xref: /freebsd/sys/netinet/ip_mroute.c (revision a8445737e740901f5f2c8d24c12ef7fc8b00134e)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $Id: ip_mroute.c,v 1.48 1998/08/17 01:05:24 bde Exp $
13  */
14 
15 #include "opt_mrouting.h"
16 
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/time.h>
24 #include <sys/kernel.h>
25 #include <sys/sockio.h>
26 #include <sys/syslog.h>
27 #include <net/if.h>
28 #include <net/route.h>
29 #include <netinet/in.h>
30 #include <netinet/in_systm.h>
31 #include <netinet/ip.h>
32 #include <netinet/ip_var.h>
33 #include <netinet/in_var.h>
34 #include <netinet/igmp.h>
35 #include <netinet/ip_mroute.h>
36 #include <netinet/udp.h>
37 
38 #ifndef NTOHL
39 #if BYTE_ORDER != BIG_ENDIAN
40 #define NTOHL(d) ((d) = ntohl((d)))
41 #define NTOHS(d) ((d) = ntohs((u_short)(d)))
42 #define HTONL(d) ((d) = htonl((d)))
43 #define HTONS(d) ((d) = htons((u_short)(d)))
44 #else
45 #define NTOHL(d)
46 #define NTOHS(d)
47 #define HTONL(d)
48 #define HTONS(d)
49 #endif
50 #endif
51 
52 #ifndef MROUTING
53 extern u_long	_ip_mcast_src __P((int vifi));
54 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
55 				  struct mbuf *m, struct ip_moptions *imo));
56 extern int	_ip_mrouter_done __P((void));
57 extern int	_ip_mrouter_get __P((struct socket *so, struct sockopt *sopt));
58 extern int	_ip_mrouter_set __P((struct socket *so, struct sockopt *sopt));
59 extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
60 
61 /*
62  * Dummy routines and globals used when multicast routing is not compiled in.
63  */
64 
65 struct socket  *ip_mrouter  = NULL;
66 static u_int		ip_mrtproto = 0;
67 static struct mrtstat	mrtstat;
68 u_int		rsvpdebug = 0;
69 
70 int
71 _ip_mrouter_set(so, sopt)
72 	struct socket *so;
73 	struct sockopt *sopt;
74 {
75 	return(EOPNOTSUPP);
76 }
77 
78 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
79 
80 
81 int
82 _ip_mrouter_get(so, sopt)
83 	struct socket *so;
84 	struct sockopt *sopt;
85 {
86 	return(EOPNOTSUPP);
87 }
88 
89 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
90 
91 int
92 _ip_mrouter_done()
93 {
94 	return(0);
95 }
96 
97 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
98 
99 int
100 _ip_mforward(ip, ifp, m, imo)
101 	struct ip *ip;
102 	struct ifnet *ifp;
103 	struct mbuf *m;
104 	struct ip_moptions *imo;
105 {
106 	return(0);
107 }
108 
109 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
110 		   struct ip_moptions *) = _ip_mforward;
111 
112 int
113 _mrt_ioctl(int req, caddr_t data, struct proc *p)
114 {
115 	return EOPNOTSUPP;
116 }
117 
118 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
119 
120 void
121 rsvp_input(m, iphlen)		/* XXX must fixup manually */
122 	struct mbuf *m;
123 	int iphlen;
124 {
125     /* Can still get packets with rsvp_on = 0 if there is a local member
126      * of the group to which the RSVP packet is addressed.  But in this
127      * case we want to throw the packet away.
128      */
129     if (!rsvp_on) {
130 	m_freem(m);
131 	return;
132     }
133 
134     if (ip_rsvpd != NULL) {
135 	if (rsvpdebug)
136 	    printf("rsvp_input: Sending packet up old-style socket\n");
137 	rip_input(m, iphlen);
138 	return;
139     }
140     /* Drop the packet */
141     m_freem(m);
142 }
143 
144 void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
145 	rip_input(m, iphlen);
146 }
147 
148 int (*legal_vif_num)(int) = 0;
149 
150 /*
151  * This should never be called, since IP_MULTICAST_VIF should fail, but
152  * just in case it does get called, the code a little lower in ip_output
153  * will assign the packet a local address.
154  */
155 u_long
156 _ip_mcast_src(int vifi) { return INADDR_ANY; }
157 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
158 
159 int
160 ip_rsvp_vif_init(so, sopt)
161     struct socket *so;
162     struct sockopt *sopt;
163 {
164     return(EINVAL);
165 }
166 
167 int
168 ip_rsvp_vif_done(so, sopt)
169     struct socket *so;
170     struct sockopt *sopt;
171 {
172     return(EINVAL);
173 }
174 
175 void
176 ip_rsvp_force_done(so)
177     struct socket *so;
178 {
179     return;
180 }
181 
182 #else /* MROUTING */
183 
184 #define M_HASCL(m)	((m)->m_flags & M_EXT)
185 
186 #define INSIZ		sizeof(struct in_addr)
187 #define	same(a1, a2) \
188 	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
189 
190 #define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
191 
192 /*
193  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
194  * except for netstat or debugging purposes.
195  */
196 #ifndef MROUTE_LKM
197 struct socket  *ip_mrouter  = NULL;
198 static struct mrtstat	mrtstat;
199 
200 static int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
201 #else /* MROUTE_LKM */
202 extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
203 extern struct mrtstat mrtstat;
204 static int ip_mrtproto;
205 #endif
206 
207 #define NO_RTE_FOUND 	0x1
208 #define RTE_FOUND	0x2
209 
210 static struct mbuf    *mfctable[MFCTBLSIZ];
211 static u_char		nexpire[MFCTBLSIZ];
212 static struct vif	viftable[MAXVIFS];
213 static u_int	mrtdebug = 0;	  /* debug level 	*/
214 #define		DEBUG_MFC	0x02
215 #define		DEBUG_FORWARD	0x04
216 #define		DEBUG_EXPIRE	0x08
217 #define		DEBUG_XMIT	0x10
218 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
219 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
220 
221 static struct callout_handle expire_upcalls_ch;
222 
223 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
224 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
225 
226 /*
227  * Define the token bucket filter structures
228  * tbftable -> each vif has one of these for storing info
229  */
230 
231 static struct tbf tbftable[MAXVIFS];
232 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
233 
234 /*
235  * 'Interfaces' associated with decapsulator (so we can tell
236  * packets that went through it from ones that get reflected
237  * by a broken gateway).  These interfaces are never linked into
238  * the system ifnet list & no routes point to them.  I.e., packets
239  * can't be sent this way.  They only exist as a placeholder for
240  * multicast source verification.
241  */
242 static struct ifnet multicast_decap_if[MAXVIFS];
243 
244 #define ENCAP_TTL 64
245 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
246 
247 /* prototype IP hdr for encapsulated packets */
248 static struct ip multicast_encap_iphdr = {
249 #if BYTE_ORDER == LITTLE_ENDIAN
250 	sizeof(struct ip) >> 2, IPVERSION,
251 #else
252 	IPVERSION, sizeof(struct ip) >> 2,
253 #endif
254 	0,				/* tos */
255 	sizeof(struct ip),		/* total length */
256 	0,				/* id */
257 	0,				/* frag offset */
258 	ENCAP_TTL, ENCAP_PROTO,
259 	0,				/* checksum */
260 };
261 
262 /*
263  * Private variables.
264  */
265 static vifi_t	   numvifs = 0;
266 static int have_encap_tunnel = 0;
267 
268 /*
269  * one-back cache used by ipip_input to locate a tunnel's vif
270  * given a datagram's src ip address.
271  */
272 static u_long last_encap_src;
273 static struct vif *last_encap_vif;
274 
275 static u_long	X_ip_mcast_src __P((int vifi));
276 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
277 static int	X_ip_mrouter_done __P((void));
278 static int	X_ip_mrouter_get __P((struct socket *so, struct sockopt *m));
279 static int	X_ip_mrouter_set __P((struct socket *so, struct sockopt *m));
280 static int	X_legal_vif_num __P((int vif));
281 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
282 
283 static int get_sg_cnt(struct sioc_sg_req *);
284 static int get_vif_cnt(struct sioc_vif_req *);
285 static int ip_mrouter_init(struct socket *, int);
286 static int add_vif(struct vifctl *);
287 static int del_vif(vifi_t);
288 static int add_mfc(struct mfcctl *);
289 static int del_mfc(struct mfcctl *);
290 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
291 static int set_assert(int);
292 static void expire_upcalls(void *);
293 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
294 		  vifi_t);
295 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
296 static void encap_send(struct ip *, struct vif *, struct mbuf *);
297 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
298 static void tbf_queue(struct vif *, struct mbuf *);
299 static void tbf_process_q(struct vif *);
300 static void tbf_reprocess_q(void *);
301 static int tbf_dq_sel(struct vif *, struct ip *);
302 static void tbf_send_packet(struct vif *, struct mbuf *);
303 static void tbf_update_tokens(struct vif *);
304 static int priority(struct vif *, struct ip *);
305 void multiencap_decap(struct mbuf *);
306 
307 /*
308  * whether or not special PIM assert processing is enabled.
309  */
310 static int pim_assert;
311 /*
312  * Rate limit for assert notification messages, in usec
313  */
314 #define ASSERT_MSG_TIME		3000000
315 
316 /*
317  * Hash function for a source, group entry
318  */
319 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
320 			((g) >> 20) ^ ((g) >> 10) ^ (g))
321 
322 /*
323  * Find a route for a given origin IP address and Multicast group address
324  * Type of service parameter to be added in the future!!!
325  */
326 
327 #define MFCFIND(o, g, rt) { \
328 	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
329 	register struct mfc *_rt = NULL; \
330 	rt = NULL; \
331 	++mrtstat.mrts_mfc_lookups; \
332 	while (_mb_rt) { \
333 		_rt = mtod(_mb_rt, struct mfc *); \
334 		if ((_rt->mfc_origin.s_addr == o) && \
335 		    (_rt->mfc_mcastgrp.s_addr == g) && \
336 		    (_mb_rt->m_act == NULL)) { \
337 			rt = _rt; \
338 			break; \
339 		} \
340 		_mb_rt = _mb_rt->m_next; \
341 	} \
342 	if (rt == NULL) { \
343 		++mrtstat.mrts_mfc_misses; \
344 	} \
345 }
346 
347 
348 /*
349  * Macros to compute elapsed time efficiently
350  * Borrowed from Van Jacobson's scheduling code
351  */
352 #define TV_DELTA(a, b, delta) { \
353 	    register int xxs; \
354 		\
355 	    delta = (a).tv_usec - (b).tv_usec; \
356 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
357 	       switch (xxs) { \
358 		      case 2: \
359 			  delta += 1000000; \
360 			      /* fall through */ \
361 		      case 1: \
362 			  delta += 1000000; \
363 			  break; \
364 		      default: \
365 			  delta += (1000000 * xxs); \
366 	       } \
367 	    } \
368 }
369 
370 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
371 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
372 
373 #ifdef UPCALL_TIMING
374 u_long upcall_data[51];
375 static void collate(struct timeval *);
376 #endif /* UPCALL_TIMING */
377 
378 
379 /*
380  * Handle MRT setsockopt commands to modify the multicast routing tables.
381  */
382 static int
383 X_ip_mrouter_set(so, sopt)
384 	struct socket *so;
385 	struct sockopt *sopt;
386 {
387 	int	error, optval;
388 	vifi_t	vifi;
389 	struct	vifctl vifc;
390 	struct	mfcctl mfc;
391 
392 	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
393 		return (EPERM);
394 
395 	error = 0;
396 	switch (sopt->sopt_name) {
397 	case MRT_INIT:
398 		error = sooptcopyin(sopt, &optval, sizeof optval,
399 				    sizeof optval);
400 		if (error)
401 			break;
402 		error = ip_mrouter_init(so, optval);
403 		break;
404 
405 	case MRT_DONE:
406 		error = ip_mrouter_done();
407 		break;
408 
409 	case MRT_ADD_VIF:
410 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
411 		if (error)
412 			break;
413 		error = add_vif(&vifc);
414 		break;
415 
416 	case MRT_DEL_VIF:
417 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
418 		if (error)
419 			break;
420 		error = del_vif(vifi);
421 		break;
422 
423 	case MRT_ADD_MFC:
424 	case MRT_DEL_MFC:
425 		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
426 		if (error)
427 			break;
428 		if (sopt->sopt_name == MRT_ADD_MFC)
429 			error = add_mfc(&mfc);
430 		else
431 			error = del_mfc(&mfc);
432 
433 	case MRT_ASSERT:
434 		error = sooptcopyin(sopt, &optval, sizeof optval,
435 				    sizeof optval);
436 		if (error)
437 			break;
438 		set_assert(optval);
439 
440 	default:
441 		error = EOPNOTSUPP;
442 		break;
443 	}
444 	return (error);
445 }
446 
447 #ifndef MROUTE_LKM
448 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
449 #endif
450 
451 /*
452  * Handle MRT getsockopt commands
453  */
454 static int
455 X_ip_mrouter_get(so, sopt)
456 	struct socket *so;
457 	struct sockopt *sopt;
458 {
459 	int error;
460 	static int version = 0x0305; /* !!! why is this here? XXX */
461 
462 	switch (sopt->sopt_name) {
463 	case MRT_VERSION:
464 		error = sooptcopyout(sopt, &version, sizeof version);
465 		break;
466 
467 	case MRT_ASSERT:
468 		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
469 		break;
470 	default:
471 		error = EOPNOTSUPP;
472 		break;
473 	}
474 	return (error);
475 }
476 
477 #ifndef MROUTE_LKM
478 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
479 #endif
480 
481 /*
482  * Handle ioctl commands to obtain information from the cache
483  */
484 static int
485 X_mrt_ioctl(cmd, data)
486     int cmd;
487     caddr_t data;
488 {
489     int error = 0;
490 
491     switch (cmd) {
492 	case (SIOCGETVIFCNT):
493 	    return (get_vif_cnt((struct sioc_vif_req *)data));
494 	    break;
495 	case (SIOCGETSGCNT):
496 	    return (get_sg_cnt((struct sioc_sg_req *)data));
497 	    break;
498 	default:
499 	    return (EINVAL);
500 	    break;
501     }
502     return error;
503 }
504 
505 #ifndef MROUTE_LKM
506 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
507 #endif
508 
509 /*
510  * returns the packet, byte, rpf-failure count for the source group provided
511  */
512 static int
513 get_sg_cnt(req)
514     register struct sioc_sg_req *req;
515 {
516     register struct mfc *rt;
517     int s;
518 
519     s = splnet();
520     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
521     splx(s);
522     if (rt != NULL) {
523 	req->pktcnt = rt->mfc_pkt_cnt;
524 	req->bytecnt = rt->mfc_byte_cnt;
525 	req->wrong_if = rt->mfc_wrong_if;
526     } else
527 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
528 
529     return 0;
530 }
531 
532 /*
533  * returns the input and output packet and byte counts on the vif provided
534  */
535 static int
536 get_vif_cnt(req)
537     register struct sioc_vif_req *req;
538 {
539     register vifi_t vifi = req->vifi;
540 
541     if (vifi >= numvifs) return EINVAL;
542 
543     req->icount = viftable[vifi].v_pkt_in;
544     req->ocount = viftable[vifi].v_pkt_out;
545     req->ibytes = viftable[vifi].v_bytes_in;
546     req->obytes = viftable[vifi].v_bytes_out;
547 
548     return 0;
549 }
550 
551 /*
552  * Enable multicast routing
553  */
554 static int
555 ip_mrouter_init(so, version)
556 	struct socket *so;
557 	int version;
558 {
559     int *v;
560 
561     if (mrtdebug)
562 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
563 		so->so_type, so->so_proto->pr_protocol);
564 
565     if (so->so_type != SOCK_RAW ||
566 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
567 
568     if (version != 1)
569 	return ENOPROTOOPT;
570 
571     if (ip_mrouter != NULL) return EADDRINUSE;
572 
573     ip_mrouter = so;
574 
575     bzero((caddr_t)mfctable, sizeof(mfctable));
576     bzero((caddr_t)nexpire, sizeof(nexpire));
577 
578     pim_assert = 0;
579 
580     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
581 
582     if (mrtdebug)
583 	log(LOG_DEBUG, "ip_mrouter_init\n");
584 
585     return 0;
586 }
587 
588 /*
589  * Disable multicast routing
590  */
591 static int
592 X_ip_mrouter_done()
593 {
594     vifi_t vifi;
595     int i;
596     struct ifnet *ifp;
597     struct ifreq ifr;
598     struct mbuf *mb_rt;
599     struct mbuf *m;
600     struct rtdetq *rte;
601     int s;
602 
603     s = splnet();
604 
605     /*
606      * For each phyint in use, disable promiscuous reception of all IP
607      * multicasts.
608      */
609     for (vifi = 0; vifi < numvifs; vifi++) {
610 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
611 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
612 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
613 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
614 								= INADDR_ANY;
615 	    ifp = viftable[vifi].v_ifp;
616 	    if_allmulti(ifp, 0);
617 	}
618     }
619     bzero((caddr_t)tbftable, sizeof(tbftable));
620     bzero((caddr_t)viftable, sizeof(viftable));
621     numvifs = 0;
622     pim_assert = 0;
623 
624     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
625 
626     /*
627      * Free all multicast forwarding cache entries.
628      */
629     for (i = 0; i < MFCTBLSIZ; i++) {
630 	mb_rt = mfctable[i];
631 	while (mb_rt) {
632 	    if (mb_rt->m_act != NULL) {
633 		while (mb_rt->m_act) {
634 		    m = mb_rt->m_act;
635 		    mb_rt->m_act = m->m_act;
636 		    rte = mtod(m, struct rtdetq *);
637 		    m_freem(rte->m);
638 		    m_free(m);
639 		}
640 	    }
641 	    mb_rt = m_free(mb_rt);
642 	}
643     }
644 
645     bzero((caddr_t)mfctable, sizeof(mfctable));
646 
647     /*
648      * Reset de-encapsulation cache
649      */
650     last_encap_src = 0;
651     last_encap_vif = NULL;
652     have_encap_tunnel = 0;
653 
654     ip_mrouter = NULL;
655 
656     splx(s);
657 
658     if (mrtdebug)
659 	log(LOG_DEBUG, "ip_mrouter_done\n");
660 
661     return 0;
662 }
663 
664 #ifndef MROUTE_LKM
665 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
666 #endif
667 
668 /*
669  * Set PIM assert processing global
670  */
671 static int
672 set_assert(i)
673 	int i;
674 {
675     if ((i != 1) && (i != 0))
676 	return EINVAL;
677 
678     pim_assert = i;
679 
680     return 0;
681 }
682 
683 /*
684  * Add a vif to the vif table
685  */
686 static int
687 add_vif(vifcp)
688     register struct vifctl *vifcp;
689 {
690     register struct vif *vifp = viftable + vifcp->vifc_vifi;
691     static struct sockaddr_in sin = {sizeof sin, AF_INET};
692     struct ifaddr *ifa;
693     struct ifnet *ifp;
694     struct ifreq ifr;
695     int error, s;
696     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
697 
698     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
699     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
700 
701     /* Find the interface with an address in AF_INET family */
702     sin.sin_addr = vifcp->vifc_lcl_addr;
703     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
704     if (ifa == 0) return EADDRNOTAVAIL;
705     ifp = ifa->ifa_ifp;
706 
707     if (vifcp->vifc_flags & VIFF_TUNNEL) {
708 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
709 		/*
710 		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
711 		 * start paying attention to encapsulated packets.
712 		 */
713 		if (have_encap_tunnel == 0) {
714 			have_encap_tunnel = 1;
715 			for (s = 0; s < MAXVIFS; ++s) {
716 				multicast_decap_if[s].if_name = "mdecap";
717 				multicast_decap_if[s].if_unit = s;
718 			}
719 		}
720 		/*
721 		 * Set interface to fake encapsulator interface
722 		 */
723 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
724 		/*
725 		 * Prepare cached route entry
726 		 */
727 		bzero(&vifp->v_route, sizeof(vifp->v_route));
728 	} else {
729 	    log(LOG_ERR, "source routed tunnels not supported\n");
730 	    return EOPNOTSUPP;
731 	}
732     } else {
733 	/* Make sure the interface supports multicast */
734 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
735 	    return EOPNOTSUPP;
736 
737 	/* Enable promiscuous reception of all IP multicasts from the if */
738 	s = splnet();
739 	error = if_allmulti(ifp, 1);
740 	splx(s);
741 	if (error)
742 	    return error;
743     }
744 
745     s = splnet();
746     /* define parameters for the tbf structure */
747     vifp->v_tbf = v_tbf;
748     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
749     vifp->v_tbf->tbf_n_tok = 0;
750     vifp->v_tbf->tbf_q_len = 0;
751     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
752     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
753 
754     vifp->v_flags     = vifcp->vifc_flags;
755     vifp->v_threshold = vifcp->vifc_threshold;
756     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
757     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
758     vifp->v_ifp       = ifp;
759     /* scaling up here allows division by 1024 in critical code */
760     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
761     vifp->v_rsvp_on   = 0;
762     vifp->v_rsvpd     = NULL;
763     /* initialize per vif pkt counters */
764     vifp->v_pkt_in    = 0;
765     vifp->v_pkt_out   = 0;
766     vifp->v_bytes_in  = 0;
767     vifp->v_bytes_out = 0;
768     splx(s);
769 
770     /* Adjust numvifs up if the vifi is higher than numvifs */
771     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
772 
773     if (mrtdebug)
774 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
775 	    vifcp->vifc_vifi,
776 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
777 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
778 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
779 	    vifcp->vifc_threshold,
780 	    vifcp->vifc_rate_limit);
781 
782     return 0;
783 }
784 
785 /*
786  * Delete a vif from the vif table
787  */
788 static int
789 del_vif(vifi)
790 	vifi_t vifi;
791 {
792     register struct vif *vifp = &viftable[vifi];
793     register struct mbuf *m;
794     struct ifnet *ifp;
795     struct ifreq ifr;
796     int s;
797 
798     if (vifi >= numvifs) return EINVAL;
799     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
800 
801     s = splnet();
802 
803     if (!(vifp->v_flags & VIFF_TUNNEL)) {
804 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
805 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
806 	ifp = vifp->v_ifp;
807 	if_allmulti(ifp, 0);
808     }
809 
810     if (vifp == last_encap_vif) {
811 	last_encap_vif = 0;
812 	last_encap_src = 0;
813     }
814 
815     /*
816      * Free packets queued at the interface
817      */
818     while (vifp->v_tbf->tbf_q) {
819 	m = vifp->v_tbf->tbf_q;
820 	vifp->v_tbf->tbf_q = m->m_act;
821 	m_freem(m);
822     }
823 
824     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
825     bzero((caddr_t)vifp, sizeof (*vifp));
826 
827     if (mrtdebug)
828       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
829 
830     /* Adjust numvifs down */
831     for (vifi = numvifs; vifi > 0; vifi--)
832 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
833     numvifs = vifi;
834 
835     splx(s);
836 
837     return 0;
838 }
839 
840 /*
841  * Add an mfc entry
842  */
843 static int
844 add_mfc(mfccp)
845     struct mfcctl *mfccp;
846 {
847     struct mfc *rt;
848     register struct mbuf *mb_rt;
849     u_long hash;
850     struct mbuf *mb_ntry;
851     struct rtdetq *rte;
852     register u_short nstl;
853     int s;
854     int i;
855 
856     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
857 
858     /* If an entry already exists, just update the fields */
859     if (rt) {
860 	if (mrtdebug & DEBUG_MFC)
861 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
862 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
863 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
864 		mfccp->mfcc_parent);
865 
866 	s = splnet();
867 	rt->mfc_parent = mfccp->mfcc_parent;
868 	for (i = 0; i < numvifs; i++)
869 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
870 	splx(s);
871 	return 0;
872     }
873 
874     /*
875      * Find the entry for which the upcall was made and update
876      */
877     s = splnet();
878     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
879     for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
880 
881 	rt = mtod(mb_rt, struct mfc *);
882 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
883 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
884 	    (mb_rt->m_act != NULL)) {
885 
886 	    if (nstl++)
887 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
888 		    "multiple kernel entries",
889 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
890 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
891 		    mfccp->mfcc_parent, (void *)mb_rt->m_act);
892 
893 	    if (mrtdebug & DEBUG_MFC)
894 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
895 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
896 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
897 		    mfccp->mfcc_parent, (void *)mb_rt->m_act);
898 
899 	    rt->mfc_origin     = mfccp->mfcc_origin;
900 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
901 	    rt->mfc_parent     = mfccp->mfcc_parent;
902 	    for (i = 0; i < numvifs; i++)
903 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
904 	    /* initialize pkt counters per src-grp */
905 	    rt->mfc_pkt_cnt    = 0;
906 	    rt->mfc_byte_cnt   = 0;
907 	    rt->mfc_wrong_if   = 0;
908 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
909 
910 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
911 	    nexpire[hash]--;
912 
913 	    /* free packets Qed at the end of this entry */
914 	    while (mb_rt->m_act) {
915 		mb_ntry = mb_rt->m_act;
916 		rte = mtod(mb_ntry, struct rtdetq *);
917 /* #ifdef RSVP_ISI */
918 		ip_mdq(rte->m, rte->ifp, rt, -1);
919 /* #endif */
920 		mb_rt->m_act = mb_ntry->m_act;
921 		m_freem(rte->m);
922 #ifdef UPCALL_TIMING
923 		collate(&(rte->t));
924 #endif /* UPCALL_TIMING */
925 		m_free(mb_ntry);
926 	    }
927 	}
928     }
929 
930     /*
931      * It is possible that an entry is being inserted without an upcall
932      */
933     if (nstl == 0) {
934 	if (mrtdebug & DEBUG_MFC)
935 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
936 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
937 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
938 		mfccp->mfcc_parent);
939 
940 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
941 
942 	    rt = mtod(mb_rt, struct mfc *);
943 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
944 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
945 
946 		rt->mfc_origin     = mfccp->mfcc_origin;
947 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
948 		rt->mfc_parent     = mfccp->mfcc_parent;
949 		for (i = 0; i < numvifs; i++)
950 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
951 		/* initialize pkt counters per src-grp */
952 		rt->mfc_pkt_cnt    = 0;
953 		rt->mfc_byte_cnt   = 0;
954 		rt->mfc_wrong_if   = 0;
955 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
956 		if (rt->mfc_expire)
957 		    nexpire[hash]--;
958 		rt->mfc_expire	   = 0;
959 	    }
960 	}
961 	if (mb_rt == NULL) {
962 	    /* no upcall, so make a new entry */
963 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
964 	    if (mb_rt == NULL) {
965 		splx(s);
966 		return ENOBUFS;
967 	    }
968 
969 	    rt = mtod(mb_rt, struct mfc *);
970 
971 	    /* insert new entry at head of hash chain */
972 	    rt->mfc_origin     = mfccp->mfcc_origin;
973 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
974 	    rt->mfc_parent     = mfccp->mfcc_parent;
975 	    for (i = 0; i < numvifs; i++)
976 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
977 	    /* initialize pkt counters per src-grp */
978 	    rt->mfc_pkt_cnt    = 0;
979 	    rt->mfc_byte_cnt   = 0;
980 	    rt->mfc_wrong_if   = 0;
981 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
982 	    rt->mfc_expire     = 0;
983 
984 	    /* link into table */
985 	    mb_rt->m_next  = mfctable[hash];
986 	    mfctable[hash] = mb_rt;
987 	    mb_rt->m_act = NULL;
988 	}
989     }
990     splx(s);
991     return 0;
992 }
993 
994 #ifdef UPCALL_TIMING
995 /*
996  * collect delay statistics on the upcalls
997  */
998 static void collate(t)
999 register struct timeval *t;
1000 {
1001     register u_long d;
1002     register struct timeval tp;
1003     register u_long delta;
1004 
1005     GET_TIME(tp);
1006 
1007     if (TV_LT(*t, tp))
1008     {
1009 	TV_DELTA(tp, *t, delta);
1010 
1011 	d = delta >> 10;
1012 	if (d > 50)
1013 	    d = 50;
1014 
1015 	++upcall_data[d];
1016     }
1017 }
1018 #endif /* UPCALL_TIMING */
1019 
1020 /*
1021  * Delete an mfc entry
1022  */
1023 static int
1024 del_mfc(mfccp)
1025     struct mfcctl *mfccp;
1026 {
1027     struct in_addr 	origin;
1028     struct in_addr 	mcastgrp;
1029     struct mfc 		*rt;
1030     struct mbuf 	*mb_rt;
1031     struct mbuf 	**nptr;
1032     u_long 		hash;
1033     int s;
1034 
1035     origin = mfccp->mfcc_origin;
1036     mcastgrp = mfccp->mfcc_mcastgrp;
1037     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1038 
1039     if (mrtdebug & DEBUG_MFC)
1040 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1041 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1042 
1043     s = splnet();
1044 
1045     nptr = &mfctable[hash];
1046     while ((mb_rt = *nptr) != NULL) {
1047         rt = mtod(mb_rt, struct mfc *);
1048 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1049 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1050 	    mb_rt->m_act == NULL)
1051 	    break;
1052 
1053 	nptr = &mb_rt->m_next;
1054     }
1055     if (mb_rt == NULL) {
1056 	splx(s);
1057 	return EADDRNOTAVAIL;
1058     }
1059 
1060     MFREE(mb_rt, *nptr);
1061 
1062     splx(s);
1063 
1064     return 0;
1065 }
1066 
1067 /*
1068  * Send a message to mrouted on the multicast routing socket
1069  */
1070 static int
1071 socket_send(s, mm, src)
1072 	struct socket *s;
1073 	struct mbuf *mm;
1074 	struct sockaddr_in *src;
1075 {
1076 	if (s) {
1077 		if (sbappendaddr(&s->so_rcv,
1078 				 (struct sockaddr *)src,
1079 				 mm, (struct mbuf *)0) != 0) {
1080 			sorwakeup(s);
1081 			return 0;
1082 		}
1083 	}
1084 	m_freem(mm);
1085 	return -1;
1086 }
1087 
1088 /*
1089  * IP multicast forwarding function. This function assumes that the packet
1090  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1091  * pointed to by "ifp", and the packet is to be relayed to other networks
1092  * that have members of the packet's destination IP multicast group.
1093  *
1094  * The packet is returned unscathed to the caller, unless it is
1095  * erroneous, in which case a non-zero return value tells the caller to
1096  * discard it.
1097  */
1098 
1099 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1100 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1101 
1102 static int
1103 X_ip_mforward(ip, ifp, m, imo)
1104     register struct ip *ip;
1105     struct ifnet *ifp;
1106     struct mbuf *m;
1107     struct ip_moptions *imo;
1108 {
1109     register struct mfc *rt;
1110     register u_char *ipoptions;
1111     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1112     static int srctun = 0;
1113     register struct mbuf *mm;
1114     int s;
1115     vifi_t vifi;
1116     struct vif *vifp;
1117 
1118     if (mrtdebug & DEBUG_FORWARD)
1119 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1120 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1121 	    (void *)ifp);
1122 
1123     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1124 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1125 	/*
1126 	 * Packet arrived via a physical interface or
1127 	 * an encapsulated tunnel.
1128 	 */
1129     } else {
1130 	/*
1131 	 * Packet arrived through a source-route tunnel.
1132 	 * Source-route tunnels are no longer supported.
1133 	 */
1134 	if ((srctun++ % 1000) == 0)
1135 	    log(LOG_ERR,
1136 		"ip_mforward: received source-routed packet from %lx\n",
1137 		(u_long)ntohl(ip->ip_src.s_addr));
1138 
1139 	return 1;
1140     }
1141 
1142     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1143 	if (ip->ip_ttl < 255)
1144 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1145 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1146 	    vifp = viftable + vifi;
1147 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1148 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1149 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1150 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1151 	}
1152 	return (ip_mdq(m, ifp, NULL, vifi));
1153     }
1154     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1155 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1156 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1157 	if(!imo)
1158 		printf("In fact, no options were specified at all\n");
1159     }
1160 
1161     /*
1162      * Don't forward a packet with time-to-live of zero or one,
1163      * or a packet destined to a local-only group.
1164      */
1165     if (ip->ip_ttl <= 1 ||
1166 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1167 	return 0;
1168 
1169     /*
1170      * Determine forwarding vifs from the forwarding cache table
1171      */
1172     s = splnet();
1173     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1174 
1175     /* Entry exists, so forward if necessary */
1176     if (rt != NULL) {
1177 	splx(s);
1178 	return (ip_mdq(m, ifp, rt, -1));
1179     } else {
1180 	/*
1181 	 * If we don't have a route for packet's origin,
1182 	 * Make a copy of the packet &
1183 	 * send message to routing daemon
1184 	 */
1185 
1186 	register struct mbuf *mb_rt;
1187 	register struct mbuf *mb_ntry;
1188 	register struct mbuf *mb0;
1189 	register struct rtdetq *rte;
1190 	register struct mbuf *rte_m;
1191 	register u_long hash;
1192 	register int npkts;
1193 	int hlen = ip->ip_hl << 2;
1194 #ifdef UPCALL_TIMING
1195 	struct timeval tp;
1196 
1197 	GET_TIME(tp);
1198 #endif
1199 
1200 	mrtstat.mrts_no_route++;
1201 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1202 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1203 		(u_long)ntohl(ip->ip_src.s_addr),
1204 		(u_long)ntohl(ip->ip_dst.s_addr));
1205 
1206 	/*
1207 	 * Allocate mbufs early so that we don't do extra work if we are
1208 	 * just going to fail anyway.  Make sure to pullup the header so
1209 	 * that other people can't step on it.
1210 	 */
1211 	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1212 	if (mb_ntry == NULL) {
1213 	    splx(s);
1214 	    return ENOBUFS;
1215 	}
1216 	mb0 = m_copy(m, 0, M_COPYALL);
1217 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1218 	    mb0 = m_pullup(mb0, hlen);
1219 	if (mb0 == NULL) {
1220 	    m_free(mb_ntry);
1221 	    splx(s);
1222 	    return ENOBUFS;
1223 	}
1224 
1225 	/* is there an upcall waiting for this packet? */
1226 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1227 	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1228 	    rt = mtod(mb_rt, struct mfc *);
1229 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1230 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1231 		(mb_rt->m_act != NULL))
1232 		break;
1233 	}
1234 
1235 	if (mb_rt == NULL) {
1236 	    int i;
1237 	    struct igmpmsg *im;
1238 
1239 	    /* no upcall, so make a new entry */
1240 	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1241 	    if (mb_rt == NULL) {
1242 		m_free(mb_ntry);
1243 		m_freem(mb0);
1244 		splx(s);
1245 		return ENOBUFS;
1246 	    }
1247 	    /* Make a copy of the header to send to the user level process */
1248 	    mm = m_copy(mb0, 0, hlen);
1249 	    if (mm == NULL) {
1250 		m_free(mb_ntry);
1251 		m_freem(mb0);
1252 		m_free(mb_rt);
1253 		splx(s);
1254 		return ENOBUFS;
1255 	    }
1256 
1257 	    /*
1258 	     * Send message to routing daemon to install
1259 	     * a route into the kernel table
1260 	     */
1261 	    k_igmpsrc.sin_addr = ip->ip_src;
1262 
1263 	    im = mtod(mm, struct igmpmsg *);
1264 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1265 	    im->im_mbz		= 0;
1266 
1267 	    mrtstat.mrts_upcalls++;
1268 
1269 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1270 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1271 		++mrtstat.mrts_upq_sockfull;
1272 		m_free(mb_ntry);
1273 		m_freem(mb0);
1274 		m_free(mb_rt);
1275 		splx(s);
1276 		return ENOBUFS;
1277 	    }
1278 
1279 	    rt = mtod(mb_rt, struct mfc *);
1280 
1281 	    /* insert new entry at head of hash chain */
1282 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1283 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1284 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1285 	    nexpire[hash]++;
1286 	    for (i = 0; i < numvifs; i++)
1287 		rt->mfc_ttls[i] = 0;
1288 	    rt->mfc_parent = -1;
1289 
1290 	    /* link into table */
1291 	    mb_rt->m_next  = mfctable[hash];
1292 	    mfctable[hash] = mb_rt;
1293 	    mb_rt->m_act = NULL;
1294 
1295 	    rte_m = mb_rt;
1296 	} else {
1297 	    /* determine if q has overflowed */
1298 	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1299 		npkts++;
1300 
1301 	    if (npkts > MAX_UPQ) {
1302 		mrtstat.mrts_upq_ovflw++;
1303 		m_free(mb_ntry);
1304 		m_freem(mb0);
1305 		splx(s);
1306 		return 0;
1307 	    }
1308 	}
1309 
1310 	mb_ntry->m_act = NULL;
1311 	rte = mtod(mb_ntry, struct rtdetq *);
1312 
1313 	rte->m 			= mb0;
1314 	rte->ifp 		= ifp;
1315 #ifdef UPCALL_TIMING
1316 	rte->t			= tp;
1317 #endif
1318 
1319 	/* Add this entry to the end of the queue */
1320 	rte_m->m_act		= mb_ntry;
1321 
1322 	splx(s);
1323 
1324 	return 0;
1325     }
1326 }
1327 
1328 #ifndef MROUTE_LKM
1329 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1330 		   struct ip_moptions *) = X_ip_mforward;
1331 #endif
1332 
1333 /*
1334  * Clean up the cache entry if upcall is not serviced
1335  */
1336 static void
1337 expire_upcalls(void *unused)
1338 {
1339     struct mbuf *mb_rt, *m, **nptr;
1340     struct rtdetq *rte;
1341     struct mfc *mfc;
1342     int i;
1343     int s;
1344 
1345     s = splnet();
1346     for (i = 0; i < MFCTBLSIZ; i++) {
1347 	if (nexpire[i] == 0)
1348 	    continue;
1349 	nptr = &mfctable[i];
1350 	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1351 	    mfc = mtod(mb_rt, struct mfc *);
1352 
1353 	    /*
1354 	     * Skip real cache entries
1355 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1356 	     * If it expires now
1357 	     */
1358 	    if (mb_rt->m_act != NULL &&
1359 	        mfc->mfc_expire != 0 &&
1360 		--mfc->mfc_expire == 0) {
1361 		if (mrtdebug & DEBUG_EXPIRE)
1362 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1363 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1364 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1365 		/*
1366 		 * drop all the packets
1367 		 * free the mbuf with the pkt, if, timing info
1368 		 */
1369 		while (mb_rt->m_act) {
1370 		    m = mb_rt->m_act;
1371 		    mb_rt->m_act = m->m_act;
1372 
1373 		    rte = mtod(m, struct rtdetq *);
1374 		    m_freem(rte->m);
1375 		    m_free(m);
1376 		}
1377 		++mrtstat.mrts_cache_cleanups;
1378 		nexpire[i]--;
1379 
1380 		MFREE(mb_rt, *nptr);
1381 	    } else {
1382 		nptr = &mb_rt->m_next;
1383 	    }
1384 	}
1385     }
1386     splx(s);
1387     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1388 }
1389 
1390 /*
1391  * Packet forwarding routine once entry in the cache is made
1392  */
1393 static int
1394 ip_mdq(m, ifp, rt, xmt_vif)
1395     register struct mbuf *m;
1396     register struct ifnet *ifp;
1397     register struct mfc *rt;
1398     register vifi_t xmt_vif;
1399 {
1400     register struct ip  *ip = mtod(m, struct ip *);
1401     register vifi_t vifi;
1402     register struct vif *vifp;
1403     register int plen = ip->ip_len;
1404 
1405 /*
1406  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1407  * input, they shouldn't get counted on output, so statistics keeping is
1408  * seperate.
1409  */
1410 #define MC_SEND(ip,vifp,m) {                             \
1411                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1412                     encap_send((ip), (vifp), (m));       \
1413                 else                                     \
1414                     phyint_send((ip), (vifp), (m));      \
1415 }
1416 
1417     /*
1418      * If xmt_vif is not -1, send on only the requested vif.
1419      *
1420      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1421      */
1422     if (xmt_vif < numvifs) {
1423 	MC_SEND(ip, viftable + xmt_vif, m);
1424 	return 1;
1425     }
1426 
1427     /*
1428      * Don't forward if it didn't arrive from the parent vif for its origin.
1429      */
1430     vifi = rt->mfc_parent;
1431     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1432 	/* came in the wrong interface */
1433 	if (mrtdebug & DEBUG_FORWARD)
1434 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1435 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1436 	++mrtstat.mrts_wrong_if;
1437 	++rt->mfc_wrong_if;
1438 	/*
1439 	 * If we are doing PIM assert processing, and we are forwarding
1440 	 * packets on this interface, and it is a broadcast medium
1441 	 * interface (and not a tunnel), send a message to the routing daemon.
1442 	 */
1443 	if (pim_assert && rt->mfc_ttls[vifi] &&
1444 		(ifp->if_flags & IFF_BROADCAST) &&
1445 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1446 	    struct sockaddr_in k_igmpsrc;
1447 	    struct mbuf *mm;
1448 	    struct igmpmsg *im;
1449 	    int hlen = ip->ip_hl << 2;
1450 	    struct timeval now;
1451 	    register u_long delta;
1452 
1453 	    GET_TIME(now);
1454 
1455 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1456 
1457 	    if (delta > ASSERT_MSG_TIME) {
1458 		mm = m_copy(m, 0, hlen);
1459 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1460 		    mm = m_pullup(mm, hlen);
1461 		if (mm == NULL) {
1462 		    return ENOBUFS;
1463 		}
1464 
1465 		rt->mfc_last_assert = now;
1466 
1467 		im = mtod(mm, struct igmpmsg *);
1468 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1469 		im->im_mbz		= 0;
1470 		im->im_vif		= vifi;
1471 
1472 		k_igmpsrc.sin_addr = im->im_src;
1473 
1474 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1475 	    }
1476 	}
1477 	return 0;
1478     }
1479 
1480     /* If I sourced this packet, it counts as output, else it was input. */
1481     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1482 	viftable[vifi].v_pkt_out++;
1483 	viftable[vifi].v_bytes_out += plen;
1484     } else {
1485 	viftable[vifi].v_pkt_in++;
1486 	viftable[vifi].v_bytes_in += plen;
1487     }
1488     rt->mfc_pkt_cnt++;
1489     rt->mfc_byte_cnt += plen;
1490 
1491     /*
1492      * For each vif, decide if a copy of the packet should be forwarded.
1493      * Forward if:
1494      *		- the ttl exceeds the vif's threshold
1495      *		- there are group members downstream on interface
1496      */
1497     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1498 	if ((rt->mfc_ttls[vifi] > 0) &&
1499 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1500 	    vifp->v_pkt_out++;
1501 	    vifp->v_bytes_out += plen;
1502 	    MC_SEND(ip, vifp, m);
1503 	}
1504 
1505     return 0;
1506 }
1507 
1508 /*
1509  * check if a vif number is legal/ok. This is used by ip_output, to export
1510  * numvifs there,
1511  */
1512 static int
1513 X_legal_vif_num(vif)
1514     int vif;
1515 {
1516     if (vif >= 0 && vif < numvifs)
1517        return(1);
1518     else
1519        return(0);
1520 }
1521 
1522 #ifndef MROUTE_LKM
1523 int (*legal_vif_num)(int) = X_legal_vif_num;
1524 #endif
1525 
1526 /*
1527  * Return the local address used by this vif
1528  */
1529 static u_long
1530 X_ip_mcast_src(vifi)
1531     int vifi;
1532 {
1533     if (vifi >= 0 && vifi < numvifs)
1534 	return viftable[vifi].v_lcl_addr.s_addr;
1535     else
1536 	return INADDR_ANY;
1537 }
1538 
1539 #ifndef MROUTE_LKM
1540 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1541 #endif
1542 
1543 static void
1544 phyint_send(ip, vifp, m)
1545     struct ip *ip;
1546     struct vif *vifp;
1547     struct mbuf *m;
1548 {
1549     register struct mbuf *mb_copy;
1550     register int hlen = ip->ip_hl << 2;
1551 
1552     /*
1553      * Make a new reference to the packet; make sure that
1554      * the IP header is actually copied, not just referenced,
1555      * so that ip_output() only scribbles on the copy.
1556      */
1557     mb_copy = m_copy(m, 0, M_COPYALL);
1558     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1559 	mb_copy = m_pullup(mb_copy, hlen);
1560     if (mb_copy == NULL)
1561 	return;
1562 
1563     if (vifp->v_rate_limit <= 0)
1564 	tbf_send_packet(vifp, mb_copy);
1565     else
1566 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1567 }
1568 
1569 static void
1570 encap_send(ip, vifp, m)
1571     register struct ip *ip;
1572     register struct vif *vifp;
1573     register struct mbuf *m;
1574 {
1575     register struct mbuf *mb_copy;
1576     register struct ip *ip_copy;
1577     register int i, len = ip->ip_len;
1578 
1579     /*
1580      * copy the old packet & pullup its IP header into the
1581      * new mbuf so we can modify it.  Try to fill the new
1582      * mbuf since if we don't the ethernet driver will.
1583      */
1584     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1585     if (mb_copy == NULL)
1586 	return;
1587     mb_copy->m_data += max_linkhdr;
1588     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1589 
1590     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1591 	m_freem(mb_copy);
1592 	return;
1593     }
1594     i = MHLEN - M_LEADINGSPACE(mb_copy);
1595     if (i > len)
1596 	i = len;
1597     mb_copy = m_pullup(mb_copy, i);
1598     if (mb_copy == NULL)
1599 	return;
1600     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1601 
1602     /*
1603      * fill in the encapsulating IP header.
1604      */
1605     ip_copy = mtod(mb_copy, struct ip *);
1606     *ip_copy = multicast_encap_iphdr;
1607     ip_copy->ip_id = htons(ip_id++);
1608     ip_copy->ip_len += len;
1609     ip_copy->ip_src = vifp->v_lcl_addr;
1610     ip_copy->ip_dst = vifp->v_rmt_addr;
1611 
1612     /*
1613      * turn the encapsulated IP header back into a valid one.
1614      */
1615     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1616     --ip->ip_ttl;
1617     HTONS(ip->ip_len);
1618     HTONS(ip->ip_off);
1619     ip->ip_sum = 0;
1620     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1621     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1622     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1623 
1624     if (vifp->v_rate_limit <= 0)
1625 	tbf_send_packet(vifp, mb_copy);
1626     else
1627 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1628 }
1629 
1630 /*
1631  * De-encapsulate a packet and feed it back through ip input (this
1632  * routine is called whenever IP gets a packet with proto type
1633  * ENCAP_PROTO and a local destination address).
1634  */
1635 void
1636 #ifdef MROUTE_LKM
1637 X_ipip_input(m, iphlen)
1638 #else
1639 ipip_input(m, iphlen)
1640 #endif
1641 	register struct mbuf *m;
1642 	int iphlen;
1643 {
1644     struct ifnet *ifp = m->m_pkthdr.rcvif;
1645     register struct ip *ip = mtod(m, struct ip *);
1646     register int hlen = ip->ip_hl << 2;
1647     register int s;
1648     register struct ifqueue *ifq;
1649     register struct vif *vifp;
1650 
1651     if (!have_encap_tunnel) {
1652 	    rip_input(m, iphlen);
1653 	    return;
1654     }
1655     /*
1656      * dump the packet if it's not to a multicast destination or if
1657      * we don't have an encapsulating tunnel with the source.
1658      * Note:  This code assumes that the remote site IP address
1659      * uniquely identifies the tunnel (i.e., that this site has
1660      * at most one tunnel with the remote site).
1661      */
1662     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1663 	++mrtstat.mrts_bad_tunnel;
1664 	m_freem(m);
1665 	return;
1666     }
1667     if (ip->ip_src.s_addr != last_encap_src) {
1668 	register struct vif *vife;
1669 
1670 	vifp = viftable;
1671 	vife = vifp + numvifs;
1672 	last_encap_src = ip->ip_src.s_addr;
1673 	last_encap_vif = 0;
1674 	for ( ; vifp < vife; ++vifp)
1675 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1676 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1677 		    == VIFF_TUNNEL)
1678 		    last_encap_vif = vifp;
1679 		break;
1680 	    }
1681     }
1682     if ((vifp = last_encap_vif) == 0) {
1683 	last_encap_src = 0;
1684 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1685 	m_freem(m);
1686 	if (mrtdebug)
1687 	  log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1688 		(u_long)ntohl(ip->ip_src.s_addr));
1689 	return;
1690     }
1691     ifp = vifp->v_ifp;
1692 
1693     if (hlen > IP_HDR_LEN)
1694       ip_stripoptions(m, (struct mbuf *) 0);
1695     m->m_data += IP_HDR_LEN;
1696     m->m_len -= IP_HDR_LEN;
1697     m->m_pkthdr.len -= IP_HDR_LEN;
1698     m->m_pkthdr.rcvif = ifp;
1699 
1700     ifq = &ipintrq;
1701     s = splimp();
1702     if (IF_QFULL(ifq)) {
1703 	IF_DROP(ifq);
1704 	m_freem(m);
1705     } else {
1706 	IF_ENQUEUE(ifq, m);
1707 	/*
1708 	 * normally we would need a "schednetisr(NETISR_IP)"
1709 	 * here but we were called by ip_input and it is going
1710 	 * to loop back & try to dequeue the packet we just
1711 	 * queued as soon as we return so we avoid the
1712 	 * unnecessary software interrrupt.
1713 	 */
1714     }
1715     splx(s);
1716 }
1717 
1718 /*
1719  * Token bucket filter module
1720  */
1721 
1722 static void
1723 tbf_control(vifp, m, ip, p_len)
1724 	register struct vif *vifp;
1725 	register struct mbuf *m;
1726 	register struct ip *ip;
1727 	register u_long p_len;
1728 {
1729     register struct tbf *t = vifp->v_tbf;
1730 
1731     if (p_len > MAX_BKT_SIZE) {
1732 	/* drop if packet is too large */
1733 	mrtstat.mrts_pkt2large++;
1734 	m_freem(m);
1735 	return;
1736     }
1737 
1738     tbf_update_tokens(vifp);
1739 
1740     /* if there are enough tokens,
1741      * and the queue is empty,
1742      * send this packet out
1743      */
1744 
1745     if (t->tbf_q_len == 0) {
1746 	/* queue empty, send packet if enough tokens */
1747 	if (p_len <= t->tbf_n_tok) {
1748 	    t->tbf_n_tok -= p_len;
1749 	    tbf_send_packet(vifp, m);
1750 	} else {
1751 	    /* queue packet and timeout till later */
1752 	    tbf_queue(vifp, m);
1753 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1754 	}
1755     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1756 	/* finite queue length, so queue pkts and process queue */
1757 	tbf_queue(vifp, m);
1758 	tbf_process_q(vifp);
1759     } else {
1760 	/* queue length too much, try to dq and queue and process */
1761 	if (!tbf_dq_sel(vifp, ip)) {
1762 	    mrtstat.mrts_q_overflow++;
1763 	    m_freem(m);
1764 	    return;
1765 	} else {
1766 	    tbf_queue(vifp, m);
1767 	    tbf_process_q(vifp);
1768 	}
1769     }
1770     return;
1771 }
1772 
1773 /*
1774  * adds a packet to the queue at the interface
1775  */
1776 static void
1777 tbf_queue(vifp, m)
1778 	register struct vif *vifp;
1779 	register struct mbuf *m;
1780 {
1781     register int s = splnet();
1782     register struct tbf *t = vifp->v_tbf;
1783 
1784     if (t->tbf_t == NULL) {
1785 	/* Queue was empty */
1786 	t->tbf_q = m;
1787     } else {
1788 	/* Insert at tail */
1789 	t->tbf_t->m_act = m;
1790     }
1791 
1792     /* Set new tail pointer */
1793     t->tbf_t = m;
1794 
1795 #ifdef DIAGNOSTIC
1796     /* Make sure we didn't get fed a bogus mbuf */
1797     if (m->m_act)
1798 	panic("tbf_queue: m_act");
1799 #endif
1800     m->m_act = NULL;
1801 
1802     t->tbf_q_len++;
1803 
1804     splx(s);
1805 }
1806 
1807 
1808 /*
1809  * processes the queue at the interface
1810  */
1811 static void
1812 tbf_process_q(vifp)
1813     register struct vif *vifp;
1814 {
1815     register struct mbuf *m;
1816     register int len;
1817     register int s = splnet();
1818     register struct tbf *t = vifp->v_tbf;
1819 
1820     /* loop through the queue at the interface and send as many packets
1821      * as possible
1822      */
1823     while (t->tbf_q_len > 0) {
1824 	m = t->tbf_q;
1825 
1826 	len = mtod(m, struct ip *)->ip_len;
1827 
1828 	/* determine if the packet can be sent */
1829 	if (len <= t->tbf_n_tok) {
1830 	    /* if so,
1831 	     * reduce no of tokens, dequeue the packet,
1832 	     * send the packet.
1833 	     */
1834 	    t->tbf_n_tok -= len;
1835 
1836 	    t->tbf_q = m->m_act;
1837 	    if (--t->tbf_q_len == 0)
1838 		t->tbf_t = NULL;
1839 
1840 	    m->m_act = NULL;
1841 	    tbf_send_packet(vifp, m);
1842 
1843 	} else break;
1844     }
1845     splx(s);
1846 }
1847 
1848 static void
1849 tbf_reprocess_q(xvifp)
1850 	void *xvifp;
1851 {
1852     register struct vif *vifp = xvifp;
1853     if (ip_mrouter == NULL)
1854 	return;
1855 
1856     tbf_update_tokens(vifp);
1857 
1858     tbf_process_q(vifp);
1859 
1860     if (vifp->v_tbf->tbf_q_len)
1861 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1862 }
1863 
1864 /* function that will selectively discard a member of the queue
1865  * based on the precedence value and the priority
1866  */
1867 static int
1868 tbf_dq_sel(vifp, ip)
1869     register struct vif *vifp;
1870     register struct ip *ip;
1871 {
1872     register int s = splnet();
1873     register u_int p;
1874     register struct mbuf *m, *last;
1875     register struct mbuf **np;
1876     register struct tbf *t = vifp->v_tbf;
1877 
1878     p = priority(vifp, ip);
1879 
1880     np = &t->tbf_q;
1881     last = NULL;
1882     while ((m = *np) != NULL) {
1883 	if (p > priority(vifp, mtod(m, struct ip *))) {
1884 	    *np = m->m_act;
1885 	    /* If we're removing the last packet, fix the tail pointer */
1886 	    if (m == t->tbf_t)
1887 		t->tbf_t = last;
1888 	    m_freem(m);
1889 	    /* it's impossible for the queue to be empty, but
1890 	     * we check anyway. */
1891 	    if (--t->tbf_q_len == 0)
1892 		t->tbf_t = NULL;
1893 	    splx(s);
1894 	    mrtstat.mrts_drop_sel++;
1895 	    return(1);
1896 	}
1897 	np = &m->m_act;
1898 	last = m;
1899     }
1900     splx(s);
1901     return(0);
1902 }
1903 
1904 static void
1905 tbf_send_packet(vifp, m)
1906     register struct vif *vifp;
1907     register struct mbuf *m;
1908 {
1909     struct ip_moptions imo;
1910     int error;
1911     static struct route ro;
1912     int s = splnet();
1913 
1914     if (vifp->v_flags & VIFF_TUNNEL) {
1915 	/* If tunnel options */
1916 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1917 		  IP_FORWARDING, (struct ip_moptions *)0);
1918     } else {
1919 	imo.imo_multicast_ifp  = vifp->v_ifp;
1920 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1921 	imo.imo_multicast_loop = 1;
1922 	imo.imo_multicast_vif  = -1;
1923 
1924 	/*
1925 	 * Re-entrancy should not be a problem here, because
1926 	 * the packets that we send out and are looped back at us
1927 	 * should get rejected because they appear to come from
1928 	 * the loopback interface, thus preventing looping.
1929 	 */
1930 	error = ip_output(m, (struct mbuf *)0, &ro,
1931 			  IP_FORWARDING, &imo);
1932 
1933 	if (mrtdebug & DEBUG_XMIT)
1934 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1935 		vifp - viftable, error);
1936     }
1937     splx(s);
1938 }
1939 
1940 /* determine the current time and then
1941  * the elapsed time (between the last time and time now)
1942  * in milliseconds & update the no. of tokens in the bucket
1943  */
1944 static void
1945 tbf_update_tokens(vifp)
1946     register struct vif *vifp;
1947 {
1948     struct timeval tp;
1949     register u_long tm;
1950     register int s = splnet();
1951     register struct tbf *t = vifp->v_tbf;
1952 
1953     GET_TIME(tp);
1954 
1955     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1956 
1957     /*
1958      * This formula is actually
1959      * "time in seconds" * "bytes/second".
1960      *
1961      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1962      *
1963      * The (1000/1024) was introduced in add_vif to optimize
1964      * this divide into a shift.
1965      */
1966     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1967     t->tbf_last_pkt_t = tp;
1968 
1969     if (t->tbf_n_tok > MAX_BKT_SIZE)
1970 	t->tbf_n_tok = MAX_BKT_SIZE;
1971 
1972     splx(s);
1973 }
1974 
1975 static int
1976 priority(vifp, ip)
1977     register struct vif *vifp;
1978     register struct ip *ip;
1979 {
1980     register int prio;
1981 
1982     /* temporary hack; may add general packet classifier some day */
1983 
1984     /*
1985      * The UDP port space is divided up into four priority ranges:
1986      * [0, 16384)     : unclassified - lowest priority
1987      * [16384, 32768) : audio - highest priority
1988      * [32768, 49152) : whiteboard - medium priority
1989      * [49152, 65536) : video - low priority
1990      */
1991     if (ip->ip_p == IPPROTO_UDP) {
1992 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1993 	switch (ntohs(udp->uh_dport) & 0xc000) {
1994 	    case 0x4000:
1995 		prio = 70;
1996 		break;
1997 	    case 0x8000:
1998 		prio = 60;
1999 		break;
2000 	    case 0xc000:
2001 		prio = 55;
2002 		break;
2003 	    default:
2004 		prio = 50;
2005 		break;
2006 	}
2007 	if (tbfdebug > 1)
2008 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2009     } else {
2010 	    prio = 50;
2011     }
2012     return prio;
2013 }
2014 
2015 /*
2016  * End of token bucket filter modifications
2017  */
2018 
2019 int
2020 ip_rsvp_vif_init(so, sopt)
2021 	struct socket *so;
2022 	struct sockopt *sopt;
2023 {
2024     int error, i, s;
2025 
2026     if (rsvpdebug)
2027 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2028 	       so->so_type, so->so_proto->pr_protocol);
2029 
2030     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2031 	return EOPNOTSUPP;
2032 
2033     /* Check mbuf. */
2034     error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2035     if (error)
2036 	    return (error);
2037 
2038     if (rsvpdebug)
2039 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2040 
2041     s = splnet();
2042 
2043     /* Check vif. */
2044     if (!legal_vif_num(i)) {
2045 	splx(s);
2046 	return EADDRNOTAVAIL;
2047     }
2048 
2049     /* Check if socket is available. */
2050     if (viftable[i].v_rsvpd != NULL) {
2051 	splx(s);
2052 	return EADDRINUSE;
2053     }
2054 
2055     viftable[i].v_rsvpd = so;
2056     /* This may seem silly, but we need to be sure we don't over-increment
2057      * the RSVP counter, in case something slips up.
2058      */
2059     if (!viftable[i].v_rsvp_on) {
2060 	viftable[i].v_rsvp_on = 1;
2061 	rsvp_on++;
2062     }
2063 
2064     splx(s);
2065     return 0;
2066 }
2067 
2068 int
2069 ip_rsvp_vif_done(so, sopt)
2070 	struct socket *so;
2071 	struct sockopt *sopt;
2072 {
2073 	int error, i, s;
2074 
2075 	if (rsvpdebug)
2076 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2077 		       so->so_type, so->so_proto->pr_protocol);
2078 
2079 	if (so->so_type != SOCK_RAW ||
2080 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2081 		return EOPNOTSUPP;
2082 
2083 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2084 	if (error)
2085 		return (error);
2086 
2087 	s = splnet();
2088 
2089 	/* Check vif. */
2090 	if (!legal_vif_num(i)) {
2091 		splx(s);
2092 		return EADDRNOTAVAIL;
2093 	}
2094 
2095 	if (rsvpdebug)
2096 		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2097 		       viftable[i].v_rsvpd, so);
2098 
2099 	viftable[i].v_rsvpd = NULL;
2100 	/*
2101 	 * This may seem silly, but we need to be sure we don't over-decrement
2102 	 * the RSVP counter, in case something slips up.
2103 	 */
2104 	if (viftable[i].v_rsvp_on) {
2105 		viftable[i].v_rsvp_on = 0;
2106 		rsvp_on--;
2107 	}
2108 
2109 	splx(s);
2110 	return 0;
2111 }
2112 
2113 void
2114 ip_rsvp_force_done(so)
2115     struct socket *so;
2116 {
2117     int vifi;
2118     register int s;
2119 
2120     /* Don't bother if it is not the right type of socket. */
2121     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2122 	return;
2123 
2124     s = splnet();
2125 
2126     /* The socket may be attached to more than one vif...this
2127      * is perfectly legal.
2128      */
2129     for (vifi = 0; vifi < numvifs; vifi++) {
2130 	if (viftable[vifi].v_rsvpd == so) {
2131 	    viftable[vifi].v_rsvpd = NULL;
2132 	    /* This may seem silly, but we need to be sure we don't
2133 	     * over-decrement the RSVP counter, in case something slips up.
2134 	     */
2135 	    if (viftable[vifi].v_rsvp_on) {
2136 		viftable[vifi].v_rsvp_on = 0;
2137 		rsvp_on--;
2138 	    }
2139 	}
2140     }
2141 
2142     splx(s);
2143     return;
2144 }
2145 
2146 void
2147 rsvp_input(m, iphlen)
2148 	struct mbuf *m;
2149 	int iphlen;
2150 {
2151     int vifi;
2152     register struct ip *ip = mtod(m, struct ip *);
2153     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2154     register int s;
2155     struct ifnet *ifp;
2156 
2157     if (rsvpdebug)
2158 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2159 
2160     /* Can still get packets with rsvp_on = 0 if there is a local member
2161      * of the group to which the RSVP packet is addressed.  But in this
2162      * case we want to throw the packet away.
2163      */
2164     if (!rsvp_on) {
2165 	m_freem(m);
2166 	return;
2167     }
2168 
2169     /* If the old-style non-vif-associated socket is set, then use
2170      * it and ignore the new ones.
2171      */
2172     if (ip_rsvpd != NULL) {
2173 	if (rsvpdebug)
2174 	    printf("rsvp_input: Sending packet up old-style socket\n");
2175 	rip_input(m, iphlen);
2176 	return;
2177     }
2178 
2179     s = splnet();
2180 
2181     if (rsvpdebug)
2182 	printf("rsvp_input: check vifs\n");
2183 
2184 #ifdef DIAGNOSTIC
2185     if (!(m->m_flags & M_PKTHDR))
2186 	    panic("rsvp_input no hdr");
2187 #endif
2188 
2189     ifp = m->m_pkthdr.rcvif;
2190     /* Find which vif the packet arrived on. */
2191     for (vifi = 0; vifi < numvifs; vifi++) {
2192 	if (viftable[vifi].v_ifp == ifp)
2193  		break;
2194  	}
2195 
2196     if (vifi == numvifs) {
2197 	/* Can't find vif packet arrived on. Drop packet. */
2198 	if (rsvpdebug)
2199 	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2200 	m_freem(m);
2201 	splx(s);
2202 	return;
2203     }
2204 
2205     if (rsvpdebug)
2206 	printf("rsvp_input: check socket\n");
2207 
2208     if (viftable[vifi].v_rsvpd == NULL) {
2209 	/* drop packet, since there is no specific socket for this
2210 	 * interface */
2211 	    if (rsvpdebug)
2212 		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2213 	    m_freem(m);
2214 	    splx(s);
2215 	    return;
2216     }
2217     rsvp_src.sin_addr = ip->ip_src;
2218 
2219     if (rsvpdebug && m)
2220 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2221 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2222 
2223     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2224 	if (rsvpdebug)
2225 	    printf("rsvp_input: Failed to append to socket\n");
2226     else
2227 	if (rsvpdebug)
2228 	    printf("rsvp_input: send packet up\n");
2229 
2230     splx(s);
2231 }
2232 
2233 #ifdef MROUTE_LKM
2234 #include <sys/conf.h>
2235 #include <sys/exec.h>
2236 #include <sys/sysent.h>
2237 #include <sys/lkm.h>
2238 
2239 MOD_MISC("ip_mroute_mod")
2240 
2241 static int
2242 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2243 {
2244 	int i;
2245 	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2246 	int err = 0;
2247 
2248 	switch(cmd) {
2249 		static int (*old_ip_mrouter_cmd)();
2250 		static int (*old_ip_mrouter_done)();
2251 		static int (*old_ip_mforward)();
2252 		static int (*old_mrt_ioctl)();
2253 		static void (*old_proto4_input)();
2254 		static int (*old_legal_vif_num)();
2255 		extern struct protosw inetsw[];
2256 
2257 	case LKM_E_LOAD:
2258 		if(lkmexists(lkmtp) || ip_mrtproto)
2259 		  return(EEXIST);
2260 		old_ip_mrouter_cmd = ip_mrouter_cmd;
2261 		ip_mrouter_cmd = X_ip_mrouter_cmd;
2262 		old_ip_mrouter_done = ip_mrouter_done;
2263 		ip_mrouter_done = X_ip_mrouter_done;
2264 		old_ip_mforward = ip_mforward;
2265 		ip_mforward = X_ip_mforward;
2266 		old_mrt_ioctl = mrt_ioctl;
2267 		mrt_ioctl = X_mrt_ioctl;
2268               old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2269               inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2270 		old_legal_vif_num = legal_vif_num;
2271 		legal_vif_num = X_legal_vif_num;
2272 		ip_mrtproto = IGMP_DVMRP;
2273 
2274 		printf("\nIP multicast routing loaded\n");
2275 		break;
2276 
2277 	case LKM_E_UNLOAD:
2278 		if (ip_mrouter)
2279 		  return EINVAL;
2280 
2281 		ip_mrouter_cmd = old_ip_mrouter_cmd;
2282 		ip_mrouter_done = old_ip_mrouter_done;
2283 		ip_mforward = old_ip_mforward;
2284 		mrt_ioctl = old_mrt_ioctl;
2285               inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2286 		legal_vif_num = old_legal_vif_num;
2287 		ip_mrtproto = 0;
2288 		break;
2289 
2290 	default:
2291 		err = EINVAL;
2292 		break;
2293 	}
2294 
2295 	return(err);
2296 }
2297 
2298 int
2299 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2300 	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2301 		 nosys);
2302 }
2303 
2304 #endif /* MROUTE_LKM */
2305 #endif /* MROUTING */
2306