1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 #include <sys/cdefs.h> 57 __FBSDID("$FreeBSD$"); 58 59 #include "opt_inet.h" 60 #include "opt_inet6.h" 61 #include "opt_mac.h" 62 #include "opt_mrouting.h" 63 64 #define _PIM_VT 1 65 66 #include <sys/param.h> 67 #include <sys/kernel.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/module.h> 72 #include <sys/priv.h> 73 #include <sys/protosw.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/sx.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/systm.h> 82 #include <sys/time.h> 83 #include <net/if.h> 84 #include <net/netisr.h> 85 #include <net/route.h> 86 #include <netinet/in.h> 87 #include <netinet/igmp.h> 88 #include <netinet/in_systm.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip.h> 91 #include <netinet/ip_encap.h> 92 #include <netinet/ip_mroute.h> 93 #include <netinet/ip_var.h> 94 #include <netinet/ip_options.h> 95 #include <netinet/pim.h> 96 #include <netinet/pim_var.h> 97 #include <netinet/udp.h> 98 #ifdef INET6 99 #include <netinet/ip6.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet6/ip6_mroute.h> 102 #include <netinet6/ip6_var.h> 103 #endif 104 #include <machine/in_cksum.h> 105 106 #include <security/mac/mac_framework.h> 107 108 /* 109 * Control debugging code for rsvp and multicast routing code. 110 * Can only set them with the debugger. 111 */ 112 static u_int rsvpdebug; /* non-zero enables debugging */ 113 114 static u_int mrtdebug; /* any set of the flags below */ 115 #define DEBUG_MFC 0x02 116 #define DEBUG_FORWARD 0x04 117 #define DEBUG_EXPIRE 0x08 118 #define DEBUG_XMIT 0x10 119 #define DEBUG_PIM 0x20 120 121 #define VIFI_INVALID ((vifi_t) -1) 122 123 #define M_HASCL(m) ((m)->m_flags & M_EXT) 124 125 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); 126 127 /* 128 * Locking. We use two locks: one for the virtual interface table and 129 * one for the forwarding table. These locks may be nested in which case 130 * the VIF lock must always be taken first. Note that each lock is used 131 * to cover not only the specific data structure but also related data 132 * structures. It may be better to add more fine-grained locking later; 133 * it's not clear how performance-critical this code is. 134 * 135 * XXX: This module could particularly benefit from being cleaned 136 * up to use the <sys/queue.h> macros. 137 * 138 */ 139 140 static struct mrtstat mrtstat; 141 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 142 &mrtstat, mrtstat, 143 "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)"); 144 145 static struct mfc *mfctable[MFCTBLSIZ]; 146 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 147 &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]", 148 "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)"); 149 150 static struct mtx mrouter_mtx; 151 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 152 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 153 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 154 #define MROUTER_LOCK_INIT() \ 155 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 156 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 157 158 static struct mtx mfc_mtx; 159 #define MFC_LOCK() mtx_lock(&mfc_mtx) 160 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 161 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 162 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF) 163 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 164 165 static struct vif viftable[MAXVIFS]; 166 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 167 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 168 "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 169 170 static struct mtx vif_mtx; 171 #define VIF_LOCK() mtx_lock(&vif_mtx) 172 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 173 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 174 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF) 175 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 176 177 static u_char nexpire[MFCTBLSIZ]; 178 179 static eventhandler_tag if_detach_event_tag = NULL; 180 181 static struct callout expire_upcalls_ch; 182 183 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 184 #define UPCALL_EXPIRE 6 /* number of timeouts */ 185 186 #define ENCAP_TTL 64 187 188 /* 189 * Bandwidth meter variables and constants 190 */ 191 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 192 /* 193 * Pending timeouts are stored in a hash table, the key being the 194 * expiration time. Periodically, the entries are analysed and processed. 195 */ 196 #define BW_METER_BUCKETS 1024 197 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 198 static struct callout bw_meter_ch; 199 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 200 201 /* 202 * Pending upcalls are stored in a vector which is flushed when 203 * full, or periodically 204 */ 205 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 206 static u_int bw_upcalls_n; /* # of pending upcalls */ 207 static struct callout bw_upcalls_ch; 208 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 209 210 static struct pimstat pimstat; 211 212 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 213 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 214 &pimstat, pimstat, 215 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 216 217 static u_long pim_squelch_wholepkt = 0; 218 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 219 &pim_squelch_wholepkt, 0, 220 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 221 222 extern struct domain inetdomain; 223 struct protosw in_pim_protosw = { 224 .pr_type = SOCK_RAW, 225 .pr_domain = &inetdomain, 226 .pr_protocol = IPPROTO_PIM, 227 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 228 .pr_input = pim_input, 229 .pr_output = (pr_output_t*)rip_output, 230 .pr_ctloutput = rip_ctloutput, 231 .pr_usrreqs = &rip_usrreqs 232 }; 233 static const struct encaptab *pim_encap_cookie; 234 235 #ifdef INET6 236 /* ip6_mroute.c glue */ 237 extern struct in6_protosw in6_pim_protosw; 238 static const struct encaptab *pim6_encap_cookie; 239 240 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *); 241 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *); 242 extern int X_ip6_mrouter_done(void); 243 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *); 244 extern int X_mrt6_ioctl(int, caddr_t); 245 #endif 246 247 static int pim_encapcheck(const struct mbuf *, int, int, void *); 248 249 /* 250 * Note: the PIM Register encapsulation adds the following in front of a 251 * data packet: 252 * 253 * struct pim_encap_hdr { 254 * struct ip ip; 255 * struct pim_encap_pimhdr pim; 256 * } 257 * 258 */ 259 260 struct pim_encap_pimhdr { 261 struct pim pim; 262 uint32_t flags; 263 }; 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 static struct ifnet multicast_register_if; 292 static vifi_t reg_vif_num = VIFI_INVALID; 293 294 /* 295 * Private variables. 296 */ 297 static vifi_t numvifs; 298 299 static u_long X_ip_mcast_src(int vifi); 300 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, 301 struct mbuf *m, struct ip_moptions *imo); 302 static int X_ip_mrouter_done(void); 303 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m); 304 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m); 305 static int X_legal_vif_num(int vif); 306 static int X_mrt_ioctl(int cmd, caddr_t data); 307 308 static int get_sg_cnt(struct sioc_sg_req *); 309 static int get_vif_cnt(struct sioc_vif_req *); 310 static void if_detached_event(void *arg __unused, struct ifnet *); 311 static int ip_mrouter_init(struct socket *, int); 312 static int add_vif(struct vifctl *); 313 static int del_vif_locked(vifi_t); 314 static int del_vif(vifi_t); 315 static int add_mfc(struct mfcctl2 *); 316 static int del_mfc(struct mfcctl2 *); 317 static int set_api_config(uint32_t *); /* chose API capabilities */ 318 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 319 static int set_assert(int); 320 static void expire_upcalls(void *); 321 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 322 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 323 static void send_packet(struct vif *, struct mbuf *); 324 325 /* 326 * Bandwidth monitoring 327 */ 328 static void free_bw_list(struct bw_meter *list); 329 static int add_bw_upcall(struct bw_upcall *); 330 static int del_bw_upcall(struct bw_upcall *); 331 static void bw_meter_receive_packet(struct bw_meter *x, int plen, 332 struct timeval *nowp); 333 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp); 334 static void bw_upcalls_send(void); 335 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp); 336 static void unschedule_bw_meter(struct bw_meter *x); 337 static void bw_meter_process(void); 338 static void expire_bw_upcalls_send(void *); 339 static void expire_bw_meter_process(void *); 340 341 static int pim_register_send(struct ip *, struct vif *, 342 struct mbuf *, struct mfc *); 343 static int pim_register_send_rp(struct ip *, struct vif *, 344 struct mbuf *, struct mfc *); 345 static int pim_register_send_upcall(struct ip *, struct vif *, 346 struct mbuf *, struct mfc *); 347 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 348 349 /* 350 * whether or not special PIM assert processing is enabled. 351 */ 352 static int pim_assert; 353 /* 354 * Rate limit for assert notification messages, in usec 355 */ 356 #define ASSERT_MSG_TIME 3000000 357 358 /* 359 * Kernel multicast routing API capabilities and setup. 360 * If more API capabilities are added to the kernel, they should be 361 * recorded in `mrt_api_support'. 362 */ 363 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 364 MRT_MFC_FLAGS_BORDER_VIF | 365 MRT_MFC_RP | 366 MRT_MFC_BW_UPCALL); 367 static uint32_t mrt_api_config = 0; 368 369 /* 370 * Hash function for a source, group entry 371 */ 372 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ 373 ((g) >> 20) ^ ((g) >> 10) ^ (g)) 374 375 /* 376 * Find a route for a given origin IP address and Multicast group address 377 * Statistics are updated by the caller if needed 378 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 379 */ 380 static struct mfc * 381 mfc_find(in_addr_t o, in_addr_t g) 382 { 383 struct mfc *rt; 384 385 MFC_LOCK_ASSERT(); 386 387 for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next) 388 if ((rt->mfc_origin.s_addr == o) && 389 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL)) 390 break; 391 return rt; 392 } 393 394 /* 395 * Macros to compute elapsed time efficiently 396 * Borrowed from Van Jacobson's scheduling code 397 */ 398 #define TV_DELTA(a, b, delta) { \ 399 int xxs; \ 400 delta = (a).tv_usec - (b).tv_usec; \ 401 if ((xxs = (a).tv_sec - (b).tv_sec)) { \ 402 switch (xxs) { \ 403 case 2: \ 404 delta += 1000000; \ 405 /* FALLTHROUGH */ \ 406 case 1: \ 407 delta += 1000000; \ 408 break; \ 409 default: \ 410 delta += (1000000 * xxs); \ 411 } \ 412 } \ 413 } 414 415 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ 416 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) 417 418 /* 419 * Handle MRT setsockopt commands to modify the multicast routing tables. 420 */ 421 static int 422 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 423 { 424 int error, optval; 425 vifi_t vifi; 426 struct vifctl vifc; 427 struct mfcctl2 mfc; 428 struct bw_upcall bw_upcall; 429 uint32_t i; 430 431 if (so != ip_mrouter && sopt->sopt_name != MRT_INIT) 432 return EPERM; 433 434 error = 0; 435 switch (sopt->sopt_name) { 436 case MRT_INIT: 437 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 438 if (error) 439 break; 440 error = ip_mrouter_init(so, optval); 441 break; 442 443 case MRT_DONE: 444 error = ip_mrouter_done(); 445 break; 446 447 case MRT_ADD_VIF: 448 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 449 if (error) 450 break; 451 error = add_vif(&vifc); 452 break; 453 454 case MRT_DEL_VIF: 455 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 456 if (error) 457 break; 458 error = del_vif(vifi); 459 break; 460 461 case MRT_ADD_MFC: 462 case MRT_DEL_MFC: 463 /* 464 * select data size depending on API version. 465 */ 466 if (sopt->sopt_name == MRT_ADD_MFC && 467 mrt_api_config & MRT_API_FLAGS_ALL) { 468 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 469 sizeof(struct mfcctl2)); 470 } else { 471 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 472 sizeof(struct mfcctl)); 473 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 474 sizeof(mfc) - sizeof(struct mfcctl)); 475 } 476 if (error) 477 break; 478 if (sopt->sopt_name == MRT_ADD_MFC) 479 error = add_mfc(&mfc); 480 else 481 error = del_mfc(&mfc); 482 break; 483 484 case MRT_ASSERT: 485 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 486 if (error) 487 break; 488 set_assert(optval); 489 break; 490 491 case MRT_API_CONFIG: 492 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 493 if (!error) 494 error = set_api_config(&i); 495 if (!error) 496 error = sooptcopyout(sopt, &i, sizeof i); 497 break; 498 499 case MRT_ADD_BW_UPCALL: 500 case MRT_DEL_BW_UPCALL: 501 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 502 sizeof bw_upcall); 503 if (error) 504 break; 505 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 506 error = add_bw_upcall(&bw_upcall); 507 else 508 error = del_bw_upcall(&bw_upcall); 509 break; 510 511 default: 512 error = EOPNOTSUPP; 513 break; 514 } 515 return error; 516 } 517 518 /* 519 * Handle MRT getsockopt commands 520 */ 521 static int 522 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 523 { 524 int error; 525 static int version = 0x0305; /* !!! why is this here? XXX */ 526 527 switch (sopt->sopt_name) { 528 case MRT_VERSION: 529 error = sooptcopyout(sopt, &version, sizeof version); 530 break; 531 532 case MRT_ASSERT: 533 error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); 534 break; 535 536 case MRT_API_SUPPORT: 537 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 538 break; 539 540 case MRT_API_CONFIG: 541 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 542 break; 543 544 default: 545 error = EOPNOTSUPP; 546 break; 547 } 548 return error; 549 } 550 551 /* 552 * Handle ioctl commands to obtain information from the cache 553 */ 554 static int 555 X_mrt_ioctl(int cmd, caddr_t data) 556 { 557 int error = 0; 558 559 /* 560 * Currently the only function calling this ioctl routine is rtioctl(). 561 * Typically, only root can create the raw socket in order to execute 562 * this ioctl method, however the request might be coming from a prison 563 */ 564 error = priv_check(curthread, PRIV_NETINET_MROUTE); 565 if (error) 566 return (error); 567 switch (cmd) { 568 case (SIOCGETVIFCNT): 569 error = get_vif_cnt((struct sioc_vif_req *)data); 570 break; 571 572 case (SIOCGETSGCNT): 573 error = get_sg_cnt((struct sioc_sg_req *)data); 574 break; 575 576 default: 577 error = EINVAL; 578 break; 579 } 580 return error; 581 } 582 583 /* 584 * returns the packet, byte, rpf-failure count for the source group provided 585 */ 586 static int 587 get_sg_cnt(struct sioc_sg_req *req) 588 { 589 struct mfc *rt; 590 591 MFC_LOCK(); 592 rt = mfc_find(req->src.s_addr, req->grp.s_addr); 593 if (rt == NULL) { 594 MFC_UNLOCK(); 595 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 596 return EADDRNOTAVAIL; 597 } 598 req->pktcnt = rt->mfc_pkt_cnt; 599 req->bytecnt = rt->mfc_byte_cnt; 600 req->wrong_if = rt->mfc_wrong_if; 601 MFC_UNLOCK(); 602 return 0; 603 } 604 605 /* 606 * returns the input and output packet and byte counts on the vif provided 607 */ 608 static int 609 get_vif_cnt(struct sioc_vif_req *req) 610 { 611 vifi_t vifi = req->vifi; 612 613 VIF_LOCK(); 614 if (vifi >= numvifs) { 615 VIF_UNLOCK(); 616 return EINVAL; 617 } 618 619 req->icount = viftable[vifi].v_pkt_in; 620 req->ocount = viftable[vifi].v_pkt_out; 621 req->ibytes = viftable[vifi].v_bytes_in; 622 req->obytes = viftable[vifi].v_bytes_out; 623 VIF_UNLOCK(); 624 625 return 0; 626 } 627 628 static void 629 ip_mrouter_reset(void) 630 { 631 bzero((caddr_t)mfctable, sizeof(mfctable)); 632 bzero((caddr_t)nexpire, sizeof(nexpire)); 633 634 pim_assert = 0; 635 mrt_api_config = 0; 636 637 callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE); 638 639 bw_upcalls_n = 0; 640 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 641 callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE); 642 callout_init(&bw_meter_ch, CALLOUT_MPSAFE); 643 } 644 645 static void 646 if_detached_event(void *arg __unused, struct ifnet *ifp) 647 { 648 vifi_t vifi; 649 int i; 650 struct mfc *mfc; 651 struct mfc *nmfc; 652 struct mfc **ppmfc; /* Pointer to previous node's next-pointer */ 653 struct rtdetq *pq; 654 struct rtdetq *npq; 655 656 MROUTER_LOCK(); 657 if (ip_mrouter == NULL) { 658 MROUTER_UNLOCK(); 659 } 660 661 /* 662 * Tear down multicast forwarder state associated with this ifnet. 663 * 1. Walk the vif list, matching vifs against this ifnet. 664 * 2. Walk the multicast forwarding cache (mfc) looking for 665 * inner matches with this vif's index. 666 * 3. Free any pending mbufs for this mfc. 667 * 4. Free the associated mfc entry and state associated with this vif. 668 * Be very careful about unlinking from a singly-linked list whose 669 * "head node" is a pointer in a simple array. 670 * 5. Free vif state. This should disable ALLMULTI on the interface. 671 */ 672 VIF_LOCK(); 673 MFC_LOCK(); 674 for (vifi = 0; vifi < numvifs; vifi++) { 675 if (viftable[vifi].v_ifp != ifp) 676 continue; 677 for (i = 0; i < MFCTBLSIZ; i++) { 678 ppmfc = &mfctable[i]; 679 for (mfc = mfctable[i]; mfc != NULL; ) { 680 nmfc = mfc->mfc_next; 681 if (mfc->mfc_parent == vifi) { 682 for (pq = mfc->mfc_stall; pq != NULL; ) { 683 npq = pq->next; 684 m_freem(pq->m); 685 free(pq, M_MRTABLE); 686 pq = npq; 687 } 688 free_bw_list(mfc->mfc_bw_meter); 689 free(mfc, M_MRTABLE); 690 *ppmfc = nmfc; 691 } else { 692 ppmfc = &mfc->mfc_next; 693 } 694 mfc = nmfc; 695 } 696 } 697 del_vif_locked(vifi); 698 } 699 MFC_UNLOCK(); 700 VIF_UNLOCK(); 701 702 MROUTER_UNLOCK(); 703 } 704 705 /* 706 * Enable multicast routing 707 */ 708 static int 709 ip_mrouter_init(struct socket *so, int version) 710 { 711 if (mrtdebug) 712 log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 713 so->so_type, so->so_proto->pr_protocol); 714 715 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 716 return EOPNOTSUPP; 717 718 if (version != 1) 719 return ENOPROTOOPT; 720 721 MROUTER_LOCK(); 722 723 if (ip_mrouter != NULL) { 724 MROUTER_UNLOCK(); 725 return EADDRINUSE; 726 } 727 728 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 729 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 730 if (if_detach_event_tag == NULL) { 731 MROUTER_UNLOCK(); 732 return (ENOMEM); 733 } 734 735 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 736 737 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 738 expire_bw_upcalls_send, NULL); 739 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 740 741 ip_mrouter = so; 742 743 MROUTER_UNLOCK(); 744 745 if (mrtdebug) 746 log(LOG_DEBUG, "ip_mrouter_init\n"); 747 748 return 0; 749 } 750 751 /* 752 * Disable multicast routing 753 */ 754 static int 755 X_ip_mrouter_done(void) 756 { 757 vifi_t vifi; 758 int i; 759 struct ifnet *ifp; 760 struct ifreq ifr; 761 struct mfc *rt; 762 struct rtdetq *rte; 763 764 MROUTER_LOCK(); 765 766 if (ip_mrouter == NULL) { 767 MROUTER_UNLOCK(); 768 return EINVAL; 769 } 770 771 /* 772 * Detach/disable hooks to the reset of the system. 773 */ 774 ip_mrouter = NULL; 775 mrt_api_config = 0; 776 777 VIF_LOCK(); 778 /* 779 * For each phyint in use, disable promiscuous reception of all IP 780 * multicasts. 781 */ 782 for (vifi = 0; vifi < numvifs; vifi++) { 783 if (viftable[vifi].v_lcl_addr.s_addr != 0 && 784 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 785 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 786 787 so->sin_len = sizeof(struct sockaddr_in); 788 so->sin_family = AF_INET; 789 so->sin_addr.s_addr = INADDR_ANY; 790 ifp = viftable[vifi].v_ifp; 791 if_allmulti(ifp, 0); 792 } 793 } 794 bzero((caddr_t)viftable, sizeof(viftable)); 795 numvifs = 0; 796 pim_assert = 0; 797 VIF_UNLOCK(); 798 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 799 800 /* 801 * Free all multicast forwarding cache entries. 802 */ 803 callout_stop(&expire_upcalls_ch); 804 callout_stop(&bw_upcalls_ch); 805 callout_stop(&bw_meter_ch); 806 807 MFC_LOCK(); 808 for (i = 0; i < MFCTBLSIZ; i++) { 809 for (rt = mfctable[i]; rt != NULL; ) { 810 struct mfc *nr = rt->mfc_next; 811 812 for (rte = rt->mfc_stall; rte != NULL; ) { 813 struct rtdetq *n = rte->next; 814 815 m_freem(rte->m); 816 free(rte, M_MRTABLE); 817 rte = n; 818 } 819 free_bw_list(rt->mfc_bw_meter); 820 free(rt, M_MRTABLE); 821 rt = nr; 822 } 823 } 824 bzero((caddr_t)mfctable, sizeof(mfctable)); 825 bzero((caddr_t)nexpire, sizeof(nexpire)); 826 bw_upcalls_n = 0; 827 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 828 MFC_UNLOCK(); 829 830 reg_vif_num = VIFI_INVALID; 831 832 MROUTER_UNLOCK(); 833 834 if (mrtdebug) 835 log(LOG_DEBUG, "ip_mrouter_done\n"); 836 837 return 0; 838 } 839 840 /* 841 * Set PIM assert processing global 842 */ 843 static int 844 set_assert(int i) 845 { 846 if ((i != 1) && (i != 0)) 847 return EINVAL; 848 849 pim_assert = i; 850 851 return 0; 852 } 853 854 /* 855 * Configure API capabilities 856 */ 857 int 858 set_api_config(uint32_t *apival) 859 { 860 int i; 861 862 /* 863 * We can set the API capabilities only if it is the first operation 864 * after MRT_INIT. I.e.: 865 * - there are no vifs installed 866 * - pim_assert is not enabled 867 * - the MFC table is empty 868 */ 869 if (numvifs > 0) { 870 *apival = 0; 871 return EPERM; 872 } 873 if (pim_assert) { 874 *apival = 0; 875 return EPERM; 876 } 877 for (i = 0; i < MFCTBLSIZ; i++) { 878 if (mfctable[i] != NULL) { 879 *apival = 0; 880 return EPERM; 881 } 882 } 883 884 mrt_api_config = *apival & mrt_api_support; 885 *apival = mrt_api_config; 886 887 return 0; 888 } 889 890 /* 891 * Add a vif to the vif table 892 */ 893 static int 894 add_vif(struct vifctl *vifcp) 895 { 896 struct vif *vifp = viftable + vifcp->vifc_vifi; 897 struct sockaddr_in sin = {sizeof sin, AF_INET}; 898 struct ifaddr *ifa; 899 struct ifnet *ifp; 900 int error; 901 902 VIF_LOCK(); 903 if (vifcp->vifc_vifi >= MAXVIFS) { 904 VIF_UNLOCK(); 905 return EINVAL; 906 } 907 /* rate limiting is no longer supported by this code */ 908 if (vifcp->vifc_rate_limit != 0) { 909 log(LOG_ERR, "rate limiting is no longer supported\n"); 910 VIF_UNLOCK(); 911 return EINVAL; 912 } 913 if (vifp->v_lcl_addr.s_addr != INADDR_ANY) { 914 VIF_UNLOCK(); 915 return EADDRINUSE; 916 } 917 if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) { 918 VIF_UNLOCK(); 919 return EADDRNOTAVAIL; 920 } 921 922 /* Find the interface with an address in AF_INET family */ 923 if (vifcp->vifc_flags & VIFF_REGISTER) { 924 /* 925 * XXX: Because VIFF_REGISTER does not really need a valid 926 * local interface (e.g. it could be 127.0.0.2), we don't 927 * check its address. 928 */ 929 ifp = NULL; 930 } else { 931 sin.sin_addr = vifcp->vifc_lcl_addr; 932 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 933 if (ifa == NULL) { 934 VIF_UNLOCK(); 935 return EADDRNOTAVAIL; 936 } 937 ifp = ifa->ifa_ifp; 938 } 939 940 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 941 log(LOG_ERR, "tunnels are no longer supported\n"); 942 VIF_UNLOCK(); 943 return EOPNOTSUPP; 944 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 945 ifp = &multicast_register_if; 946 if (mrtdebug) 947 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 948 (void *)&multicast_register_if); 949 if (reg_vif_num == VIFI_INVALID) { 950 if_initname(&multicast_register_if, "register_vif", 0); 951 multicast_register_if.if_flags = IFF_LOOPBACK; 952 reg_vif_num = vifcp->vifc_vifi; 953 } 954 } else { /* Make sure the interface supports multicast */ 955 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 956 VIF_UNLOCK(); 957 return EOPNOTSUPP; 958 } 959 960 /* Enable promiscuous reception of all IP multicasts from the if */ 961 error = if_allmulti(ifp, 1); 962 if (error) { 963 VIF_UNLOCK(); 964 return error; 965 } 966 } 967 968 vifp->v_flags = vifcp->vifc_flags; 969 vifp->v_threshold = vifcp->vifc_threshold; 970 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 971 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 972 vifp->v_ifp = ifp; 973 vifp->v_rsvp_on = 0; 974 vifp->v_rsvpd = NULL; 975 /* initialize per vif pkt counters */ 976 vifp->v_pkt_in = 0; 977 vifp->v_pkt_out = 0; 978 vifp->v_bytes_in = 0; 979 vifp->v_bytes_out = 0; 980 bzero(&vifp->v_route, sizeof(vifp->v_route)); 981 982 /* Adjust numvifs up if the vifi is higher than numvifs */ 983 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; 984 985 VIF_UNLOCK(); 986 987 if (mrtdebug) 988 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n", 989 vifcp->vifc_vifi, 990 (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), 991 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 992 (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), 993 vifcp->vifc_threshold); 994 995 return 0; 996 } 997 998 /* 999 * Delete a vif from the vif table 1000 */ 1001 static int 1002 del_vif_locked(vifi_t vifi) 1003 { 1004 struct vif *vifp; 1005 1006 VIF_LOCK_ASSERT(); 1007 1008 if (vifi >= numvifs) { 1009 return EINVAL; 1010 } 1011 vifp = &viftable[vifi]; 1012 if (vifp->v_lcl_addr.s_addr == INADDR_ANY) { 1013 return EADDRNOTAVAIL; 1014 } 1015 1016 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1017 if_allmulti(vifp->v_ifp, 0); 1018 1019 if (vifp->v_flags & VIFF_REGISTER) 1020 reg_vif_num = VIFI_INVALID; 1021 1022 bzero((caddr_t)vifp, sizeof (*vifp)); 1023 1024 if (mrtdebug) 1025 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); 1026 1027 /* Adjust numvifs down */ 1028 for (vifi = numvifs; vifi > 0; vifi--) 1029 if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY) 1030 break; 1031 numvifs = vifi; 1032 1033 return 0; 1034 } 1035 1036 static int 1037 del_vif(vifi_t vifi) 1038 { 1039 int cc; 1040 1041 VIF_LOCK(); 1042 cc = del_vif_locked(vifi); 1043 VIF_UNLOCK(); 1044 1045 return cc; 1046 } 1047 1048 /* 1049 * update an mfc entry without resetting counters and S,G addresses. 1050 */ 1051 static void 1052 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1053 { 1054 int i; 1055 1056 rt->mfc_parent = mfccp->mfcc_parent; 1057 for (i = 0; i < numvifs; i++) { 1058 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1059 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1060 MRT_MFC_FLAGS_ALL; 1061 } 1062 /* set the RP address */ 1063 if (mrt_api_config & MRT_MFC_RP) 1064 rt->mfc_rp = mfccp->mfcc_rp; 1065 else 1066 rt->mfc_rp.s_addr = INADDR_ANY; 1067 } 1068 1069 /* 1070 * fully initialize an mfc entry from the parameter. 1071 */ 1072 static void 1073 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1074 { 1075 rt->mfc_origin = mfccp->mfcc_origin; 1076 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1077 1078 update_mfc_params(rt, mfccp); 1079 1080 /* initialize pkt counters per src-grp */ 1081 rt->mfc_pkt_cnt = 0; 1082 rt->mfc_byte_cnt = 0; 1083 rt->mfc_wrong_if = 0; 1084 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; 1085 } 1086 1087 1088 /* 1089 * Add an mfc entry 1090 */ 1091 static int 1092 add_mfc(struct mfcctl2 *mfccp) 1093 { 1094 struct mfc *rt; 1095 u_long hash; 1096 struct rtdetq *rte; 1097 u_short nstl; 1098 1099 VIF_LOCK(); 1100 MFC_LOCK(); 1101 1102 rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1103 1104 /* If an entry already exists, just update the fields */ 1105 if (rt) { 1106 if (mrtdebug & DEBUG_MFC) 1107 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", 1108 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1109 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1110 mfccp->mfcc_parent); 1111 1112 update_mfc_params(rt, mfccp); 1113 MFC_UNLOCK(); 1114 VIF_UNLOCK(); 1115 return 0; 1116 } 1117 1118 /* 1119 * Find the entry for which the upcall was made and update 1120 */ 1121 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1122 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { 1123 1124 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1125 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && 1126 (rt->mfc_stall != NULL)) { 1127 1128 if (nstl++) 1129 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", 1130 "multiple kernel entries", 1131 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1132 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1133 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1134 1135 if (mrtdebug & DEBUG_MFC) 1136 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", 1137 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1138 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1139 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1140 1141 init_mfc_params(rt, mfccp); 1142 1143 rt->mfc_expire = 0; /* Don't clean this guy up */ 1144 nexpire[hash]--; 1145 1146 /* free packets Qed at the end of this entry */ 1147 for (rte = rt->mfc_stall; rte != NULL; ) { 1148 struct rtdetq *n = rte->next; 1149 1150 ip_mdq(rte->m, rte->ifp, rt, -1); 1151 m_freem(rte->m); 1152 free(rte, M_MRTABLE); 1153 rte = n; 1154 } 1155 rt->mfc_stall = NULL; 1156 } 1157 } 1158 1159 /* 1160 * It is possible that an entry is being inserted without an upcall 1161 */ 1162 if (nstl == 0) { 1163 if (mrtdebug & DEBUG_MFC) 1164 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", 1165 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1166 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1167 mfccp->mfcc_parent); 1168 1169 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { 1170 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1171 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { 1172 init_mfc_params(rt, mfccp); 1173 if (rt->mfc_expire) 1174 nexpire[hash]--; 1175 rt->mfc_expire = 0; 1176 break; /* XXX */ 1177 } 1178 } 1179 if (rt == NULL) { /* no upcall, so make a new entry */ 1180 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1181 if (rt == NULL) { 1182 MFC_UNLOCK(); 1183 VIF_UNLOCK(); 1184 return ENOBUFS; 1185 } 1186 1187 init_mfc_params(rt, mfccp); 1188 rt->mfc_expire = 0; 1189 rt->mfc_stall = NULL; 1190 1191 rt->mfc_bw_meter = NULL; 1192 /* insert new entry at head of hash chain */ 1193 rt->mfc_next = mfctable[hash]; 1194 mfctable[hash] = rt; 1195 } 1196 } 1197 MFC_UNLOCK(); 1198 VIF_UNLOCK(); 1199 return 0; 1200 } 1201 1202 /* 1203 * Delete an mfc entry 1204 */ 1205 static int 1206 del_mfc(struct mfcctl2 *mfccp) 1207 { 1208 struct in_addr origin; 1209 struct in_addr mcastgrp; 1210 struct mfc *rt; 1211 struct mfc **nptr; 1212 u_long hash; 1213 struct bw_meter *list; 1214 1215 origin = mfccp->mfcc_origin; 1216 mcastgrp = mfccp->mfcc_mcastgrp; 1217 1218 if (mrtdebug & DEBUG_MFC) 1219 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", 1220 (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1221 1222 MFC_LOCK(); 1223 1224 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); 1225 for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next) 1226 if (origin.s_addr == rt->mfc_origin.s_addr && 1227 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && 1228 rt->mfc_stall == NULL) 1229 break; 1230 if (rt == NULL) { 1231 MFC_UNLOCK(); 1232 return EADDRNOTAVAIL; 1233 } 1234 1235 *nptr = rt->mfc_next; 1236 1237 /* 1238 * free the bw_meter entries 1239 */ 1240 list = rt->mfc_bw_meter; 1241 rt->mfc_bw_meter = NULL; 1242 1243 free(rt, M_MRTABLE); 1244 1245 free_bw_list(list); 1246 1247 MFC_UNLOCK(); 1248 1249 return 0; 1250 } 1251 1252 /* 1253 * Send a message to the routing daemon on the multicast routing socket 1254 */ 1255 static int 1256 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1257 { 1258 if (s) { 1259 SOCKBUF_LOCK(&s->so_rcv); 1260 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1261 NULL) != 0) { 1262 sorwakeup_locked(s); 1263 return 0; 1264 } 1265 SOCKBUF_UNLOCK(&s->so_rcv); 1266 } 1267 m_freem(mm); 1268 return -1; 1269 } 1270 1271 /* 1272 * IP multicast forwarding function. This function assumes that the packet 1273 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1274 * pointed to by "ifp", and the packet is to be relayed to other networks 1275 * that have members of the packet's destination IP multicast group. 1276 * 1277 * The packet is returned unscathed to the caller, unless it is 1278 * erroneous, in which case a non-zero return value tells the caller to 1279 * discard it. 1280 */ 1281 1282 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1283 1284 static int 1285 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1286 struct ip_moptions *imo) 1287 { 1288 struct mfc *rt; 1289 int error; 1290 vifi_t vifi; 1291 1292 if (mrtdebug & DEBUG_FORWARD) 1293 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", 1294 (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), 1295 (void *)ifp); 1296 1297 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1298 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1299 /* 1300 * Packet arrived via a physical interface or 1301 * an encapsulated tunnel or a register_vif. 1302 */ 1303 } else { 1304 /* 1305 * Packet arrived through a source-route tunnel. 1306 * Source-route tunnels are no longer supported. 1307 */ 1308 static int last_log; 1309 if (last_log != time_uptime) { 1310 last_log = time_uptime; 1311 log(LOG_ERR, 1312 "ip_mforward: received source-routed packet from %lx\n", 1313 (u_long)ntohl(ip->ip_src.s_addr)); 1314 } 1315 return 1; 1316 } 1317 1318 VIF_LOCK(); 1319 MFC_LOCK(); 1320 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1321 if (ip->ip_ttl < MAXTTL) 1322 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1323 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1324 struct vif *vifp = viftable + vifi; 1325 1326 printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n", 1327 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr), 1328 vifi, 1329 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1330 vifp->v_ifp->if_xname); 1331 } 1332 error = ip_mdq(m, ifp, NULL, vifi); 1333 MFC_UNLOCK(); 1334 VIF_UNLOCK(); 1335 return error; 1336 } 1337 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1338 printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", 1339 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr)); 1340 if (!imo) 1341 printf("In fact, no options were specified at all\n"); 1342 } 1343 1344 /* 1345 * Don't forward a packet with time-to-live of zero or one, 1346 * or a packet destined to a local-only group. 1347 */ 1348 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1349 MFC_UNLOCK(); 1350 VIF_UNLOCK(); 1351 return 0; 1352 } 1353 1354 /* 1355 * Determine forwarding vifs from the forwarding cache table 1356 */ 1357 ++mrtstat.mrts_mfc_lookups; 1358 rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1359 1360 /* Entry exists, so forward if necessary */ 1361 if (rt != NULL) { 1362 error = ip_mdq(m, ifp, rt, -1); 1363 MFC_UNLOCK(); 1364 VIF_UNLOCK(); 1365 return error; 1366 } else { 1367 /* 1368 * If we don't have a route for packet's origin, 1369 * Make a copy of the packet & send message to routing daemon 1370 */ 1371 1372 struct mbuf *mb0; 1373 struct rtdetq *rte; 1374 u_long hash; 1375 int hlen = ip->ip_hl << 2; 1376 1377 ++mrtstat.mrts_mfc_misses; 1378 1379 mrtstat.mrts_no_route++; 1380 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1381 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", 1382 (u_long)ntohl(ip->ip_src.s_addr), 1383 (u_long)ntohl(ip->ip_dst.s_addr)); 1384 1385 /* 1386 * Allocate mbufs early so that we don't do extra work if we are 1387 * just going to fail anyway. Make sure to pullup the header so 1388 * that other people can't step on it. 1389 */ 1390 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); 1391 if (rte == NULL) { 1392 MFC_UNLOCK(); 1393 VIF_UNLOCK(); 1394 return ENOBUFS; 1395 } 1396 mb0 = m_copypacket(m, M_DONTWAIT); 1397 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1398 mb0 = m_pullup(mb0, hlen); 1399 if (mb0 == NULL) { 1400 free(rte, M_MRTABLE); 1401 MFC_UNLOCK(); 1402 VIF_UNLOCK(); 1403 return ENOBUFS; 1404 } 1405 1406 /* is there an upcall waiting for this flow ? */ 1407 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1408 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { 1409 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && 1410 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && 1411 (rt->mfc_stall != NULL)) 1412 break; 1413 } 1414 1415 if (rt == NULL) { 1416 int i; 1417 struct igmpmsg *im; 1418 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1419 struct mbuf *mm; 1420 1421 /* 1422 * Locate the vifi for the incoming interface for this packet. 1423 * If none found, drop packet. 1424 */ 1425 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1426 ; 1427 if (vifi >= numvifs) /* vif not found, drop packet */ 1428 goto non_fatal; 1429 1430 /* no upcall, so make a new entry */ 1431 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1432 if (rt == NULL) 1433 goto fail; 1434 /* Make a copy of the header to send to the user level process */ 1435 mm = m_copy(mb0, 0, hlen); 1436 if (mm == NULL) 1437 goto fail1; 1438 1439 /* 1440 * Send message to routing daemon to install 1441 * a route into the kernel table 1442 */ 1443 1444 im = mtod(mm, struct igmpmsg *); 1445 im->im_msgtype = IGMPMSG_NOCACHE; 1446 im->im_mbz = 0; 1447 im->im_vif = vifi; 1448 1449 mrtstat.mrts_upcalls++; 1450 1451 k_igmpsrc.sin_addr = ip->ip_src; 1452 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { 1453 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); 1454 ++mrtstat.mrts_upq_sockfull; 1455 fail1: 1456 free(rt, M_MRTABLE); 1457 fail: 1458 free(rte, M_MRTABLE); 1459 m_freem(mb0); 1460 MFC_UNLOCK(); 1461 VIF_UNLOCK(); 1462 return ENOBUFS; 1463 } 1464 1465 /* insert new entry at head of hash chain */ 1466 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1467 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1468 rt->mfc_expire = UPCALL_EXPIRE; 1469 nexpire[hash]++; 1470 for (i = 0; i < numvifs; i++) { 1471 rt->mfc_ttls[i] = 0; 1472 rt->mfc_flags[i] = 0; 1473 } 1474 rt->mfc_parent = -1; 1475 1476 rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */ 1477 1478 rt->mfc_bw_meter = NULL; 1479 1480 /* link into table */ 1481 rt->mfc_next = mfctable[hash]; 1482 mfctable[hash] = rt; 1483 rt->mfc_stall = rte; 1484 1485 } else { 1486 /* determine if q has overflowed */ 1487 int npkts = 0; 1488 struct rtdetq **p; 1489 1490 /* 1491 * XXX ouch! we need to append to the list, but we 1492 * only have a pointer to the front, so we have to 1493 * scan the entire list every time. 1494 */ 1495 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1496 npkts++; 1497 1498 if (npkts > MAX_UPQ) { 1499 mrtstat.mrts_upq_ovflw++; 1500 non_fatal: 1501 free(rte, M_MRTABLE); 1502 m_freem(mb0); 1503 MFC_UNLOCK(); 1504 VIF_UNLOCK(); 1505 return 0; 1506 } 1507 1508 /* Add this entry to the end of the queue */ 1509 *p = rte; 1510 } 1511 1512 rte->m = mb0; 1513 rte->ifp = ifp; 1514 rte->next = NULL; 1515 1516 MFC_UNLOCK(); 1517 VIF_UNLOCK(); 1518 1519 return 0; 1520 } 1521 } 1522 1523 /* 1524 * Clean up the cache entry if upcall is not serviced 1525 */ 1526 static void 1527 expire_upcalls(void *unused) 1528 { 1529 struct rtdetq *rte; 1530 struct mfc *mfc, **nptr; 1531 int i; 1532 1533 MFC_LOCK(); 1534 for (i = 0; i < MFCTBLSIZ; i++) { 1535 if (nexpire[i] == 0) 1536 continue; 1537 nptr = &mfctable[i]; 1538 for (mfc = *nptr; mfc != NULL; mfc = *nptr) { 1539 /* 1540 * Skip real cache entries 1541 * Make sure it wasn't marked to not expire (shouldn't happen) 1542 * If it expires now 1543 */ 1544 if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && 1545 --mfc->mfc_expire == 0) { 1546 if (mrtdebug & DEBUG_EXPIRE) 1547 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", 1548 (u_long)ntohl(mfc->mfc_origin.s_addr), 1549 (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); 1550 /* 1551 * drop all the packets 1552 * free the mbuf with the pkt, if, timing info 1553 */ 1554 for (rte = mfc->mfc_stall; rte; ) { 1555 struct rtdetq *n = rte->next; 1556 1557 m_freem(rte->m); 1558 free(rte, M_MRTABLE); 1559 rte = n; 1560 } 1561 ++mrtstat.mrts_cache_cleanups; 1562 nexpire[i]--; 1563 1564 /* 1565 * free the bw_meter entries 1566 */ 1567 while (mfc->mfc_bw_meter != NULL) { 1568 struct bw_meter *x = mfc->mfc_bw_meter; 1569 1570 mfc->mfc_bw_meter = x->bm_mfc_next; 1571 free(x, M_BWMETER); 1572 } 1573 1574 *nptr = mfc->mfc_next; 1575 free(mfc, M_MRTABLE); 1576 } else { 1577 nptr = &mfc->mfc_next; 1578 } 1579 } 1580 } 1581 MFC_UNLOCK(); 1582 1583 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1584 } 1585 1586 /* 1587 * Packet forwarding routine once entry in the cache is made 1588 */ 1589 static int 1590 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1591 { 1592 struct ip *ip = mtod(m, struct ip *); 1593 vifi_t vifi; 1594 int plen = ip->ip_len; 1595 1596 VIF_LOCK_ASSERT(); 1597 1598 /* 1599 * If xmt_vif is not -1, send on only the requested vif. 1600 * 1601 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1602 */ 1603 if (xmt_vif < numvifs) { 1604 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1605 pim_register_send(ip, viftable + xmt_vif, m, rt); 1606 else 1607 phyint_send(ip, viftable + xmt_vif, m); 1608 return 1; 1609 } 1610 1611 /* 1612 * Don't forward if it didn't arrive from the parent vif for its origin. 1613 */ 1614 vifi = rt->mfc_parent; 1615 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1616 /* came in the wrong interface */ 1617 if (mrtdebug & DEBUG_FORWARD) 1618 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1619 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); 1620 ++mrtstat.mrts_wrong_if; 1621 ++rt->mfc_wrong_if; 1622 /* 1623 * If we are doing PIM assert processing, send a message 1624 * to the routing daemon. 1625 * 1626 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1627 * can complete the SPT switch, regardless of the type 1628 * of the iif (broadcast media, GRE tunnel, etc). 1629 */ 1630 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1631 struct timeval now; 1632 u_long delta; 1633 1634 if (ifp == &multicast_register_if) 1635 pimstat.pims_rcv_registers_wrongiif++; 1636 1637 /* Get vifi for the incoming packet */ 1638 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1639 ; 1640 if (vifi >= numvifs) 1641 return 0; /* The iif is not found: ignore the packet. */ 1642 1643 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1644 return 0; /* WRONGVIF disabled: ignore the packet */ 1645 1646 GET_TIME(now); 1647 1648 TV_DELTA(now, rt->mfc_last_assert, delta); 1649 1650 if (delta > ASSERT_MSG_TIME) { 1651 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1652 struct igmpmsg *im; 1653 int hlen = ip->ip_hl << 2; 1654 struct mbuf *mm = m_copy(m, 0, hlen); 1655 1656 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1657 mm = m_pullup(mm, hlen); 1658 if (mm == NULL) 1659 return ENOBUFS; 1660 1661 rt->mfc_last_assert = now; 1662 1663 im = mtod(mm, struct igmpmsg *); 1664 im->im_msgtype = IGMPMSG_WRONGVIF; 1665 im->im_mbz = 0; 1666 im->im_vif = vifi; 1667 1668 mrtstat.mrts_upcalls++; 1669 1670 k_igmpsrc.sin_addr = im->im_src; 1671 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { 1672 log(LOG_WARNING, 1673 "ip_mforward: ip_mrouter socket queue full\n"); 1674 ++mrtstat.mrts_upq_sockfull; 1675 return ENOBUFS; 1676 } 1677 } 1678 } 1679 return 0; 1680 } 1681 1682 /* If I sourced this packet, it counts as output, else it was input. */ 1683 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { 1684 viftable[vifi].v_pkt_out++; 1685 viftable[vifi].v_bytes_out += plen; 1686 } else { 1687 viftable[vifi].v_pkt_in++; 1688 viftable[vifi].v_bytes_in += plen; 1689 } 1690 rt->mfc_pkt_cnt++; 1691 rt->mfc_byte_cnt += plen; 1692 1693 /* 1694 * For each vif, decide if a copy of the packet should be forwarded. 1695 * Forward if: 1696 * - the ttl exceeds the vif's threshold 1697 * - there are group members downstream on interface 1698 */ 1699 for (vifi = 0; vifi < numvifs; vifi++) 1700 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1701 viftable[vifi].v_pkt_out++; 1702 viftable[vifi].v_bytes_out += plen; 1703 if (viftable[vifi].v_flags & VIFF_REGISTER) 1704 pim_register_send(ip, viftable + vifi, m, rt); 1705 else 1706 phyint_send(ip, viftable + vifi, m); 1707 } 1708 1709 /* 1710 * Perform upcall-related bw measuring. 1711 */ 1712 if (rt->mfc_bw_meter != NULL) { 1713 struct bw_meter *x; 1714 struct timeval now; 1715 1716 GET_TIME(now); 1717 MFC_LOCK_ASSERT(); 1718 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1719 bw_meter_receive_packet(x, plen, &now); 1720 } 1721 1722 return 0; 1723 } 1724 1725 /* 1726 * check if a vif number is legal/ok. This is used by ip_output. 1727 */ 1728 static int 1729 X_legal_vif_num(int vif) 1730 { 1731 /* XXX unlocked, matter? */ 1732 return (vif >= 0 && vif < numvifs); 1733 } 1734 1735 /* 1736 * Return the local address used by this vif 1737 */ 1738 static u_long 1739 X_ip_mcast_src(int vifi) 1740 { 1741 /* XXX unlocked, matter? */ 1742 if (vifi >= 0 && vifi < numvifs) 1743 return viftable[vifi].v_lcl_addr.s_addr; 1744 else 1745 return INADDR_ANY; 1746 } 1747 1748 static void 1749 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1750 { 1751 struct mbuf *mb_copy; 1752 int hlen = ip->ip_hl << 2; 1753 1754 VIF_LOCK_ASSERT(); 1755 1756 /* 1757 * Make a new reference to the packet; make sure that 1758 * the IP header is actually copied, not just referenced, 1759 * so that ip_output() only scribbles on the copy. 1760 */ 1761 mb_copy = m_copypacket(m, M_DONTWAIT); 1762 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1763 mb_copy = m_pullup(mb_copy, hlen); 1764 if (mb_copy == NULL) 1765 return; 1766 1767 send_packet(vifp, mb_copy); 1768 } 1769 1770 static void 1771 send_packet(struct vif *vifp, struct mbuf *m) 1772 { 1773 struct ip_moptions imo; 1774 struct in_multi *imm[2]; 1775 int error; 1776 1777 VIF_LOCK_ASSERT(); 1778 1779 imo.imo_multicast_ifp = vifp->v_ifp; 1780 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1781 imo.imo_multicast_loop = 1; 1782 imo.imo_multicast_vif = -1; 1783 imo.imo_num_memberships = 0; 1784 imo.imo_max_memberships = 2; 1785 imo.imo_membership = &imm[0]; 1786 1787 /* 1788 * Re-entrancy should not be a problem here, because 1789 * the packets that we send out and are looped back at us 1790 * should get rejected because they appear to come from 1791 * the loopback interface, thus preventing looping. 1792 */ 1793 error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL); 1794 if (mrtdebug & DEBUG_XMIT) { 1795 log(LOG_DEBUG, "phyint_send on vif %td err %d\n", 1796 vifp - viftable, error); 1797 } 1798 } 1799 1800 static int 1801 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt) 1802 { 1803 int error, vifi; 1804 1805 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 1806 return EOPNOTSUPP; 1807 1808 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 1809 if (error) 1810 return error; 1811 1812 VIF_LOCK(); 1813 1814 if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */ 1815 VIF_UNLOCK(); 1816 return EADDRNOTAVAIL; 1817 } 1818 1819 if (sopt->sopt_name == IP_RSVP_VIF_ON) { 1820 /* Check if socket is available. */ 1821 if (viftable[vifi].v_rsvpd != NULL) { 1822 VIF_UNLOCK(); 1823 return EADDRINUSE; 1824 } 1825 1826 viftable[vifi].v_rsvpd = so; 1827 /* This may seem silly, but we need to be sure we don't over-increment 1828 * the RSVP counter, in case something slips up. 1829 */ 1830 if (!viftable[vifi].v_rsvp_on) { 1831 viftable[vifi].v_rsvp_on = 1; 1832 rsvp_on++; 1833 } 1834 } else { /* must be VIF_OFF */ 1835 /* 1836 * XXX as an additional consistency check, one could make sure 1837 * that viftable[vifi].v_rsvpd == so, otherwise passing so as 1838 * first parameter is pretty useless. 1839 */ 1840 viftable[vifi].v_rsvpd = NULL; 1841 /* 1842 * This may seem silly, but we need to be sure we don't over-decrement 1843 * the RSVP counter, in case something slips up. 1844 */ 1845 if (viftable[vifi].v_rsvp_on) { 1846 viftable[vifi].v_rsvp_on = 0; 1847 rsvp_on--; 1848 } 1849 } 1850 VIF_UNLOCK(); 1851 return 0; 1852 } 1853 1854 static void 1855 X_ip_rsvp_force_done(struct socket *so) 1856 { 1857 int vifi; 1858 1859 /* Don't bother if it is not the right type of socket. */ 1860 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 1861 return; 1862 1863 VIF_LOCK(); 1864 1865 /* The socket may be attached to more than one vif...this 1866 * is perfectly legal. 1867 */ 1868 for (vifi = 0; vifi < numvifs; vifi++) { 1869 if (viftable[vifi].v_rsvpd == so) { 1870 viftable[vifi].v_rsvpd = NULL; 1871 /* This may seem silly, but we need to be sure we don't 1872 * over-decrement the RSVP counter, in case something slips up. 1873 */ 1874 if (viftable[vifi].v_rsvp_on) { 1875 viftable[vifi].v_rsvp_on = 0; 1876 rsvp_on--; 1877 } 1878 } 1879 } 1880 1881 VIF_UNLOCK(); 1882 } 1883 1884 static void 1885 X_rsvp_input(struct mbuf *m, int off) 1886 { 1887 int vifi; 1888 struct ip *ip = mtod(m, struct ip *); 1889 struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; 1890 struct ifnet *ifp; 1891 1892 if (rsvpdebug) 1893 printf("rsvp_input: rsvp_on %d\n",rsvp_on); 1894 1895 /* Can still get packets with rsvp_on = 0 if there is a local member 1896 * of the group to which the RSVP packet is addressed. But in this 1897 * case we want to throw the packet away. 1898 */ 1899 if (!rsvp_on) { 1900 m_freem(m); 1901 return; 1902 } 1903 1904 if (rsvpdebug) 1905 printf("rsvp_input: check vifs\n"); 1906 1907 #ifdef DIAGNOSTIC 1908 M_ASSERTPKTHDR(m); 1909 #endif 1910 1911 ifp = m->m_pkthdr.rcvif; 1912 1913 VIF_LOCK(); 1914 /* Find which vif the packet arrived on. */ 1915 for (vifi = 0; vifi < numvifs; vifi++) 1916 if (viftable[vifi].v_ifp == ifp) 1917 break; 1918 1919 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) { 1920 /* 1921 * Drop the lock here to avoid holding it across rip_input. 1922 * This could make rsvpdebug printfs wrong. If you care, 1923 * record the state of stuff before dropping the lock. 1924 */ 1925 VIF_UNLOCK(); 1926 /* 1927 * If the old-style non-vif-associated socket is set, 1928 * then use it. Otherwise, drop packet since there 1929 * is no specific socket for this vif. 1930 */ 1931 if (ip_rsvpd != NULL) { 1932 if (rsvpdebug) 1933 printf("rsvp_input: Sending packet up old-style socket\n"); 1934 rip_input(m, off); /* xxx */ 1935 } else { 1936 if (rsvpdebug && vifi == numvifs) 1937 printf("rsvp_input: Can't find vif for packet.\n"); 1938 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL) 1939 printf("rsvp_input: No socket defined for vif %d\n",vifi); 1940 m_freem(m); 1941 } 1942 return; 1943 } 1944 rsvp_src.sin_addr = ip->ip_src; 1945 1946 if (rsvpdebug && m) 1947 printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", 1948 m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); 1949 1950 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { 1951 if (rsvpdebug) 1952 printf("rsvp_input: Failed to append to socket\n"); 1953 } else { 1954 if (rsvpdebug) 1955 printf("rsvp_input: send packet up\n"); 1956 } 1957 VIF_UNLOCK(); 1958 } 1959 1960 /* 1961 * Code for bandwidth monitors 1962 */ 1963 1964 /* 1965 * Define common interface for timeval-related methods 1966 */ 1967 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1968 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1969 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1970 1971 static uint32_t 1972 compute_bw_meter_flags(struct bw_upcall *req) 1973 { 1974 uint32_t flags = 0; 1975 1976 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1977 flags |= BW_METER_UNIT_PACKETS; 1978 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1979 flags |= BW_METER_UNIT_BYTES; 1980 if (req->bu_flags & BW_UPCALL_GEQ) 1981 flags |= BW_METER_GEQ; 1982 if (req->bu_flags & BW_UPCALL_LEQ) 1983 flags |= BW_METER_LEQ; 1984 1985 return flags; 1986 } 1987 1988 /* 1989 * Add a bw_meter entry 1990 */ 1991 static int 1992 add_bw_upcall(struct bw_upcall *req) 1993 { 1994 struct mfc *mfc; 1995 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1996 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1997 struct timeval now; 1998 struct bw_meter *x; 1999 uint32_t flags; 2000 2001 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2002 return EOPNOTSUPP; 2003 2004 /* Test if the flags are valid */ 2005 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2006 return EINVAL; 2007 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2008 return EINVAL; 2009 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2010 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2011 return EINVAL; 2012 2013 /* Test if the threshold time interval is valid */ 2014 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2015 return EINVAL; 2016 2017 flags = compute_bw_meter_flags(req); 2018 2019 /* 2020 * Find if we have already same bw_meter entry 2021 */ 2022 MFC_LOCK(); 2023 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2024 if (mfc == NULL) { 2025 MFC_UNLOCK(); 2026 return EADDRNOTAVAIL; 2027 } 2028 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2029 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2030 &req->bu_threshold.b_time, ==)) && 2031 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2032 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2033 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2034 MFC_UNLOCK(); 2035 return 0; /* XXX Already installed */ 2036 } 2037 } 2038 2039 /* Allocate the new bw_meter entry */ 2040 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2041 if (x == NULL) { 2042 MFC_UNLOCK(); 2043 return ENOBUFS; 2044 } 2045 2046 /* Set the new bw_meter entry */ 2047 x->bm_threshold.b_time = req->bu_threshold.b_time; 2048 GET_TIME(now); 2049 x->bm_start_time = now; 2050 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2051 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2052 x->bm_measured.b_packets = 0; 2053 x->bm_measured.b_bytes = 0; 2054 x->bm_flags = flags; 2055 x->bm_time_next = NULL; 2056 x->bm_time_hash = BW_METER_BUCKETS; 2057 2058 /* Add the new bw_meter entry to the front of entries for this MFC */ 2059 x->bm_mfc = mfc; 2060 x->bm_mfc_next = mfc->mfc_bw_meter; 2061 mfc->mfc_bw_meter = x; 2062 schedule_bw_meter(x, &now); 2063 MFC_UNLOCK(); 2064 2065 return 0; 2066 } 2067 2068 static void 2069 free_bw_list(struct bw_meter *list) 2070 { 2071 while (list != NULL) { 2072 struct bw_meter *x = list; 2073 2074 list = list->bm_mfc_next; 2075 unschedule_bw_meter(x); 2076 free(x, M_BWMETER); 2077 } 2078 } 2079 2080 /* 2081 * Delete one or multiple bw_meter entries 2082 */ 2083 static int 2084 del_bw_upcall(struct bw_upcall *req) 2085 { 2086 struct mfc *mfc; 2087 struct bw_meter *x; 2088 2089 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2090 return EOPNOTSUPP; 2091 2092 MFC_LOCK(); 2093 /* Find the corresponding MFC entry */ 2094 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2095 if (mfc == NULL) { 2096 MFC_UNLOCK(); 2097 return EADDRNOTAVAIL; 2098 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2099 /* 2100 * Delete all bw_meter entries for this mfc 2101 */ 2102 struct bw_meter *list; 2103 2104 list = mfc->mfc_bw_meter; 2105 mfc->mfc_bw_meter = NULL; 2106 free_bw_list(list); 2107 MFC_UNLOCK(); 2108 return 0; 2109 } else { /* Delete a single bw_meter entry */ 2110 struct bw_meter *prev; 2111 uint32_t flags = 0; 2112 2113 flags = compute_bw_meter_flags(req); 2114 2115 /* Find the bw_meter entry to delete */ 2116 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2117 prev = x, x = x->bm_mfc_next) { 2118 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2119 &req->bu_threshold.b_time, ==)) && 2120 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2121 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2122 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2123 break; 2124 } 2125 if (x != NULL) { /* Delete entry from the list for this MFC */ 2126 if (prev != NULL) 2127 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2128 else 2129 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2130 2131 unschedule_bw_meter(x); 2132 MFC_UNLOCK(); 2133 /* Free the bw_meter entry */ 2134 free(x, M_BWMETER); 2135 return 0; 2136 } else { 2137 MFC_UNLOCK(); 2138 return EINVAL; 2139 } 2140 } 2141 /* NOTREACHED */ 2142 } 2143 2144 /* 2145 * Perform bandwidth measurement processing that may result in an upcall 2146 */ 2147 static void 2148 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2149 { 2150 struct timeval delta; 2151 2152 MFC_LOCK_ASSERT(); 2153 2154 delta = *nowp; 2155 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2156 2157 if (x->bm_flags & BW_METER_GEQ) { 2158 /* 2159 * Processing for ">=" type of bw_meter entry 2160 */ 2161 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2162 /* Reset the bw_meter entry */ 2163 x->bm_start_time = *nowp; 2164 x->bm_measured.b_packets = 0; 2165 x->bm_measured.b_bytes = 0; 2166 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2167 } 2168 2169 /* Record that a packet is received */ 2170 x->bm_measured.b_packets++; 2171 x->bm_measured.b_bytes += plen; 2172 2173 /* 2174 * Test if we should deliver an upcall 2175 */ 2176 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2177 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2178 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2179 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2180 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2181 /* Prepare an upcall for delivery */ 2182 bw_meter_prepare_upcall(x, nowp); 2183 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2184 } 2185 } 2186 } else if (x->bm_flags & BW_METER_LEQ) { 2187 /* 2188 * Processing for "<=" type of bw_meter entry 2189 */ 2190 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2191 /* 2192 * We are behind time with the multicast forwarding table 2193 * scanning for "<=" type of bw_meter entries, so test now 2194 * if we should deliver an upcall. 2195 */ 2196 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2197 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2198 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2199 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2200 /* Prepare an upcall for delivery */ 2201 bw_meter_prepare_upcall(x, nowp); 2202 } 2203 /* Reschedule the bw_meter entry */ 2204 unschedule_bw_meter(x); 2205 schedule_bw_meter(x, nowp); 2206 } 2207 2208 /* Record that a packet is received */ 2209 x->bm_measured.b_packets++; 2210 x->bm_measured.b_bytes += plen; 2211 2212 /* 2213 * Test if we should restart the measuring interval 2214 */ 2215 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2216 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2217 (x->bm_flags & BW_METER_UNIT_BYTES && 2218 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2219 /* Don't restart the measuring interval */ 2220 } else { 2221 /* Do restart the measuring interval */ 2222 /* 2223 * XXX: note that we don't unschedule and schedule, because this 2224 * might be too much overhead per packet. Instead, when we process 2225 * all entries for a given timer hash bin, we check whether it is 2226 * really a timeout. If not, we reschedule at that time. 2227 */ 2228 x->bm_start_time = *nowp; 2229 x->bm_measured.b_packets = 0; 2230 x->bm_measured.b_bytes = 0; 2231 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2232 } 2233 } 2234 } 2235 2236 /* 2237 * Prepare a bandwidth-related upcall 2238 */ 2239 static void 2240 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2241 { 2242 struct timeval delta; 2243 struct bw_upcall *u; 2244 2245 MFC_LOCK_ASSERT(); 2246 2247 /* 2248 * Compute the measured time interval 2249 */ 2250 delta = *nowp; 2251 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2252 2253 /* 2254 * If there are too many pending upcalls, deliver them now 2255 */ 2256 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2257 bw_upcalls_send(); 2258 2259 /* 2260 * Set the bw_upcall entry 2261 */ 2262 u = &bw_upcalls[bw_upcalls_n++]; 2263 u->bu_src = x->bm_mfc->mfc_origin; 2264 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2265 u->bu_threshold.b_time = x->bm_threshold.b_time; 2266 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2267 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2268 u->bu_measured.b_time = delta; 2269 u->bu_measured.b_packets = x->bm_measured.b_packets; 2270 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2271 u->bu_flags = 0; 2272 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2273 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2274 if (x->bm_flags & BW_METER_UNIT_BYTES) 2275 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2276 if (x->bm_flags & BW_METER_GEQ) 2277 u->bu_flags |= BW_UPCALL_GEQ; 2278 if (x->bm_flags & BW_METER_LEQ) 2279 u->bu_flags |= BW_UPCALL_LEQ; 2280 } 2281 2282 /* 2283 * Send the pending bandwidth-related upcalls 2284 */ 2285 static void 2286 bw_upcalls_send(void) 2287 { 2288 struct mbuf *m; 2289 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2290 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2291 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2292 0, /* unused2 */ 2293 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2294 0, /* im_mbz */ 2295 0, /* im_vif */ 2296 0, /* unused3 */ 2297 { 0 }, /* im_src */ 2298 { 0 } }; /* im_dst */ 2299 2300 MFC_LOCK_ASSERT(); 2301 2302 if (bw_upcalls_n == 0) 2303 return; /* No pending upcalls */ 2304 2305 bw_upcalls_n = 0; 2306 2307 /* 2308 * Allocate a new mbuf, initialize it with the header and 2309 * the payload for the pending calls. 2310 */ 2311 MGETHDR(m, M_DONTWAIT, MT_DATA); 2312 if (m == NULL) { 2313 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2314 return; 2315 } 2316 2317 m->m_len = m->m_pkthdr.len = 0; 2318 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2319 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2320 2321 /* 2322 * Send the upcalls 2323 * XXX do we need to set the address in k_igmpsrc ? 2324 */ 2325 mrtstat.mrts_upcalls++; 2326 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2327 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2328 ++mrtstat.mrts_upq_sockfull; 2329 } 2330 } 2331 2332 /* 2333 * Compute the timeout hash value for the bw_meter entries 2334 */ 2335 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2336 do { \ 2337 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2338 \ 2339 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2340 (hash) = next_timeval.tv_sec; \ 2341 if (next_timeval.tv_usec) \ 2342 (hash)++; /* XXX: make sure we don't timeout early */ \ 2343 (hash) %= BW_METER_BUCKETS; \ 2344 } while (0) 2345 2346 /* 2347 * Schedule a timer to process periodically bw_meter entry of type "<=" 2348 * by linking the entry in the proper hash bucket. 2349 */ 2350 static void 2351 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2352 { 2353 int time_hash; 2354 2355 MFC_LOCK_ASSERT(); 2356 2357 if (!(x->bm_flags & BW_METER_LEQ)) 2358 return; /* XXX: we schedule timers only for "<=" entries */ 2359 2360 /* 2361 * Reset the bw_meter entry 2362 */ 2363 x->bm_start_time = *nowp; 2364 x->bm_measured.b_packets = 0; 2365 x->bm_measured.b_bytes = 0; 2366 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2367 2368 /* 2369 * Compute the timeout hash value and insert the entry 2370 */ 2371 BW_METER_TIMEHASH(x, time_hash); 2372 x->bm_time_next = bw_meter_timers[time_hash]; 2373 bw_meter_timers[time_hash] = x; 2374 x->bm_time_hash = time_hash; 2375 } 2376 2377 /* 2378 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2379 * by removing the entry from the proper hash bucket. 2380 */ 2381 static void 2382 unschedule_bw_meter(struct bw_meter *x) 2383 { 2384 int time_hash; 2385 struct bw_meter *prev, *tmp; 2386 2387 MFC_LOCK_ASSERT(); 2388 2389 if (!(x->bm_flags & BW_METER_LEQ)) 2390 return; /* XXX: we schedule timers only for "<=" entries */ 2391 2392 /* 2393 * Compute the timeout hash value and delete the entry 2394 */ 2395 time_hash = x->bm_time_hash; 2396 if (time_hash >= BW_METER_BUCKETS) 2397 return; /* Entry was not scheduled */ 2398 2399 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2400 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2401 if (tmp == x) 2402 break; 2403 2404 if (tmp == NULL) 2405 panic("unschedule_bw_meter: bw_meter entry not found"); 2406 2407 if (prev != NULL) 2408 prev->bm_time_next = x->bm_time_next; 2409 else 2410 bw_meter_timers[time_hash] = x->bm_time_next; 2411 2412 x->bm_time_next = NULL; 2413 x->bm_time_hash = BW_METER_BUCKETS; 2414 } 2415 2416 2417 /* 2418 * Process all "<=" type of bw_meter that should be processed now, 2419 * and for each entry prepare an upcall if necessary. Each processed 2420 * entry is rescheduled again for the (periodic) processing. 2421 * 2422 * This is run periodically (once per second normally). On each round, 2423 * all the potentially matching entries are in the hash slot that we are 2424 * looking at. 2425 */ 2426 static void 2427 bw_meter_process() 2428 { 2429 static uint32_t last_tv_sec; /* last time we processed this */ 2430 2431 uint32_t loops; 2432 int i; 2433 struct timeval now, process_endtime; 2434 2435 GET_TIME(now); 2436 if (last_tv_sec == now.tv_sec) 2437 return; /* nothing to do */ 2438 2439 loops = now.tv_sec - last_tv_sec; 2440 last_tv_sec = now.tv_sec; 2441 if (loops > BW_METER_BUCKETS) 2442 loops = BW_METER_BUCKETS; 2443 2444 MFC_LOCK(); 2445 /* 2446 * Process all bins of bw_meter entries from the one after the last 2447 * processed to the current one. On entry, i points to the last bucket 2448 * visited, so we need to increment i at the beginning of the loop. 2449 */ 2450 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2451 struct bw_meter *x, *tmp_list; 2452 2453 if (++i >= BW_METER_BUCKETS) 2454 i = 0; 2455 2456 /* Disconnect the list of bw_meter entries from the bin */ 2457 tmp_list = bw_meter_timers[i]; 2458 bw_meter_timers[i] = NULL; 2459 2460 /* Process the list of bw_meter entries */ 2461 while (tmp_list != NULL) { 2462 x = tmp_list; 2463 tmp_list = tmp_list->bm_time_next; 2464 2465 /* Test if the time interval is over */ 2466 process_endtime = x->bm_start_time; 2467 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2468 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2469 /* Not yet: reschedule, but don't reset */ 2470 int time_hash; 2471 2472 BW_METER_TIMEHASH(x, time_hash); 2473 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2474 /* 2475 * XXX: somehow the bin processing is a bit ahead of time. 2476 * Put the entry in the next bin. 2477 */ 2478 if (++time_hash >= BW_METER_BUCKETS) 2479 time_hash = 0; 2480 } 2481 x->bm_time_next = bw_meter_timers[time_hash]; 2482 bw_meter_timers[time_hash] = x; 2483 x->bm_time_hash = time_hash; 2484 2485 continue; 2486 } 2487 2488 /* 2489 * Test if we should deliver an upcall 2490 */ 2491 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2492 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2493 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2494 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2495 /* Prepare an upcall for delivery */ 2496 bw_meter_prepare_upcall(x, &now); 2497 } 2498 2499 /* 2500 * Reschedule for next processing 2501 */ 2502 schedule_bw_meter(x, &now); 2503 } 2504 } 2505 2506 /* Send all upcalls that are pending delivery */ 2507 bw_upcalls_send(); 2508 2509 MFC_UNLOCK(); 2510 } 2511 2512 /* 2513 * A periodic function for sending all upcalls that are pending delivery 2514 */ 2515 static void 2516 expire_bw_upcalls_send(void *unused) 2517 { 2518 MFC_LOCK(); 2519 bw_upcalls_send(); 2520 MFC_UNLOCK(); 2521 2522 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2523 expire_bw_upcalls_send, NULL); 2524 } 2525 2526 /* 2527 * A periodic function for periodic scanning of the multicast forwarding 2528 * table for processing all "<=" bw_meter entries. 2529 */ 2530 static void 2531 expire_bw_meter_process(void *unused) 2532 { 2533 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2534 bw_meter_process(); 2535 2536 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 2537 } 2538 2539 /* 2540 * End of bandwidth monitoring code 2541 */ 2542 2543 /* 2544 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2545 * 2546 */ 2547 static int 2548 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2549 struct mfc *rt) 2550 { 2551 struct mbuf *mb_copy, *mm; 2552 2553 if (mrtdebug & DEBUG_PIM) 2554 log(LOG_DEBUG, "pim_register_send: "); 2555 2556 /* 2557 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2558 * rendezvous point was unspecified, and we were told not to. 2559 */ 2560 if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) && 2561 (rt->mfc_rp.s_addr == INADDR_ANY)) 2562 return 0; 2563 2564 mb_copy = pim_register_prepare(ip, m); 2565 if (mb_copy == NULL) 2566 return ENOBUFS; 2567 2568 /* 2569 * Send all the fragments. Note that the mbuf for each fragment 2570 * is freed by the sending machinery. 2571 */ 2572 for (mm = mb_copy; mm; mm = mb_copy) { 2573 mb_copy = mm->m_nextpkt; 2574 mm->m_nextpkt = 0; 2575 mm = m_pullup(mm, sizeof(struct ip)); 2576 if (mm != NULL) { 2577 ip = mtod(mm, struct ip *); 2578 if ((mrt_api_config & MRT_MFC_RP) && 2579 (rt->mfc_rp.s_addr != INADDR_ANY)) { 2580 pim_register_send_rp(ip, vifp, mm, rt); 2581 } else { 2582 pim_register_send_upcall(ip, vifp, mm, rt); 2583 } 2584 } 2585 } 2586 2587 return 0; 2588 } 2589 2590 /* 2591 * Return a copy of the data packet that is ready for PIM Register 2592 * encapsulation. 2593 * XXX: Note that in the returned copy the IP header is a valid one. 2594 */ 2595 static struct mbuf * 2596 pim_register_prepare(struct ip *ip, struct mbuf *m) 2597 { 2598 struct mbuf *mb_copy = NULL; 2599 int mtu; 2600 2601 /* Take care of delayed checksums */ 2602 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2603 in_delayed_cksum(m); 2604 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2605 } 2606 2607 /* 2608 * Copy the old packet & pullup its IP header into the 2609 * new mbuf so we can modify it. 2610 */ 2611 mb_copy = m_copypacket(m, M_DONTWAIT); 2612 if (mb_copy == NULL) 2613 return NULL; 2614 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2615 if (mb_copy == NULL) 2616 return NULL; 2617 2618 /* take care of the TTL */ 2619 ip = mtod(mb_copy, struct ip *); 2620 --ip->ip_ttl; 2621 2622 /* Compute the MTU after the PIM Register encapsulation */ 2623 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2624 2625 if (ip->ip_len <= mtu) { 2626 /* Turn the IP header into a valid one */ 2627 ip->ip_len = htons(ip->ip_len); 2628 ip->ip_off = htons(ip->ip_off); 2629 ip->ip_sum = 0; 2630 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2631 } else { 2632 /* Fragment the packet */ 2633 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2634 m_freem(mb_copy); 2635 return NULL; 2636 } 2637 } 2638 return mb_copy; 2639 } 2640 2641 /* 2642 * Send an upcall with the data packet to the user-level process. 2643 */ 2644 static int 2645 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2646 struct mbuf *mb_copy, struct mfc *rt) 2647 { 2648 struct mbuf *mb_first; 2649 int len = ntohs(ip->ip_len); 2650 struct igmpmsg *im; 2651 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2652 2653 VIF_LOCK_ASSERT(); 2654 2655 /* 2656 * Add a new mbuf with an upcall header 2657 */ 2658 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2659 if (mb_first == NULL) { 2660 m_freem(mb_copy); 2661 return ENOBUFS; 2662 } 2663 mb_first->m_data += max_linkhdr; 2664 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2665 mb_first->m_len = sizeof(struct igmpmsg); 2666 mb_first->m_next = mb_copy; 2667 2668 /* Send message to routing daemon */ 2669 im = mtod(mb_first, struct igmpmsg *); 2670 im->im_msgtype = IGMPMSG_WHOLEPKT; 2671 im->im_mbz = 0; 2672 im->im_vif = vifp - viftable; 2673 im->im_src = ip->ip_src; 2674 im->im_dst = ip->ip_dst; 2675 2676 k_igmpsrc.sin_addr = ip->ip_src; 2677 2678 mrtstat.mrts_upcalls++; 2679 2680 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2681 if (mrtdebug & DEBUG_PIM) 2682 log(LOG_WARNING, 2683 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 2684 ++mrtstat.mrts_upq_sockfull; 2685 return ENOBUFS; 2686 } 2687 2688 /* Keep statistics */ 2689 pimstat.pims_snd_registers_msgs++; 2690 pimstat.pims_snd_registers_bytes += len; 2691 2692 return 0; 2693 } 2694 2695 /* 2696 * Encapsulate the data packet in PIM Register message and send it to the RP. 2697 */ 2698 static int 2699 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2700 struct mfc *rt) 2701 { 2702 struct mbuf *mb_first; 2703 struct ip *ip_outer; 2704 struct pim_encap_pimhdr *pimhdr; 2705 int len = ntohs(ip->ip_len); 2706 vifi_t vifi = rt->mfc_parent; 2707 2708 VIF_LOCK_ASSERT(); 2709 2710 if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) { 2711 m_freem(mb_copy); 2712 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2713 } 2714 2715 /* 2716 * Add a new mbuf with the encapsulating header 2717 */ 2718 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2719 if (mb_first == NULL) { 2720 m_freem(mb_copy); 2721 return ENOBUFS; 2722 } 2723 mb_first->m_data += max_linkhdr; 2724 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2725 mb_first->m_next = mb_copy; 2726 2727 mb_first->m_pkthdr.len = len + mb_first->m_len; 2728 2729 /* 2730 * Fill in the encapsulating IP and PIM header 2731 */ 2732 ip_outer = mtod(mb_first, struct ip *); 2733 *ip_outer = pim_encap_iphdr; 2734 ip_outer->ip_id = ip_newid(); 2735 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2736 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 2737 ip_outer->ip_dst = rt->mfc_rp; 2738 /* 2739 * Copy the inner header TOS to the outer header, and take care of the 2740 * IP_DF bit. 2741 */ 2742 ip_outer->ip_tos = ip->ip_tos; 2743 if (ntohs(ip->ip_off) & IP_DF) 2744 ip_outer->ip_off |= IP_DF; 2745 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2746 + sizeof(pim_encap_iphdr)); 2747 *pimhdr = pim_encap_pimhdr; 2748 /* If the iif crosses a border, set the Border-bit */ 2749 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 2750 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2751 2752 mb_first->m_data += sizeof(pim_encap_iphdr); 2753 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2754 mb_first->m_data -= sizeof(pim_encap_iphdr); 2755 2756 send_packet(vifp, mb_first); 2757 2758 /* Keep statistics */ 2759 pimstat.pims_snd_registers_msgs++; 2760 pimstat.pims_snd_registers_bytes += len; 2761 2762 return 0; 2763 } 2764 2765 /* 2766 * pim_encapcheck() is called by the encap[46]_input() path at runtime to 2767 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2768 * into the kernel. 2769 */ 2770 static int 2771 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2772 { 2773 2774 #ifdef DIAGNOSTIC 2775 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2776 #endif 2777 if (proto != IPPROTO_PIM) 2778 return 0; /* not for us; reject the datagram. */ 2779 2780 return 64; /* claim the datagram. */ 2781 } 2782 2783 /* 2784 * PIM-SMv2 and PIM-DM messages processing. 2785 * Receives and verifies the PIM control messages, and passes them 2786 * up to the listening socket, using rip_input(). 2787 * The only message with special processing is the PIM_REGISTER message 2788 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2789 * is passed to if_simloop(). 2790 */ 2791 void 2792 pim_input(struct mbuf *m, int off) 2793 { 2794 struct ip *ip = mtod(m, struct ip *); 2795 struct pim *pim; 2796 int minlen; 2797 int datalen = ip->ip_len; 2798 int ip_tos; 2799 int iphlen = off; 2800 2801 /* Keep statistics */ 2802 pimstat.pims_rcv_total_msgs++; 2803 pimstat.pims_rcv_total_bytes += datalen; 2804 2805 /* 2806 * Validate lengths 2807 */ 2808 if (datalen < PIM_MINLEN) { 2809 pimstat.pims_rcv_tooshort++; 2810 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 2811 datalen, (u_long)ip->ip_src.s_addr); 2812 m_freem(m); 2813 return; 2814 } 2815 2816 /* 2817 * If the packet is at least as big as a REGISTER, go agead 2818 * and grab the PIM REGISTER header size, to avoid another 2819 * possible m_pullup() later. 2820 * 2821 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2822 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2823 */ 2824 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2825 /* 2826 * Get the IP and PIM headers in contiguous memory, and 2827 * possibly the PIM REGISTER header. 2828 */ 2829 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2830 (m = m_pullup(m, minlen)) == 0) { 2831 log(LOG_ERR, "pim_input: m_pullup failure\n"); 2832 return; 2833 } 2834 /* m_pullup() may have given us a new mbuf so reset ip. */ 2835 ip = mtod(m, struct ip *); 2836 ip_tos = ip->ip_tos; 2837 2838 /* adjust mbuf to point to the PIM header */ 2839 m->m_data += iphlen; 2840 m->m_len -= iphlen; 2841 pim = mtod(m, struct pim *); 2842 2843 /* 2844 * Validate checksum. If PIM REGISTER, exclude the data packet. 2845 * 2846 * XXX: some older PIMv2 implementations don't make this distinction, 2847 * so for compatibility reason perform the checksum over part of the 2848 * message, and if error, then over the whole message. 2849 */ 2850 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2851 /* do nothing, checksum okay */ 2852 } else if (in_cksum(m, datalen)) { 2853 pimstat.pims_rcv_badsum++; 2854 if (mrtdebug & DEBUG_PIM) 2855 log(LOG_DEBUG, "pim_input: invalid checksum"); 2856 m_freem(m); 2857 return; 2858 } 2859 2860 /* PIM version check */ 2861 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2862 pimstat.pims_rcv_badversion++; 2863 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 2864 PIM_VT_V(pim->pim_vt), PIM_VERSION); 2865 m_freem(m); 2866 return; 2867 } 2868 2869 /* restore mbuf back to the outer IP */ 2870 m->m_data -= iphlen; 2871 m->m_len += iphlen; 2872 2873 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2874 /* 2875 * Since this is a REGISTER, we'll make a copy of the register 2876 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2877 * routing daemon. 2878 */ 2879 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2880 struct mbuf *mcp; 2881 struct ip *encap_ip; 2882 u_int32_t *reghdr; 2883 struct ifnet *vifp; 2884 2885 VIF_LOCK(); 2886 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 2887 VIF_UNLOCK(); 2888 if (mrtdebug & DEBUG_PIM) 2889 log(LOG_DEBUG, 2890 "pim_input: register vif not set: %d\n", reg_vif_num); 2891 m_freem(m); 2892 return; 2893 } 2894 /* XXX need refcnt? */ 2895 vifp = viftable[reg_vif_num].v_ifp; 2896 VIF_UNLOCK(); 2897 2898 /* 2899 * Validate length 2900 */ 2901 if (datalen < PIM_REG_MINLEN) { 2902 pimstat.pims_rcv_tooshort++; 2903 pimstat.pims_rcv_badregisters++; 2904 log(LOG_ERR, 2905 "pim_input: register packet size too small %d from %lx\n", 2906 datalen, (u_long)ip->ip_src.s_addr); 2907 m_freem(m); 2908 return; 2909 } 2910 2911 reghdr = (u_int32_t *)(pim + 1); 2912 encap_ip = (struct ip *)(reghdr + 1); 2913 2914 if (mrtdebug & DEBUG_PIM) { 2915 log(LOG_DEBUG, 2916 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 2917 (u_long)ntohl(encap_ip->ip_src.s_addr), 2918 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2919 ntohs(encap_ip->ip_len)); 2920 } 2921 2922 /* verify the version number of the inner packet */ 2923 if (encap_ip->ip_v != IPVERSION) { 2924 pimstat.pims_rcv_badregisters++; 2925 if (mrtdebug & DEBUG_PIM) { 2926 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 2927 "of the inner packet\n", encap_ip->ip_v); 2928 } 2929 m_freem(m); 2930 return; 2931 } 2932 2933 /* verify the inner packet is destined to a mcast group */ 2934 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2935 pimstat.pims_rcv_badregisters++; 2936 if (mrtdebug & DEBUG_PIM) 2937 log(LOG_DEBUG, 2938 "pim_input: inner packet of register is not " 2939 "multicast %lx\n", 2940 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 2941 m_freem(m); 2942 return; 2943 } 2944 2945 /* If a NULL_REGISTER, pass it to the daemon */ 2946 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2947 goto pim_input_to_daemon; 2948 2949 /* 2950 * Copy the TOS from the outer IP header to the inner IP header. 2951 */ 2952 if (encap_ip->ip_tos != ip_tos) { 2953 /* Outer TOS -> inner TOS */ 2954 encap_ip->ip_tos = ip_tos; 2955 /* Recompute the inner header checksum. Sigh... */ 2956 2957 /* adjust mbuf to point to the inner IP header */ 2958 m->m_data += (iphlen + PIM_MINLEN); 2959 m->m_len -= (iphlen + PIM_MINLEN); 2960 2961 encap_ip->ip_sum = 0; 2962 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2963 2964 /* restore mbuf to point back to the outer IP header */ 2965 m->m_data -= (iphlen + PIM_MINLEN); 2966 m->m_len += (iphlen + PIM_MINLEN); 2967 } 2968 2969 /* 2970 * Decapsulate the inner IP packet and loopback to forward it 2971 * as a normal multicast packet. Also, make a copy of the 2972 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2973 * to pass to the daemon later, so it can take the appropriate 2974 * actions (e.g., send back PIM_REGISTER_STOP). 2975 * XXX: here m->m_data points to the outer IP header. 2976 */ 2977 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2978 if (mcp == NULL) { 2979 log(LOG_ERR, 2980 "pim_input: pim register: could not copy register head\n"); 2981 m_freem(m); 2982 return; 2983 } 2984 2985 /* Keep statistics */ 2986 /* XXX: registers_bytes include only the encap. mcast pkt */ 2987 pimstat.pims_rcv_registers_msgs++; 2988 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 2989 2990 /* 2991 * forward the inner ip packet; point m_data at the inner ip. 2992 */ 2993 m_adj(m, iphlen + PIM_MINLEN); 2994 2995 if (mrtdebug & DEBUG_PIM) { 2996 log(LOG_DEBUG, 2997 "pim_input: forwarding decapsulated register: " 2998 "src %lx, dst %lx, vif %d\n", 2999 (u_long)ntohl(encap_ip->ip_src.s_addr), 3000 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3001 reg_vif_num); 3002 } 3003 /* NB: vifp was collected above; can it change on us? */ 3004 if_simloop(vifp, m, dst.sin_family, 0); 3005 3006 /* prepare the register head to send to the mrouting daemon */ 3007 m = mcp; 3008 } 3009 3010 pim_input_to_daemon: 3011 /* 3012 * Pass the PIM message up to the daemon; if it is a Register message, 3013 * pass the 'head' only up to the daemon. This includes the 3014 * outer IP header, PIM header, PIM-Register header and the 3015 * inner IP header. 3016 * XXX: the outer IP header pkt size of a Register is not adjust to 3017 * reflect the fact that the inner multicast data is truncated. 3018 */ 3019 rip_input(m, iphlen); 3020 3021 return; 3022 } 3023 3024 /* 3025 * XXX: This is common code for dealing with initialization for both 3026 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup. 3027 */ 3028 static int 3029 ip_mroute_modevent(module_t mod, int type, void *unused) 3030 { 3031 switch (type) { 3032 case MOD_LOAD: 3033 MROUTER_LOCK_INIT(); 3034 MFC_LOCK_INIT(); 3035 VIF_LOCK_INIT(); 3036 ip_mrouter_reset(); 3037 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 3038 &pim_squelch_wholepkt); 3039 3040 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 3041 pim_encapcheck, &in_pim_protosw, NULL); 3042 if (pim_encap_cookie == NULL) { 3043 printf("ip_mroute: unable to attach pim encap\n"); 3044 VIF_LOCK_DESTROY(); 3045 MFC_LOCK_DESTROY(); 3046 MROUTER_LOCK_DESTROY(); 3047 return (EINVAL); 3048 } 3049 3050 #ifdef INET6 3051 pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM, 3052 pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL); 3053 if (pim6_encap_cookie == NULL) { 3054 printf("ip_mroute: unable to attach pim6 encap\n"); 3055 if (pim_encap_cookie) { 3056 encap_detach(pim_encap_cookie); 3057 pim_encap_cookie = NULL; 3058 } 3059 VIF_LOCK_DESTROY(); 3060 MFC_LOCK_DESTROY(); 3061 MROUTER_LOCK_DESTROY(); 3062 return (EINVAL); 3063 } 3064 #endif 3065 3066 ip_mcast_src = X_ip_mcast_src; 3067 ip_mforward = X_ip_mforward; 3068 ip_mrouter_done = X_ip_mrouter_done; 3069 ip_mrouter_get = X_ip_mrouter_get; 3070 ip_mrouter_set = X_ip_mrouter_set; 3071 3072 #ifdef INET6 3073 ip6_mforward = X_ip6_mforward; 3074 ip6_mrouter_done = X_ip6_mrouter_done; 3075 ip6_mrouter_get = X_ip6_mrouter_get; 3076 ip6_mrouter_set = X_ip6_mrouter_set; 3077 mrt6_ioctl = X_mrt6_ioctl; 3078 #endif 3079 3080 ip_rsvp_force_done = X_ip_rsvp_force_done; 3081 ip_rsvp_vif = X_ip_rsvp_vif; 3082 3083 legal_vif_num = X_legal_vif_num; 3084 mrt_ioctl = X_mrt_ioctl; 3085 rsvp_input_p = X_rsvp_input; 3086 break; 3087 3088 case MOD_UNLOAD: 3089 /* 3090 * Typically module unload happens after the user-level 3091 * process has shutdown the kernel services (the check 3092 * below insures someone can't just yank the module out 3093 * from under a running process). But if the module is 3094 * just loaded and then unloaded w/o starting up a user 3095 * process we still need to cleanup. 3096 */ 3097 if (ip_mrouter 3098 #ifdef INET6 3099 || ip6_mrouter 3100 #endif 3101 ) 3102 return EINVAL; 3103 3104 #ifdef INET6 3105 if (pim6_encap_cookie) { 3106 encap_detach(pim6_encap_cookie); 3107 pim6_encap_cookie = NULL; 3108 } 3109 X_ip6_mrouter_done(); 3110 ip6_mforward = NULL; 3111 ip6_mrouter_done = NULL; 3112 ip6_mrouter_get = NULL; 3113 ip6_mrouter_set = NULL; 3114 mrt6_ioctl = NULL; 3115 #endif 3116 3117 if (pim_encap_cookie) { 3118 encap_detach(pim_encap_cookie); 3119 pim_encap_cookie = NULL; 3120 } 3121 X_ip_mrouter_done(); 3122 ip_mcast_src = NULL; 3123 ip_mforward = NULL; 3124 ip_mrouter_done = NULL; 3125 ip_mrouter_get = NULL; 3126 ip_mrouter_set = NULL; 3127 3128 ip_rsvp_force_done = NULL; 3129 ip_rsvp_vif = NULL; 3130 3131 legal_vif_num = NULL; 3132 mrt_ioctl = NULL; 3133 rsvp_input_p = NULL; 3134 3135 VIF_LOCK_DESTROY(); 3136 MFC_LOCK_DESTROY(); 3137 MROUTER_LOCK_DESTROY(); 3138 break; 3139 3140 default: 3141 return EOPNOTSUPP; 3142 } 3143 return 0; 3144 } 3145 3146 static moduledata_t ip_mroutemod = { 3147 "ip_mroute", 3148 ip_mroute_modevent, 3149 0 3150 }; 3151 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3152