xref: /freebsd/sys/netinet/ip_mroute.c (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36  */
37 
38 /*
39  * IP multicast forwarding procedures
40  *
41  * Written by David Waitzman, BBN Labs, August 1988.
42  * Modified by Steve Deering, Stanford, February 1989.
43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
44  * Modified by Van Jacobson, LBL, January 1993
45  * Modified by Ajit Thyagarajan, PARC, August 1993
46  * Modified by Bill Fenner, PARC, April 1995
47  * Modified by Ahmed Helmy, SGI, June 1996
48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50  * Modified by Hitoshi Asaeda, WIDE, August 2000
51  * Modified by Pavlin Radoslavov, ICSI, October 2002
52  *
53  * MROUTING Revision: 3.5
54  * and PIM-SMv2 and PIM-DM support, advanced API support,
55  * bandwidth metering and signaling
56  */
57 
58 /*
59  * TODO: Prefix functions with ipmf_.
60  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
61  * domain attachment (if_afdata) so we can track consumers of that service.
62  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
63  * move it to socket options.
64  * TODO: Cleanup LSRR removal further.
65  * TODO: Push RSVP stubs into raw_ip.c.
66  * TODO: Use bitstring.h for vif set.
67  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
68  * TODO: Sync ip6_mroute.c with this file.
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_inet.h"
75 #include "opt_mrouting.h"
76 
77 #define _PIM_VT 1
78 
79 #include <sys/param.h>
80 #include <sys/kernel.h>
81 #include <sys/stddef.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/ktr.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/module.h>
88 #include <sys/priv.h>
89 #include <sys/protosw.h>
90 #include <sys/signalvar.h>
91 #include <sys/socket.h>
92 #include <sys/socketvar.h>
93 #include <sys/sockio.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96 #include <sys/syslog.h>
97 #include <sys/systm.h>
98 #include <sys/time.h>
99 #include <sys/counter.h>
100 
101 #include <net/if.h>
102 #include <net/if_var.h>
103 #include <net/netisr.h>
104 #include <net/route.h>
105 #include <net/vnet.h>
106 
107 #include <netinet/in.h>
108 #include <netinet/igmp.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/ip_encap.h>
113 #include <netinet/ip_mroute.h>
114 #include <netinet/ip_var.h>
115 #include <netinet/ip_options.h>
116 #include <netinet/pim.h>
117 #include <netinet/pim_var.h>
118 #include <netinet/udp.h>
119 
120 #include <machine/in_cksum.h>
121 
122 #ifndef KTR_IPMF
123 #define KTR_IPMF KTR_INET
124 #endif
125 
126 #define		VIFI_INVALID	((vifi_t) -1)
127 
128 VNET_DEFINE_STATIC(uint32_t, last_tv_sec); /* last time we processed this */
129 #define	V_last_tv_sec	VNET(last_tv_sec)
130 
131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
132 
133 /*
134  * Locking.  We use two locks: one for the virtual interface table and
135  * one for the forwarding table.  These locks may be nested in which case
136  * the VIF lock must always be taken first.  Note that each lock is used
137  * to cover not only the specific data structure but also related data
138  * structures.
139  */
140 
141 static struct mtx mrouter_mtx;
142 #define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
143 #define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
144 #define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
145 #define	MROUTER_LOCK_INIT()						\
146 	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
147 #define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
148 
149 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
151 
152 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
153 VNET_PCPUSTAT_SYSINIT(mrtstat);
154 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
156     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
157     "netinet/ip_mroute.h)");
158 
159 VNET_DEFINE_STATIC(u_long, mfchash);
160 #define	V_mfchash		VNET(mfchash)
161 #define	MFCHASH(a, g)							\
162 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
163 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
164 #define	MFCHASHSIZE	256
165 
166 static u_long mfchashsize;			/* Hash size */
167 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
168 #define	V_nexpire		VNET(nexpire)
169 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
170 #define	V_mfchashtbl		VNET(mfchashtbl)
171 
172 static struct mtx mfc_mtx;
173 #define	MFC_LOCK()		mtx_lock(&mfc_mtx)
174 #define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
175 #define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
176 #define	MFC_LOCK_INIT()							\
177 	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
178 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
179 
180 VNET_DEFINE_STATIC(vifi_t, numvifs);
181 #define	V_numvifs		VNET(numvifs)
182 VNET_DEFINE_STATIC(struct vif *, viftable);
183 #define	V_viftable		VNET(viftable)
184 /*
185  * No one should be able to "query" this before initialisation happened in
186  * vnet_mroute_init(), so we should still be fine.
187  */
188 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD,
189     &VNET_NAME(viftable), sizeof(*V_viftable) * MAXVIFS, "S,vif[MAXVIFS]",
190     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
191 
192 static struct mtx vif_mtx;
193 #define	VIF_LOCK()		mtx_lock(&vif_mtx)
194 #define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
195 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
196 #define	VIF_LOCK_INIT()							\
197 	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
198 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
199 
200 static eventhandler_tag if_detach_event_tag = NULL;
201 
202 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
203 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
204 
205 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
206 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
207 
208 /*
209  * Bandwidth meter variables and constants
210  */
211 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
212 /*
213  * Pending timeouts are stored in a hash table, the key being the
214  * expiration time. Periodically, the entries are analysed and processed.
215  */
216 #define	BW_METER_BUCKETS	1024
217 VNET_DEFINE_STATIC(struct bw_meter **, bw_meter_timers);
218 #define	V_bw_meter_timers	VNET(bw_meter_timers)
219 VNET_DEFINE_STATIC(struct callout, bw_meter_ch);
220 #define	V_bw_meter_ch		VNET(bw_meter_ch)
221 #define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
222 
223 /*
224  * Pending upcalls are stored in a vector which is flushed when
225  * full, or periodically
226  */
227 VNET_DEFINE_STATIC(struct bw_upcall *, bw_upcalls);
228 #define	V_bw_upcalls		VNET(bw_upcalls)
229 VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */
230 #define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
231 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
232 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
233 
234 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
235 
236 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
237 VNET_PCPUSTAT_SYSINIT(pimstat);
238 VNET_PCPUSTAT_SYSUNINIT(pimstat);
239 
240 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
241     "PIM");
242 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
243     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
244 
245 static u_long	pim_squelch_wholepkt = 0;
246 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
247     &pim_squelch_wholepkt, 0,
248     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
249 
250 static const struct encaptab *pim_encap_cookie;
251 static int pim_encapcheck(const struct mbuf *, int, int, void *);
252 static int pim_input(struct mbuf *, int, int, void *);
253 
254 static const struct encap_config ipv4_encap_cfg = {
255 	.proto = IPPROTO_PIM,
256 	.min_length = sizeof(struct ip) + PIM_MINLEN,
257 	.exact_match = 8,
258 	.check = pim_encapcheck,
259 	.input = pim_input
260 };
261 
262 /*
263  * Note: the PIM Register encapsulation adds the following in front of a
264  * data packet:
265  *
266  * struct pim_encap_hdr {
267  *    struct ip ip;
268  *    struct pim_encap_pimhdr  pim;
269  * }
270  *
271  */
272 
273 struct pim_encap_pimhdr {
274 	struct pim pim;
275 	uint32_t   flags;
276 };
277 #define		PIM_ENCAP_TTL	64
278 
279 static struct ip pim_encap_iphdr = {
280 #if BYTE_ORDER == LITTLE_ENDIAN
281 	sizeof(struct ip) >> 2,
282 	IPVERSION,
283 #else
284 	IPVERSION,
285 	sizeof(struct ip) >> 2,
286 #endif
287 	0,			/* tos */
288 	sizeof(struct ip),	/* total length */
289 	0,			/* id */
290 	0,			/* frag offset */
291 	PIM_ENCAP_TTL,
292 	IPPROTO_PIM,
293 	0,			/* checksum */
294 };
295 
296 static struct pim_encap_pimhdr pim_encap_pimhdr = {
297     {
298 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
299 	0,			/* reserved */
300 	0,			/* checksum */
301     },
302     0				/* flags */
303 };
304 
305 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
306 #define	V_reg_vif_num		VNET(reg_vif_num)
307 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if);
308 #define	V_multicast_register_if	VNET(multicast_register_if)
309 
310 /*
311  * Private variables.
312  */
313 
314 static u_long	X_ip_mcast_src(int);
315 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
316 		    struct ip_moptions *);
317 static int	X_ip_mrouter_done(void);
318 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
319 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
320 static int	X_legal_vif_num(int);
321 static int	X_mrt_ioctl(u_long, caddr_t, int);
322 
323 static int	add_bw_upcall(struct bw_upcall *);
324 static int	add_mfc(struct mfcctl2 *);
325 static int	add_vif(struct vifctl *);
326 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
327 static void	bw_meter_process(void);
328 static void	bw_meter_receive_packet(struct bw_meter *, int,
329 		    struct timeval *);
330 static void	bw_upcalls_send(void);
331 static int	del_bw_upcall(struct bw_upcall *);
332 static int	del_mfc(struct mfcctl2 *);
333 static int	del_vif(vifi_t);
334 static int	del_vif_locked(vifi_t);
335 static void	expire_bw_meter_process(void *);
336 static void	expire_bw_upcalls_send(void *);
337 static void	expire_mfc(struct mfc *);
338 static void	expire_upcalls(void *);
339 static void	free_bw_list(struct bw_meter *);
340 static int	get_sg_cnt(struct sioc_sg_req *);
341 static int	get_vif_cnt(struct sioc_vif_req *);
342 static void	if_detached_event(void *, struct ifnet *);
343 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
344 static int	ip_mrouter_init(struct socket *, int);
345 static __inline struct mfc *
346 		mfc_find(struct in_addr *, struct in_addr *);
347 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
348 static struct mbuf *
349 		pim_register_prepare(struct ip *, struct mbuf *);
350 static int	pim_register_send(struct ip *, struct vif *,
351 		    struct mbuf *, struct mfc *);
352 static int	pim_register_send_rp(struct ip *, struct vif *,
353 		    struct mbuf *, struct mfc *);
354 static int	pim_register_send_upcall(struct ip *, struct vif *,
355 		    struct mbuf *, struct mfc *);
356 static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
357 static void	send_packet(struct vif *, struct mbuf *);
358 static int	set_api_config(uint32_t *);
359 static int	set_assert(int);
360 static int	socket_send(struct socket *, struct mbuf *,
361 		    struct sockaddr_in *);
362 static void	unschedule_bw_meter(struct bw_meter *);
363 
364 /*
365  * Kernel multicast forwarding API capabilities and setup.
366  * If more API capabilities are added to the kernel, they should be
367  * recorded in `mrt_api_support'.
368  */
369 #define MRT_API_VERSION		0x0305
370 
371 static const int mrt_api_version = MRT_API_VERSION;
372 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
373 					 MRT_MFC_FLAGS_BORDER_VIF |
374 					 MRT_MFC_RP |
375 					 MRT_MFC_BW_UPCALL);
376 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
377 #define	V_mrt_api_config	VNET(mrt_api_config)
378 VNET_DEFINE_STATIC(int, pim_assert_enabled);
379 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
380 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
381 
382 /*
383  * Find a route for a given origin IP address and multicast group address.
384  * Statistics must be updated by the caller.
385  */
386 static __inline struct mfc *
387 mfc_find(struct in_addr *o, struct in_addr *g)
388 {
389 	struct mfc *rt;
390 
391 	MFC_LOCK_ASSERT();
392 
393 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
394 		if (in_hosteq(rt->mfc_origin, *o) &&
395 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
396 		    TAILQ_EMPTY(&rt->mfc_stall))
397 			break;
398 	}
399 
400 	return (rt);
401 }
402 
403 /*
404  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
405  */
406 static int
407 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
408 {
409     int	error, optval;
410     vifi_t	vifi;
411     struct	vifctl vifc;
412     struct	mfcctl2 mfc;
413     struct	bw_upcall bw_upcall;
414     uint32_t	i;
415 
416     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
417 	return EPERM;
418 
419     error = 0;
420     switch (sopt->sopt_name) {
421     case MRT_INIT:
422 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
423 	if (error)
424 	    break;
425 	error = ip_mrouter_init(so, optval);
426 	break;
427 
428     case MRT_DONE:
429 	error = ip_mrouter_done();
430 	break;
431 
432     case MRT_ADD_VIF:
433 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
434 	if (error)
435 	    break;
436 	error = add_vif(&vifc);
437 	break;
438 
439     case MRT_DEL_VIF:
440 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
441 	if (error)
442 	    break;
443 	error = del_vif(vifi);
444 	break;
445 
446     case MRT_ADD_MFC:
447     case MRT_DEL_MFC:
448 	/*
449 	 * select data size depending on API version.
450 	 */
451 	if (sopt->sopt_name == MRT_ADD_MFC &&
452 		V_mrt_api_config & MRT_API_FLAGS_ALL) {
453 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
454 				sizeof(struct mfcctl2));
455 	} else {
456 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
457 				sizeof(struct mfcctl));
458 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
459 			sizeof(mfc) - sizeof(struct mfcctl));
460 	}
461 	if (error)
462 	    break;
463 	if (sopt->sopt_name == MRT_ADD_MFC)
464 	    error = add_mfc(&mfc);
465 	else
466 	    error = del_mfc(&mfc);
467 	break;
468 
469     case MRT_ASSERT:
470 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
471 	if (error)
472 	    break;
473 	set_assert(optval);
474 	break;
475 
476     case MRT_API_CONFIG:
477 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
478 	if (!error)
479 	    error = set_api_config(&i);
480 	if (!error)
481 	    error = sooptcopyout(sopt, &i, sizeof i);
482 	break;
483 
484     case MRT_ADD_BW_UPCALL:
485     case MRT_DEL_BW_UPCALL:
486 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
487 				sizeof bw_upcall);
488 	if (error)
489 	    break;
490 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
491 	    error = add_bw_upcall(&bw_upcall);
492 	else
493 	    error = del_bw_upcall(&bw_upcall);
494 	break;
495 
496     default:
497 	error = EOPNOTSUPP;
498 	break;
499     }
500     return error;
501 }
502 
503 /*
504  * Handle MRT getsockopt commands
505  */
506 static int
507 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
508 {
509     int error;
510 
511     switch (sopt->sopt_name) {
512     case MRT_VERSION:
513 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
514 	break;
515 
516     case MRT_ASSERT:
517 	error = sooptcopyout(sopt, &V_pim_assert_enabled,
518 	    sizeof V_pim_assert_enabled);
519 	break;
520 
521     case MRT_API_SUPPORT:
522 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
523 	break;
524 
525     case MRT_API_CONFIG:
526 	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
527 	break;
528 
529     default:
530 	error = EOPNOTSUPP;
531 	break;
532     }
533     return error;
534 }
535 
536 /*
537  * Handle ioctl commands to obtain information from the cache
538  */
539 static int
540 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
541 {
542     int error = 0;
543 
544     /*
545      * Currently the only function calling this ioctl routine is rtioctl_fib().
546      * Typically, only root can create the raw socket in order to execute
547      * this ioctl method, however the request might be coming from a prison
548      */
549     error = priv_check(curthread, PRIV_NETINET_MROUTE);
550     if (error)
551 	return (error);
552     switch (cmd) {
553     case (SIOCGETVIFCNT):
554 	error = get_vif_cnt((struct sioc_vif_req *)data);
555 	break;
556 
557     case (SIOCGETSGCNT):
558 	error = get_sg_cnt((struct sioc_sg_req *)data);
559 	break;
560 
561     default:
562 	error = EINVAL;
563 	break;
564     }
565     return error;
566 }
567 
568 /*
569  * returns the packet, byte, rpf-failure count for the source group provided
570  */
571 static int
572 get_sg_cnt(struct sioc_sg_req *req)
573 {
574     struct mfc *rt;
575 
576     MFC_LOCK();
577     rt = mfc_find(&req->src, &req->grp);
578     if (rt == NULL) {
579 	MFC_UNLOCK();
580 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
581 	return EADDRNOTAVAIL;
582     }
583     req->pktcnt = rt->mfc_pkt_cnt;
584     req->bytecnt = rt->mfc_byte_cnt;
585     req->wrong_if = rt->mfc_wrong_if;
586     MFC_UNLOCK();
587     return 0;
588 }
589 
590 /*
591  * returns the input and output packet and byte counts on the vif provided
592  */
593 static int
594 get_vif_cnt(struct sioc_vif_req *req)
595 {
596     vifi_t vifi = req->vifi;
597 
598     VIF_LOCK();
599     if (vifi >= V_numvifs) {
600 	VIF_UNLOCK();
601 	return EINVAL;
602     }
603 
604     req->icount = V_viftable[vifi].v_pkt_in;
605     req->ocount = V_viftable[vifi].v_pkt_out;
606     req->ibytes = V_viftable[vifi].v_bytes_in;
607     req->obytes = V_viftable[vifi].v_bytes_out;
608     VIF_UNLOCK();
609 
610     return 0;
611 }
612 
613 static void
614 if_detached_event(void *arg __unused, struct ifnet *ifp)
615 {
616     vifi_t vifi;
617     u_long i;
618 
619     MROUTER_LOCK();
620 
621     if (V_ip_mrouter == NULL) {
622 	MROUTER_UNLOCK();
623 	return;
624     }
625 
626     VIF_LOCK();
627     MFC_LOCK();
628 
629     /*
630      * Tear down multicast forwarder state associated with this ifnet.
631      * 1. Walk the vif list, matching vifs against this ifnet.
632      * 2. Walk the multicast forwarding cache (mfc) looking for
633      *    inner matches with this vif's index.
634      * 3. Expire any matching multicast forwarding cache entries.
635      * 4. Free vif state. This should disable ALLMULTI on the interface.
636      */
637     for (vifi = 0; vifi < V_numvifs; vifi++) {
638 	if (V_viftable[vifi].v_ifp != ifp)
639 		continue;
640 	for (i = 0; i < mfchashsize; i++) {
641 		struct mfc *rt, *nrt;
642 
643 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
644 			if (rt->mfc_parent == vifi) {
645 				expire_mfc(rt);
646 			}
647 		}
648 	}
649 	del_vif_locked(vifi);
650     }
651 
652     MFC_UNLOCK();
653     VIF_UNLOCK();
654 
655     MROUTER_UNLOCK();
656 }
657 
658 /*
659  * Enable multicast forwarding.
660  */
661 static int
662 ip_mrouter_init(struct socket *so, int version)
663 {
664 
665     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
666         so->so_type, so->so_proto->pr_protocol);
667 
668     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
669 	return EOPNOTSUPP;
670 
671     if (version != 1)
672 	return ENOPROTOOPT;
673 
674     MROUTER_LOCK();
675 
676     if (ip_mrouter_unloading) {
677 	MROUTER_UNLOCK();
678 	return ENOPROTOOPT;
679     }
680 
681     if (V_ip_mrouter != NULL) {
682 	MROUTER_UNLOCK();
683 	return EADDRINUSE;
684     }
685 
686     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
687 	HASH_NOWAIT);
688 
689     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
690 	curvnet);
691     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
692 	curvnet);
693     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
694 	curvnet);
695 
696     V_ip_mrouter = so;
697     ip_mrouter_cnt++;
698 
699     MROUTER_UNLOCK();
700 
701     CTR1(KTR_IPMF, "%s: done", __func__);
702 
703     return 0;
704 }
705 
706 /*
707  * Disable multicast forwarding.
708  */
709 static int
710 X_ip_mrouter_done(void)
711 {
712     struct ifnet *ifp;
713     u_long i;
714     vifi_t vifi;
715 
716     MROUTER_LOCK();
717 
718     if (V_ip_mrouter == NULL) {
719 	MROUTER_UNLOCK();
720 	return EINVAL;
721     }
722 
723     /*
724      * Detach/disable hooks to the reset of the system.
725      */
726     V_ip_mrouter = NULL;
727     ip_mrouter_cnt--;
728     V_mrt_api_config = 0;
729 
730     VIF_LOCK();
731 
732     /*
733      * For each phyint in use, disable promiscuous reception of all IP
734      * multicasts.
735      */
736     for (vifi = 0; vifi < V_numvifs; vifi++) {
737 	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
738 		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
739 	    ifp = V_viftable[vifi].v_ifp;
740 	    if_allmulti(ifp, 0);
741 	}
742     }
743     bzero((caddr_t)V_viftable, sizeof(V_viftable));
744     V_numvifs = 0;
745     V_pim_assert_enabled = 0;
746 
747     VIF_UNLOCK();
748 
749     callout_stop(&V_expire_upcalls_ch);
750     callout_stop(&V_bw_upcalls_ch);
751     callout_stop(&V_bw_meter_ch);
752 
753     MFC_LOCK();
754 
755     /*
756      * Free all multicast forwarding cache entries.
757      * Do not use hashdestroy(), as we must perform other cleanup.
758      */
759     for (i = 0; i < mfchashsize; i++) {
760 	struct mfc *rt, *nrt;
761 
762 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
763 		expire_mfc(rt);
764 	}
765     }
766     free(V_mfchashtbl, M_MRTABLE);
767     V_mfchashtbl = NULL;
768 
769     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
770 
771     V_bw_upcalls_n = 0;
772     bzero(V_bw_meter_timers, BW_METER_BUCKETS * sizeof(*V_bw_meter_timers));
773 
774     MFC_UNLOCK();
775 
776     V_reg_vif_num = VIFI_INVALID;
777 
778     MROUTER_UNLOCK();
779 
780     CTR1(KTR_IPMF, "%s: done", __func__);
781 
782     return 0;
783 }
784 
785 /*
786  * Set PIM assert processing global
787  */
788 static int
789 set_assert(int i)
790 {
791     if ((i != 1) && (i != 0))
792 	return EINVAL;
793 
794     V_pim_assert_enabled = i;
795 
796     return 0;
797 }
798 
799 /*
800  * Configure API capabilities
801  */
802 int
803 set_api_config(uint32_t *apival)
804 {
805     u_long i;
806 
807     /*
808      * We can set the API capabilities only if it is the first operation
809      * after MRT_INIT. I.e.:
810      *  - there are no vifs installed
811      *  - pim_assert is not enabled
812      *  - the MFC table is empty
813      */
814     if (V_numvifs > 0) {
815 	*apival = 0;
816 	return EPERM;
817     }
818     if (V_pim_assert_enabled) {
819 	*apival = 0;
820 	return EPERM;
821     }
822 
823     MFC_LOCK();
824 
825     for (i = 0; i < mfchashsize; i++) {
826 	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
827 	    MFC_UNLOCK();
828 	    *apival = 0;
829 	    return EPERM;
830 	}
831     }
832 
833     MFC_UNLOCK();
834 
835     V_mrt_api_config = *apival & mrt_api_support;
836     *apival = V_mrt_api_config;
837 
838     return 0;
839 }
840 
841 /*
842  * Add a vif to the vif table
843  */
844 static int
845 add_vif(struct vifctl *vifcp)
846 {
847     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
848     struct sockaddr_in sin = {sizeof sin, AF_INET};
849     struct ifaddr *ifa;
850     struct ifnet *ifp;
851     int error;
852 
853     VIF_LOCK();
854     if (vifcp->vifc_vifi >= MAXVIFS) {
855 	VIF_UNLOCK();
856 	return EINVAL;
857     }
858     /* rate limiting is no longer supported by this code */
859     if (vifcp->vifc_rate_limit != 0) {
860 	log(LOG_ERR, "rate limiting is no longer supported\n");
861 	VIF_UNLOCK();
862 	return EINVAL;
863     }
864     if (!in_nullhost(vifp->v_lcl_addr)) {
865 	VIF_UNLOCK();
866 	return EADDRINUSE;
867     }
868     if (in_nullhost(vifcp->vifc_lcl_addr)) {
869 	VIF_UNLOCK();
870 	return EADDRNOTAVAIL;
871     }
872 
873     /* Find the interface with an address in AF_INET family */
874     if (vifcp->vifc_flags & VIFF_REGISTER) {
875 	/*
876 	 * XXX: Because VIFF_REGISTER does not really need a valid
877 	 * local interface (e.g. it could be 127.0.0.2), we don't
878 	 * check its address.
879 	 */
880 	ifp = NULL;
881     } else {
882 	sin.sin_addr = vifcp->vifc_lcl_addr;
883 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
884 	if (ifa == NULL) {
885 	    VIF_UNLOCK();
886 	    return EADDRNOTAVAIL;
887 	}
888 	ifp = ifa->ifa_ifp;
889     }
890 
891     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
892 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
893 	VIF_UNLOCK();
894 	return EOPNOTSUPP;
895     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
896 	ifp = &V_multicast_register_if;
897 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
898 	if (V_reg_vif_num == VIFI_INVALID) {
899 	    if_initname(&V_multicast_register_if, "register_vif", 0);
900 	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
901 	    V_reg_vif_num = vifcp->vifc_vifi;
902 	}
903     } else {		/* Make sure the interface supports multicast */
904 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
905 	    VIF_UNLOCK();
906 	    return EOPNOTSUPP;
907 	}
908 
909 	/* Enable promiscuous reception of all IP multicasts from the if */
910 	error = if_allmulti(ifp, 1);
911 	if (error) {
912 	    VIF_UNLOCK();
913 	    return error;
914 	}
915     }
916 
917     vifp->v_flags     = vifcp->vifc_flags;
918     vifp->v_threshold = vifcp->vifc_threshold;
919     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
920     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
921     vifp->v_ifp       = ifp;
922     /* initialize per vif pkt counters */
923     vifp->v_pkt_in    = 0;
924     vifp->v_pkt_out   = 0;
925     vifp->v_bytes_in  = 0;
926     vifp->v_bytes_out = 0;
927 
928     /* Adjust numvifs up if the vifi is higher than numvifs */
929     if (V_numvifs <= vifcp->vifc_vifi)
930 	V_numvifs = vifcp->vifc_vifi + 1;
931 
932     VIF_UNLOCK();
933 
934     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
935 	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
936 	(int)vifcp->vifc_threshold);
937 
938     return 0;
939 }
940 
941 /*
942  * Delete a vif from the vif table
943  */
944 static int
945 del_vif_locked(vifi_t vifi)
946 {
947     struct vif *vifp;
948 
949     VIF_LOCK_ASSERT();
950 
951     if (vifi >= V_numvifs) {
952 	return EINVAL;
953     }
954     vifp = &V_viftable[vifi];
955     if (in_nullhost(vifp->v_lcl_addr)) {
956 	return EADDRNOTAVAIL;
957     }
958 
959     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
960 	if_allmulti(vifp->v_ifp, 0);
961 
962     if (vifp->v_flags & VIFF_REGISTER)
963 	V_reg_vif_num = VIFI_INVALID;
964 
965     bzero((caddr_t)vifp, sizeof (*vifp));
966 
967     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
968 
969     /* Adjust numvifs down */
970     for (vifi = V_numvifs; vifi > 0; vifi--)
971 	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
972 	    break;
973     V_numvifs = vifi;
974 
975     return 0;
976 }
977 
978 static int
979 del_vif(vifi_t vifi)
980 {
981     int cc;
982 
983     VIF_LOCK();
984     cc = del_vif_locked(vifi);
985     VIF_UNLOCK();
986 
987     return cc;
988 }
989 
990 /*
991  * update an mfc entry without resetting counters and S,G addresses.
992  */
993 static void
994 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
995 {
996     int i;
997 
998     rt->mfc_parent = mfccp->mfcc_parent;
999     for (i = 0; i < V_numvifs; i++) {
1000 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1001 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1002 	    MRT_MFC_FLAGS_ALL;
1003     }
1004     /* set the RP address */
1005     if (V_mrt_api_config & MRT_MFC_RP)
1006 	rt->mfc_rp = mfccp->mfcc_rp;
1007     else
1008 	rt->mfc_rp.s_addr = INADDR_ANY;
1009 }
1010 
1011 /*
1012  * fully initialize an mfc entry from the parameter.
1013  */
1014 static void
1015 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1016 {
1017     rt->mfc_origin     = mfccp->mfcc_origin;
1018     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1019 
1020     update_mfc_params(rt, mfccp);
1021 
1022     /* initialize pkt counters per src-grp */
1023     rt->mfc_pkt_cnt    = 0;
1024     rt->mfc_byte_cnt   = 0;
1025     rt->mfc_wrong_if   = 0;
1026     timevalclear(&rt->mfc_last_assert);
1027 }
1028 
1029 static void
1030 expire_mfc(struct mfc *rt)
1031 {
1032 	struct rtdetq *rte, *nrte;
1033 
1034 	MFC_LOCK_ASSERT();
1035 
1036 	free_bw_list(rt->mfc_bw_meter);
1037 
1038 	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1039 		m_freem(rte->m);
1040 		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1041 		free(rte, M_MRTABLE);
1042 	}
1043 
1044 	LIST_REMOVE(rt, mfc_hash);
1045 	free(rt, M_MRTABLE);
1046 }
1047 
1048 /*
1049  * Add an mfc entry
1050  */
1051 static int
1052 add_mfc(struct mfcctl2 *mfccp)
1053 {
1054     struct mfc *rt;
1055     struct rtdetq *rte, *nrte;
1056     u_long hash = 0;
1057     u_short nstl;
1058 
1059     VIF_LOCK();
1060     MFC_LOCK();
1061 
1062     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1063 
1064     /* If an entry already exists, just update the fields */
1065     if (rt) {
1066 	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1067 	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1068 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1069 	    mfccp->mfcc_parent);
1070 	update_mfc_params(rt, mfccp);
1071 	MFC_UNLOCK();
1072 	VIF_UNLOCK();
1073 	return (0);
1074     }
1075 
1076     /*
1077      * Find the entry for which the upcall was made and update
1078      */
1079     nstl = 0;
1080     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1081     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1082 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1083 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1084 	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1085 		CTR5(KTR_IPMF,
1086 		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1087 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1088 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1089 		    mfccp->mfcc_parent,
1090 		    TAILQ_FIRST(&rt->mfc_stall));
1091 		if (nstl++)
1092 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1093 
1094 		init_mfc_params(rt, mfccp);
1095 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1096 		V_nexpire[hash]--;
1097 
1098 		/* Free queued packets, but attempt to forward them first. */
1099 		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1100 			if (rte->ifp != NULL)
1101 				ip_mdq(rte->m, rte->ifp, rt, -1);
1102 			m_freem(rte->m);
1103 			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1104 			rt->mfc_nstall--;
1105 			free(rte, M_MRTABLE);
1106 		}
1107 	}
1108     }
1109 
1110     /*
1111      * It is possible that an entry is being inserted without an upcall
1112      */
1113     if (nstl == 0) {
1114 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1115 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1116 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1117 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1118 			init_mfc_params(rt, mfccp);
1119 			if (rt->mfc_expire)
1120 			    V_nexpire[hash]--;
1121 			rt->mfc_expire = 0;
1122 			break; /* XXX */
1123 		}
1124 	}
1125 
1126 	if (rt == NULL) {		/* no upcall, so make a new entry */
1127 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1128 	    if (rt == NULL) {
1129 		MFC_UNLOCK();
1130 		VIF_UNLOCK();
1131 		return (ENOBUFS);
1132 	    }
1133 
1134 	    init_mfc_params(rt, mfccp);
1135 	    TAILQ_INIT(&rt->mfc_stall);
1136 	    rt->mfc_nstall = 0;
1137 
1138 	    rt->mfc_expire     = 0;
1139 	    rt->mfc_bw_meter = NULL;
1140 
1141 	    /* insert new entry at head of hash chain */
1142 	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1143 	}
1144     }
1145 
1146     MFC_UNLOCK();
1147     VIF_UNLOCK();
1148 
1149     return (0);
1150 }
1151 
1152 /*
1153  * Delete an mfc entry
1154  */
1155 static int
1156 del_mfc(struct mfcctl2 *mfccp)
1157 {
1158     struct in_addr	origin;
1159     struct in_addr	mcastgrp;
1160     struct mfc		*rt;
1161 
1162     origin = mfccp->mfcc_origin;
1163     mcastgrp = mfccp->mfcc_mcastgrp;
1164 
1165     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1166 	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1167 
1168     MFC_LOCK();
1169 
1170     rt = mfc_find(&origin, &mcastgrp);
1171     if (rt == NULL) {
1172 	MFC_UNLOCK();
1173 	return EADDRNOTAVAIL;
1174     }
1175 
1176     /*
1177      * free the bw_meter entries
1178      */
1179     free_bw_list(rt->mfc_bw_meter);
1180     rt->mfc_bw_meter = NULL;
1181 
1182     LIST_REMOVE(rt, mfc_hash);
1183     free(rt, M_MRTABLE);
1184 
1185     MFC_UNLOCK();
1186 
1187     return (0);
1188 }
1189 
1190 /*
1191  * Send a message to the routing daemon on the multicast routing socket.
1192  */
1193 static int
1194 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1195 {
1196     if (s) {
1197 	SOCKBUF_LOCK(&s->so_rcv);
1198 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1199 	    NULL) != 0) {
1200 	    sorwakeup_locked(s);
1201 	    return 0;
1202 	}
1203 	SOCKBUF_UNLOCK(&s->so_rcv);
1204     }
1205     m_freem(mm);
1206     return -1;
1207 }
1208 
1209 /*
1210  * IP multicast forwarding function. This function assumes that the packet
1211  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1212  * pointed to by "ifp", and the packet is to be relayed to other networks
1213  * that have members of the packet's destination IP multicast group.
1214  *
1215  * The packet is returned unscathed to the caller, unless it is
1216  * erroneous, in which case a non-zero return value tells the caller to
1217  * discard it.
1218  */
1219 
1220 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1221 
1222 static int
1223 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1224     struct ip_moptions *imo)
1225 {
1226     struct mfc *rt;
1227     int error;
1228     vifi_t vifi;
1229 
1230     CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1231 	ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1232 
1233     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1234 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1235 	/*
1236 	 * Packet arrived via a physical interface or
1237 	 * an encapsulated tunnel or a register_vif.
1238 	 */
1239     } else {
1240 	/*
1241 	 * Packet arrived through a source-route tunnel.
1242 	 * Source-route tunnels are no longer supported.
1243 	 */
1244 	return (1);
1245     }
1246 
1247     VIF_LOCK();
1248     MFC_LOCK();
1249     if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1250 	if (ip->ip_ttl < MAXTTL)
1251 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1252 	error = ip_mdq(m, ifp, NULL, vifi);
1253 	MFC_UNLOCK();
1254 	VIF_UNLOCK();
1255 	return error;
1256     }
1257 
1258     /*
1259      * Don't forward a packet with time-to-live of zero or one,
1260      * or a packet destined to a local-only group.
1261      */
1262     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1263 	MFC_UNLOCK();
1264 	VIF_UNLOCK();
1265 	return 0;
1266     }
1267 
1268     /*
1269      * Determine forwarding vifs from the forwarding cache table
1270      */
1271     MRTSTAT_INC(mrts_mfc_lookups);
1272     rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1273 
1274     /* Entry exists, so forward if necessary */
1275     if (rt != NULL) {
1276 	error = ip_mdq(m, ifp, rt, -1);
1277 	MFC_UNLOCK();
1278 	VIF_UNLOCK();
1279 	return error;
1280     } else {
1281 	/*
1282 	 * If we don't have a route for packet's origin,
1283 	 * Make a copy of the packet & send message to routing daemon
1284 	 */
1285 
1286 	struct mbuf *mb0;
1287 	struct rtdetq *rte;
1288 	u_long hash;
1289 	int hlen = ip->ip_hl << 2;
1290 
1291 	MRTSTAT_INC(mrts_mfc_misses);
1292 	MRTSTAT_INC(mrts_no_route);
1293 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1294 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1295 
1296 	/*
1297 	 * Allocate mbufs early so that we don't do extra work if we are
1298 	 * just going to fail anyway.  Make sure to pullup the header so
1299 	 * that other people can't step on it.
1300 	 */
1301 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1302 	    M_NOWAIT|M_ZERO);
1303 	if (rte == NULL) {
1304 	    MFC_UNLOCK();
1305 	    VIF_UNLOCK();
1306 	    return ENOBUFS;
1307 	}
1308 
1309 	mb0 = m_copypacket(m, M_NOWAIT);
1310 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1311 	    mb0 = m_pullup(mb0, hlen);
1312 	if (mb0 == NULL) {
1313 	    free(rte, M_MRTABLE);
1314 	    MFC_UNLOCK();
1315 	    VIF_UNLOCK();
1316 	    return ENOBUFS;
1317 	}
1318 
1319 	/* is there an upcall waiting for this flow ? */
1320 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1321 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1322 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1323 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1324 		    !TAILQ_EMPTY(&rt->mfc_stall))
1325 			break;
1326 	}
1327 
1328 	if (rt == NULL) {
1329 	    int i;
1330 	    struct igmpmsg *im;
1331 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1332 	    struct mbuf *mm;
1333 
1334 	    /*
1335 	     * Locate the vifi for the incoming interface for this packet.
1336 	     * If none found, drop packet.
1337 	     */
1338 	    for (vifi = 0; vifi < V_numvifs &&
1339 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1340 		;
1341 	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1342 		goto non_fatal;
1343 
1344 	    /* no upcall, so make a new entry */
1345 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1346 	    if (rt == NULL)
1347 		goto fail;
1348 
1349 	    /* Make a copy of the header to send to the user level process */
1350 	    mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1351 	    if (mm == NULL)
1352 		goto fail1;
1353 
1354 	    /*
1355 	     * Send message to routing daemon to install
1356 	     * a route into the kernel table
1357 	     */
1358 
1359 	    im = mtod(mm, struct igmpmsg *);
1360 	    im->im_msgtype = IGMPMSG_NOCACHE;
1361 	    im->im_mbz = 0;
1362 	    im->im_vif = vifi;
1363 
1364 	    MRTSTAT_INC(mrts_upcalls);
1365 
1366 	    k_igmpsrc.sin_addr = ip->ip_src;
1367 	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1368 		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1369 		MRTSTAT_INC(mrts_upq_sockfull);
1370 fail1:
1371 		free(rt, M_MRTABLE);
1372 fail:
1373 		free(rte, M_MRTABLE);
1374 		m_freem(mb0);
1375 		MFC_UNLOCK();
1376 		VIF_UNLOCK();
1377 		return ENOBUFS;
1378 	    }
1379 
1380 	    /* insert new entry at head of hash chain */
1381 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1382 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1383 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1384 	    V_nexpire[hash]++;
1385 	    for (i = 0; i < V_numvifs; i++) {
1386 		rt->mfc_ttls[i] = 0;
1387 		rt->mfc_flags[i] = 0;
1388 	    }
1389 	    rt->mfc_parent = -1;
1390 
1391 	    /* clear the RP address */
1392 	    rt->mfc_rp.s_addr = INADDR_ANY;
1393 	    rt->mfc_bw_meter = NULL;
1394 
1395 	    /* initialize pkt counters per src-grp */
1396 	    rt->mfc_pkt_cnt = 0;
1397 	    rt->mfc_byte_cnt = 0;
1398 	    rt->mfc_wrong_if = 0;
1399 	    timevalclear(&rt->mfc_last_assert);
1400 
1401 	    TAILQ_INIT(&rt->mfc_stall);
1402 	    rt->mfc_nstall = 0;
1403 
1404 	    /* link into table */
1405 	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1406 	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1407 	    rt->mfc_nstall++;
1408 
1409 	} else {
1410 	    /* determine if queue has overflowed */
1411 	    if (rt->mfc_nstall > MAX_UPQ) {
1412 		MRTSTAT_INC(mrts_upq_ovflw);
1413 non_fatal:
1414 		free(rte, M_MRTABLE);
1415 		m_freem(mb0);
1416 		MFC_UNLOCK();
1417 		VIF_UNLOCK();
1418 		return (0);
1419 	    }
1420 	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1421 	    rt->mfc_nstall++;
1422 	}
1423 
1424 	rte->m			= mb0;
1425 	rte->ifp		= ifp;
1426 
1427 	MFC_UNLOCK();
1428 	VIF_UNLOCK();
1429 
1430 	return 0;
1431     }
1432 }
1433 
1434 /*
1435  * Clean up the cache entry if upcall is not serviced
1436  */
1437 static void
1438 expire_upcalls(void *arg)
1439 {
1440     u_long i;
1441 
1442     CURVNET_SET((struct vnet *) arg);
1443 
1444     MFC_LOCK();
1445 
1446     for (i = 0; i < mfchashsize; i++) {
1447 	struct mfc *rt, *nrt;
1448 
1449 	if (V_nexpire[i] == 0)
1450 	    continue;
1451 
1452 	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1453 		if (TAILQ_EMPTY(&rt->mfc_stall))
1454 			continue;
1455 
1456 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1457 			continue;
1458 
1459 		/*
1460 		 * free the bw_meter entries
1461 		 */
1462 		while (rt->mfc_bw_meter != NULL) {
1463 		    struct bw_meter *x = rt->mfc_bw_meter;
1464 
1465 		    rt->mfc_bw_meter = x->bm_mfc_next;
1466 		    free(x, M_BWMETER);
1467 		}
1468 
1469 		MRTSTAT_INC(mrts_cache_cleanups);
1470 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1471 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1472 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1473 
1474 		expire_mfc(rt);
1475 	    }
1476     }
1477 
1478     MFC_UNLOCK();
1479 
1480     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1481 	curvnet);
1482 
1483     CURVNET_RESTORE();
1484 }
1485 
1486 /*
1487  * Packet forwarding routine once entry in the cache is made
1488  */
1489 static int
1490 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1491 {
1492     struct ip  *ip = mtod(m, struct ip *);
1493     vifi_t vifi;
1494     int plen = ntohs(ip->ip_len);
1495 
1496     VIF_LOCK_ASSERT();
1497 
1498     /*
1499      * If xmt_vif is not -1, send on only the requested vif.
1500      *
1501      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1502      */
1503     if (xmt_vif < V_numvifs) {
1504 	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1505 		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1506 	else
1507 		phyint_send(ip, V_viftable + xmt_vif, m);
1508 	return 1;
1509     }
1510 
1511     /*
1512      * Don't forward if it didn't arrive from the parent vif for its origin.
1513      */
1514     vifi = rt->mfc_parent;
1515     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1516 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1517 	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1518 	MRTSTAT_INC(mrts_wrong_if);
1519 	++rt->mfc_wrong_if;
1520 	/*
1521 	 * If we are doing PIM assert processing, send a message
1522 	 * to the routing daemon.
1523 	 *
1524 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1525 	 * can complete the SPT switch, regardless of the type
1526 	 * of the iif (broadcast media, GRE tunnel, etc).
1527 	 */
1528 	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1529 	    V_viftable[vifi].v_ifp) {
1530 
1531 	    if (ifp == &V_multicast_register_if)
1532 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1533 
1534 	    /* Get vifi for the incoming packet */
1535 	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1536 		vifi++)
1537 		;
1538 	    if (vifi >= V_numvifs)
1539 		return 0;	/* The iif is not found: ignore the packet. */
1540 
1541 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1542 		return 0;	/* WRONGVIF disabled: ignore the packet */
1543 
1544 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1545 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1546 		struct igmpmsg *im;
1547 		int hlen = ip->ip_hl << 2;
1548 		struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1549 
1550 		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1551 		    mm = m_pullup(mm, hlen);
1552 		if (mm == NULL)
1553 		    return ENOBUFS;
1554 
1555 		im = mtod(mm, struct igmpmsg *);
1556 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1557 		im->im_mbz		= 0;
1558 		im->im_vif		= vifi;
1559 
1560 		MRTSTAT_INC(mrts_upcalls);
1561 
1562 		k_igmpsrc.sin_addr = im->im_src;
1563 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1564 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1565 		    MRTSTAT_INC(mrts_upq_sockfull);
1566 		    return ENOBUFS;
1567 		}
1568 	    }
1569 	}
1570 	return 0;
1571     }
1572 
1573 
1574     /* If I sourced this packet, it counts as output, else it was input. */
1575     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1576 	V_viftable[vifi].v_pkt_out++;
1577 	V_viftable[vifi].v_bytes_out += plen;
1578     } else {
1579 	V_viftable[vifi].v_pkt_in++;
1580 	V_viftable[vifi].v_bytes_in += plen;
1581     }
1582     rt->mfc_pkt_cnt++;
1583     rt->mfc_byte_cnt += plen;
1584 
1585     /*
1586      * For each vif, decide if a copy of the packet should be forwarded.
1587      * Forward if:
1588      *		- the ttl exceeds the vif's threshold
1589      *		- there are group members downstream on interface
1590      */
1591     for (vifi = 0; vifi < V_numvifs; vifi++)
1592 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1593 	    V_viftable[vifi].v_pkt_out++;
1594 	    V_viftable[vifi].v_bytes_out += plen;
1595 	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1596 		pim_register_send(ip, V_viftable + vifi, m, rt);
1597 	    else
1598 		phyint_send(ip, V_viftable + vifi, m);
1599 	}
1600 
1601     /*
1602      * Perform upcall-related bw measuring.
1603      */
1604     if (rt->mfc_bw_meter != NULL) {
1605 	struct bw_meter *x;
1606 	struct timeval now;
1607 
1608 	microtime(&now);
1609 	MFC_LOCK_ASSERT();
1610 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1611 	    bw_meter_receive_packet(x, plen, &now);
1612     }
1613 
1614     return 0;
1615 }
1616 
1617 /*
1618  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1619  */
1620 static int
1621 X_legal_vif_num(int vif)
1622 {
1623 	int ret;
1624 
1625 	ret = 0;
1626 	if (vif < 0)
1627 		return (ret);
1628 
1629 	VIF_LOCK();
1630 	if (vif < V_numvifs)
1631 		ret = 1;
1632 	VIF_UNLOCK();
1633 
1634 	return (ret);
1635 }
1636 
1637 /*
1638  * Return the local address used by this vif
1639  */
1640 static u_long
1641 X_ip_mcast_src(int vifi)
1642 {
1643 	in_addr_t addr;
1644 
1645 	addr = INADDR_ANY;
1646 	if (vifi < 0)
1647 		return (addr);
1648 
1649 	VIF_LOCK();
1650 	if (vifi < V_numvifs)
1651 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1652 	VIF_UNLOCK();
1653 
1654 	return (addr);
1655 }
1656 
1657 static void
1658 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1659 {
1660     struct mbuf *mb_copy;
1661     int hlen = ip->ip_hl << 2;
1662 
1663     VIF_LOCK_ASSERT();
1664 
1665     /*
1666      * Make a new reference to the packet; make sure that
1667      * the IP header is actually copied, not just referenced,
1668      * so that ip_output() only scribbles on the copy.
1669      */
1670     mb_copy = m_copypacket(m, M_NOWAIT);
1671     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1672 	mb_copy = m_pullup(mb_copy, hlen);
1673     if (mb_copy == NULL)
1674 	return;
1675 
1676     send_packet(vifp, mb_copy);
1677 }
1678 
1679 static void
1680 send_packet(struct vif *vifp, struct mbuf *m)
1681 {
1682 	struct ip_moptions imo;
1683 	int error __unused;
1684 
1685 	VIF_LOCK_ASSERT();
1686 
1687 	imo.imo_multicast_ifp  = vifp->v_ifp;
1688 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1689 	imo.imo_multicast_loop = 1;
1690 	imo.imo_multicast_vif  = -1;
1691 	STAILQ_INIT(&imo.imo_head);
1692 
1693 	/*
1694 	 * Re-entrancy should not be a problem here, because
1695 	 * the packets that we send out and are looped back at us
1696 	 * should get rejected because they appear to come from
1697 	 * the loopback interface, thus preventing looping.
1698 	 */
1699 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1700 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1701 	    (ptrdiff_t)(vifp - V_viftable), error);
1702 }
1703 
1704 /*
1705  * Stubs for old RSVP socket shim implementation.
1706  */
1707 
1708 static int
1709 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1710 {
1711 
1712 	return (EOPNOTSUPP);
1713 }
1714 
1715 static void
1716 X_ip_rsvp_force_done(struct socket *so __unused)
1717 {
1718 
1719 }
1720 
1721 static int
1722 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1723 {
1724 	struct mbuf *m;
1725 
1726 	m = *mp;
1727 	*mp = NULL;
1728 	if (!V_rsvp_on)
1729 		m_freem(m);
1730 	return (IPPROTO_DONE);
1731 }
1732 
1733 /*
1734  * Code for bandwidth monitors
1735  */
1736 
1737 /*
1738  * Define common interface for timeval-related methods
1739  */
1740 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1741 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1742 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1743 
1744 static uint32_t
1745 compute_bw_meter_flags(struct bw_upcall *req)
1746 {
1747     uint32_t flags = 0;
1748 
1749     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1750 	flags |= BW_METER_UNIT_PACKETS;
1751     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1752 	flags |= BW_METER_UNIT_BYTES;
1753     if (req->bu_flags & BW_UPCALL_GEQ)
1754 	flags |= BW_METER_GEQ;
1755     if (req->bu_flags & BW_UPCALL_LEQ)
1756 	flags |= BW_METER_LEQ;
1757 
1758     return flags;
1759 }
1760 
1761 /*
1762  * Add a bw_meter entry
1763  */
1764 static int
1765 add_bw_upcall(struct bw_upcall *req)
1766 {
1767     struct mfc *mfc;
1768     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1769 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1770     struct timeval now;
1771     struct bw_meter *x;
1772     uint32_t flags;
1773 
1774     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1775 	return EOPNOTSUPP;
1776 
1777     /* Test if the flags are valid */
1778     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1779 	return EINVAL;
1780     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1781 	return EINVAL;
1782     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1783 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1784 	return EINVAL;
1785 
1786     /* Test if the threshold time interval is valid */
1787     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1788 	return EINVAL;
1789 
1790     flags = compute_bw_meter_flags(req);
1791 
1792     /*
1793      * Find if we have already same bw_meter entry
1794      */
1795     MFC_LOCK();
1796     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1797     if (mfc == NULL) {
1798 	MFC_UNLOCK();
1799 	return EADDRNOTAVAIL;
1800     }
1801     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1802 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1803 			   &req->bu_threshold.b_time, ==)) &&
1804 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1805 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1806 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1807 	    MFC_UNLOCK();
1808 	    return 0;		/* XXX Already installed */
1809 	}
1810     }
1811 
1812     /* Allocate the new bw_meter entry */
1813     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1814     if (x == NULL) {
1815 	MFC_UNLOCK();
1816 	return ENOBUFS;
1817     }
1818 
1819     /* Set the new bw_meter entry */
1820     x->bm_threshold.b_time = req->bu_threshold.b_time;
1821     microtime(&now);
1822     x->bm_start_time = now;
1823     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1824     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1825     x->bm_measured.b_packets = 0;
1826     x->bm_measured.b_bytes = 0;
1827     x->bm_flags = flags;
1828     x->bm_time_next = NULL;
1829     x->bm_time_hash = BW_METER_BUCKETS;
1830 
1831     /* Add the new bw_meter entry to the front of entries for this MFC */
1832     x->bm_mfc = mfc;
1833     x->bm_mfc_next = mfc->mfc_bw_meter;
1834     mfc->mfc_bw_meter = x;
1835     schedule_bw_meter(x, &now);
1836     MFC_UNLOCK();
1837 
1838     return 0;
1839 }
1840 
1841 static void
1842 free_bw_list(struct bw_meter *list)
1843 {
1844     while (list != NULL) {
1845 	struct bw_meter *x = list;
1846 
1847 	list = list->bm_mfc_next;
1848 	unschedule_bw_meter(x);
1849 	free(x, M_BWMETER);
1850     }
1851 }
1852 
1853 /*
1854  * Delete one or multiple bw_meter entries
1855  */
1856 static int
1857 del_bw_upcall(struct bw_upcall *req)
1858 {
1859     struct mfc *mfc;
1860     struct bw_meter *x;
1861 
1862     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1863 	return EOPNOTSUPP;
1864 
1865     MFC_LOCK();
1866 
1867     /* Find the corresponding MFC entry */
1868     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1869     if (mfc == NULL) {
1870 	MFC_UNLOCK();
1871 	return EADDRNOTAVAIL;
1872     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1873 	/*
1874 	 * Delete all bw_meter entries for this mfc
1875 	 */
1876 	struct bw_meter *list;
1877 
1878 	list = mfc->mfc_bw_meter;
1879 	mfc->mfc_bw_meter = NULL;
1880 	free_bw_list(list);
1881 	MFC_UNLOCK();
1882 	return 0;
1883     } else {			/* Delete a single bw_meter entry */
1884 	struct bw_meter *prev;
1885 	uint32_t flags = 0;
1886 
1887 	flags = compute_bw_meter_flags(req);
1888 
1889 	/* Find the bw_meter entry to delete */
1890 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1891 	     prev = x, x = x->bm_mfc_next) {
1892 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1893 			       &req->bu_threshold.b_time, ==)) &&
1894 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1895 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1896 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1897 		break;
1898 	}
1899 	if (x != NULL) { /* Delete entry from the list for this MFC */
1900 	    if (prev != NULL)
1901 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1902 	    else
1903 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1904 
1905 	    unschedule_bw_meter(x);
1906 	    MFC_UNLOCK();
1907 	    /* Free the bw_meter entry */
1908 	    free(x, M_BWMETER);
1909 	    return 0;
1910 	} else {
1911 	    MFC_UNLOCK();
1912 	    return EINVAL;
1913 	}
1914     }
1915     /* NOTREACHED */
1916 }
1917 
1918 /*
1919  * Perform bandwidth measurement processing that may result in an upcall
1920  */
1921 static void
1922 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1923 {
1924     struct timeval delta;
1925 
1926     MFC_LOCK_ASSERT();
1927 
1928     delta = *nowp;
1929     BW_TIMEVALDECR(&delta, &x->bm_start_time);
1930 
1931     if (x->bm_flags & BW_METER_GEQ) {
1932 	/*
1933 	 * Processing for ">=" type of bw_meter entry
1934 	 */
1935 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1936 	    /* Reset the bw_meter entry */
1937 	    x->bm_start_time = *nowp;
1938 	    x->bm_measured.b_packets = 0;
1939 	    x->bm_measured.b_bytes = 0;
1940 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1941 	}
1942 
1943 	/* Record that a packet is received */
1944 	x->bm_measured.b_packets++;
1945 	x->bm_measured.b_bytes += plen;
1946 
1947 	/*
1948 	 * Test if we should deliver an upcall
1949 	 */
1950 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1951 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1952 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1953 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1954 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1955 		/* Prepare an upcall for delivery */
1956 		bw_meter_prepare_upcall(x, nowp);
1957 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1958 	    }
1959 	}
1960     } else if (x->bm_flags & BW_METER_LEQ) {
1961 	/*
1962 	 * Processing for "<=" type of bw_meter entry
1963 	 */
1964 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1965 	    /*
1966 	     * We are behind time with the multicast forwarding table
1967 	     * scanning for "<=" type of bw_meter entries, so test now
1968 	     * if we should deliver an upcall.
1969 	     */
1970 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1971 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1972 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1973 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1974 		/* Prepare an upcall for delivery */
1975 		bw_meter_prepare_upcall(x, nowp);
1976 	    }
1977 	    /* Reschedule the bw_meter entry */
1978 	    unschedule_bw_meter(x);
1979 	    schedule_bw_meter(x, nowp);
1980 	}
1981 
1982 	/* Record that a packet is received */
1983 	x->bm_measured.b_packets++;
1984 	x->bm_measured.b_bytes += plen;
1985 
1986 	/*
1987 	 * Test if we should restart the measuring interval
1988 	 */
1989 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1990 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1991 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1992 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1993 	    /* Don't restart the measuring interval */
1994 	} else {
1995 	    /* Do restart the measuring interval */
1996 	    /*
1997 	     * XXX: note that we don't unschedule and schedule, because this
1998 	     * might be too much overhead per packet. Instead, when we process
1999 	     * all entries for a given timer hash bin, we check whether it is
2000 	     * really a timeout. If not, we reschedule at that time.
2001 	     */
2002 	    x->bm_start_time = *nowp;
2003 	    x->bm_measured.b_packets = 0;
2004 	    x->bm_measured.b_bytes = 0;
2005 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2006 	}
2007     }
2008 }
2009 
2010 /*
2011  * Prepare a bandwidth-related upcall
2012  */
2013 static void
2014 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2015 {
2016     struct timeval delta;
2017     struct bw_upcall *u;
2018 
2019     MFC_LOCK_ASSERT();
2020 
2021     /*
2022      * Compute the measured time interval
2023      */
2024     delta = *nowp;
2025     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2026 
2027     /*
2028      * If there are too many pending upcalls, deliver them now
2029      */
2030     if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2031 	bw_upcalls_send();
2032 
2033     /*
2034      * Set the bw_upcall entry
2035      */
2036     u = &V_bw_upcalls[V_bw_upcalls_n++];
2037     u->bu_src = x->bm_mfc->mfc_origin;
2038     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2039     u->bu_threshold.b_time = x->bm_threshold.b_time;
2040     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2041     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2042     u->bu_measured.b_time = delta;
2043     u->bu_measured.b_packets = x->bm_measured.b_packets;
2044     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2045     u->bu_flags = 0;
2046     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2047 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2048     if (x->bm_flags & BW_METER_UNIT_BYTES)
2049 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2050     if (x->bm_flags & BW_METER_GEQ)
2051 	u->bu_flags |= BW_UPCALL_GEQ;
2052     if (x->bm_flags & BW_METER_LEQ)
2053 	u->bu_flags |= BW_UPCALL_LEQ;
2054 }
2055 
2056 /*
2057  * Send the pending bandwidth-related upcalls
2058  */
2059 static void
2060 bw_upcalls_send(void)
2061 {
2062     struct mbuf *m;
2063     int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2064     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2065     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2066 				      0,		/* unused2 */
2067 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2068 				      0,		/* im_mbz  */
2069 				      0,		/* im_vif  */
2070 				      0,		/* unused3 */
2071 				      { 0 },		/* im_src  */
2072 				      { 0 } };		/* im_dst  */
2073 
2074     MFC_LOCK_ASSERT();
2075 
2076     if (V_bw_upcalls_n == 0)
2077 	return;			/* No pending upcalls */
2078 
2079     V_bw_upcalls_n = 0;
2080 
2081     /*
2082      * Allocate a new mbuf, initialize it with the header and
2083      * the payload for the pending calls.
2084      */
2085     m = m_gethdr(M_NOWAIT, MT_DATA);
2086     if (m == NULL) {
2087 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2088 	return;
2089     }
2090 
2091     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2092     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2093 
2094     /*
2095      * Send the upcalls
2096      * XXX do we need to set the address in k_igmpsrc ?
2097      */
2098     MRTSTAT_INC(mrts_upcalls);
2099     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2100 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2101 	MRTSTAT_INC(mrts_upq_sockfull);
2102     }
2103 }
2104 
2105 /*
2106  * Compute the timeout hash value for the bw_meter entries
2107  */
2108 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2109     do {								\
2110 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2111 									\
2112 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2113 	(hash) = next_timeval.tv_sec;					\
2114 	if (next_timeval.tv_usec)					\
2115 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2116 	(hash) %= BW_METER_BUCKETS;					\
2117     } while (0)
2118 
2119 /*
2120  * Schedule a timer to process periodically bw_meter entry of type "<="
2121  * by linking the entry in the proper hash bucket.
2122  */
2123 static void
2124 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2125 {
2126     int time_hash;
2127 
2128     MFC_LOCK_ASSERT();
2129 
2130     if (!(x->bm_flags & BW_METER_LEQ))
2131 	return;		/* XXX: we schedule timers only for "<=" entries */
2132 
2133     /*
2134      * Reset the bw_meter entry
2135      */
2136     x->bm_start_time = *nowp;
2137     x->bm_measured.b_packets = 0;
2138     x->bm_measured.b_bytes = 0;
2139     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2140 
2141     /*
2142      * Compute the timeout hash value and insert the entry
2143      */
2144     BW_METER_TIMEHASH(x, time_hash);
2145     x->bm_time_next = V_bw_meter_timers[time_hash];
2146     V_bw_meter_timers[time_hash] = x;
2147     x->bm_time_hash = time_hash;
2148 }
2149 
2150 /*
2151  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2152  * by removing the entry from the proper hash bucket.
2153  */
2154 static void
2155 unschedule_bw_meter(struct bw_meter *x)
2156 {
2157     int time_hash;
2158     struct bw_meter *prev, *tmp;
2159 
2160     MFC_LOCK_ASSERT();
2161 
2162     if (!(x->bm_flags & BW_METER_LEQ))
2163 	return;		/* XXX: we schedule timers only for "<=" entries */
2164 
2165     /*
2166      * Compute the timeout hash value and delete the entry
2167      */
2168     time_hash = x->bm_time_hash;
2169     if (time_hash >= BW_METER_BUCKETS)
2170 	return;		/* Entry was not scheduled */
2171 
2172     for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2173 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2174 	if (tmp == x)
2175 	    break;
2176 
2177     if (tmp == NULL)
2178 	panic("unschedule_bw_meter: bw_meter entry not found");
2179 
2180     if (prev != NULL)
2181 	prev->bm_time_next = x->bm_time_next;
2182     else
2183 	V_bw_meter_timers[time_hash] = x->bm_time_next;
2184 
2185     x->bm_time_next = NULL;
2186     x->bm_time_hash = BW_METER_BUCKETS;
2187 }
2188 
2189 
2190 /*
2191  * Process all "<=" type of bw_meter that should be processed now,
2192  * and for each entry prepare an upcall if necessary. Each processed
2193  * entry is rescheduled again for the (periodic) processing.
2194  *
2195  * This is run periodically (once per second normally). On each round,
2196  * all the potentially matching entries are in the hash slot that we are
2197  * looking at.
2198  */
2199 static void
2200 bw_meter_process()
2201 {
2202     uint32_t loops;
2203     int i;
2204     struct timeval now, process_endtime;
2205 
2206     microtime(&now);
2207     if (V_last_tv_sec == now.tv_sec)
2208 	return;		/* nothing to do */
2209 
2210     loops = now.tv_sec - V_last_tv_sec;
2211     V_last_tv_sec = now.tv_sec;
2212     if (loops > BW_METER_BUCKETS)
2213 	loops = BW_METER_BUCKETS;
2214 
2215     MFC_LOCK();
2216     /*
2217      * Process all bins of bw_meter entries from the one after the last
2218      * processed to the current one. On entry, i points to the last bucket
2219      * visited, so we need to increment i at the beginning of the loop.
2220      */
2221     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2222 	struct bw_meter *x, *tmp_list;
2223 
2224 	if (++i >= BW_METER_BUCKETS)
2225 	    i = 0;
2226 
2227 	/* Disconnect the list of bw_meter entries from the bin */
2228 	tmp_list = V_bw_meter_timers[i];
2229 	V_bw_meter_timers[i] = NULL;
2230 
2231 	/* Process the list of bw_meter entries */
2232 	while (tmp_list != NULL) {
2233 	    x = tmp_list;
2234 	    tmp_list = tmp_list->bm_time_next;
2235 
2236 	    /* Test if the time interval is over */
2237 	    process_endtime = x->bm_start_time;
2238 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2239 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2240 		/* Not yet: reschedule, but don't reset */
2241 		int time_hash;
2242 
2243 		BW_METER_TIMEHASH(x, time_hash);
2244 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2245 		    /*
2246 		     * XXX: somehow the bin processing is a bit ahead of time.
2247 		     * Put the entry in the next bin.
2248 		     */
2249 		    if (++time_hash >= BW_METER_BUCKETS)
2250 			time_hash = 0;
2251 		}
2252 		x->bm_time_next = V_bw_meter_timers[time_hash];
2253 		V_bw_meter_timers[time_hash] = x;
2254 		x->bm_time_hash = time_hash;
2255 
2256 		continue;
2257 	    }
2258 
2259 	    /*
2260 	     * Test if we should deliver an upcall
2261 	     */
2262 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2263 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2264 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2265 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2266 		/* Prepare an upcall for delivery */
2267 		bw_meter_prepare_upcall(x, &now);
2268 	    }
2269 
2270 	    /*
2271 	     * Reschedule for next processing
2272 	     */
2273 	    schedule_bw_meter(x, &now);
2274 	}
2275     }
2276 
2277     /* Send all upcalls that are pending delivery */
2278     bw_upcalls_send();
2279 
2280     MFC_UNLOCK();
2281 }
2282 
2283 /*
2284  * A periodic function for sending all upcalls that are pending delivery
2285  */
2286 static void
2287 expire_bw_upcalls_send(void *arg)
2288 {
2289     CURVNET_SET((struct vnet *) arg);
2290 
2291     MFC_LOCK();
2292     bw_upcalls_send();
2293     MFC_UNLOCK();
2294 
2295     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2296 	curvnet);
2297     CURVNET_RESTORE();
2298 }
2299 
2300 /*
2301  * A periodic function for periodic scanning of the multicast forwarding
2302  * table for processing all "<=" bw_meter entries.
2303  */
2304 static void
2305 expire_bw_meter_process(void *arg)
2306 {
2307     CURVNET_SET((struct vnet *) arg);
2308 
2309     if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2310 	bw_meter_process();
2311 
2312     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2313 	curvnet);
2314     CURVNET_RESTORE();
2315 }
2316 
2317 /*
2318  * End of bandwidth monitoring code
2319  */
2320 
2321 /*
2322  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2323  *
2324  */
2325 static int
2326 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2327     struct mfc *rt)
2328 {
2329     struct mbuf *mb_copy, *mm;
2330 
2331     /*
2332      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2333      * rendezvous point was unspecified, and we were told not to.
2334      */
2335     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2336 	in_nullhost(rt->mfc_rp))
2337 	return 0;
2338 
2339     mb_copy = pim_register_prepare(ip, m);
2340     if (mb_copy == NULL)
2341 	return ENOBUFS;
2342 
2343     /*
2344      * Send all the fragments. Note that the mbuf for each fragment
2345      * is freed by the sending machinery.
2346      */
2347     for (mm = mb_copy; mm; mm = mb_copy) {
2348 	mb_copy = mm->m_nextpkt;
2349 	mm->m_nextpkt = 0;
2350 	mm = m_pullup(mm, sizeof(struct ip));
2351 	if (mm != NULL) {
2352 	    ip = mtod(mm, struct ip *);
2353 	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2354 		pim_register_send_rp(ip, vifp, mm, rt);
2355 	    } else {
2356 		pim_register_send_upcall(ip, vifp, mm, rt);
2357 	    }
2358 	}
2359     }
2360 
2361     return 0;
2362 }
2363 
2364 /*
2365  * Return a copy of the data packet that is ready for PIM Register
2366  * encapsulation.
2367  * XXX: Note that in the returned copy the IP header is a valid one.
2368  */
2369 static struct mbuf *
2370 pim_register_prepare(struct ip *ip, struct mbuf *m)
2371 {
2372     struct mbuf *mb_copy = NULL;
2373     int mtu;
2374 
2375     /* Take care of delayed checksums */
2376     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2377 	in_delayed_cksum(m);
2378 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2379     }
2380 
2381     /*
2382      * Copy the old packet & pullup its IP header into the
2383      * new mbuf so we can modify it.
2384      */
2385     mb_copy = m_copypacket(m, M_NOWAIT);
2386     if (mb_copy == NULL)
2387 	return NULL;
2388     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2389     if (mb_copy == NULL)
2390 	return NULL;
2391 
2392     /* take care of the TTL */
2393     ip = mtod(mb_copy, struct ip *);
2394     --ip->ip_ttl;
2395 
2396     /* Compute the MTU after the PIM Register encapsulation */
2397     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2398 
2399     if (ntohs(ip->ip_len) <= mtu) {
2400 	/* Turn the IP header into a valid one */
2401 	ip->ip_sum = 0;
2402 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2403     } else {
2404 	/* Fragment the packet */
2405 	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2406 	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2407 	    m_freem(mb_copy);
2408 	    return NULL;
2409 	}
2410     }
2411     return mb_copy;
2412 }
2413 
2414 /*
2415  * Send an upcall with the data packet to the user-level process.
2416  */
2417 static int
2418 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2419     struct mbuf *mb_copy, struct mfc *rt)
2420 {
2421     struct mbuf *mb_first;
2422     int len = ntohs(ip->ip_len);
2423     struct igmpmsg *im;
2424     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2425 
2426     VIF_LOCK_ASSERT();
2427 
2428     /*
2429      * Add a new mbuf with an upcall header
2430      */
2431     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2432     if (mb_first == NULL) {
2433 	m_freem(mb_copy);
2434 	return ENOBUFS;
2435     }
2436     mb_first->m_data += max_linkhdr;
2437     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2438     mb_first->m_len = sizeof(struct igmpmsg);
2439     mb_first->m_next = mb_copy;
2440 
2441     /* Send message to routing daemon */
2442     im = mtod(mb_first, struct igmpmsg *);
2443     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2444     im->im_mbz		= 0;
2445     im->im_vif		= vifp - V_viftable;
2446     im->im_src		= ip->ip_src;
2447     im->im_dst		= ip->ip_dst;
2448 
2449     k_igmpsrc.sin_addr	= ip->ip_src;
2450 
2451     MRTSTAT_INC(mrts_upcalls);
2452 
2453     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2454 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2455 	MRTSTAT_INC(mrts_upq_sockfull);
2456 	return ENOBUFS;
2457     }
2458 
2459     /* Keep statistics */
2460     PIMSTAT_INC(pims_snd_registers_msgs);
2461     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2462 
2463     return 0;
2464 }
2465 
2466 /*
2467  * Encapsulate the data packet in PIM Register message and send it to the RP.
2468  */
2469 static int
2470 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2471     struct mfc *rt)
2472 {
2473     struct mbuf *mb_first;
2474     struct ip *ip_outer;
2475     struct pim_encap_pimhdr *pimhdr;
2476     int len = ntohs(ip->ip_len);
2477     vifi_t vifi = rt->mfc_parent;
2478 
2479     VIF_LOCK_ASSERT();
2480 
2481     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2482 	m_freem(mb_copy);
2483 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2484     }
2485 
2486     /*
2487      * Add a new mbuf with the encapsulating header
2488      */
2489     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2490     if (mb_first == NULL) {
2491 	m_freem(mb_copy);
2492 	return ENOBUFS;
2493     }
2494     mb_first->m_data += max_linkhdr;
2495     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2496     mb_first->m_next = mb_copy;
2497 
2498     mb_first->m_pkthdr.len = len + mb_first->m_len;
2499 
2500     /*
2501      * Fill in the encapsulating IP and PIM header
2502      */
2503     ip_outer = mtod(mb_first, struct ip *);
2504     *ip_outer = pim_encap_iphdr;
2505     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2506 	sizeof(pim_encap_pimhdr));
2507     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2508     ip_outer->ip_dst = rt->mfc_rp;
2509     /*
2510      * Copy the inner header TOS to the outer header, and take care of the
2511      * IP_DF bit.
2512      */
2513     ip_outer->ip_tos = ip->ip_tos;
2514     if (ip->ip_off & htons(IP_DF))
2515 	ip_outer->ip_off |= htons(IP_DF);
2516     ip_fillid(ip_outer);
2517     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2518 					 + sizeof(pim_encap_iphdr));
2519     *pimhdr = pim_encap_pimhdr;
2520     /* If the iif crosses a border, set the Border-bit */
2521     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2522 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2523 
2524     mb_first->m_data += sizeof(pim_encap_iphdr);
2525     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2526     mb_first->m_data -= sizeof(pim_encap_iphdr);
2527 
2528     send_packet(vifp, mb_first);
2529 
2530     /* Keep statistics */
2531     PIMSTAT_INC(pims_snd_registers_msgs);
2532     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2533 
2534     return 0;
2535 }
2536 
2537 /*
2538  * pim_encapcheck() is called by the encap4_input() path at runtime to
2539  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2540  * into the kernel.
2541  */
2542 static int
2543 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2544     int proto __unused, void *arg __unused)
2545 {
2546 
2547     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2548     return (8);		/* claim the datagram. */
2549 }
2550 
2551 /*
2552  * PIM-SMv2 and PIM-DM messages processing.
2553  * Receives and verifies the PIM control messages, and passes them
2554  * up to the listening socket, using rip_input().
2555  * The only message with special processing is the PIM_REGISTER message
2556  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2557  * is passed to if_simloop().
2558  */
2559 static int
2560 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2561 {
2562     struct ip *ip = mtod(m, struct ip *);
2563     struct pim *pim;
2564     int iphlen = off;
2565     int minlen;
2566     int datalen = ntohs(ip->ip_len) - iphlen;
2567     int ip_tos;
2568 
2569     /* Keep statistics */
2570     PIMSTAT_INC(pims_rcv_total_msgs);
2571     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2572 
2573     /*
2574      * Validate lengths
2575      */
2576     if (datalen < PIM_MINLEN) {
2577 	PIMSTAT_INC(pims_rcv_tooshort);
2578 	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2579 	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2580 	m_freem(m);
2581 	return (IPPROTO_DONE);
2582     }
2583 
2584     /*
2585      * If the packet is at least as big as a REGISTER, go agead
2586      * and grab the PIM REGISTER header size, to avoid another
2587      * possible m_pullup() later.
2588      *
2589      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2590      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2591      */
2592     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2593     /*
2594      * Get the IP and PIM headers in contiguous memory, and
2595      * possibly the PIM REGISTER header.
2596      */
2597     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2598 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2599 	return (IPPROTO_DONE);
2600     }
2601 
2602     /* m_pullup() may have given us a new mbuf so reset ip. */
2603     ip = mtod(m, struct ip *);
2604     ip_tos = ip->ip_tos;
2605 
2606     /* adjust mbuf to point to the PIM header */
2607     m->m_data += iphlen;
2608     m->m_len  -= iphlen;
2609     pim = mtod(m, struct pim *);
2610 
2611     /*
2612      * Validate checksum. If PIM REGISTER, exclude the data packet.
2613      *
2614      * XXX: some older PIMv2 implementations don't make this distinction,
2615      * so for compatibility reason perform the checksum over part of the
2616      * message, and if error, then over the whole message.
2617      */
2618     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2619 	/* do nothing, checksum okay */
2620     } else if (in_cksum(m, datalen)) {
2621 	PIMSTAT_INC(pims_rcv_badsum);
2622 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2623 	m_freem(m);
2624 	return (IPPROTO_DONE);
2625     }
2626 
2627     /* PIM version check */
2628     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2629 	PIMSTAT_INC(pims_rcv_badversion);
2630 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2631 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2632 	m_freem(m);
2633 	return (IPPROTO_DONE);
2634     }
2635 
2636     /* restore mbuf back to the outer IP */
2637     m->m_data -= iphlen;
2638     m->m_len  += iphlen;
2639 
2640     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2641 	/*
2642 	 * Since this is a REGISTER, we'll make a copy of the register
2643 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2644 	 * routing daemon.
2645 	 */
2646 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2647 	struct mbuf *mcp;
2648 	struct ip *encap_ip;
2649 	u_int32_t *reghdr;
2650 	struct ifnet *vifp;
2651 
2652 	VIF_LOCK();
2653 	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2654 	    VIF_UNLOCK();
2655 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2656 		(int)V_reg_vif_num);
2657 	    m_freem(m);
2658 	    return (IPPROTO_DONE);
2659 	}
2660 	/* XXX need refcnt? */
2661 	vifp = V_viftable[V_reg_vif_num].v_ifp;
2662 	VIF_UNLOCK();
2663 
2664 	/*
2665 	 * Validate length
2666 	 */
2667 	if (datalen < PIM_REG_MINLEN) {
2668 	    PIMSTAT_INC(pims_rcv_tooshort);
2669 	    PIMSTAT_INC(pims_rcv_badregisters);
2670 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2671 	    m_freem(m);
2672 	    return (IPPROTO_DONE);
2673 	}
2674 
2675 	reghdr = (u_int32_t *)(pim + 1);
2676 	encap_ip = (struct ip *)(reghdr + 1);
2677 
2678 	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2679 	    __func__, ntohl(encap_ip->ip_src.s_addr),
2680 	    ntohs(encap_ip->ip_len));
2681 
2682 	/* verify the version number of the inner packet */
2683 	if (encap_ip->ip_v != IPVERSION) {
2684 	    PIMSTAT_INC(pims_rcv_badregisters);
2685 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2686 	    m_freem(m);
2687 	    return (IPPROTO_DONE);
2688 	}
2689 
2690 	/* verify the inner packet is destined to a mcast group */
2691 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2692 	    PIMSTAT_INC(pims_rcv_badregisters);
2693 	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2694 		ntohl(encap_ip->ip_dst.s_addr));
2695 	    m_freem(m);
2696 	    return (IPPROTO_DONE);
2697 	}
2698 
2699 	/* If a NULL_REGISTER, pass it to the daemon */
2700 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2701 	    goto pim_input_to_daemon;
2702 
2703 	/*
2704 	 * Copy the TOS from the outer IP header to the inner IP header.
2705 	 */
2706 	if (encap_ip->ip_tos != ip_tos) {
2707 	    /* Outer TOS -> inner TOS */
2708 	    encap_ip->ip_tos = ip_tos;
2709 	    /* Recompute the inner header checksum. Sigh... */
2710 
2711 	    /* adjust mbuf to point to the inner IP header */
2712 	    m->m_data += (iphlen + PIM_MINLEN);
2713 	    m->m_len  -= (iphlen + PIM_MINLEN);
2714 
2715 	    encap_ip->ip_sum = 0;
2716 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2717 
2718 	    /* restore mbuf to point back to the outer IP header */
2719 	    m->m_data -= (iphlen + PIM_MINLEN);
2720 	    m->m_len  += (iphlen + PIM_MINLEN);
2721 	}
2722 
2723 	/*
2724 	 * Decapsulate the inner IP packet and loopback to forward it
2725 	 * as a normal multicast packet. Also, make a copy of the
2726 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2727 	 * to pass to the daemon later, so it can take the appropriate
2728 	 * actions (e.g., send back PIM_REGISTER_STOP).
2729 	 * XXX: here m->m_data points to the outer IP header.
2730 	 */
2731 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2732 	if (mcp == NULL) {
2733 	    CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2734 	    m_freem(m);
2735 	    return (IPPROTO_DONE);
2736 	}
2737 
2738 	/* Keep statistics */
2739 	/* XXX: registers_bytes include only the encap. mcast pkt */
2740 	PIMSTAT_INC(pims_rcv_registers_msgs);
2741 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2742 
2743 	/*
2744 	 * forward the inner ip packet; point m_data at the inner ip.
2745 	 */
2746 	m_adj(m, iphlen + PIM_MINLEN);
2747 
2748 	CTR4(KTR_IPMF,
2749 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2750 	    __func__,
2751 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2752 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2753 	    (int)V_reg_vif_num);
2754 
2755 	/* NB: vifp was collected above; can it change on us? */
2756 	if_simloop(vifp, m, dst.sin_family, 0);
2757 
2758 	/* prepare the register head to send to the mrouting daemon */
2759 	m = mcp;
2760     }
2761 
2762 pim_input_to_daemon:
2763     /*
2764      * Pass the PIM message up to the daemon; if it is a Register message,
2765      * pass the 'head' only up to the daemon. This includes the
2766      * outer IP header, PIM header, PIM-Register header and the
2767      * inner IP header.
2768      * XXX: the outer IP header pkt size of a Register is not adjust to
2769      * reflect the fact that the inner multicast data is truncated.
2770      */
2771     return (rip_input(&m, &off, proto));
2772 }
2773 
2774 static int
2775 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2776 {
2777 	struct mfc	*rt;
2778 	int		 error, i;
2779 
2780 	if (req->newptr)
2781 		return (EPERM);
2782 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2783 		return (0);
2784 	error = sysctl_wire_old_buffer(req, 0);
2785 	if (error)
2786 		return (error);
2787 
2788 	MFC_LOCK();
2789 	for (i = 0; i < mfchashsize; i++) {
2790 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2791 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2792 			if (error)
2793 				goto out_locked;
2794 		}
2795 	}
2796 out_locked:
2797 	MFC_UNLOCK();
2798 	return (error);
2799 }
2800 
2801 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2802     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2803     "IPv4 Multicast Forwarding Table "
2804     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2805 
2806 static void
2807 vnet_mroute_init(const void *unused __unused)
2808 {
2809 
2810 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2811 
2812 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2813 	    M_MRTABLE, M_WAITOK|M_ZERO);
2814 	V_bw_meter_timers = mallocarray(BW_METER_BUCKETS,
2815 	    sizeof(*V_bw_meter_timers), M_MRTABLE, M_WAITOK|M_ZERO);
2816 	V_bw_upcalls = mallocarray(BW_UPCALLS_MAX, sizeof(*V_bw_upcalls),
2817 	    M_MRTABLE, M_WAITOK|M_ZERO);
2818 
2819 	callout_init(&V_expire_upcalls_ch, 1);
2820 	callout_init(&V_bw_upcalls_ch, 1);
2821 	callout_init(&V_bw_meter_ch, 1);
2822 }
2823 
2824 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2825 	NULL);
2826 
2827 static void
2828 vnet_mroute_uninit(const void *unused __unused)
2829 {
2830 
2831 	free(V_bw_upcalls, M_MRTABLE);
2832 	free(V_bw_meter_timers, M_MRTABLE);
2833 	free(V_viftable, M_MRTABLE);
2834 	free(V_nexpire, M_MRTABLE);
2835 	V_nexpire = NULL;
2836 }
2837 
2838 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2839 	vnet_mroute_uninit, NULL);
2840 
2841 static int
2842 ip_mroute_modevent(module_t mod, int type, void *unused)
2843 {
2844 
2845     switch (type) {
2846     case MOD_LOAD:
2847 	MROUTER_LOCK_INIT();
2848 
2849 	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2850 	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2851 	if (if_detach_event_tag == NULL) {
2852 		printf("ip_mroute: unable to register "
2853 		    "ifnet_departure_event handler\n");
2854 		MROUTER_LOCK_DESTROY();
2855 		return (EINVAL);
2856 	}
2857 
2858 	MFC_LOCK_INIT();
2859 	VIF_LOCK_INIT();
2860 
2861 	mfchashsize = MFCHASHSIZE;
2862 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2863 	    !powerof2(mfchashsize)) {
2864 		printf("WARNING: %s not a power of 2; using default\n",
2865 		    "net.inet.ip.mfchashsize");
2866 		mfchashsize = MFCHASHSIZE;
2867 	}
2868 
2869 	pim_squelch_wholepkt = 0;
2870 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2871 	    &pim_squelch_wholepkt);
2872 
2873 	pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2874 	if (pim_encap_cookie == NULL) {
2875 		printf("ip_mroute: unable to attach pim encap\n");
2876 		VIF_LOCK_DESTROY();
2877 		MFC_LOCK_DESTROY();
2878 		MROUTER_LOCK_DESTROY();
2879 		return (EINVAL);
2880 	}
2881 
2882 	ip_mcast_src = X_ip_mcast_src;
2883 	ip_mforward = X_ip_mforward;
2884 	ip_mrouter_done = X_ip_mrouter_done;
2885 	ip_mrouter_get = X_ip_mrouter_get;
2886 	ip_mrouter_set = X_ip_mrouter_set;
2887 
2888 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2889 	ip_rsvp_vif = X_ip_rsvp_vif;
2890 
2891 	legal_vif_num = X_legal_vif_num;
2892 	mrt_ioctl = X_mrt_ioctl;
2893 	rsvp_input_p = X_rsvp_input;
2894 	break;
2895 
2896     case MOD_UNLOAD:
2897 	/*
2898 	 * Typically module unload happens after the user-level
2899 	 * process has shutdown the kernel services (the check
2900 	 * below insures someone can't just yank the module out
2901 	 * from under a running process).  But if the module is
2902 	 * just loaded and then unloaded w/o starting up a user
2903 	 * process we still need to cleanup.
2904 	 */
2905 	MROUTER_LOCK();
2906 	if (ip_mrouter_cnt != 0) {
2907 	    MROUTER_UNLOCK();
2908 	    return (EINVAL);
2909 	}
2910 	ip_mrouter_unloading = 1;
2911 	MROUTER_UNLOCK();
2912 
2913 	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2914 
2915 	if (pim_encap_cookie) {
2916 	    ip_encap_detach(pim_encap_cookie);
2917 	    pim_encap_cookie = NULL;
2918 	}
2919 
2920 	ip_mcast_src = NULL;
2921 	ip_mforward = NULL;
2922 	ip_mrouter_done = NULL;
2923 	ip_mrouter_get = NULL;
2924 	ip_mrouter_set = NULL;
2925 
2926 	ip_rsvp_force_done = NULL;
2927 	ip_rsvp_vif = NULL;
2928 
2929 	legal_vif_num = NULL;
2930 	mrt_ioctl = NULL;
2931 	rsvp_input_p = NULL;
2932 
2933 	VIF_LOCK_DESTROY();
2934 	MFC_LOCK_DESTROY();
2935 	MROUTER_LOCK_DESTROY();
2936 	break;
2937 
2938     default:
2939 	return EOPNOTSUPP;
2940     }
2941     return 0;
2942 }
2943 
2944 static moduledata_t ip_mroutemod = {
2945     "ip_mroute",
2946     ip_mroute_modevent,
2947     0
2948 };
2949 
2950 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2951