1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_private.h> 110 #include <net/if_types.h> 111 #include <net/netisr.h> 112 #include <net/route.h> 113 #include <net/vnet.h> 114 115 #include <netinet/in.h> 116 #include <netinet/igmp.h> 117 #include <netinet/in_systm.h> 118 #include <netinet/in_var.h> 119 #include <netinet/ip.h> 120 #include <netinet/ip_encap.h> 121 #include <netinet/ip_mroute.h> 122 #include <netinet/ip_var.h> 123 #include <netinet/ip_options.h> 124 #include <netinet/pim.h> 125 #include <netinet/pim_var.h> 126 #include <netinet/udp.h> 127 128 #include <machine/in_cksum.h> 129 130 #ifndef KTR_IPMF 131 #define KTR_IPMF KTR_INET 132 #endif 133 134 #define VIFI_INVALID ((vifi_t) -1) 135 136 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 137 138 /* 139 * Locking. We use two locks: one for the virtual interface table and 140 * one for the forwarding table. These locks may be nested in which case 141 * the VIF lock must always be taken first. Note that each lock is used 142 * to cover not only the specific data structure but also related data 143 * structures. 144 */ 145 146 static struct rwlock mrouter_lock; 147 #define MRW_RLOCK() rw_rlock(&mrouter_lock) 148 #define MRW_WLOCK() rw_wlock(&mrouter_lock) 149 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) 150 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) 151 #define MRW_UNLOCK() rw_unlock(&mrouter_lock) 152 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) 153 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) 154 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) 155 #define MRW_WOWNED() rw_wowned(&mrouter_lock) 156 #define MRW_LOCK_INIT() \ 157 rw_init(&mrouter_lock, "IPv4 multicast forwarding") 158 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) 159 160 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 161 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 162 163 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 164 VNET_PCPUSTAT_SYSINIT(mrtstat); 165 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 166 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 167 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 168 "netinet/ip_mroute.h)"); 169 170 VNET_DEFINE_STATIC(u_long, mfchash); 171 #define V_mfchash VNET(mfchash) 172 #define MFCHASH(a, g) \ 173 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 174 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 175 #define MFCHASHSIZE 256 176 177 static u_long mfchashsize; /* Hash size */ 178 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 179 #define V_nexpire VNET(nexpire) 180 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 181 #define V_mfchashtbl VNET(mfchashtbl) 182 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 183 #define V_task_queue VNET(task_queue) 184 VNET_DEFINE_STATIC(struct task, task); 185 #define V_task VNET(task) 186 187 VNET_DEFINE_STATIC(vifi_t, numvifs); 188 #define V_numvifs VNET(numvifs) 189 VNET_DEFINE_STATIC(struct vif *, viftable); 190 #define V_viftable VNET(viftable) 191 192 static eventhandler_tag if_detach_event_tag = NULL; 193 194 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 196 197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 198 #define V_buf_ring_mtx VNET(buf_ring_mtx) 199 200 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 201 #define UPCALL_EXPIRE 6 /* number of timeouts */ 202 203 /* 204 * Bandwidth meter variables and constants 205 */ 206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 207 208 /* 209 * Pending upcalls are stored in a ring which is flushed when 210 * full, or periodically 211 */ 212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 215 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 217 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 218 219 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 220 221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 222 VNET_PCPUSTAT_SYSINIT(pimstat); 223 VNET_PCPUSTAT_SYSUNINIT(pimstat); 224 225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 226 "PIM"); 227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 228 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 229 230 static u_long pim_squelch_wholepkt = 0; 231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 232 &pim_squelch_wholepkt, 0, 233 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 234 235 static const struct encaptab *pim_encap_cookie; 236 static int pim_encapcheck(const struct mbuf *, int, int, void *); 237 static int pim_input(struct mbuf *, int, int, void *); 238 239 extern int in_mcast_loop; 240 241 static const struct encap_config ipv4_encap_cfg = { 242 .proto = IPPROTO_PIM, 243 .min_length = sizeof(struct ip) + PIM_MINLEN, 244 .exact_match = 8, 245 .check = pim_encapcheck, 246 .input = pim_input 247 }; 248 249 /* 250 * Note: the PIM Register encapsulation adds the following in front of a 251 * data packet: 252 * 253 * struct pim_encap_hdr { 254 * struct ip ip; 255 * struct pim_encap_pimhdr pim; 256 * } 257 * 258 */ 259 260 struct pim_encap_pimhdr { 261 struct pim pim; 262 uint32_t flags; 263 }; 264 #define PIM_ENCAP_TTL 64 265 266 static struct ip pim_encap_iphdr = { 267 #if BYTE_ORDER == LITTLE_ENDIAN 268 sizeof(struct ip) >> 2, 269 IPVERSION, 270 #else 271 IPVERSION, 272 sizeof(struct ip) >> 2, 273 #endif 274 0, /* tos */ 275 sizeof(struct ip), /* total length */ 276 0, /* id */ 277 0, /* frag offset */ 278 PIM_ENCAP_TTL, 279 IPPROTO_PIM, 280 0, /* checksum */ 281 }; 282 283 static struct pim_encap_pimhdr pim_encap_pimhdr = { 284 { 285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 286 0, /* reserved */ 287 0, /* checksum */ 288 }, 289 0 /* flags */ 290 }; 291 292 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 293 #define V_reg_vif_num VNET(reg_vif_num) 294 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 295 #define V_multicast_register_if VNET(multicast_register_if) 296 297 /* 298 * Private variables. 299 */ 300 301 static u_long X_ip_mcast_src(int); 302 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 303 struct ip_moptions *); 304 static int X_ip_mrouter_done(void); 305 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 306 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 307 static int X_legal_vif_num(int); 308 static int X_mrt_ioctl(u_long, caddr_t, int); 309 310 static int add_bw_upcall(struct bw_upcall *); 311 static int add_mfc(struct mfcctl2 *); 312 static int add_vif(struct vifctl *); 313 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 314 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 315 struct timeval *); 316 static void bw_upcalls_send(void); 317 static int del_bw_upcall(struct bw_upcall *); 318 static int del_mfc(struct mfcctl2 *); 319 static int del_vif(vifi_t); 320 static int del_vif_locked(vifi_t, struct ifnet **); 321 static void expire_bw_upcalls_send(void *); 322 static void expire_mfc(struct mfc *); 323 static void expire_upcalls(void *); 324 static void free_bw_list(struct bw_meter *); 325 static int get_sg_cnt(struct sioc_sg_req *); 326 static int get_vif_cnt(struct sioc_vif_req *); 327 static void if_detached_event(void *, struct ifnet *); 328 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 329 static int ip_mrouter_init(struct socket *, int); 330 static __inline struct mfc * 331 mfc_find(struct in_addr *, struct in_addr *); 332 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 333 static struct mbuf * 334 pim_register_prepare(struct ip *, struct mbuf *); 335 static int pim_register_send(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_rp(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static int pim_register_send_upcall(struct ip *, struct vif *, 340 struct mbuf *, struct mfc *); 341 static void send_packet(struct vif *, struct mbuf *); 342 static int set_api_config(uint32_t *); 343 static int set_assert(int); 344 static int socket_send(struct socket *, struct mbuf *, 345 struct sockaddr_in *); 346 347 /* 348 * Kernel multicast forwarding API capabilities and setup. 349 * If more API capabilities are added to the kernel, they should be 350 * recorded in `mrt_api_support'. 351 */ 352 #define MRT_API_VERSION 0x0305 353 354 static const int mrt_api_version = MRT_API_VERSION; 355 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 356 MRT_MFC_FLAGS_BORDER_VIF | 357 MRT_MFC_RP | 358 MRT_MFC_BW_UPCALL); 359 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 360 #define V_mrt_api_config VNET(mrt_api_config) 361 VNET_DEFINE_STATIC(int, pim_assert_enabled); 362 #define V_pim_assert_enabled VNET(pim_assert_enabled) 363 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 364 365 /* 366 * Find a route for a given origin IP address and multicast group address. 367 * Statistics must be updated by the caller. 368 */ 369 static __inline struct mfc * 370 mfc_find(struct in_addr *o, struct in_addr *g) 371 { 372 struct mfc *rt; 373 374 /* 375 * Might be called both RLOCK and WLOCK. 376 * Check if any, it's caller responsibility 377 * to choose correct option. 378 */ 379 MRW_LOCK_ASSERT(); 380 381 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 382 if (in_hosteq(rt->mfc_origin, *o) && 383 in_hosteq(rt->mfc_mcastgrp, *g) && 384 buf_ring_empty(rt->mfc_stall_ring)) 385 break; 386 } 387 388 return (rt); 389 } 390 391 static __inline struct mfc * 392 mfc_alloc(void) 393 { 394 struct mfc *rt; 395 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 396 if (rt == NULL) 397 return rt; 398 399 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 400 M_NOWAIT, &V_buf_ring_mtx); 401 if (rt->mfc_stall_ring == NULL) { 402 free(rt, M_MRTABLE); 403 return NULL; 404 } 405 406 return rt; 407 } 408 409 /* 410 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 411 */ 412 static int 413 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 414 { 415 int error, optval; 416 vifi_t vifi; 417 struct vifctl vifc; 418 struct mfcctl2 mfc; 419 struct bw_upcall bw_upcall; 420 uint32_t i; 421 422 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 423 return EPERM; 424 425 error = 0; 426 switch (sopt->sopt_name) { 427 case MRT_INIT: 428 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 429 if (error) 430 break; 431 error = ip_mrouter_init(so, optval); 432 break; 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 case MRT_ADD_VIF: 437 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 438 if (error) 439 break; 440 error = add_vif(&vifc); 441 break; 442 case MRT_DEL_VIF: 443 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 444 if (error) 445 break; 446 error = del_vif(vifi); 447 break; 448 case MRT_ADD_MFC: 449 case MRT_DEL_MFC: 450 /* 451 * select data size depending on API version. 452 */ 453 if (sopt->sopt_name == MRT_ADD_MFC && 454 V_mrt_api_config & MRT_API_FLAGS_ALL) { 455 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 456 sizeof(struct mfcctl2)); 457 } else { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 459 sizeof(struct mfcctl)); 460 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 461 sizeof(mfc) - sizeof(struct mfcctl)); 462 } 463 if (error) 464 break; 465 if (sopt->sopt_name == MRT_ADD_MFC) 466 error = add_mfc(&mfc); 467 else 468 error = del_mfc(&mfc); 469 break; 470 471 case MRT_ASSERT: 472 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 473 if (error) 474 break; 475 set_assert(optval); 476 break; 477 478 case MRT_API_CONFIG: 479 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 480 if (!error) 481 error = set_api_config(&i); 482 if (!error) 483 error = sooptcopyout(sopt, &i, sizeof i); 484 break; 485 486 case MRT_ADD_BW_UPCALL: 487 case MRT_DEL_BW_UPCALL: 488 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 489 sizeof bw_upcall); 490 if (error) 491 break; 492 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 493 error = add_bw_upcall(&bw_upcall); 494 else 495 error = del_bw_upcall(&bw_upcall); 496 break; 497 498 default: 499 error = EOPNOTSUPP; 500 break; 501 } 502 return error; 503 } 504 505 /* 506 * Handle MRT getsockopt commands 507 */ 508 static int 509 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 510 { 511 int error; 512 513 switch (sopt->sopt_name) { 514 case MRT_VERSION: 515 error = sooptcopyout(sopt, &mrt_api_version, 516 sizeof mrt_api_version); 517 break; 518 case MRT_ASSERT: 519 error = sooptcopyout(sopt, &V_pim_assert_enabled, 520 sizeof V_pim_assert_enabled); 521 break; 522 case MRT_API_SUPPORT: 523 error = sooptcopyout(sopt, &mrt_api_support, 524 sizeof mrt_api_support); 525 break; 526 case MRT_API_CONFIG: 527 error = sooptcopyout(sopt, &V_mrt_api_config, 528 sizeof V_mrt_api_config); 529 break; 530 default: 531 error = EOPNOTSUPP; 532 break; 533 } 534 return error; 535 } 536 537 /* 538 * Handle ioctl commands to obtain information from the cache 539 */ 540 static int 541 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 542 { 543 int error; 544 545 /* 546 * Currently the only function calling this ioctl routine is rtioctl_fib(). 547 * Typically, only root can create the raw socket in order to execute 548 * this ioctl method, however the request might be coming from a prison 549 */ 550 error = priv_check(curthread, PRIV_NETINET_MROUTE); 551 if (error) 552 return (error); 553 switch (cmd) { 554 case (SIOCGETVIFCNT): 555 error = get_vif_cnt((struct sioc_vif_req *)data); 556 break; 557 558 case (SIOCGETSGCNT): 559 error = get_sg_cnt((struct sioc_sg_req *)data); 560 break; 561 562 default: 563 error = EINVAL; 564 break; 565 } 566 return error; 567 } 568 569 /* 570 * returns the packet, byte, rpf-failure count for the source group provided 571 */ 572 static int 573 get_sg_cnt(struct sioc_sg_req *req) 574 { 575 struct mfc *rt; 576 577 MRW_RLOCK(); 578 rt = mfc_find(&req->src, &req->grp); 579 if (rt == NULL) { 580 MRW_RUNLOCK(); 581 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 582 return EADDRNOTAVAIL; 583 } 584 req->pktcnt = rt->mfc_pkt_cnt; 585 req->bytecnt = rt->mfc_byte_cnt; 586 req->wrong_if = rt->mfc_wrong_if; 587 MRW_RUNLOCK(); 588 return 0; 589 } 590 591 /* 592 * returns the input and output packet and byte counts on the vif provided 593 */ 594 static int 595 get_vif_cnt(struct sioc_vif_req *req) 596 { 597 vifi_t vifi = req->vifi; 598 599 MRW_RLOCK(); 600 if (vifi >= V_numvifs) { 601 MRW_RUNLOCK(); 602 return EINVAL; 603 } 604 605 mtx_lock_spin(&V_viftable[vifi].v_spin); 606 req->icount = V_viftable[vifi].v_pkt_in; 607 req->ocount = V_viftable[vifi].v_pkt_out; 608 req->ibytes = V_viftable[vifi].v_bytes_in; 609 req->obytes = V_viftable[vifi].v_bytes_out; 610 mtx_unlock_spin(&V_viftable[vifi].v_spin); 611 MRW_RUNLOCK(); 612 613 return 0; 614 } 615 616 static void 617 if_detached_event(void *arg __unused, struct ifnet *ifp) 618 { 619 vifi_t vifi; 620 u_long i, vifi_cnt = 0; 621 struct ifnet *free_ptr; 622 623 MRW_WLOCK(); 624 625 if (V_ip_mrouter == NULL) { 626 MRW_WUNLOCK(); 627 return; 628 } 629 630 /* 631 * Tear down multicast forwarder state associated with this ifnet. 632 * 1. Walk the vif list, matching vifs against this ifnet. 633 * 2. Walk the multicast forwarding cache (mfc) looking for 634 * inner matches with this vif's index. 635 * 3. Expire any matching multicast forwarding cache entries. 636 * 4. Free vif state. This should disable ALLMULTI on the interface. 637 */ 638 for (vifi = 0; vifi < V_numvifs; vifi++) { 639 if (V_viftable[vifi].v_ifp != ifp) 640 continue; 641 for (i = 0; i < mfchashsize; i++) { 642 struct mfc *rt, *nrt; 643 644 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 645 if (rt->mfc_parent == vifi) { 646 expire_mfc(rt); 647 } 648 } 649 } 650 del_vif_locked(vifi, &free_ptr); 651 if (free_ptr != NULL) 652 vifi_cnt++; 653 } 654 655 MRW_WUNLOCK(); 656 657 /* 658 * Free IFP. We don't have to use free_ptr here as it is the same 659 * that ifp. Perform free as many times as required in case 660 * refcount is greater than 1. 661 */ 662 for (i = 0; i < vifi_cnt; i++) 663 if_free(ifp); 664 } 665 666 static void 667 ip_mrouter_upcall_thread(void *arg, int pending __unused) 668 { 669 CURVNET_SET((struct vnet *) arg); 670 671 MRW_WLOCK(); 672 bw_upcalls_send(); 673 MRW_WUNLOCK(); 674 675 CURVNET_RESTORE(); 676 } 677 678 /* 679 * Enable multicast forwarding. 680 */ 681 static int 682 ip_mrouter_init(struct socket *so, int version) 683 { 684 685 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 686 687 if (version != 1) 688 return ENOPROTOOPT; 689 690 MRW_WLOCK(); 691 692 if (ip_mrouter_unloading) { 693 MRW_WUNLOCK(); 694 return ENOPROTOOPT; 695 } 696 697 if (V_ip_mrouter != NULL) { 698 MRW_WUNLOCK(); 699 return EADDRINUSE; 700 } 701 702 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 703 HASH_NOWAIT); 704 705 /* Create upcall ring */ 706 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 707 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 708 M_NOWAIT, &V_bw_upcalls_ring_mtx); 709 if (!V_bw_upcalls_ring) { 710 MRW_WUNLOCK(); 711 return (ENOMEM); 712 } 713 714 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 715 taskqueue_cancel(V_task_queue, &V_task, NULL); 716 taskqueue_unblock(V_task_queue); 717 718 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 719 curvnet); 720 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 721 curvnet); 722 723 V_ip_mrouter = so; 724 atomic_add_int(&ip_mrouter_cnt, 1); 725 726 /* This is a mutex required by buf_ring init, but not used internally */ 727 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 728 729 MRW_WUNLOCK(); 730 731 CTR1(KTR_IPMF, "%s: done", __func__); 732 733 return 0; 734 } 735 736 /* 737 * Disable multicast forwarding. 738 */ 739 static int 740 X_ip_mrouter_done(void) 741 { 742 struct ifnet **ifps; 743 int nifp; 744 u_long i; 745 vifi_t vifi; 746 struct bw_upcall *bu; 747 748 if (V_ip_mrouter == NULL) 749 return (EINVAL); 750 751 /* 752 * Detach/disable hooks to the reset of the system. 753 */ 754 V_ip_mrouter = NULL; 755 atomic_subtract_int(&ip_mrouter_cnt, 1); 756 V_mrt_api_config = 0; 757 758 /* 759 * Wait for all epoch sections to complete to ensure 760 * V_ip_mrouter = NULL is visible to others. 761 */ 762 epoch_wait_preempt(net_epoch_preempt); 763 764 /* Stop and drain task queue */ 765 taskqueue_block(V_task_queue); 766 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 767 taskqueue_drain(V_task_queue, &V_task); 768 } 769 770 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 771 772 MRW_WLOCK(); 773 taskqueue_cancel(V_task_queue, &V_task, NULL); 774 775 /* Destroy upcall ring */ 776 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 777 free(bu, M_MRTABLE); 778 } 779 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 780 mtx_destroy(&V_bw_upcalls_ring_mtx); 781 782 /* 783 * For each phyint in use, prepare to disable promiscuous reception 784 * of all IP multicasts. Defer the actual call until the lock is released; 785 * just record the list of interfaces while locked. Some interfaces use 786 * sx locks in their ioctl routines, which is not allowed while holding 787 * a non-sleepable lock. 788 */ 789 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 790 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 791 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 792 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 793 ifps[nifp++] = V_viftable[vifi].v_ifp; 794 } 795 } 796 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 797 V_numvifs = 0; 798 V_pim_assert_enabled = 0; 799 800 callout_stop(&V_expire_upcalls_ch); 801 callout_stop(&V_bw_upcalls_ch); 802 803 /* 804 * Free all multicast forwarding cache entries. 805 * Do not use hashdestroy(), as we must perform other cleanup. 806 */ 807 for (i = 0; i < mfchashsize; i++) { 808 struct mfc *rt, *nrt; 809 810 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 811 expire_mfc(rt); 812 } 813 } 814 free(V_mfchashtbl, M_MRTABLE); 815 V_mfchashtbl = NULL; 816 817 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 818 819 V_reg_vif_num = VIFI_INVALID; 820 821 mtx_destroy(&V_buf_ring_mtx); 822 823 MRW_WUNLOCK(); 824 825 /* 826 * Now drop our claim on promiscuous multicast on the interfaces recorded 827 * above. This is safe to do now because ALLMULTI is reference counted. 828 */ 829 for (vifi = 0; vifi < nifp; vifi++) 830 if_allmulti(ifps[vifi], 0); 831 free(ifps, M_TEMP); 832 833 CTR1(KTR_IPMF, "%s: done", __func__); 834 835 return 0; 836 } 837 838 /* 839 * Set PIM assert processing global 840 */ 841 static int 842 set_assert(int i) 843 { 844 if ((i != 1) && (i != 0)) 845 return EINVAL; 846 847 V_pim_assert_enabled = i; 848 849 return 0; 850 } 851 852 /* 853 * Configure API capabilities 854 */ 855 int 856 set_api_config(uint32_t *apival) 857 { 858 u_long i; 859 860 /* 861 * We can set the API capabilities only if it is the first operation 862 * after MRT_INIT. I.e.: 863 * - there are no vifs installed 864 * - pim_assert is not enabled 865 * - the MFC table is empty 866 */ 867 if (V_numvifs > 0) { 868 *apival = 0; 869 return EPERM; 870 } 871 if (V_pim_assert_enabled) { 872 *apival = 0; 873 return EPERM; 874 } 875 876 MRW_RLOCK(); 877 878 for (i = 0; i < mfchashsize; i++) { 879 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 880 MRW_RUNLOCK(); 881 *apival = 0; 882 return EPERM; 883 } 884 } 885 886 MRW_RUNLOCK(); 887 888 V_mrt_api_config = *apival & mrt_api_support; 889 *apival = V_mrt_api_config; 890 891 return 0; 892 } 893 894 /* 895 * Add a vif to the vif table 896 */ 897 static int 898 add_vif(struct vifctl *vifcp) 899 { 900 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 901 struct sockaddr_in sin = {sizeof sin, AF_INET}; 902 struct ifaddr *ifa; 903 struct ifnet *ifp; 904 int error; 905 906 if (vifcp->vifc_vifi >= MAXVIFS) 907 return EINVAL; 908 /* rate limiting is no longer supported by this code */ 909 if (vifcp->vifc_rate_limit != 0) { 910 log(LOG_ERR, "rate limiting is no longer supported\n"); 911 return EINVAL; 912 } 913 914 if (in_nullhost(vifcp->vifc_lcl_addr)) 915 return EADDRNOTAVAIL; 916 917 /* Find the interface with an address in AF_INET family */ 918 if (vifcp->vifc_flags & VIFF_REGISTER) { 919 /* 920 * XXX: Because VIFF_REGISTER does not really need a valid 921 * local interface (e.g. it could be 127.0.0.2), we don't 922 * check its address. 923 */ 924 ifp = NULL; 925 } else { 926 struct epoch_tracker et; 927 928 sin.sin_addr = vifcp->vifc_lcl_addr; 929 NET_EPOCH_ENTER(et); 930 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 931 if (ifa == NULL) { 932 NET_EPOCH_EXIT(et); 933 return EADDRNOTAVAIL; 934 } 935 ifp = ifa->ifa_ifp; 936 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 937 NET_EPOCH_EXIT(et); 938 } 939 940 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 941 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 942 return EOPNOTSUPP; 943 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 944 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 945 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 946 if (V_reg_vif_num == VIFI_INVALID) { 947 if_initname(V_multicast_register_if, "register_vif", 0); 948 V_reg_vif_num = vifcp->vifc_vifi; 949 } 950 } else { /* Make sure the interface supports multicast */ 951 if ((ifp->if_flags & IFF_MULTICAST) == 0) 952 return EOPNOTSUPP; 953 954 /* Enable promiscuous reception of all IP multicasts from the if */ 955 error = if_allmulti(ifp, 1); 956 if (error) 957 return error; 958 } 959 960 MRW_WLOCK(); 961 962 if (!in_nullhost(vifp->v_lcl_addr)) { 963 if (ifp) 964 V_multicast_register_if = NULL; 965 MRW_WUNLOCK(); 966 if (ifp) 967 if_free(ifp); 968 return EADDRINUSE; 969 } 970 971 vifp->v_flags = vifcp->vifc_flags; 972 vifp->v_threshold = vifcp->vifc_threshold; 973 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 974 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 975 vifp->v_ifp = ifp; 976 /* initialize per vif pkt counters */ 977 vifp->v_pkt_in = 0; 978 vifp->v_pkt_out = 0; 979 vifp->v_bytes_in = 0; 980 vifp->v_bytes_out = 0; 981 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 982 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 983 984 /* Adjust numvifs up if the vifi is higher than numvifs */ 985 if (V_numvifs <= vifcp->vifc_vifi) 986 V_numvifs = vifcp->vifc_vifi + 1; 987 988 MRW_WUNLOCK(); 989 990 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 991 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 992 (int)vifcp->vifc_threshold); 993 994 return 0; 995 } 996 997 /* 998 * Delete a vif from the vif table 999 */ 1000 static int 1001 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) 1002 { 1003 struct vif *vifp; 1004 1005 *ifp_free = NULL; 1006 1007 MRW_WLOCK_ASSERT(); 1008 1009 if (vifi >= V_numvifs) { 1010 return EINVAL; 1011 } 1012 vifp = &V_viftable[vifi]; 1013 if (in_nullhost(vifp->v_lcl_addr)) { 1014 return EADDRNOTAVAIL; 1015 } 1016 1017 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1018 if_allmulti(vifp->v_ifp, 0); 1019 1020 if (vifp->v_flags & VIFF_REGISTER) { 1021 V_reg_vif_num = VIFI_INVALID; 1022 if (vifp->v_ifp) { 1023 if (vifp->v_ifp == V_multicast_register_if) 1024 V_multicast_register_if = NULL; 1025 *ifp_free = vifp->v_ifp; 1026 } 1027 } 1028 1029 mtx_destroy(&vifp->v_spin); 1030 1031 bzero((caddr_t)vifp, sizeof (*vifp)); 1032 1033 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1034 1035 /* Adjust numvifs down */ 1036 for (vifi = V_numvifs; vifi > 0; vifi--) 1037 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1038 break; 1039 V_numvifs = vifi; 1040 1041 return 0; 1042 } 1043 1044 static int 1045 del_vif(vifi_t vifi) 1046 { 1047 int cc; 1048 struct ifnet *free_ptr; 1049 1050 MRW_WLOCK(); 1051 cc = del_vif_locked(vifi, &free_ptr); 1052 MRW_WUNLOCK(); 1053 1054 if (free_ptr) 1055 if_free(free_ptr); 1056 1057 return cc; 1058 } 1059 1060 /* 1061 * update an mfc entry without resetting counters and S,G addresses. 1062 */ 1063 static void 1064 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1065 { 1066 int i; 1067 1068 rt->mfc_parent = mfccp->mfcc_parent; 1069 for (i = 0; i < V_numvifs; i++) { 1070 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1071 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1072 MRT_MFC_FLAGS_ALL; 1073 } 1074 /* set the RP address */ 1075 if (V_mrt_api_config & MRT_MFC_RP) 1076 rt->mfc_rp = mfccp->mfcc_rp; 1077 else 1078 rt->mfc_rp.s_addr = INADDR_ANY; 1079 } 1080 1081 /* 1082 * fully initialize an mfc entry from the parameter. 1083 */ 1084 static void 1085 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1086 { 1087 rt->mfc_origin = mfccp->mfcc_origin; 1088 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1089 1090 update_mfc_params(rt, mfccp); 1091 1092 /* initialize pkt counters per src-grp */ 1093 rt->mfc_pkt_cnt = 0; 1094 rt->mfc_byte_cnt = 0; 1095 rt->mfc_wrong_if = 0; 1096 timevalclear(&rt->mfc_last_assert); 1097 } 1098 1099 static void 1100 expire_mfc(struct mfc *rt) 1101 { 1102 struct rtdetq *rte; 1103 1104 MRW_WLOCK_ASSERT(); 1105 1106 free_bw_list(rt->mfc_bw_meter_leq); 1107 free_bw_list(rt->mfc_bw_meter_geq); 1108 1109 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1110 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1111 if (rte) { 1112 m_freem(rte->m); 1113 free(rte, M_MRTABLE); 1114 } 1115 } 1116 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1117 1118 LIST_REMOVE(rt, mfc_hash); 1119 free(rt, M_MRTABLE); 1120 } 1121 1122 /* 1123 * Add an mfc entry 1124 */ 1125 static int 1126 add_mfc(struct mfcctl2 *mfccp) 1127 { 1128 struct mfc *rt; 1129 struct rtdetq *rte; 1130 u_long hash = 0; 1131 u_short nstl; 1132 struct epoch_tracker et; 1133 1134 MRW_WLOCK(); 1135 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1136 1137 /* If an entry already exists, just update the fields */ 1138 if (rt) { 1139 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1140 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1141 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1142 mfccp->mfcc_parent); 1143 update_mfc_params(rt, mfccp); 1144 MRW_WUNLOCK(); 1145 return (0); 1146 } 1147 1148 /* 1149 * Find the entry for which the upcall was made and update 1150 */ 1151 nstl = 0; 1152 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1153 NET_EPOCH_ENTER(et); 1154 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1155 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1156 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1157 !buf_ring_empty(rt->mfc_stall_ring)) { 1158 CTR5(KTR_IPMF, 1159 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1160 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1161 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1162 mfccp->mfcc_parent, 1163 rt->mfc_stall_ring); 1164 if (nstl++) 1165 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1166 1167 init_mfc_params(rt, mfccp); 1168 rt->mfc_expire = 0; /* Don't clean this guy up */ 1169 V_nexpire[hash]--; 1170 1171 /* Free queued packets, but attempt to forward them first. */ 1172 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1173 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1174 if (rte->ifp != NULL) 1175 ip_mdq(rte->m, rte->ifp, rt, -1); 1176 m_freem(rte->m); 1177 free(rte, M_MRTABLE); 1178 } 1179 } 1180 } 1181 NET_EPOCH_EXIT(et); 1182 1183 /* 1184 * It is possible that an entry is being inserted without an upcall 1185 */ 1186 if (nstl == 0) { 1187 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1188 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1189 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1190 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1191 init_mfc_params(rt, mfccp); 1192 if (rt->mfc_expire) 1193 V_nexpire[hash]--; 1194 rt->mfc_expire = 0; 1195 break; /* XXX */ 1196 } 1197 } 1198 1199 if (rt == NULL) { /* no upcall, so make a new entry */ 1200 rt = mfc_alloc(); 1201 if (rt == NULL) { 1202 MRW_WUNLOCK(); 1203 return (ENOBUFS); 1204 } 1205 1206 init_mfc_params(rt, mfccp); 1207 1208 rt->mfc_expire = 0; 1209 rt->mfc_bw_meter_leq = NULL; 1210 rt->mfc_bw_meter_geq = NULL; 1211 1212 /* insert new entry at head of hash chain */ 1213 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1214 } 1215 } 1216 1217 MRW_WUNLOCK(); 1218 1219 return (0); 1220 } 1221 1222 /* 1223 * Delete an mfc entry 1224 */ 1225 static int 1226 del_mfc(struct mfcctl2 *mfccp) 1227 { 1228 struct in_addr origin; 1229 struct in_addr mcastgrp; 1230 struct mfc *rt; 1231 1232 origin = mfccp->mfcc_origin; 1233 mcastgrp = mfccp->mfcc_mcastgrp; 1234 1235 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1236 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1237 1238 MRW_WLOCK(); 1239 1240 rt = mfc_find(&origin, &mcastgrp); 1241 if (rt == NULL) { 1242 MRW_WUNLOCK(); 1243 return EADDRNOTAVAIL; 1244 } 1245 1246 /* 1247 * free the bw_meter entries 1248 */ 1249 free_bw_list(rt->mfc_bw_meter_leq); 1250 rt->mfc_bw_meter_leq = NULL; 1251 free_bw_list(rt->mfc_bw_meter_geq); 1252 rt->mfc_bw_meter_geq = NULL; 1253 1254 LIST_REMOVE(rt, mfc_hash); 1255 free(rt, M_MRTABLE); 1256 1257 MRW_WUNLOCK(); 1258 1259 return (0); 1260 } 1261 1262 /* 1263 * Send a message to the routing daemon on the multicast routing socket. 1264 */ 1265 static int 1266 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1267 { 1268 if (s) { 1269 SOCKBUF_LOCK(&s->so_rcv); 1270 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1271 NULL) != 0) { 1272 sorwakeup_locked(s); 1273 return 0; 1274 } 1275 soroverflow_locked(s); 1276 } 1277 m_freem(mm); 1278 return -1; 1279 } 1280 1281 /* 1282 * IP multicast forwarding function. This function assumes that the packet 1283 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1284 * pointed to by "ifp", and the packet is to be relayed to other networks 1285 * that have members of the packet's destination IP multicast group. 1286 * 1287 * The packet is returned unscathed to the caller, unless it is 1288 * erroneous, in which case a non-zero return value tells the caller to 1289 * discard it. 1290 */ 1291 1292 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1293 1294 static int 1295 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1296 struct ip_moptions *imo) 1297 { 1298 struct mfc *rt; 1299 int error; 1300 vifi_t vifi; 1301 struct mbuf *mb0; 1302 struct rtdetq *rte; 1303 u_long hash; 1304 int hlen; 1305 1306 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1307 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1308 1309 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1310 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1311 /* 1312 * Packet arrived via a physical interface or 1313 * an encapsulated tunnel or a register_vif. 1314 */ 1315 } else { 1316 /* 1317 * Packet arrived through a source-route tunnel. 1318 * Source-route tunnels are no longer supported. 1319 */ 1320 return (1); 1321 } 1322 1323 /* 1324 * BEGIN: MCAST ROUTING HOT PATH 1325 */ 1326 MRW_RLOCK(); 1327 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1328 if (ip->ip_ttl < MAXTTL) 1329 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1330 error = ip_mdq(m, ifp, NULL, vifi); 1331 MRW_RUNLOCK(); 1332 return error; 1333 } 1334 1335 /* 1336 * Don't forward a packet with time-to-live of zero or one, 1337 * or a packet destined to a local-only group. 1338 */ 1339 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1340 MRW_RUNLOCK(); 1341 return 0; 1342 } 1343 1344 mfc_find_retry: 1345 /* 1346 * Determine forwarding vifs from the forwarding cache table 1347 */ 1348 MRTSTAT_INC(mrts_mfc_lookups); 1349 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1350 1351 /* Entry exists, so forward if necessary */ 1352 if (rt != NULL) { 1353 error = ip_mdq(m, ifp, rt, -1); 1354 /* Generic unlock here as we might release R or W lock */ 1355 MRW_UNLOCK(); 1356 return error; 1357 } 1358 1359 /* 1360 * END: MCAST ROUTING HOT PATH 1361 */ 1362 1363 /* Further processing must be done with WLOCK taken */ 1364 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1365 MRW_RUNLOCK(); 1366 MRW_WLOCK(); 1367 goto mfc_find_retry; 1368 } 1369 1370 /* 1371 * If we don't have a route for packet's origin, 1372 * Make a copy of the packet & send message to routing daemon 1373 */ 1374 hlen = ip->ip_hl << 2; 1375 1376 MRTSTAT_INC(mrts_mfc_misses); 1377 MRTSTAT_INC(mrts_no_route); 1378 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1379 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1380 1381 /* 1382 * Allocate mbufs early so that we don't do extra work if we are 1383 * just going to fail anyway. Make sure to pullup the header so 1384 * that other people can't step on it. 1385 */ 1386 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); 1387 if (rte == NULL) { 1388 MRW_WUNLOCK(); 1389 return ENOBUFS; 1390 } 1391 1392 mb0 = m_copypacket(m, M_NOWAIT); 1393 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1394 mb0 = m_pullup(mb0, hlen); 1395 if (mb0 == NULL) { 1396 free(rte, M_MRTABLE); 1397 MRW_WUNLOCK(); 1398 return ENOBUFS; 1399 } 1400 1401 /* is there an upcall waiting for this flow ? */ 1402 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1403 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1404 { 1405 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1406 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1407 !buf_ring_empty(rt->mfc_stall_ring)) 1408 break; 1409 } 1410 1411 if (rt == NULL) { 1412 int i; 1413 struct igmpmsg *im; 1414 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1415 struct mbuf *mm; 1416 1417 /* 1418 * Locate the vifi for the incoming interface for this packet. 1419 * If none found, drop packet. 1420 */ 1421 for (vifi = 0; vifi < V_numvifs && 1422 V_viftable[vifi].v_ifp != ifp; vifi++) 1423 ; 1424 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1425 goto non_fatal; 1426 1427 /* no upcall, so make a new entry */ 1428 rt = mfc_alloc(); 1429 if (rt == NULL) 1430 goto fail; 1431 1432 /* Make a copy of the header to send to the user level process */ 1433 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1434 if (mm == NULL) 1435 goto fail1; 1436 1437 /* 1438 * Send message to routing daemon to install 1439 * a route into the kernel table 1440 */ 1441 1442 im = mtod(mm, struct igmpmsg*); 1443 im->im_msgtype = IGMPMSG_NOCACHE; 1444 im->im_mbz = 0; 1445 im->im_vif = vifi; 1446 1447 MRTSTAT_INC(mrts_upcalls); 1448 1449 k_igmpsrc.sin_addr = ip->ip_src; 1450 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1451 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1452 MRTSTAT_INC(mrts_upq_sockfull); 1453 fail1: free(rt, M_MRTABLE); 1454 fail: free(rte, M_MRTABLE); 1455 m_freem(mb0); 1456 MRW_WUNLOCK(); 1457 return ENOBUFS; 1458 } 1459 1460 /* insert new entry at head of hash chain */ 1461 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1462 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1463 rt->mfc_expire = UPCALL_EXPIRE; 1464 V_nexpire[hash]++; 1465 for (i = 0; i < V_numvifs; i++) { 1466 rt->mfc_ttls[i] = 0; 1467 rt->mfc_flags[i] = 0; 1468 } 1469 rt->mfc_parent = -1; 1470 1471 /* clear the RP address */ 1472 rt->mfc_rp.s_addr = INADDR_ANY; 1473 rt->mfc_bw_meter_leq = NULL; 1474 rt->mfc_bw_meter_geq = NULL; 1475 1476 /* initialize pkt counters per src-grp */ 1477 rt->mfc_pkt_cnt = 0; 1478 rt->mfc_byte_cnt = 0; 1479 rt->mfc_wrong_if = 0; 1480 timevalclear(&rt->mfc_last_assert); 1481 1482 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1483 1484 /* Add RT to hashtable as it didn't exist before */ 1485 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1486 } else { 1487 /* determine if queue has overflowed */ 1488 if (buf_ring_full(rt->mfc_stall_ring)) { 1489 MRTSTAT_INC(mrts_upq_ovflw); 1490 non_fatal: free(rte, M_MRTABLE); 1491 m_freem(mb0); 1492 MRW_WUNLOCK(); 1493 return (0); 1494 } 1495 1496 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1497 } 1498 1499 rte->m = mb0; 1500 rte->ifp = ifp; 1501 1502 MRW_WUNLOCK(); 1503 1504 return 0; 1505 } 1506 1507 /* 1508 * Clean up the cache entry if upcall is not serviced 1509 */ 1510 static void 1511 expire_upcalls(void *arg) 1512 { 1513 u_long i; 1514 1515 CURVNET_SET((struct vnet *) arg); 1516 1517 /*This callout is always run with MRW_WLOCK taken. */ 1518 1519 for (i = 0; i < mfchashsize; i++) { 1520 struct mfc *rt, *nrt; 1521 1522 if (V_nexpire[i] == 0) 1523 continue; 1524 1525 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1526 if (buf_ring_empty(rt->mfc_stall_ring)) 1527 continue; 1528 1529 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1530 continue; 1531 1532 MRTSTAT_INC(mrts_cache_cleanups); 1533 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1534 (u_long)ntohl(rt->mfc_origin.s_addr), 1535 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1536 1537 expire_mfc(rt); 1538 } 1539 } 1540 1541 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1542 curvnet); 1543 1544 CURVNET_RESTORE(); 1545 } 1546 1547 /* 1548 * Packet forwarding routine once entry in the cache is made 1549 */ 1550 static int 1551 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1552 { 1553 struct ip *ip = mtod(m, struct ip *); 1554 vifi_t vifi; 1555 int plen = ntohs(ip->ip_len); 1556 1557 MRW_LOCK_ASSERT(); 1558 NET_EPOCH_ASSERT(); 1559 1560 /* 1561 * If xmt_vif is not -1, send on only the requested vif. 1562 * 1563 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1564 */ 1565 if (xmt_vif < V_numvifs) { 1566 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1567 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1568 else 1569 phyint_send(ip, V_viftable + xmt_vif, m); 1570 return 1; 1571 } 1572 1573 /* 1574 * Don't forward if it didn't arrive from the parent vif for its origin. 1575 */ 1576 vifi = rt->mfc_parent; 1577 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1578 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1579 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1580 MRTSTAT_INC(mrts_wrong_if); 1581 ++rt->mfc_wrong_if; 1582 /* 1583 * If we are doing PIM assert processing, send a message 1584 * to the routing daemon. 1585 * 1586 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1587 * can complete the SPT switch, regardless of the type 1588 * of the iif (broadcast media, GRE tunnel, etc). 1589 */ 1590 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1591 V_viftable[vifi].v_ifp) { 1592 if (ifp == V_multicast_register_if) 1593 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1594 1595 /* Get vifi for the incoming packet */ 1596 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) 1597 ; 1598 if (vifi >= V_numvifs) 1599 return 0; /* The iif is not found: ignore the packet. */ 1600 1601 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1602 return 0; /* WRONGVIF disabled: ignore the packet */ 1603 1604 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1605 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1606 struct igmpmsg *im; 1607 int hlen = ip->ip_hl << 2; 1608 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1609 1610 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1611 mm = m_pullup(mm, hlen); 1612 if (mm == NULL) 1613 return ENOBUFS; 1614 1615 im = mtod(mm, struct igmpmsg *); 1616 im->im_msgtype = IGMPMSG_WRONGVIF; 1617 im->im_mbz = 0; 1618 im->im_vif = vifi; 1619 1620 MRTSTAT_INC(mrts_upcalls); 1621 1622 k_igmpsrc.sin_addr = im->im_src; 1623 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1624 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1625 MRTSTAT_INC(mrts_upq_sockfull); 1626 return ENOBUFS; 1627 } 1628 } 1629 } 1630 return 0; 1631 } 1632 1633 /* If I sourced this packet, it counts as output, else it was input. */ 1634 mtx_lock_spin(&V_viftable[vifi].v_spin); 1635 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1636 V_viftable[vifi].v_pkt_out++; 1637 V_viftable[vifi].v_bytes_out += plen; 1638 } else { 1639 V_viftable[vifi].v_pkt_in++; 1640 V_viftable[vifi].v_bytes_in += plen; 1641 } 1642 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1643 1644 rt->mfc_pkt_cnt++; 1645 rt->mfc_byte_cnt += plen; 1646 1647 /* 1648 * For each vif, decide if a copy of the packet should be forwarded. 1649 * Forward if: 1650 * - the ttl exceeds the vif's threshold 1651 * - there are group members downstream on interface 1652 */ 1653 for (vifi = 0; vifi < V_numvifs; vifi++) 1654 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1655 V_viftable[vifi].v_pkt_out++; 1656 V_viftable[vifi].v_bytes_out += plen; 1657 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1658 pim_register_send(ip, V_viftable + vifi, m, rt); 1659 else 1660 phyint_send(ip, V_viftable + vifi, m); 1661 } 1662 1663 /* 1664 * Perform upcall-related bw measuring. 1665 */ 1666 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1667 struct bw_meter *x; 1668 struct timeval now; 1669 1670 microtime(&now); 1671 /* Process meters for Greater-or-EQual case */ 1672 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1673 bw_meter_geq_receive_packet(x, plen, &now); 1674 1675 /* Process meters for Lower-or-EQual case */ 1676 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1677 /* 1678 * Record that a packet is received. 1679 * Spin lock has to be taken as callout context 1680 * (expire_bw_meter_leq) might modify these fields 1681 * as well 1682 */ 1683 mtx_lock_spin(&x->bm_spin); 1684 x->bm_measured.b_packets++; 1685 x->bm_measured.b_bytes += plen; 1686 mtx_unlock_spin(&x->bm_spin); 1687 } 1688 } 1689 1690 return 0; 1691 } 1692 1693 /* 1694 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1695 */ 1696 static int 1697 X_legal_vif_num(int vif) 1698 { 1699 int ret; 1700 1701 ret = 0; 1702 if (vif < 0) 1703 return (ret); 1704 1705 MRW_RLOCK(); 1706 if (vif < V_numvifs) 1707 ret = 1; 1708 MRW_RUNLOCK(); 1709 1710 return (ret); 1711 } 1712 1713 /* 1714 * Return the local address used by this vif 1715 */ 1716 static u_long 1717 X_ip_mcast_src(int vifi) 1718 { 1719 in_addr_t addr; 1720 1721 addr = INADDR_ANY; 1722 if (vifi < 0) 1723 return (addr); 1724 1725 MRW_RLOCK(); 1726 if (vifi < V_numvifs) 1727 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1728 MRW_RUNLOCK(); 1729 1730 return (addr); 1731 } 1732 1733 static void 1734 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1735 { 1736 struct mbuf *mb_copy; 1737 int hlen = ip->ip_hl << 2; 1738 1739 MRW_LOCK_ASSERT(); 1740 1741 /* 1742 * Make a new reference to the packet; make sure that 1743 * the IP header is actually copied, not just referenced, 1744 * so that ip_output() only scribbles on the copy. 1745 */ 1746 mb_copy = m_copypacket(m, M_NOWAIT); 1747 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1748 mb_copy = m_pullup(mb_copy, hlen); 1749 if (mb_copy == NULL) 1750 return; 1751 1752 send_packet(vifp, mb_copy); 1753 } 1754 1755 static void 1756 send_packet(struct vif *vifp, struct mbuf *m) 1757 { 1758 struct ip_moptions imo; 1759 int error __unused; 1760 1761 MRW_LOCK_ASSERT(); 1762 NET_EPOCH_ASSERT(); 1763 1764 imo.imo_multicast_ifp = vifp->v_ifp; 1765 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1766 imo.imo_multicast_loop = !!in_mcast_loop; 1767 imo.imo_multicast_vif = -1; 1768 STAILQ_INIT(&imo.imo_head); 1769 1770 /* 1771 * Re-entrancy should not be a problem here, because 1772 * the packets that we send out and are looped back at us 1773 * should get rejected because they appear to come from 1774 * the loopback interface, thus preventing looping. 1775 */ 1776 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1777 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1778 (ptrdiff_t)(vifp - V_viftable), error); 1779 } 1780 1781 /* 1782 * Stubs for old RSVP socket shim implementation. 1783 */ 1784 1785 static int 1786 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1787 { 1788 1789 return (EOPNOTSUPP); 1790 } 1791 1792 static void 1793 X_ip_rsvp_force_done(struct socket *so __unused) 1794 { 1795 1796 } 1797 1798 static int 1799 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1800 { 1801 struct mbuf *m; 1802 1803 m = *mp; 1804 *mp = NULL; 1805 if (!V_rsvp_on) 1806 m_freem(m); 1807 return (IPPROTO_DONE); 1808 } 1809 1810 /* 1811 * Code for bandwidth monitors 1812 */ 1813 1814 /* 1815 * Define common interface for timeval-related methods 1816 */ 1817 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1818 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1819 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1820 1821 static uint32_t 1822 compute_bw_meter_flags(struct bw_upcall *req) 1823 { 1824 uint32_t flags = 0; 1825 1826 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1827 flags |= BW_METER_UNIT_PACKETS; 1828 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1829 flags |= BW_METER_UNIT_BYTES; 1830 if (req->bu_flags & BW_UPCALL_GEQ) 1831 flags |= BW_METER_GEQ; 1832 if (req->bu_flags & BW_UPCALL_LEQ) 1833 flags |= BW_METER_LEQ; 1834 1835 return flags; 1836 } 1837 1838 static void 1839 expire_bw_meter_leq(void *arg) 1840 { 1841 struct bw_meter *x = arg; 1842 struct timeval now; 1843 /* 1844 * INFO: 1845 * callout is always executed with MRW_WLOCK taken 1846 */ 1847 1848 CURVNET_SET((struct vnet *)x->arg); 1849 1850 microtime(&now); 1851 1852 /* 1853 * Test if we should deliver an upcall 1854 */ 1855 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1856 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1857 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1858 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1859 /* Prepare an upcall for delivery */ 1860 bw_meter_prepare_upcall(x, &now); 1861 } 1862 1863 /* Send all upcalls that are pending delivery */ 1864 taskqueue_enqueue(V_task_queue, &V_task); 1865 1866 /* Reset counters */ 1867 x->bm_start_time = now; 1868 /* Spin lock has to be taken as ip_forward context 1869 * might modify these fields as well 1870 */ 1871 mtx_lock_spin(&x->bm_spin); 1872 x->bm_measured.b_bytes = 0; 1873 x->bm_measured.b_packets = 0; 1874 mtx_unlock_spin(&x->bm_spin); 1875 1876 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1877 1878 CURVNET_RESTORE(); 1879 } 1880 1881 /* 1882 * Add a bw_meter entry 1883 */ 1884 static int 1885 add_bw_upcall(struct bw_upcall *req) 1886 { 1887 struct mfc *mfc; 1888 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1889 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1890 struct timeval now; 1891 struct bw_meter *x, **bwm_ptr; 1892 uint32_t flags; 1893 1894 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1895 return EOPNOTSUPP; 1896 1897 /* Test if the flags are valid */ 1898 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1899 return EINVAL; 1900 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1901 return EINVAL; 1902 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1903 return EINVAL; 1904 1905 /* Test if the threshold time interval is valid */ 1906 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1907 return EINVAL; 1908 1909 flags = compute_bw_meter_flags(req); 1910 1911 /* 1912 * Find if we have already same bw_meter entry 1913 */ 1914 MRW_WLOCK(); 1915 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1916 if (mfc == NULL) { 1917 MRW_WUNLOCK(); 1918 return EADDRNOTAVAIL; 1919 } 1920 1921 /* Choose an appropriate bw_meter list */ 1922 if (req->bu_flags & BW_UPCALL_GEQ) 1923 bwm_ptr = &mfc->mfc_bw_meter_geq; 1924 else 1925 bwm_ptr = &mfc->mfc_bw_meter_leq; 1926 1927 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1928 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1929 &req->bu_threshold.b_time, ==)) 1930 && (x->bm_threshold.b_packets 1931 == req->bu_threshold.b_packets) 1932 && (x->bm_threshold.b_bytes 1933 == req->bu_threshold.b_bytes) 1934 && (x->bm_flags & BW_METER_USER_FLAGS) 1935 == flags) { 1936 MRW_WUNLOCK(); 1937 return 0; /* XXX Already installed */ 1938 } 1939 } 1940 1941 /* Allocate the new bw_meter entry */ 1942 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); 1943 if (x == NULL) { 1944 MRW_WUNLOCK(); 1945 return ENOBUFS; 1946 } 1947 1948 /* Set the new bw_meter entry */ 1949 x->bm_threshold.b_time = req->bu_threshold.b_time; 1950 microtime(&now); 1951 x->bm_start_time = now; 1952 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1953 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1954 x->bm_measured.b_packets = 0; 1955 x->bm_measured.b_bytes = 0; 1956 x->bm_flags = flags; 1957 x->bm_time_next = NULL; 1958 x->bm_mfc = mfc; 1959 x->arg = curvnet; 1960 sprintf(x->bm_spin_name, "BM spin %p", x); 1961 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1962 1963 /* For LEQ case create periodic callout */ 1964 if (req->bu_flags & BW_UPCALL_LEQ) { 1965 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); 1966 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1967 expire_bw_meter_leq, x); 1968 } 1969 1970 /* Add the new bw_meter entry to the front of entries for this MFC */ 1971 x->bm_mfc_next = *bwm_ptr; 1972 *bwm_ptr = x; 1973 1974 MRW_WUNLOCK(); 1975 1976 return 0; 1977 } 1978 1979 static void 1980 free_bw_list(struct bw_meter *list) 1981 { 1982 while (list != NULL) { 1983 struct bw_meter *x = list; 1984 1985 /* MRW_WLOCK must be held here */ 1986 if (x->bm_flags & BW_METER_LEQ) { 1987 callout_drain(&x->bm_meter_callout); 1988 mtx_destroy(&x->bm_spin); 1989 } 1990 1991 list = list->bm_mfc_next; 1992 free(x, M_BWMETER); 1993 } 1994 } 1995 1996 /* 1997 * Delete one or multiple bw_meter entries 1998 */ 1999 static int 2000 del_bw_upcall(struct bw_upcall *req) 2001 { 2002 struct mfc *mfc; 2003 struct bw_meter *x, **bwm_ptr; 2004 2005 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2006 return EOPNOTSUPP; 2007 2008 MRW_WLOCK(); 2009 2010 /* Find the corresponding MFC entry */ 2011 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2012 if (mfc == NULL) { 2013 MRW_WUNLOCK(); 2014 return EADDRNOTAVAIL; 2015 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2016 /* 2017 * Delete all bw_meter entries for this mfc 2018 */ 2019 struct bw_meter *list; 2020 2021 /* Free LEQ list */ 2022 list = mfc->mfc_bw_meter_leq; 2023 mfc->mfc_bw_meter_leq = NULL; 2024 free_bw_list(list); 2025 2026 /* Free GEQ list */ 2027 list = mfc->mfc_bw_meter_geq; 2028 mfc->mfc_bw_meter_geq = NULL; 2029 free_bw_list(list); 2030 MRW_WUNLOCK(); 2031 return 0; 2032 } else { /* Delete a single bw_meter entry */ 2033 struct bw_meter *prev; 2034 uint32_t flags = 0; 2035 2036 flags = compute_bw_meter_flags(req); 2037 2038 /* Choose an appropriate bw_meter list */ 2039 if (req->bu_flags & BW_UPCALL_GEQ) 2040 bwm_ptr = &mfc->mfc_bw_meter_geq; 2041 else 2042 bwm_ptr = &mfc->mfc_bw_meter_leq; 2043 2044 /* Find the bw_meter entry to delete */ 2045 for (prev = NULL, x = *bwm_ptr; x != NULL; 2046 prev = x, x = x->bm_mfc_next) { 2047 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && 2048 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2049 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2050 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2051 break; 2052 } 2053 if (x != NULL) { /* Delete entry from the list for this MFC */ 2054 if (prev != NULL) 2055 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2056 else 2057 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2058 2059 if (req->bu_flags & BW_UPCALL_LEQ) 2060 callout_stop(&x->bm_meter_callout); 2061 2062 MRW_WUNLOCK(); 2063 /* Free the bw_meter entry */ 2064 free(x, M_BWMETER); 2065 return 0; 2066 } else { 2067 MRW_WUNLOCK(); 2068 return EINVAL; 2069 } 2070 } 2071 __assert_unreachable(); 2072 } 2073 2074 /* 2075 * Perform bandwidth measurement processing that may result in an upcall 2076 */ 2077 static void 2078 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2079 { 2080 struct timeval delta; 2081 2082 MRW_LOCK_ASSERT(); 2083 2084 delta = *nowp; 2085 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2086 2087 /* 2088 * Processing for ">=" type of bw_meter entry. 2089 * bm_spin does not have to be hold here as in GEQ 2090 * case this is the only context accessing bm_measured. 2091 */ 2092 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2093 /* Reset the bw_meter entry */ 2094 x->bm_start_time = *nowp; 2095 x->bm_measured.b_packets = 0; 2096 x->bm_measured.b_bytes = 0; 2097 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2098 } 2099 2100 /* Record that a packet is received */ 2101 x->bm_measured.b_packets++; 2102 x->bm_measured.b_bytes += plen; 2103 2104 /* 2105 * Test if we should deliver an upcall 2106 */ 2107 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2108 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2109 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2110 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2111 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2112 /* Prepare an upcall for delivery */ 2113 bw_meter_prepare_upcall(x, nowp); 2114 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2115 } 2116 } 2117 } 2118 2119 /* 2120 * Prepare a bandwidth-related upcall 2121 */ 2122 static void 2123 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2124 { 2125 struct timeval delta; 2126 struct bw_upcall *u; 2127 2128 MRW_LOCK_ASSERT(); 2129 2130 /* 2131 * Compute the measured time interval 2132 */ 2133 delta = *nowp; 2134 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2135 2136 /* 2137 * Set the bw_upcall entry 2138 */ 2139 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2140 if (!u) { 2141 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2142 return; 2143 } 2144 u->bu_src = x->bm_mfc->mfc_origin; 2145 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2146 u->bu_threshold.b_time = x->bm_threshold.b_time; 2147 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2148 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2149 u->bu_measured.b_time = delta; 2150 u->bu_measured.b_packets = x->bm_measured.b_packets; 2151 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2152 u->bu_flags = 0; 2153 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2154 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2155 if (x->bm_flags & BW_METER_UNIT_BYTES) 2156 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2157 if (x->bm_flags & BW_METER_GEQ) 2158 u->bu_flags |= BW_UPCALL_GEQ; 2159 if (x->bm_flags & BW_METER_LEQ) 2160 u->bu_flags |= BW_UPCALL_LEQ; 2161 2162 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2163 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2164 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2165 taskqueue_enqueue(V_task_queue, &V_task); 2166 } 2167 } 2168 /* 2169 * Send the pending bandwidth-related upcalls 2170 */ 2171 static void 2172 bw_upcalls_send(void) 2173 { 2174 struct mbuf *m; 2175 int len = 0; 2176 struct bw_upcall *bu; 2177 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2178 static struct igmpmsg igmpmsg = { 2179 0, /* unused1 */ 2180 0, /* unused2 */ 2181 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2182 0, /* im_mbz */ 2183 0, /* im_vif */ 2184 0, /* unused3 */ 2185 { 0 }, /* im_src */ 2186 { 0 } /* im_dst */ 2187 }; 2188 2189 MRW_LOCK_ASSERT(); 2190 2191 if (buf_ring_empty(V_bw_upcalls_ring)) 2192 return; 2193 2194 /* 2195 * Allocate a new mbuf, initialize it with the header and 2196 * the payload for the pending calls. 2197 */ 2198 m = m_gethdr(M_NOWAIT, MT_DATA); 2199 if (m == NULL) { 2200 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2201 return; 2202 } 2203 2204 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2205 len += sizeof(struct igmpmsg); 2206 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2207 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2208 len += sizeof(struct bw_upcall); 2209 free(bu, M_MRTABLE); 2210 } 2211 2212 /* 2213 * Send the upcalls 2214 * XXX do we need to set the address in k_igmpsrc ? 2215 */ 2216 MRTSTAT_INC(mrts_upcalls); 2217 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2218 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2219 MRTSTAT_INC(mrts_upq_sockfull); 2220 } 2221 } 2222 2223 /* 2224 * A periodic function for sending all upcalls that are pending delivery 2225 */ 2226 static void 2227 expire_bw_upcalls_send(void *arg) 2228 { 2229 CURVNET_SET((struct vnet *) arg); 2230 2231 /* This callout is run with MRW_RLOCK taken */ 2232 2233 bw_upcalls_send(); 2234 2235 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2236 curvnet); 2237 CURVNET_RESTORE(); 2238 } 2239 2240 /* 2241 * End of bandwidth monitoring code 2242 */ 2243 2244 /* 2245 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2246 * 2247 */ 2248 static int 2249 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2250 struct mfc *rt) 2251 { 2252 struct mbuf *mb_copy, *mm; 2253 2254 /* 2255 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2256 * rendezvous point was unspecified, and we were told not to. 2257 */ 2258 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2259 in_nullhost(rt->mfc_rp)) 2260 return 0; 2261 2262 mb_copy = pim_register_prepare(ip, m); 2263 if (mb_copy == NULL) 2264 return ENOBUFS; 2265 2266 /* 2267 * Send all the fragments. Note that the mbuf for each fragment 2268 * is freed by the sending machinery. 2269 */ 2270 for (mm = mb_copy; mm; mm = mb_copy) { 2271 mb_copy = mm->m_nextpkt; 2272 mm->m_nextpkt = 0; 2273 mm = m_pullup(mm, sizeof(struct ip)); 2274 if (mm != NULL) { 2275 ip = mtod(mm, struct ip *); 2276 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2277 pim_register_send_rp(ip, vifp, mm, rt); 2278 } else { 2279 pim_register_send_upcall(ip, vifp, mm, rt); 2280 } 2281 } 2282 } 2283 2284 return 0; 2285 } 2286 2287 /* 2288 * Return a copy of the data packet that is ready for PIM Register 2289 * encapsulation. 2290 * XXX: Note that in the returned copy the IP header is a valid one. 2291 */ 2292 static struct mbuf * 2293 pim_register_prepare(struct ip *ip, struct mbuf *m) 2294 { 2295 struct mbuf *mb_copy = NULL; 2296 int mtu; 2297 2298 /* Take care of delayed checksums */ 2299 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2300 in_delayed_cksum(m); 2301 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2302 } 2303 2304 /* 2305 * Copy the old packet & pullup its IP header into the 2306 * new mbuf so we can modify it. 2307 */ 2308 mb_copy = m_copypacket(m, M_NOWAIT); 2309 if (mb_copy == NULL) 2310 return NULL; 2311 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2312 if (mb_copy == NULL) 2313 return NULL; 2314 2315 /* take care of the TTL */ 2316 ip = mtod(mb_copy, struct ip *); 2317 --ip->ip_ttl; 2318 2319 /* Compute the MTU after the PIM Register encapsulation */ 2320 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2321 2322 if (ntohs(ip->ip_len) <= mtu) { 2323 /* Turn the IP header into a valid one */ 2324 ip->ip_sum = 0; 2325 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2326 } else { 2327 /* Fragment the packet */ 2328 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2329 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2330 m_freem(mb_copy); 2331 return NULL; 2332 } 2333 } 2334 return mb_copy; 2335 } 2336 2337 /* 2338 * Send an upcall with the data packet to the user-level process. 2339 */ 2340 static int 2341 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2342 struct mbuf *mb_copy, struct mfc *rt) 2343 { 2344 struct mbuf *mb_first; 2345 int len = ntohs(ip->ip_len); 2346 struct igmpmsg *im; 2347 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2348 2349 MRW_LOCK_ASSERT(); 2350 2351 /* 2352 * Add a new mbuf with an upcall header 2353 */ 2354 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2355 if (mb_first == NULL) { 2356 m_freem(mb_copy); 2357 return ENOBUFS; 2358 } 2359 mb_first->m_data += max_linkhdr; 2360 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2361 mb_first->m_len = sizeof(struct igmpmsg); 2362 mb_first->m_next = mb_copy; 2363 2364 /* Send message to routing daemon */ 2365 im = mtod(mb_first, struct igmpmsg *); 2366 im->im_msgtype = IGMPMSG_WHOLEPKT; 2367 im->im_mbz = 0; 2368 im->im_vif = vifp - V_viftable; 2369 im->im_src = ip->ip_src; 2370 im->im_dst = ip->ip_dst; 2371 2372 k_igmpsrc.sin_addr = ip->ip_src; 2373 2374 MRTSTAT_INC(mrts_upcalls); 2375 2376 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2377 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2378 MRTSTAT_INC(mrts_upq_sockfull); 2379 return ENOBUFS; 2380 } 2381 2382 /* Keep statistics */ 2383 PIMSTAT_INC(pims_snd_registers_msgs); 2384 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * Encapsulate the data packet in PIM Register message and send it to the RP. 2391 */ 2392 static int 2393 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2394 struct mfc *rt) 2395 { 2396 struct mbuf *mb_first; 2397 struct ip *ip_outer; 2398 struct pim_encap_pimhdr *pimhdr; 2399 int len = ntohs(ip->ip_len); 2400 vifi_t vifi = rt->mfc_parent; 2401 2402 MRW_LOCK_ASSERT(); 2403 2404 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2405 m_freem(mb_copy); 2406 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2407 } 2408 2409 /* 2410 * Add a new mbuf with the encapsulating header 2411 */ 2412 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2413 if (mb_first == NULL) { 2414 m_freem(mb_copy); 2415 return ENOBUFS; 2416 } 2417 mb_first->m_data += max_linkhdr; 2418 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2419 mb_first->m_next = mb_copy; 2420 2421 mb_first->m_pkthdr.len = len + mb_first->m_len; 2422 2423 /* 2424 * Fill in the encapsulating IP and PIM header 2425 */ 2426 ip_outer = mtod(mb_first, struct ip *); 2427 *ip_outer = pim_encap_iphdr; 2428 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2429 sizeof(pim_encap_pimhdr)); 2430 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2431 ip_outer->ip_dst = rt->mfc_rp; 2432 /* 2433 * Copy the inner header TOS to the outer header, and take care of the 2434 * IP_DF bit. 2435 */ 2436 ip_outer->ip_tos = ip->ip_tos; 2437 if (ip->ip_off & htons(IP_DF)) 2438 ip_outer->ip_off |= htons(IP_DF); 2439 ip_fillid(ip_outer); 2440 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2441 + sizeof(pim_encap_iphdr)); 2442 *pimhdr = pim_encap_pimhdr; 2443 /* If the iif crosses a border, set the Border-bit */ 2444 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2445 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2446 2447 mb_first->m_data += sizeof(pim_encap_iphdr); 2448 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2449 mb_first->m_data -= sizeof(pim_encap_iphdr); 2450 2451 send_packet(vifp, mb_first); 2452 2453 /* Keep statistics */ 2454 PIMSTAT_INC(pims_snd_registers_msgs); 2455 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2456 2457 return 0; 2458 } 2459 2460 /* 2461 * pim_encapcheck() is called by the encap4_input() path at runtime to 2462 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2463 * into the kernel. 2464 */ 2465 static int 2466 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2467 int proto __unused, void *arg __unused) 2468 { 2469 2470 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2471 return (8); /* claim the datagram. */ 2472 } 2473 2474 /* 2475 * PIM-SMv2 and PIM-DM messages processing. 2476 * Receives and verifies the PIM control messages, and passes them 2477 * up to the listening socket, using rip_input(). 2478 * The only message with special processing is the PIM_REGISTER message 2479 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2480 * is passed to if_simloop(). 2481 */ 2482 static int 2483 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2484 { 2485 struct ip *ip = mtod(m, struct ip *); 2486 struct pim *pim; 2487 int iphlen = off; 2488 int minlen; 2489 int datalen = ntohs(ip->ip_len) - iphlen; 2490 int ip_tos; 2491 2492 /* Keep statistics */ 2493 PIMSTAT_INC(pims_rcv_total_msgs); 2494 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2495 2496 /* 2497 * Validate lengths 2498 */ 2499 if (datalen < PIM_MINLEN) { 2500 PIMSTAT_INC(pims_rcv_tooshort); 2501 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2502 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2503 m_freem(m); 2504 return (IPPROTO_DONE); 2505 } 2506 2507 /* 2508 * If the packet is at least as big as a REGISTER, go agead 2509 * and grab the PIM REGISTER header size, to avoid another 2510 * possible m_pullup() later. 2511 * 2512 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2513 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2514 */ 2515 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2516 /* 2517 * Get the IP and PIM headers in contiguous memory, and 2518 * possibly the PIM REGISTER header. 2519 */ 2520 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2521 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2522 return (IPPROTO_DONE); 2523 } 2524 2525 /* m_pullup() may have given us a new mbuf so reset ip. */ 2526 ip = mtod(m, struct ip *); 2527 ip_tos = ip->ip_tos; 2528 2529 /* adjust mbuf to point to the PIM header */ 2530 m->m_data += iphlen; 2531 m->m_len -= iphlen; 2532 pim = mtod(m, struct pim *); 2533 2534 /* 2535 * Validate checksum. If PIM REGISTER, exclude the data packet. 2536 * 2537 * XXX: some older PIMv2 implementations don't make this distinction, 2538 * so for compatibility reason perform the checksum over part of the 2539 * message, and if error, then over the whole message. 2540 */ 2541 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2542 /* do nothing, checksum okay */ 2543 } else if (in_cksum(m, datalen)) { 2544 PIMSTAT_INC(pims_rcv_badsum); 2545 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2546 m_freem(m); 2547 return (IPPROTO_DONE); 2548 } 2549 2550 /* PIM version check */ 2551 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2552 PIMSTAT_INC(pims_rcv_badversion); 2553 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2554 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2555 m_freem(m); 2556 return (IPPROTO_DONE); 2557 } 2558 2559 /* restore mbuf back to the outer IP */ 2560 m->m_data -= iphlen; 2561 m->m_len += iphlen; 2562 2563 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2564 /* 2565 * Since this is a REGISTER, we'll make a copy of the register 2566 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2567 * routing daemon. 2568 */ 2569 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2570 struct mbuf *mcp; 2571 struct ip *encap_ip; 2572 u_int32_t *reghdr; 2573 struct ifnet *vifp; 2574 2575 MRW_RLOCK(); 2576 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2577 MRW_RUNLOCK(); 2578 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2579 (int)V_reg_vif_num); 2580 m_freem(m); 2581 return (IPPROTO_DONE); 2582 } 2583 /* XXX need refcnt? */ 2584 vifp = V_viftable[V_reg_vif_num].v_ifp; 2585 MRW_RUNLOCK(); 2586 2587 /* 2588 * Validate length 2589 */ 2590 if (datalen < PIM_REG_MINLEN) { 2591 PIMSTAT_INC(pims_rcv_tooshort); 2592 PIMSTAT_INC(pims_rcv_badregisters); 2593 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2594 m_freem(m); 2595 return (IPPROTO_DONE); 2596 } 2597 2598 reghdr = (u_int32_t *)(pim + 1); 2599 encap_ip = (struct ip *)(reghdr + 1); 2600 2601 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2602 __func__, ntohl(encap_ip->ip_src.s_addr), 2603 ntohs(encap_ip->ip_len)); 2604 2605 /* verify the version number of the inner packet */ 2606 if (encap_ip->ip_v != IPVERSION) { 2607 PIMSTAT_INC(pims_rcv_badregisters); 2608 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2609 m_freem(m); 2610 return (IPPROTO_DONE); 2611 } 2612 2613 /* verify the inner packet is destined to a mcast group */ 2614 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2615 PIMSTAT_INC(pims_rcv_badregisters); 2616 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2617 ntohl(encap_ip->ip_dst.s_addr)); 2618 m_freem(m); 2619 return (IPPROTO_DONE); 2620 } 2621 2622 /* If a NULL_REGISTER, pass it to the daemon */ 2623 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2624 goto pim_input_to_daemon; 2625 2626 /* 2627 * Copy the TOS from the outer IP header to the inner IP header. 2628 */ 2629 if (encap_ip->ip_tos != ip_tos) { 2630 /* Outer TOS -> inner TOS */ 2631 encap_ip->ip_tos = ip_tos; 2632 /* Recompute the inner header checksum. Sigh... */ 2633 2634 /* adjust mbuf to point to the inner IP header */ 2635 m->m_data += (iphlen + PIM_MINLEN); 2636 m->m_len -= (iphlen + PIM_MINLEN); 2637 2638 encap_ip->ip_sum = 0; 2639 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2640 2641 /* restore mbuf to point back to the outer IP header */ 2642 m->m_data -= (iphlen + PIM_MINLEN); 2643 m->m_len += (iphlen + PIM_MINLEN); 2644 } 2645 2646 /* 2647 * Decapsulate the inner IP packet and loopback to forward it 2648 * as a normal multicast packet. Also, make a copy of the 2649 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2650 * to pass to the daemon later, so it can take the appropriate 2651 * actions (e.g., send back PIM_REGISTER_STOP). 2652 * XXX: here m->m_data points to the outer IP header. 2653 */ 2654 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2655 if (mcp == NULL) { 2656 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2657 m_freem(m); 2658 return (IPPROTO_DONE); 2659 } 2660 2661 /* Keep statistics */ 2662 /* XXX: registers_bytes include only the encap. mcast pkt */ 2663 PIMSTAT_INC(pims_rcv_registers_msgs); 2664 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2665 2666 /* 2667 * forward the inner ip packet; point m_data at the inner ip. 2668 */ 2669 m_adj(m, iphlen + PIM_MINLEN); 2670 2671 CTR4(KTR_IPMF, 2672 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2673 __func__, 2674 (u_long)ntohl(encap_ip->ip_src.s_addr), 2675 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2676 (int)V_reg_vif_num); 2677 2678 /* NB: vifp was collected above; can it change on us? */ 2679 if_simloop(vifp, m, dst.sin_family, 0); 2680 2681 /* prepare the register head to send to the mrouting daemon */ 2682 m = mcp; 2683 } 2684 2685 pim_input_to_daemon: 2686 /* 2687 * Pass the PIM message up to the daemon; if it is a Register message, 2688 * pass the 'head' only up to the daemon. This includes the 2689 * outer IP header, PIM header, PIM-Register header and the 2690 * inner IP header. 2691 * XXX: the outer IP header pkt size of a Register is not adjust to 2692 * reflect the fact that the inner multicast data is truncated. 2693 */ 2694 return (rip_input(&m, &off, proto)); 2695 } 2696 2697 static int 2698 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2699 { 2700 struct mfc *rt; 2701 int error, i; 2702 2703 if (req->newptr) 2704 return (EPERM); 2705 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2706 return (0); 2707 error = sysctl_wire_old_buffer(req, 0); 2708 if (error) 2709 return (error); 2710 2711 MRW_RLOCK(); 2712 for (i = 0; i < mfchashsize; i++) { 2713 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2714 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2715 if (error) 2716 goto out_locked; 2717 } 2718 } 2719 out_locked: 2720 MRW_RUNLOCK(); 2721 return (error); 2722 } 2723 2724 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2725 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2726 "IPv4 Multicast Forwarding Table " 2727 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2728 2729 static int 2730 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2731 { 2732 int error, i; 2733 2734 if (req->newptr) 2735 return (EPERM); 2736 if (V_viftable == NULL) /* XXX unlocked */ 2737 return (0); 2738 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2739 if (error) 2740 return (error); 2741 2742 MRW_RLOCK(); 2743 /* Copy out user-visible portion of vif entry. */ 2744 for (i = 0; i < MAXVIFS; i++) { 2745 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2746 if (error) 2747 break; 2748 } 2749 MRW_RUNLOCK(); 2750 return (error); 2751 } 2752 2753 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2754 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2755 sysctl_viflist, "S,vif[MAXVIFS]", 2756 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2757 2758 static void 2759 vnet_mroute_init(const void *unused __unused) 2760 { 2761 2762 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2763 2764 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2765 M_MRTABLE, M_WAITOK|M_ZERO); 2766 2767 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); 2768 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); 2769 2770 /* Prepare taskqueue */ 2771 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2772 taskqueue_thread_enqueue, &V_task_queue); 2773 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2774 } 2775 2776 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2777 NULL); 2778 2779 static void 2780 vnet_mroute_uninit(const void *unused __unused) 2781 { 2782 2783 /* Taskqueue should be cancelled and drained before freeing */ 2784 taskqueue_free(V_task_queue); 2785 2786 free(V_viftable, M_MRTABLE); 2787 free(V_nexpire, M_MRTABLE); 2788 V_nexpire = NULL; 2789 } 2790 2791 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2792 vnet_mroute_uninit, NULL); 2793 2794 static int 2795 ip_mroute_modevent(module_t mod, int type, void *unused) 2796 { 2797 2798 switch (type) { 2799 case MOD_LOAD: 2800 MRW_LOCK_INIT(); 2801 2802 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2803 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2804 if (if_detach_event_tag == NULL) { 2805 printf("ip_mroute: unable to register " 2806 "ifnet_departure_event handler\n"); 2807 MRW_LOCK_DESTROY(); 2808 return (EINVAL); 2809 } 2810 2811 mfchashsize = MFCHASHSIZE; 2812 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2813 !powerof2(mfchashsize)) { 2814 printf("WARNING: %s not a power of 2; using default\n", 2815 "net.inet.ip.mfchashsize"); 2816 mfchashsize = MFCHASHSIZE; 2817 } 2818 2819 pim_squelch_wholepkt = 0; 2820 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2821 &pim_squelch_wholepkt); 2822 2823 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2824 2825 ip_mcast_src = X_ip_mcast_src; 2826 ip_mforward = X_ip_mforward; 2827 ip_mrouter_done = X_ip_mrouter_done; 2828 ip_mrouter_get = X_ip_mrouter_get; 2829 ip_mrouter_set = X_ip_mrouter_set; 2830 2831 ip_rsvp_force_done = X_ip_rsvp_force_done; 2832 ip_rsvp_vif = X_ip_rsvp_vif; 2833 2834 legal_vif_num = X_legal_vif_num; 2835 mrt_ioctl = X_mrt_ioctl; 2836 rsvp_input_p = X_rsvp_input; 2837 break; 2838 2839 case MOD_UNLOAD: 2840 /* 2841 * Typically module unload happens after the user-level 2842 * process has shutdown the kernel services (the check 2843 * below insures someone can't just yank the module out 2844 * from under a running process). But if the module is 2845 * just loaded and then unloaded w/o starting up a user 2846 * process we still need to cleanup. 2847 */ 2848 MRW_WLOCK(); 2849 if (ip_mrouter_cnt != 0) { 2850 MRW_WUNLOCK(); 2851 return (EINVAL); 2852 } 2853 ip_mrouter_unloading = 1; 2854 MRW_WUNLOCK(); 2855 2856 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2857 2858 if (pim_encap_cookie) { 2859 ip_encap_detach(pim_encap_cookie); 2860 pim_encap_cookie = NULL; 2861 } 2862 2863 ip_mcast_src = NULL; 2864 ip_mforward = NULL; 2865 ip_mrouter_done = NULL; 2866 ip_mrouter_get = NULL; 2867 ip_mrouter_set = NULL; 2868 2869 ip_rsvp_force_done = NULL; 2870 ip_rsvp_vif = NULL; 2871 2872 legal_vif_num = NULL; 2873 mrt_ioctl = NULL; 2874 rsvp_input_p = NULL; 2875 2876 MRW_LOCK_DESTROY(); 2877 break; 2878 2879 default: 2880 return EOPNOTSUPP; 2881 } 2882 return 0; 2883 } 2884 2885 static moduledata_t ip_mroutemod = { 2886 "ip_mroute", 2887 ip_mroute_modevent, 2888 0 2889 }; 2890 2891 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2892