1651 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1652 return 0; /* WRONGVIF disabled: ignore the packet */ 1653 1654 GET_TIME(now); 1655 1656 TV_DELTA(now, rt->mfc_last_assert, delta); 1657 1658 if (delta > ASSERT_MSG_TIME) { 1659 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1660 struct igmpmsg *im; 1661 int hlen = ip->ip_hl << 2; 1662 struct mbuf *mm = m_copy(m, 0, hlen); 1663 1664 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1665 mm = m_pullup(mm, hlen); 1666 if (mm == NULL) 1667 return ENOBUFS; 1668 1669 rt->mfc_last_assert = now; 1670 1671 im = mtod(mm, struct igmpmsg *); 1672 im->im_msgtype = IGMPMSG_WRONGVIF; 1673 im->im_mbz = 0; 1674 im->im_vif = vifi; 1675 1676 mrtstat.mrts_upcalls++; 1677 1678 k_igmpsrc.sin_addr = im->im_src; 1679 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1680 log(LOG_WARNING, 1681 "ip_mforward: ip_mrouter socket queue full\n"); 1682 ++mrtstat.mrts_upq_sockfull; 1683 return ENOBUFS; 1684 } 1685 } 1686 } 1687 return 0; 1688 } 1689 1690 /* If I sourced this packet, it counts as output, else it was input. */ 1691 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { 1692 viftable[vifi].v_pkt_out++; 1693 viftable[vifi].v_bytes_out += plen; 1694 } else { 1695 viftable[vifi].v_pkt_in++; 1696 viftable[vifi].v_bytes_in += plen; 1697 } 1698 rt->mfc_pkt_cnt++; 1699 rt->mfc_byte_cnt += plen; 1700 1701 /* 1702 * For each vif, decide if a copy of the packet should be forwarded. 1703 * Forward if: 1704 * - the ttl exceeds the vif's threshold 1705 * - there are group members downstream on interface 1706 */ 1707 for (vifi = 0; vifi < numvifs; vifi++) 1708 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1709 viftable[vifi].v_pkt_out++; 1710 viftable[vifi].v_bytes_out += plen; 1711 if (viftable[vifi].v_flags & VIFF_REGISTER) 1712 pim_register_send(ip, viftable + vifi, m, rt); 1713 else 1714 phyint_send(ip, viftable + vifi, m); 1715 } 1716 1717 /* 1718 * Perform upcall-related bw measuring. 1719 */ 1720 if (rt->mfc_bw_meter != NULL) { 1721 struct bw_meter *x; 1722 struct timeval now; 1723 1724 GET_TIME(now); 1725 MFC_LOCK_ASSERT(); 1726 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1727 bw_meter_receive_packet(x, plen, &now); 1728 } 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * check if a vif number is legal/ok. This is used by ip_output. 1735 */ 1736 static int 1737 X_legal_vif_num(int vif) 1738 { 1739 /* XXX unlocked, matter? */ 1740 return (vif >= 0 && vif < numvifs); 1741 } 1742 1743 /* 1744 * Return the local address used by this vif 1745 */ 1746 static u_long 1747 X_ip_mcast_src(int vifi) 1748 { 1749 /* XXX unlocked, matter? */ 1750 if (vifi >= 0 && vifi < numvifs) 1751 return viftable[vifi].v_lcl_addr.s_addr; 1752 else 1753 return INADDR_ANY; 1754 } 1755 1756 static void 1757 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1758 { 1759 struct mbuf *mb_copy; 1760 int hlen = ip->ip_hl << 2; 1761 1762 VIF_LOCK_ASSERT(); 1763 1764 /* 1765 * Make a new reference to the packet; make sure that 1766 * the IP header is actually copied, not just referenced, 1767 * so that ip_output() only scribbles on the copy. 1768 */ 1769 mb_copy = m_copypacket(m, M_DONTWAIT); 1770 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1771 mb_copy = m_pullup(mb_copy, hlen); 1772 if (mb_copy == NULL) 1773 return; 1774 1775 send_packet(vifp, mb_copy); 1776 } 1777 1778 static void 1779 send_packet(struct vif *vifp, struct mbuf *m) 1780 { 1781 struct ip_moptions imo; 1782 struct in_multi *imm[2]; 1783 int error; 1784 1785 VIF_LOCK_ASSERT(); 1786 1787 imo.imo_multicast_ifp = vifp->v_ifp; 1788 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1789 imo.imo_multicast_loop = 1; 1790 imo.imo_multicast_vif = -1; 1791 imo.imo_num_memberships = 0; 1792 imo.imo_max_memberships = 2; 1793 imo.imo_membership = &imm[0]; 1794 1795 /* 1796 * Re-entrancy should not be a problem here, because 1797 * the packets that we send out and are looped back at us 1798 * should get rejected because they appear to come from 1799 * the loopback interface, thus preventing looping. 1800 */ 1801 error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL); 1802 if (mrtdebug & DEBUG_XMIT) { 1803 log(LOG_DEBUG, "phyint_send on vif %td err %d\n", 1804 vifp - viftable, error); 1805 } 1806 } 1807 1808 static int 1809 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt) 1810 { 1811 INIT_VNET_INET(curvnet); 1812 int error, vifi; 1813 1814 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 1815 return EOPNOTSUPP; 1816 1817 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 1818 if (error) 1819 return error; 1820 1821 VIF_LOCK(); 1822 1823 if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */ 1824 VIF_UNLOCK(); 1825 return EADDRNOTAVAIL; 1826 } 1827 1828 if (sopt->sopt_name == IP_RSVP_VIF_ON) { 1829 /* Check if socket is available. */ 1830 if (viftable[vifi].v_rsvpd != NULL) { 1831 VIF_UNLOCK(); 1832 return EADDRINUSE; 1833 } 1834 1835 viftable[vifi].v_rsvpd = so; 1836 /* This may seem silly, but we need to be sure we don't over-increment 1837 * the RSVP counter, in case something slips up. 1838 */ 1839 if (!viftable[vifi].v_rsvp_on) { 1840 viftable[vifi].v_rsvp_on = 1; 1841 V_rsvp_on++; 1842 } 1843 } else { /* must be VIF_OFF */ 1844 /* 1845 * XXX as an additional consistency check, one could make sure 1846 * that viftable[vifi].v_rsvpd == so, otherwise passing so as 1847 * first parameter is pretty useless. 1848 */ 1849 viftable[vifi].v_rsvpd = NULL; 1850 /* 1851 * This may seem silly, but we need to be sure we don't over-decrement 1852 * the RSVP counter, in case something slips up. 1853 */ 1854 if (viftable[vifi].v_rsvp_on) { 1855 viftable[vifi].v_rsvp_on = 0; 1856 V_rsvp_on--; 1857 } 1858 } 1859 VIF_UNLOCK(); 1860 return 0; 1861 } 1862 1863 static void 1864 X_ip_rsvp_force_done(struct socket *so) 1865 { 1866 INIT_VNET_INET(curvnet); 1867 int vifi; 1868 1869 /* Don't bother if it is not the right type of socket. */ 1870 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 1871 return; 1872 1873 VIF_LOCK(); 1874 1875 /* The socket may be attached to more than one vif...this 1876 * is perfectly legal. 1877 */ 1878 for (vifi = 0; vifi < numvifs; vifi++) { 1879 if (viftable[vifi].v_rsvpd == so) { 1880 viftable[vifi].v_rsvpd = NULL; 1881 /* This may seem silly, but we need to be sure we don't 1882 * over-decrement the RSVP counter, in case something slips up. 1883 */ 1884 if (viftable[vifi].v_rsvp_on) { 1885 viftable[vifi].v_rsvp_on = 0; 1886 V_rsvp_on--; 1887 } 1888 } 1889 } 1890 1891 VIF_UNLOCK(); 1892 } 1893 1894 static void 1895 X_rsvp_input(struct mbuf *m, int off) 1896 { 1897 INIT_VNET_INET(curvnet); 1898 int vifi; 1899 struct ip *ip = mtod(m, struct ip *); 1900 struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; 1901 struct ifnet *ifp; 1902 1903 if (rsvpdebug) 1904 printf("rsvp_input: rsvp_on %d\n", V_rsvp_on); 1905 1906 /* Can still get packets with rsvp_on = 0 if there is a local member 1907 * of the group to which the RSVP packet is addressed. But in this 1908 * case we want to throw the packet away. 1909 */ 1910 if (!V_rsvp_on) { 1911 m_freem(m); 1912 return; 1913 } 1914 1915 if (rsvpdebug) 1916 printf("rsvp_input: check vifs\n"); 1917 1918 #ifdef DIAGNOSTIC 1919 M_ASSERTPKTHDR(m); 1920 #endif 1921 1922 ifp = m->m_pkthdr.rcvif; 1923 1924 VIF_LOCK(); 1925 /* Find which vif the packet arrived on. */ 1926 for (vifi = 0; vifi < numvifs; vifi++) 1927 if (viftable[vifi].v_ifp == ifp) 1928 break; 1929 1930 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) { 1931 /* 1932 * Drop the lock here to avoid holding it across rip_input. 1933 * This could make rsvpdebug printfs wrong. If you care, 1934 * record the state of stuff before dropping the lock. 1935 */ 1936 VIF_UNLOCK(); 1937 /* 1938 * If the old-style non-vif-associated socket is set, 1939 * then use it. Otherwise, drop packet since there 1940 * is no specific socket for this vif. 1941 */ 1942 if (V_ip_rsvpd != NULL) { 1943 if (rsvpdebug) 1944 printf("rsvp_input: Sending packet up old-style socket\n"); 1945 rip_input(m, off); /* xxx */ 1946 } else { 1947 if (rsvpdebug && vifi == numvifs) 1948 printf("rsvp_input: Can't find vif for packet.\n"); 1949 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL) 1950 printf("rsvp_input: No socket defined for vif %d\n",vifi); 1951 m_freem(m); 1952 } 1953 return; 1954 } 1955 rsvp_src.sin_addr = ip->ip_src; 1956 1957 if (rsvpdebug && m) 1958 printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", 1959 m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); 1960 1961 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { 1962 if (rsvpdebug) 1963 printf("rsvp_input: Failed to append to socket\n"); 1964 } else { 1965 if (rsvpdebug) 1966 printf("rsvp_input: send packet up\n"); 1967 } 1968 VIF_UNLOCK(); 1969 } 1970 1971 /* 1972 * Code for bandwidth monitors 1973 */ 1974 1975 /* 1976 * Define common interface for timeval-related methods 1977 */ 1978 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1979 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1980 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1981 1982 static uint32_t 1983 compute_bw_meter_flags(struct bw_upcall *req) 1984 { 1985 uint32_t flags = 0; 1986 1987 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1988 flags |= BW_METER_UNIT_PACKETS; 1989 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1990 flags |= BW_METER_UNIT_BYTES; 1991 if (req->bu_flags & BW_UPCALL_GEQ) 1992 flags |= BW_METER_GEQ; 1993 if (req->bu_flags & BW_UPCALL_LEQ) 1994 flags |= BW_METER_LEQ; 1995 1996 return flags; 1997 } 1998 1999 /* 2000 * Add a bw_meter entry 2001 */ 2002 static int 2003 add_bw_upcall(struct bw_upcall *req) 2004 { 2005 struct mfc *mfc; 2006 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2007 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2008 struct timeval now; 2009 struct bw_meter *x; 2010 uint32_t flags; 2011 2012 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2013 return EOPNOTSUPP; 2014 2015 /* Test if the flags are valid */ 2016 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2017 return EINVAL; 2018 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2019 return EINVAL; 2020 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2021 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2022 return EINVAL; 2023 2024 /* Test if the threshold time interval is valid */ 2025 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2026 return EINVAL; 2027 2028 flags = compute_bw_meter_flags(req); 2029 2030 /* 2031 * Find if we have already same bw_meter entry 2032 */ 2033 MFC_LOCK(); 2034 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2035 if (mfc == NULL) { 2036 MFC_UNLOCK(); 2037 return EADDRNOTAVAIL; 2038 } 2039 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2040 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2041 &req->bu_threshold.b_time, ==)) && 2042 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2043 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2044 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2045 MFC_UNLOCK(); 2046 return 0; /* XXX Already installed */ 2047 } 2048 } 2049 2050 /* Allocate the new bw_meter entry */ 2051 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2052 if (x == NULL) { 2053 MFC_UNLOCK(); 2054 return ENOBUFS; 2055 } 2056 2057 /* Set the new bw_meter entry */ 2058 x->bm_threshold.b_time = req->bu_threshold.b_time; 2059 GET_TIME(now); 2060 x->bm_start_time = now; 2061 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2062 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2063 x->bm_measured.b_packets = 0; 2064 x->bm_measured.b_bytes = 0; 2065 x->bm_flags = flags; 2066 x->bm_time_next = NULL; 2067 x->bm_time_hash = BW_METER_BUCKETS; 2068 2069 /* Add the new bw_meter entry to the front of entries for this MFC */ 2070 x->bm_mfc = mfc; 2071 x->bm_mfc_next = mfc->mfc_bw_meter; 2072 mfc->mfc_bw_meter = x; 2073 schedule_bw_meter(x, &now); 2074 MFC_UNLOCK(); 2075 2076 return 0; 2077 } 2078 2079 static void 2080 free_bw_list(struct bw_meter *list) 2081 { 2082 while (list != NULL) { 2083 struct bw_meter *x = list; 2084 2085 list = list->bm_mfc_next; 2086 unschedule_bw_meter(x); 2087 free(x, M_BWMETER); 2088 } 2089 } 2090 2091 /* 2092 * Delete one or multiple bw_meter entries 2093 */ 2094 static int 2095 del_bw_upcall(struct bw_upcall *req) 2096 { 2097 struct mfc *mfc; 2098 struct bw_meter *x; 2099 2100 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2101 return EOPNOTSUPP; 2102 2103 MFC_LOCK(); 2104 /* Find the corresponding MFC entry */ 2105 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2106 if (mfc == NULL) { 2107 MFC_UNLOCK(); 2108 return EADDRNOTAVAIL; 2109 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2110 /* 2111 * Delete all bw_meter entries for this mfc 2112 */ 2113 struct bw_meter *list; 2114 2115 list = mfc->mfc_bw_meter; 2116 mfc->mfc_bw_meter = NULL; 2117 free_bw_list(list); 2118 MFC_UNLOCK(); 2119 return 0; 2120 } else { /* Delete a single bw_meter entry */ 2121 struct bw_meter *prev; 2122 uint32_t flags = 0; 2123 2124 flags = compute_bw_meter_flags(req); 2125 2126 /* Find the bw_meter entry to delete */ 2127 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2128 prev = x, x = x->bm_mfc_next) { 2129 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2130 &req->bu_threshold.b_time, ==)) && 2131 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2132 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2133 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2134 break; 2135 } 2136 if (x != NULL) { /* Delete entry from the list for this MFC */ 2137 if (prev != NULL) 2138 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2139 else 2140 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2141 2142 unschedule_bw_meter(x); 2143 MFC_UNLOCK(); 2144 /* Free the bw_meter entry */ 2145 free(x, M_BWMETER); 2146 return 0; 2147 } else { 2148 MFC_UNLOCK(); 2149 return EINVAL; 2150 } 2151 } 2152 /* NOTREACHED */ 2153 } 2154 2155 /* 2156 * Perform bandwidth measurement processing that may result in an upcall 2157 */ 2158 static void 2159 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2160 { 2161 struct timeval delta; 2162 2163 MFC_LOCK_ASSERT(); 2164 2165 delta = *nowp; 2166 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2167 2168 if (x->bm_flags & BW_METER_GEQ) { 2169 /* 2170 * Processing for ">=" type of bw_meter entry 2171 */ 2172 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2173 /* Reset the bw_meter entry */ 2174 x->bm_start_time = *nowp; 2175 x->bm_measured.b_packets = 0; 2176 x->bm_measured.b_bytes = 0; 2177 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2178 } 2179 2180 /* Record that a packet is received */ 2181 x->bm_measured.b_packets++; 2182 x->bm_measured.b_bytes += plen; 2183 2184 /* 2185 * Test if we should deliver an upcall 2186 */ 2187 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2188 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2189 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2190 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2191 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2192 /* Prepare an upcall for delivery */ 2193 bw_meter_prepare_upcall(x, nowp); 2194 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2195 } 2196 } 2197 } else if (x->bm_flags & BW_METER_LEQ) { 2198 /* 2199 * Processing for "<=" type of bw_meter entry 2200 */ 2201 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2202 /* 2203 * We are behind time with the multicast forwarding table 2204 * scanning for "<=" type of bw_meter entries, so test now 2205 * if we should deliver an upcall. 2206 */ 2207 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2208 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2209 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2210 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2211 /* Prepare an upcall for delivery */ 2212 bw_meter_prepare_upcall(x, nowp); 2213 } 2214 /* Reschedule the bw_meter entry */ 2215 unschedule_bw_meter(x); 2216 schedule_bw_meter(x, nowp); 2217 } 2218 2219 /* Record that a packet is received */ 2220 x->bm_measured.b_packets++; 2221 x->bm_measured.b_bytes += plen; 2222 2223 /* 2224 * Test if we should restart the measuring interval 2225 */ 2226 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2227 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2228 (x->bm_flags & BW_METER_UNIT_BYTES && 2229 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2230 /* Don't restart the measuring interval */ 2231 } else { 2232 /* Do restart the measuring interval */ 2233 /* 2234 * XXX: note that we don't unschedule and schedule, because this 2235 * might be too much overhead per packet. Instead, when we process 2236 * all entries for a given timer hash bin, we check whether it is 2237 * really a timeout. If not, we reschedule at that time. 2238 */ 2239 x->bm_start_time = *nowp; 2240 x->bm_measured.b_packets = 0; 2241 x->bm_measured.b_bytes = 0; 2242 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2243 } 2244 } 2245 } 2246 2247 /* 2248 * Prepare a bandwidth-related upcall 2249 */ 2250 static void 2251 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2252 { 2253 struct timeval delta; 2254 struct bw_upcall *u; 2255 2256 MFC_LOCK_ASSERT(); 2257 2258 /* 2259 * Compute the measured time interval 2260 */ 2261 delta = *nowp; 2262 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2263 2264 /* 2265 * If there are too many pending upcalls, deliver them now 2266 */ 2267 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2268 bw_upcalls_send(); 2269 2270 /* 2271 * Set the bw_upcall entry 2272 */ 2273 u = &bw_upcalls[bw_upcalls_n++]; 2274 u->bu_src = x->bm_mfc->mfc_origin; 2275 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2276 u->bu_threshold.b_time = x->bm_threshold.b_time; 2277 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2278 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2279 u->bu_measured.b_time = delta; 2280 u->bu_measured.b_packets = x->bm_measured.b_packets; 2281 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2282 u->bu_flags = 0; 2283 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2284 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2285 if (x->bm_flags & BW_METER_UNIT_BYTES) 2286 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2287 if (x->bm_flags & BW_METER_GEQ) 2288 u->bu_flags |= BW_UPCALL_GEQ; 2289 if (x->bm_flags & BW_METER_LEQ) 2290 u->bu_flags |= BW_UPCALL_LEQ; 2291 } 2292 2293 /* 2294 * Send the pending bandwidth-related upcalls 2295 */ 2296 static void 2297 bw_upcalls_send(void) 2298 { 2299 INIT_VNET_INET(curvnet); 2300 struct mbuf *m; 2301 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2302 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2303 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2304 0, /* unused2 */ 2305 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2306 0, /* im_mbz */ 2307 0, /* im_vif */ 2308 0, /* unused3 */ 2309 { 0 }, /* im_src */ 2310 { 0 } }; /* im_dst */ 2311 2312 MFC_LOCK_ASSERT(); 2313 2314 if (bw_upcalls_n == 0) 2315 return; /* No pending upcalls */ 2316 2317 bw_upcalls_n = 0; 2318 2319 /* 2320 * Allocate a new mbuf, initialize it with the header and 2321 * the payload for the pending calls. 2322 */ 2323 MGETHDR(m, M_DONTWAIT, MT_DATA); 2324 if (m == NULL) { 2325 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2326 return; 2327 } 2328 2329 m->m_len = m->m_pkthdr.len = 0; 2330 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2331 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2332 2333 /* 2334 * Send the upcalls 2335 * XXX do we need to set the address in k_igmpsrc ? 2336 */ 2337 mrtstat.mrts_upcalls++; 2338 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2339 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2340 ++mrtstat.mrts_upq_sockfull; 2341 } 2342 } 2343 2344 /* 2345 * Compute the timeout hash value for the bw_meter entries 2346 */ 2347 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2348 do { \ 2349 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2350 \ 2351 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2352 (hash) = next_timeval.tv_sec; \ 2353 if (next_timeval.tv_usec) \ 2354 (hash)++; /* XXX: make sure we don't timeout early */ \ 2355 (hash) %= BW_METER_BUCKETS; \ 2356 } while (0) 2357 2358 /* 2359 * Schedule a timer to process periodically bw_meter entry of type "<=" 2360 * by linking the entry in the proper hash bucket. 2361 */ 2362 static void 2363 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2364 { 2365 int time_hash; 2366 2367 MFC_LOCK_ASSERT(); 2368 2369 if (!(x->bm_flags & BW_METER_LEQ)) 2370 return; /* XXX: we schedule timers only for "<=" entries */ 2371 2372 /* 2373 * Reset the bw_meter entry 2374 */ 2375 x->bm_start_time = *nowp; 2376 x->bm_measured.b_packets = 0; 2377 x->bm_measured.b_bytes = 0; 2378 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2379 2380 /* 2381 * Compute the timeout hash value and insert the entry 2382 */ 2383 BW_METER_TIMEHASH(x, time_hash); 2384 x->bm_time_next = bw_meter_timers[time_hash]; 2385 bw_meter_timers[time_hash] = x; 2386 x->bm_time_hash = time_hash; 2387 } 2388 2389 /* 2390 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2391 * by removing the entry from the proper hash bucket. 2392 */ 2393 static void 2394 unschedule_bw_meter(struct bw_meter *x) 2395 { 2396 int time_hash; 2397 struct bw_meter *prev, *tmp; 2398 2399 MFC_LOCK_ASSERT(); 2400 2401 if (!(x->bm_flags & BW_METER_LEQ)) 2402 return; /* XXX: we schedule timers only for "<=" entries */ 2403 2404 /* 2405 * Compute the timeout hash value and delete the entry 2406 */ 2407 time_hash = x->bm_time_hash; 2408 if (time_hash >= BW_METER_BUCKETS) 2409 return; /* Entry was not scheduled */ 2410 2411 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2412 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2413 if (tmp == x) 2414 break; 2415 2416 if (tmp == NULL) 2417 panic("unschedule_bw_meter: bw_meter entry not found"); 2418 2419 if (prev != NULL) 2420 prev->bm_time_next = x->bm_time_next; 2421 else 2422 bw_meter_timers[time_hash] = x->bm_time_next; 2423 2424 x->bm_time_next = NULL; 2425 x->bm_time_hash = BW_METER_BUCKETS; 2426 } 2427 2428 2429 /* 2430 * Process all "<=" type of bw_meter that should be processed now, 2431 * and for each entry prepare an upcall if necessary. Each processed 2432 * entry is rescheduled again for the (periodic) processing. 2433 * 2434 * This is run periodically (once per second normally). On each round, 2435 * all the potentially matching entries are in the hash slot that we are 2436 * looking at. 2437 */ 2438 static void 2439 bw_meter_process() 2440 { 2441 static uint32_t last_tv_sec; /* last time we processed this */ 2442 2443 uint32_t loops; 2444 int i; 2445 struct timeval now, process_endtime; 2446 2447 GET_TIME(now); 2448 if (last_tv_sec == now.tv_sec) 2449 return; /* nothing to do */ 2450 2451 loops = now.tv_sec - last_tv_sec; 2452 last_tv_sec = now.tv_sec; 2453 if (loops > BW_METER_BUCKETS) 2454 loops = BW_METER_BUCKETS; 2455 2456 MFC_LOCK(); 2457 /* 2458 * Process all bins of bw_meter entries from the one after the last 2459 * processed to the current one. On entry, i points to the last bucket 2460 * visited, so we need to increment i at the beginning of the loop. 2461 */ 2462 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2463 struct bw_meter *x, *tmp_list; 2464 2465 if (++i >= BW_METER_BUCKETS) 2466 i = 0; 2467 2468 /* Disconnect the list of bw_meter entries from the bin */ 2469 tmp_list = bw_meter_timers[i]; 2470 bw_meter_timers[i] = NULL; 2471 2472 /* Process the list of bw_meter entries */ 2473 while (tmp_list != NULL) { 2474 x = tmp_list; 2475 tmp_list = tmp_list->bm_time_next; 2476 2477 /* Test if the time interval is over */ 2478 process_endtime = x->bm_start_time; 2479 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2480 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2481 /* Not yet: reschedule, but don't reset */ 2482 int time_hash; 2483 2484 BW_METER_TIMEHASH(x, time_hash); 2485 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2486 /* 2487 * XXX: somehow the bin processing is a bit ahead of time. 2488 * Put the entry in the next bin. 2489 */ 2490 if (++time_hash >= BW_METER_BUCKETS) 2491 time_hash = 0; 2492 } 2493 x->bm_time_next = bw_meter_timers[time_hash]; 2494 bw_meter_timers[time_hash] = x; 2495 x->bm_time_hash = time_hash; 2496 2497 continue; 2498 } 2499 2500 /* 2501 * Test if we should deliver an upcall 2502 */ 2503 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2504 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2505 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2506 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2507 /* Prepare an upcall for delivery */ 2508 bw_meter_prepare_upcall(x, &now); 2509 } 2510 2511 /* 2512 * Reschedule for next processing 2513 */ 2514 schedule_bw_meter(x, &now); 2515 } 2516 } 2517 2518 /* Send all upcalls that are pending delivery */ 2519 bw_upcalls_send(); 2520 2521 MFC_UNLOCK(); 2522 } 2523 2524 /* 2525 * A periodic function for sending all upcalls that are pending delivery 2526 */ 2527 static void 2528 expire_bw_upcalls_send(void *unused) 2529 { 2530 MFC_LOCK(); 2531 bw_upcalls_send(); 2532 MFC_UNLOCK(); 2533 2534 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2535 expire_bw_upcalls_send, NULL); 2536 } 2537 2538 /* 2539 * A periodic function for periodic scanning of the multicast forwarding 2540 * table for processing all "<=" bw_meter entries. 2541 */ 2542 static void 2543 expire_bw_meter_process(void *unused) 2544 { 2545 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2546 bw_meter_process(); 2547 2548 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 2549 } 2550 2551 /* 2552 * End of bandwidth monitoring code 2553 */ 2554 2555 /* 2556 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2557 * 2558 */ 2559 static int 2560 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2561 struct mfc *rt) 2562 { 2563 struct mbuf *mb_copy, *mm; 2564 2565 if (mrtdebug & DEBUG_PIM) 2566 log(LOG_DEBUG, "pim_register_send: "); 2567 2568 /* 2569 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2570 * rendezvous point was unspecified, and we were told not to. 2571 */ 2572 if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) && 2573 (rt->mfc_rp.s_addr == INADDR_ANY)) 2574 return 0; 2575 2576 mb_copy = pim_register_prepare(ip, m); 2577 if (mb_copy == NULL) 2578 return ENOBUFS; 2579 2580 /* 2581 * Send all the fragments. Note that the mbuf for each fragment 2582 * is freed by the sending machinery. 2583 */ 2584 for (mm = mb_copy; mm; mm = mb_copy) { 2585 mb_copy = mm->m_nextpkt; 2586 mm->m_nextpkt = 0; 2587 mm = m_pullup(mm, sizeof(struct ip)); 2588 if (mm != NULL) { 2589 ip = mtod(mm, struct ip *); 2590 if ((mrt_api_config & MRT_MFC_RP) && 2591 (rt->mfc_rp.s_addr != INADDR_ANY)) { 2592 pim_register_send_rp(ip, vifp, mm, rt); 2593 } else { 2594 pim_register_send_upcall(ip, vifp, mm, rt); 2595 } 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 /* 2603 * Return a copy of the data packet that is ready for PIM Register 2604 * encapsulation. 2605 * XXX: Note that in the returned copy the IP header is a valid one. 2606 */ 2607 static struct mbuf * 2608 pim_register_prepare(struct ip *ip, struct mbuf *m) 2609 { 2610 struct mbuf *mb_copy = NULL; 2611 int mtu; 2612 2613 /* Take care of delayed checksums */ 2614 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2615 in_delayed_cksum(m); 2616 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2617 } 2618 2619 /* 2620 * Copy the old packet & pullup its IP header into the 2621 * new mbuf so we can modify it. 2622 */ 2623 mb_copy = m_copypacket(m, M_DONTWAIT); 2624 if (mb_copy == NULL) 2625 return NULL; 2626 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2627 if (mb_copy == NULL) 2628 return NULL; 2629 2630 /* take care of the TTL */ 2631 ip = mtod(mb_copy, struct ip *); 2632 --ip->ip_ttl; 2633 2634 /* Compute the MTU after the PIM Register encapsulation */ 2635 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2636 2637 if (ip->ip_len <= mtu) { 2638 /* Turn the IP header into a valid one */ 2639 ip->ip_len = htons(ip->ip_len); 2640 ip->ip_off = htons(ip->ip_off); 2641 ip->ip_sum = 0; 2642 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2643 } else { 2644 /* Fragment the packet */ 2645 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2646 m_freem(mb_copy); 2647 return NULL; 2648 } 2649 } 2650 return mb_copy; 2651 } 2652 2653 /* 2654 * Send an upcall with the data packet to the user-level process. 2655 */ 2656 static int 2657 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2658 struct mbuf *mb_copy, struct mfc *rt) 2659 { 2660 INIT_VNET_INET(curvnet); 2661 struct mbuf *mb_first; 2662 int len = ntohs(ip->ip_len); 2663 struct igmpmsg *im; 2664 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2665 2666 VIF_LOCK_ASSERT(); 2667 2668 /* 2669 * Add a new mbuf with an upcall header 2670 */ 2671 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2672 if (mb_first == NULL) { 2673 m_freem(mb_copy); 2674 return ENOBUFS; 2675 } 2676 mb_first->m_data += max_linkhdr; 2677 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2678 mb_first->m_len = sizeof(struct igmpmsg); 2679 mb_first->m_next = mb_copy; 2680 2681 /* Send message to routing daemon */ 2682 im = mtod(mb_first, struct igmpmsg *); 2683 im->im_msgtype = IGMPMSG_WHOLEPKT; 2684 im->im_mbz = 0; 2685 im->im_vif = vifp - viftable; 2686 im->im_src = ip->ip_src; 2687 im->im_dst = ip->ip_dst; 2688 2689 k_igmpsrc.sin_addr = ip->ip_src; 2690 2691 mrtstat.mrts_upcalls++; 2692 2693 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2694 if (mrtdebug & DEBUG_PIM) 2695 log(LOG_WARNING, 2696 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 2697 ++mrtstat.mrts_upq_sockfull; 2698 return ENOBUFS; 2699 } 2700 2701 /* Keep statistics */ 2702 pimstat.pims_snd_registers_msgs++; 2703 pimstat.pims_snd_registers_bytes += len; 2704 2705 return 0; 2706 } 2707 2708 /* 2709 * Encapsulate the data packet in PIM Register message and send it to the RP. 2710 */ 2711 static int 2712 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2713 struct mfc *rt) 2714 { 2715 INIT_VNET_INET(curvnet); 2716 struct mbuf *mb_first; 2717 struct ip *ip_outer; 2718 struct pim_encap_pimhdr *pimhdr; 2719 int len = ntohs(ip->ip_len); 2720 vifi_t vifi = rt->mfc_parent; 2721 2722 VIF_LOCK_ASSERT(); 2723 2724 if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) { 2725 m_freem(mb_copy); 2726 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2727 } 2728 2729 /* 2730 * Add a new mbuf with the encapsulating header 2731 */ 2732 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2733 if (mb_first == NULL) { 2734 m_freem(mb_copy); 2735 return ENOBUFS; 2736 } 2737 mb_first->m_data += max_linkhdr; 2738 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2739 mb_first->m_next = mb_copy; 2740 2741 mb_first->m_pkthdr.len = len + mb_first->m_len; 2742 2743 /* 2744 * Fill in the encapsulating IP and PIM header 2745 */ 2746 ip_outer = mtod(mb_first, struct ip *); 2747 *ip_outer = pim_encap_iphdr; 2748 ip_outer->ip_id = ip_newid(); 2749 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2750 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 2751 ip_outer->ip_dst = rt->mfc_rp; 2752 /* 2753 * Copy the inner header TOS to the outer header, and take care of the 2754 * IP_DF bit. 2755 */ 2756 ip_outer->ip_tos = ip->ip_tos; 2757 if (ntohs(ip->ip_off) & IP_DF) 2758 ip_outer->ip_off |= IP_DF; 2759 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2760 + sizeof(pim_encap_iphdr)); 2761 *pimhdr = pim_encap_pimhdr; 2762 /* If the iif crosses a border, set the Border-bit */ 2763 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 2764 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2765 2766 mb_first->m_data += sizeof(pim_encap_iphdr); 2767 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2768 mb_first->m_data -= sizeof(pim_encap_iphdr); 2769 2770 send_packet(vifp, mb_first); 2771 2772 /* Keep statistics */ 2773 pimstat.pims_snd_registers_msgs++; 2774 pimstat.pims_snd_registers_bytes += len; 2775 2776 return 0; 2777 } 2778 2779 /* 2780 * pim_encapcheck() is called by the encap[46]_input() path at runtime to 2781 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2782 * into the kernel. 2783 */ 2784 static int 2785 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2786 { 2787 2788 #ifdef DIAGNOSTIC 2789 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2790 #endif 2791 if (proto != IPPROTO_PIM) 2792 return 0; /* not for us; reject the datagram. */ 2793 2794 return 64; /* claim the datagram. */ 2795 } 2796 2797 /* 2798 * PIM-SMv2 and PIM-DM messages processing. 2799 * Receives and verifies the PIM control messages, and passes them 2800 * up to the listening socket, using rip_input(). 2801 * The only message with special processing is the PIM_REGISTER message 2802 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2803 * is passed to if_simloop(). 2804 */ 2805 void 2806 pim_input(struct mbuf *m, int off) 2807 { 2808 struct ip *ip = mtod(m, struct ip *); 2809 struct pim *pim; 2810 int minlen; 2811 int datalen = ip->ip_len; 2812 int ip_tos; 2813 int iphlen = off; 2814 2815 /* Keep statistics */ 2816 pimstat.pims_rcv_total_msgs++; 2817 pimstat.pims_rcv_total_bytes += datalen; 2818 2819 /* 2820 * Validate lengths 2821 */ 2822 if (datalen < PIM_MINLEN) { 2823 pimstat.pims_rcv_tooshort++; 2824 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 2825 datalen, (u_long)ip->ip_src.s_addr); 2826 m_freem(m); 2827 return; 2828 } 2829 2830 /* 2831 * If the packet is at least as big as a REGISTER, go agead 2832 * and grab the PIM REGISTER header size, to avoid another 2833 * possible m_pullup() later. 2834 * 2835 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2836 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2837 */ 2838 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2839 /* 2840 * Get the IP and PIM headers in contiguous memory, and 2841 * possibly the PIM REGISTER header. 2842 */ 2843 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2844 (m = m_pullup(m, minlen)) == 0) { 2845 log(LOG_ERR, "pim_input: m_pullup failure\n"); 2846 return; 2847 } 2848 /* m_pullup() may have given us a new mbuf so reset ip. */ 2849 ip = mtod(m, struct ip *); 2850 ip_tos = ip->ip_tos; 2851 2852 /* adjust mbuf to point to the PIM header */ 2853 m->m_data += iphlen; 2854 m->m_len -= iphlen; 2855 pim = mtod(m, struct pim *); 2856 2857 /* 2858 * Validate checksum. If PIM REGISTER, exclude the data packet. 2859 * 2860 * XXX: some older PIMv2 implementations don't make this distinction, 2861 * so for compatibility reason perform the checksum over part of the 2862 * message, and if error, then over the whole message. 2863 */ 2864 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2865 /* do nothing, checksum okay */ 2866 } else if (in_cksum(m, datalen)) { 2867 pimstat.pims_rcv_badsum++; 2868 if (mrtdebug & DEBUG_PIM) 2869 log(LOG_DEBUG, "pim_input: invalid checksum"); 2870 m_freem(m); 2871 return; 2872 } 2873 2874 /* PIM version check */ 2875 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2876 pimstat.pims_rcv_badversion++; 2877 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 2878 PIM_VT_V(pim->pim_vt), PIM_VERSION); 2879 m_freem(m); 2880 return; 2881 } 2882 2883 /* restore mbuf back to the outer IP */ 2884 m->m_data -= iphlen; 2885 m->m_len += iphlen; 2886 2887 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2888 /* 2889 * Since this is a REGISTER, we'll make a copy of the register 2890 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2891 * routing daemon. 2892 */ 2893 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2894 struct mbuf *mcp; 2895 struct ip *encap_ip; 2896 u_int32_t *reghdr; 2897 struct ifnet *vifp; 2898 2899 VIF_LOCK(); 2900 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 2901 VIF_UNLOCK(); 2902 if (mrtdebug & DEBUG_PIM) 2903 log(LOG_DEBUG, 2904 "pim_input: register vif not set: %d\n", reg_vif_num); 2905 m_freem(m); 2906 return; 2907 } 2908 /* XXX need refcnt? */ 2909 vifp = viftable[reg_vif_num].v_ifp; 2910 VIF_UNLOCK(); 2911 2912 /* 2913 * Validate length 2914 */ 2915 if (datalen < PIM_REG_MINLEN) { 2916 pimstat.pims_rcv_tooshort++; 2917 pimstat.pims_rcv_badregisters++; 2918 log(LOG_ERR, 2919 "pim_input: register packet size too small %d from %lx\n", 2920 datalen, (u_long)ip->ip_src.s_addr); 2921 m_freem(m); 2922 return; 2923 } 2924 2925 reghdr = (u_int32_t *)(pim + 1); 2926 encap_ip = (struct ip *)(reghdr + 1); 2927 2928 if (mrtdebug & DEBUG_PIM) { 2929 log(LOG_DEBUG, 2930 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 2931 (u_long)ntohl(encap_ip->ip_src.s_addr), 2932 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2933 ntohs(encap_ip->ip_len)); 2934 } 2935 2936 /* verify the version number of the inner packet */ 2937 if (encap_ip->ip_v != IPVERSION) { 2938 pimstat.pims_rcv_badregisters++; 2939 if (mrtdebug & DEBUG_PIM) { 2940 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 2941 "of the inner packet\n", encap_ip->ip_v); 2942 } 2943 m_freem(m); 2944 return; 2945 } 2946 2947 /* verify the inner packet is destined to a mcast group */ 2948 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2949 pimstat.pims_rcv_badregisters++; 2950 if (mrtdebug & DEBUG_PIM) 2951 log(LOG_DEBUG, 2952 "pim_input: inner packet of register is not " 2953 "multicast %lx\n", 2954 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 2955 m_freem(m); 2956 return; 2957 } 2958 2959 /* If a NULL_REGISTER, pass it to the daemon */ 2960 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2961 goto pim_input_to_daemon; 2962 2963 /* 2964 * Copy the TOS from the outer IP header to the inner IP header. 2965 */ 2966 if (encap_ip->ip_tos != ip_tos) { 2967 /* Outer TOS -> inner TOS */ 2968 encap_ip->ip_tos = ip_tos; 2969 /* Recompute the inner header checksum. Sigh... */ 2970 2971 /* adjust mbuf to point to the inner IP header */ 2972 m->m_data += (iphlen + PIM_MINLEN); 2973 m->m_len -= (iphlen + PIM_MINLEN); 2974 2975 encap_ip->ip_sum = 0; 2976 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2977 2978 /* restore mbuf to point back to the outer IP header */ 2979 m->m_data -= (iphlen + PIM_MINLEN); 2980 m->m_len += (iphlen + PIM_MINLEN); 2981 } 2982 2983 /* 2984 * Decapsulate the inner IP packet and loopback to forward it 2985 * as a normal multicast packet. Also, make a copy of the 2986 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2987 * to pass to the daemon later, so it can take the appropriate 2988 * actions (e.g., send back PIM_REGISTER_STOP). 2989 * XXX: here m->m_data points to the outer IP header. 2990 */ 2991 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2992 if (mcp == NULL) { 2993 log(LOG_ERR, 2994 "pim_input: pim register: could not copy register head\n"); 2995 m_freem(m); 2996 return; 2997 } 2998 2999 /* Keep statistics */ 3000 /* XXX: registers_bytes include only the encap. mcast pkt */ 3001 pimstat.pims_rcv_registers_msgs++; 3002 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3003 3004 /* 3005 * forward the inner ip packet; point m_data at the inner ip. 3006 */ 3007 m_adj(m, iphlen + PIM_MINLEN); 3008 3009 if (mrtdebug & DEBUG_PIM) { 3010 log(LOG_DEBUG, 3011 "pim_input: forwarding decapsulated register: " 3012 "src %lx, dst %lx, vif %d\n", 3013 (u_long)ntohl(encap_ip->ip_src.s_addr), 3014 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3015 reg_vif_num); 3016 } 3017 /* NB: vifp was collected above; can it change on us? */ 3018 if_simloop(vifp, m, dst.sin_family, 0); 3019 3020 /* prepare the register head to send to the mrouting daemon */ 3021 m = mcp; 3022 } 3023 3024 pim_input_to_daemon: 3025 /* 3026 * Pass the PIM message up to the daemon; if it is a Register message, 3027 * pass the 'head' only up to the daemon. This includes the 3028 * outer IP header, PIM header, PIM-Register header and the 3029 * inner IP header. 3030 * XXX: the outer IP header pkt size of a Register is not adjust to 3031 * reflect the fact that the inner multicast data is truncated. 3032 */ 3033 rip_input(m, iphlen); 3034 3035 return; 3036 } 3037 3038 /* 3039 * XXX: This is common code for dealing with initialization for both 3040 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup. 3041 */ 3042 static int 3043 ip_mroute_modevent(module_t mod, int type, void *unused) 3044 { 3045 INIT_VNET_INET(curvnet); 3046 3047 switch (type) { 3048 case MOD_LOAD: 3049 MROUTER_LOCK_INIT(); 3050 MFC_LOCK_INIT(); 3051 VIF_LOCK_INIT(); 3052 ip_mrouter_reset(); 3053 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 3054 &pim_squelch_wholepkt); 3055 3056 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 3057 pim_encapcheck, &in_pim_protosw, NULL); 3058 if (pim_encap_cookie == NULL) { 3059 printf("ip_mroute: unable to attach pim encap\n"); 3060 VIF_LOCK_DESTROY(); 3061 MFC_LOCK_DESTROY(); 3062 MROUTER_LOCK_DESTROY(); 3063 return (EINVAL); 3064 } 3065 3066 #ifdef INET6 3067 pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM, 3068 pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL); 3069 if (pim6_encap_cookie == NULL) { 3070 printf("ip_mroute: unable to attach pim6 encap\n"); 3071 if (pim_encap_cookie) { 3072 encap_detach(pim_encap_cookie); 3073 pim_encap_cookie = NULL; 3074 } 3075 VIF_LOCK_DESTROY(); 3076 MFC_LOCK_DESTROY(); 3077 MROUTER_LOCK_DESTROY(); 3078 return (EINVAL); 3079 } 3080 #endif 3081 3082 ip_mcast_src = X_ip_mcast_src; 3083 ip_mforward = X_ip_mforward; 3084 ip_mrouter_done = X_ip_mrouter_done; 3085 ip_mrouter_get = X_ip_mrouter_get; 3086 ip_mrouter_set = X_ip_mrouter_set; 3087 3088 #ifdef INET6 3089 ip6_mforward = X_ip6_mforward; 3090 ip6_mrouter_done = X_ip6_mrouter_done; 3091 ip6_mrouter_get = X_ip6_mrouter_get; 3092 ip6_mrouter_set = X_ip6_mrouter_set; 3093 mrt6_ioctl = X_mrt6_ioctl; 3094 #endif 3095 3096 ip_rsvp_force_done = X_ip_rsvp_force_done; 3097 ip_rsvp_vif = X_ip_rsvp_vif; 3098 3099 legal_vif_num = X_legal_vif_num; 3100 mrt_ioctl = X_mrt_ioctl; 3101 rsvp_input_p = X_rsvp_input; 3102 break; 3103 3104 case MOD_UNLOAD: 3105 /* 3106 * Typically module unload happens after the user-level 3107 * process has shutdown the kernel services (the check 3108 * below insures someone can't just yank the module out 3109 * from under a running process). But if the module is 3110 * just loaded and then unloaded w/o starting up a user 3111 * process we still need to cleanup. 3112 */ 3113 if (V_ip_mrouter 3114 #ifdef INET6 3115 || ip6_mrouter 3116 #endif 3117 ) 3118 return EINVAL; 3119 3120 #ifdef INET6 3121 if (pim6_encap_cookie) { 3122 encap_detach(pim6_encap_cookie); 3123 pim6_encap_cookie = NULL; 3124 } 3125 X_ip6_mrouter_done(); 3126 ip6_mforward = NULL; 3127 ip6_mrouter_done = NULL; 3128 ip6_mrouter_get = NULL; 3129 ip6_mrouter_set = NULL; 3130 mrt6_ioctl = NULL; 3131 #endif 3132 3133 if (pim_encap_cookie) { 3134 encap_detach(pim_encap_cookie); 3135 pim_encap_cookie = NULL; 3136 } 3137 X_ip_mrouter_done(); 3138 ip_mcast_src = NULL; 3139 ip_mforward = NULL; 3140 ip_mrouter_done = NULL; 3141 ip_mrouter_get = NULL; 3142 ip_mrouter_set = NULL; 3143 3144 ip_rsvp_force_done = NULL; 3145 ip_rsvp_vif = NULL; 3146 3147 legal_vif_num = NULL; 3148 mrt_ioctl = NULL; 3149 rsvp_input_p = NULL; 3150 3151 VIF_LOCK_DESTROY(); 3152 MFC_LOCK_DESTROY(); 3153 MROUTER_LOCK_DESTROY(); 3154 break; 3155 3156 default: 3157 return EOPNOTSUPP; 3158 } 3159 return 0; 3160 } 3161 3162 static moduledata_t ip_mroutemod = { 3163 "ip_mroute", 3164 ip_mroute_modevent, 3165 0 3166 }; 3167 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3168