xref: /freebsd/sys/netinet/ip_mroute.c (revision 908e960ea6343acd9515d89d5d5696f9d8bf090c)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  */
55 
56 /*
57  * TODO: Prefix functions with ipmf_.
58  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59  * domain attachment (if_afdata) so we can track consumers of that service.
60  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61  * move it to socket options.
62  * TODO: Cleanup LSRR removal further.
63  * TODO: Push RSVP stubs into raw_ip.c.
64  * TODO: Use bitstring.h for vif set.
65  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66  * TODO: Sync ip6_mroute.c with this file.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_inet.h"
73 #include "opt_mrouting.h"
74 
75 #define _PIM_VT 1
76 
77 #include <sys/param.h>
78 #include <sys/kernel.h>
79 #include <sys/stddef.h>
80 #include <sys/lock.h>
81 #include <sys/ktr.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/module.h>
85 #include <sys/priv.h>
86 #include <sys/protosw.h>
87 #include <sys/signalvar.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/sockio.h>
91 #include <sys/sx.h>
92 #include <sys/sysctl.h>
93 #include <sys/syslog.h>
94 #include <sys/systm.h>
95 #include <sys/time.h>
96 #include <sys/vimage.h>
97 
98 #include <net/if.h>
99 #include <net/netisr.h>
100 #include <net/route.h>
101 
102 #include <netinet/in.h>
103 #include <netinet/igmp.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/ip_encap.h>
108 #include <netinet/ip_mroute.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_options.h>
111 #include <netinet/pim.h>
112 #include <netinet/pim_var.h>
113 #include <netinet/udp.h>
114 #include <netinet/vinet.h>
115 
116 #include <machine/in_cksum.h>
117 
118 #include <security/mac/mac_framework.h>
119 
120 #ifndef KTR_IPMF
121 #define KTR_IPMF KTR_INET
122 #endif
123 
124 #define		VIFI_INVALID	((vifi_t) -1)
125 #define		M_HASCL(m)	((m)->m_flags & M_EXT)
126 
127 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
128 
129 /*
130  * Locking.  We use two locks: one for the virtual interface table and
131  * one for the forwarding table.  These locks may be nested in which case
132  * the VIF lock must always be taken first.  Note that each lock is used
133  * to cover not only the specific data structure but also related data
134  * structures.
135  */
136 
137 static struct mtx mrouter_mtx;
138 #define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
139 #define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
140 #define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
141 #define	MROUTER_LOCK_INIT()						\
142 	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
143 #define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
144 
145 static struct mrtstat	mrtstat;
146 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
147     &mrtstat, mrtstat,
148     "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
149     "netinet/ip_mroute.h)");
150 
151 static u_long			 mfchash;
152 #define MFCHASH(a, g)							\
153 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
154 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
155 #define MFCHASHSIZE	256
156 
157 static u_char			*nexpire;	/* 0..mfchashsize-1 */
158 static u_long			 mfchashsize;	/* Hash size */
159 LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
160 
161 static struct mtx mfc_mtx;
162 #define	MFC_LOCK()		mtx_lock(&mfc_mtx)
163 #define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
164 #define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
165 #define	MFC_LOCK_INIT()							\
166 	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
167 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
168 
169 static vifi_t		numvifs;
170 static struct vif	viftable[MAXVIFS];
171 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
172     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
173     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
174 
175 static struct mtx vif_mtx;
176 #define	VIF_LOCK()		mtx_lock(&vif_mtx)
177 #define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
178 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
179 #define	VIF_LOCK_INIT()							\
180 	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
181 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
182 
183 static eventhandler_tag if_detach_event_tag = NULL;
184 
185 static struct callout expire_upcalls_ch;
186 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
187 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
188 
189 /*
190  * Bandwidth meter variables and constants
191  */
192 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
193 /*
194  * Pending timeouts are stored in a hash table, the key being the
195  * expiration time. Periodically, the entries are analysed and processed.
196  */
197 #define BW_METER_BUCKETS	1024
198 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
199 static struct callout bw_meter_ch;
200 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
201 
202 /*
203  * Pending upcalls are stored in a vector which is flushed when
204  * full, or periodically
205  */
206 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
207 static u_int	bw_upcalls_n; /* # of pending upcalls */
208 static struct callout bw_upcalls_ch;
209 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
210 
211 static struct pimstat pimstat;
212 
213 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
214 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
215     &pimstat, pimstat,
216     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
217 
218 static u_long	pim_squelch_wholepkt = 0;
219 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
220     &pim_squelch_wholepkt, 0,
221     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
222 
223 extern  struct domain inetdomain;
224 static const struct protosw in_pim_protosw = {
225 	.pr_type =		SOCK_RAW,
226 	.pr_domain =		&inetdomain,
227 	.pr_protocol =		IPPROTO_PIM,
228 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
229 	.pr_input =		pim_input,
230 	.pr_output =		(pr_output_t*)rip_output,
231 	.pr_ctloutput =		rip_ctloutput,
232 	.pr_usrreqs =		&rip_usrreqs
233 };
234 static const struct encaptab *pim_encap_cookie;
235 
236 static int pim_encapcheck(const struct mbuf *, int, int, void *);
237 
238 /*
239  * Note: the PIM Register encapsulation adds the following in front of a
240  * data packet:
241  *
242  * struct pim_encap_hdr {
243  *    struct ip ip;
244  *    struct pim_encap_pimhdr  pim;
245  * }
246  *
247  */
248 
249 struct pim_encap_pimhdr {
250 	struct pim pim;
251 	uint32_t   flags;
252 };
253 #define		PIM_ENCAP_TTL	64
254 
255 static struct ip pim_encap_iphdr = {
256 #if BYTE_ORDER == LITTLE_ENDIAN
257 	sizeof(struct ip) >> 2,
258 	IPVERSION,
259 #else
260 	IPVERSION,
261 	sizeof(struct ip) >> 2,
262 #endif
263 	0,			/* tos */
264 	sizeof(struct ip),	/* total length */
265 	0,			/* id */
266 	0,			/* frag offset */
267 	PIM_ENCAP_TTL,
268 	IPPROTO_PIM,
269 	0,			/* checksum */
270 };
271 
272 static struct pim_encap_pimhdr pim_encap_pimhdr = {
273     {
274 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
275 	0,			/* reserved */
276 	0,			/* checksum */
277     },
278     0				/* flags */
279 };
280 
281 static struct ifnet multicast_register_if;
282 static vifi_t reg_vif_num = VIFI_INVALID;
283 
284 /*
285  * Private variables.
286  */
287 
288 static u_long	X_ip_mcast_src(int);
289 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
290 		    struct ip_moptions *);
291 static int	X_ip_mrouter_done(void);
292 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
293 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
294 static int	X_legal_vif_num(int);
295 static int	X_mrt_ioctl(int, caddr_t, int);
296 
297 static int	add_bw_upcall(struct bw_upcall *);
298 static int	add_mfc(struct mfcctl2 *);
299 static int	add_vif(struct vifctl *);
300 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
301 static void	bw_meter_process(void);
302 static void	bw_meter_receive_packet(struct bw_meter *, int,
303 		    struct timeval *);
304 static void	bw_upcalls_send(void);
305 static int	del_bw_upcall(struct bw_upcall *);
306 static int	del_mfc(struct mfcctl2 *);
307 static int	del_vif(vifi_t);
308 static int	del_vif_locked(vifi_t);
309 static void	expire_bw_meter_process(void *);
310 static void	expire_bw_upcalls_send(void *);
311 static void	expire_mfc(struct mfc *);
312 static void	expire_upcalls(void *);
313 static void	free_bw_list(struct bw_meter *);
314 static int	get_sg_cnt(struct sioc_sg_req *);
315 static int	get_vif_cnt(struct sioc_vif_req *);
316 static void	if_detached_event(void *, struct ifnet *);
317 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
318 static int	ip_mrouter_init(struct socket *, int);
319 static __inline struct mfc *
320 		mfc_find(struct in_addr *, struct in_addr *);
321 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
322 static struct mbuf *
323 		pim_register_prepare(struct ip *, struct mbuf *);
324 static int	pim_register_send(struct ip *, struct vif *,
325 		    struct mbuf *, struct mfc *);
326 static int	pim_register_send_rp(struct ip *, struct vif *,
327 		    struct mbuf *, struct mfc *);
328 static int	pim_register_send_upcall(struct ip *, struct vif *,
329 		    struct mbuf *, struct mfc *);
330 static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
331 static void	send_packet(struct vif *, struct mbuf *);
332 static int	set_api_config(uint32_t *);
333 static int	set_assert(int);
334 static int	socket_send(struct socket *, struct mbuf *,
335 		    struct sockaddr_in *);
336 static void	unschedule_bw_meter(struct bw_meter *);
337 
338 /*
339  * Kernel multicast forwarding API capabilities and setup.
340  * If more API capabilities are added to the kernel, they should be
341  * recorded in `mrt_api_support'.
342  */
343 #define MRT_API_VERSION		0x0305
344 
345 static const int mrt_api_version = MRT_API_VERSION;
346 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
347 					 MRT_MFC_FLAGS_BORDER_VIF |
348 					 MRT_MFC_RP |
349 					 MRT_MFC_BW_UPCALL);
350 static uint32_t mrt_api_config = 0;
351 
352 static int pim_assert_enabled;
353 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
354 
355 /*
356  * Find a route for a given origin IP address and multicast group address.
357  * Statistics must be updated by the caller.
358  */
359 static __inline struct mfc *
360 mfc_find(struct in_addr *o, struct in_addr *g)
361 {
362 	struct mfc *rt;
363 
364 	MFC_LOCK_ASSERT();
365 
366 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
367 		if (in_hosteq(rt->mfc_origin, *o) &&
368 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
369 		    TAILQ_EMPTY(&rt->mfc_stall))
370 			break;
371 	}
372 
373 	return (rt);
374 }
375 
376 /*
377  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
378  */
379 static int
380 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
381 {
382     INIT_VNET_INET(curvnet);
383     int	error, optval;
384     vifi_t	vifi;
385     struct	vifctl vifc;
386     struct	mfcctl2 mfc;
387     struct	bw_upcall bw_upcall;
388     uint32_t	i;
389 
390     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
391 	return EPERM;
392 
393     error = 0;
394     switch (sopt->sopt_name) {
395     case MRT_INIT:
396 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
397 	if (error)
398 	    break;
399 	error = ip_mrouter_init(so, optval);
400 	break;
401 
402     case MRT_DONE:
403 	error = ip_mrouter_done();
404 	break;
405 
406     case MRT_ADD_VIF:
407 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
408 	if (error)
409 	    break;
410 	error = add_vif(&vifc);
411 	break;
412 
413     case MRT_DEL_VIF:
414 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
415 	if (error)
416 	    break;
417 	error = del_vif(vifi);
418 	break;
419 
420     case MRT_ADD_MFC:
421     case MRT_DEL_MFC:
422 	/*
423 	 * select data size depending on API version.
424 	 */
425 	if (sopt->sopt_name == MRT_ADD_MFC &&
426 		mrt_api_config & MRT_API_FLAGS_ALL) {
427 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
428 				sizeof(struct mfcctl2));
429 	} else {
430 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
431 				sizeof(struct mfcctl));
432 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
433 			sizeof(mfc) - sizeof(struct mfcctl));
434 	}
435 	if (error)
436 	    break;
437 	if (sopt->sopt_name == MRT_ADD_MFC)
438 	    error = add_mfc(&mfc);
439 	else
440 	    error = del_mfc(&mfc);
441 	break;
442 
443     case MRT_ASSERT:
444 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
445 	if (error)
446 	    break;
447 	set_assert(optval);
448 	break;
449 
450     case MRT_API_CONFIG:
451 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
452 	if (!error)
453 	    error = set_api_config(&i);
454 	if (!error)
455 	    error = sooptcopyout(sopt, &i, sizeof i);
456 	break;
457 
458     case MRT_ADD_BW_UPCALL:
459     case MRT_DEL_BW_UPCALL:
460 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
461 				sizeof bw_upcall);
462 	if (error)
463 	    break;
464 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
465 	    error = add_bw_upcall(&bw_upcall);
466 	else
467 	    error = del_bw_upcall(&bw_upcall);
468 	break;
469 
470     default:
471 	error = EOPNOTSUPP;
472 	break;
473     }
474     return error;
475 }
476 
477 /*
478  * Handle MRT getsockopt commands
479  */
480 static int
481 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
482 {
483     int error;
484 
485     switch (sopt->sopt_name) {
486     case MRT_VERSION:
487 	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
488 	break;
489 
490     case MRT_ASSERT:
491 	error = sooptcopyout(sopt, &pim_assert_enabled,
492 	    sizeof pim_assert_enabled);
493 	break;
494 
495     case MRT_API_SUPPORT:
496 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
497 	break;
498 
499     case MRT_API_CONFIG:
500 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
501 	break;
502 
503     default:
504 	error = EOPNOTSUPP;
505 	break;
506     }
507     return error;
508 }
509 
510 /*
511  * Handle ioctl commands to obtain information from the cache
512  */
513 static int
514 X_mrt_ioctl(int cmd, caddr_t data, int fibnum __unused)
515 {
516     int error = 0;
517 
518     /*
519      * Currently the only function calling this ioctl routine is rtioctl().
520      * Typically, only root can create the raw socket in order to execute
521      * this ioctl method, however the request might be coming from a prison
522      */
523     error = priv_check(curthread, PRIV_NETINET_MROUTE);
524     if (error)
525 	return (error);
526     switch (cmd) {
527     case (SIOCGETVIFCNT):
528 	error = get_vif_cnt((struct sioc_vif_req *)data);
529 	break;
530 
531     case (SIOCGETSGCNT):
532 	error = get_sg_cnt((struct sioc_sg_req *)data);
533 	break;
534 
535     default:
536 	error = EINVAL;
537 	break;
538     }
539     return error;
540 }
541 
542 /*
543  * returns the packet, byte, rpf-failure count for the source group provided
544  */
545 static int
546 get_sg_cnt(struct sioc_sg_req *req)
547 {
548     struct mfc *rt;
549 
550     MFC_LOCK();
551     rt = mfc_find(&req->src, &req->grp);
552     if (rt == NULL) {
553 	MFC_UNLOCK();
554 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
555 	return EADDRNOTAVAIL;
556     }
557     req->pktcnt = rt->mfc_pkt_cnt;
558     req->bytecnt = rt->mfc_byte_cnt;
559     req->wrong_if = rt->mfc_wrong_if;
560     MFC_UNLOCK();
561     return 0;
562 }
563 
564 /*
565  * returns the input and output packet and byte counts on the vif provided
566  */
567 static int
568 get_vif_cnt(struct sioc_vif_req *req)
569 {
570     vifi_t vifi = req->vifi;
571 
572     VIF_LOCK();
573     if (vifi >= numvifs) {
574 	VIF_UNLOCK();
575 	return EINVAL;
576     }
577 
578     req->icount = viftable[vifi].v_pkt_in;
579     req->ocount = viftable[vifi].v_pkt_out;
580     req->ibytes = viftable[vifi].v_bytes_in;
581     req->obytes = viftable[vifi].v_bytes_out;
582     VIF_UNLOCK();
583 
584     return 0;
585 }
586 
587 static void
588 ip_mrouter_reset(void)
589 {
590 
591     pim_assert_enabled = 0;
592     mrt_api_config = 0;
593 
594     callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
595 
596     bw_upcalls_n = 0;
597     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
598     callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
599     callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
600 }
601 
602 static void
603 if_detached_event(void *arg __unused, struct ifnet *ifp)
604 {
605     INIT_VNET_INET(curvnet);
606     vifi_t vifi;
607     int i;
608 
609     MROUTER_LOCK();
610 
611     if (V_ip_mrouter == NULL) {
612 	MROUTER_UNLOCK();
613 	return;
614     }
615 
616     VIF_LOCK();
617     MFC_LOCK();
618 
619     /*
620      * Tear down multicast forwarder state associated with this ifnet.
621      * 1. Walk the vif list, matching vifs against this ifnet.
622      * 2. Walk the multicast forwarding cache (mfc) looking for
623      *    inner matches with this vif's index.
624      * 3. Expire any matching multicast forwarding cache entries.
625      * 4. Free vif state. This should disable ALLMULTI on the interface.
626      */
627     for (vifi = 0; vifi < numvifs; vifi++) {
628 	if (viftable[vifi].v_ifp != ifp)
629 		continue;
630 	for (i = 0; i < mfchashsize; i++) {
631 		struct mfc *rt, *nrt;
632 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
633 			nrt = LIST_NEXT(rt, mfc_hash);
634 			if (rt->mfc_parent == vifi) {
635 				expire_mfc(rt);
636 			}
637 		}
638 	}
639 	del_vif_locked(vifi);
640     }
641 
642     MFC_UNLOCK();
643     VIF_UNLOCK();
644 
645     MROUTER_UNLOCK();
646 }
647 
648 /*
649  * Enable multicast forwarding.
650  */
651 static int
652 ip_mrouter_init(struct socket *so, int version)
653 {
654     INIT_VNET_INET(curvnet);
655 
656     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
657         so->so_type, so->so_proto->pr_protocol);
658 
659     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
660 	return EOPNOTSUPP;
661 
662     if (version != 1)
663 	return ENOPROTOOPT;
664 
665     MROUTER_LOCK();
666 
667     if (V_ip_mrouter != NULL) {
668 	MROUTER_UNLOCK();
669 	return EADDRINUSE;
670     }
671 
672     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
673         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
674     if (if_detach_event_tag == NULL) {
675 	MROUTER_UNLOCK();
676 	return (ENOMEM);
677     }
678 
679     mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
680 
681     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
682 
683     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
684 	expire_bw_upcalls_send, NULL);
685     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
686 
687     V_ip_mrouter = so;
688 
689     MROUTER_UNLOCK();
690 
691     CTR1(KTR_IPMF, "%s: done", __func__);
692 
693     return 0;
694 }
695 
696 /*
697  * Disable multicast forwarding.
698  */
699 static int
700 X_ip_mrouter_done(void)
701 {
702     INIT_VNET_INET(curvnet);
703     vifi_t vifi;
704     int i;
705     struct ifnet *ifp;
706     struct ifreq ifr;
707 
708     MROUTER_LOCK();
709 
710     if (V_ip_mrouter == NULL) {
711 	MROUTER_UNLOCK();
712 	return EINVAL;
713     }
714 
715     /*
716      * Detach/disable hooks to the reset of the system.
717      */
718     V_ip_mrouter = NULL;
719     mrt_api_config = 0;
720 
721     VIF_LOCK();
722 
723     /*
724      * For each phyint in use, disable promiscuous reception of all IP
725      * multicasts.
726      */
727     for (vifi = 0; vifi < numvifs; vifi++) {
728 	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
729 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
730 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
731 
732 	    so->sin_len = sizeof(struct sockaddr_in);
733 	    so->sin_family = AF_INET;
734 	    so->sin_addr.s_addr = INADDR_ANY;
735 	    ifp = viftable[vifi].v_ifp;
736 	    if_allmulti(ifp, 0);
737 	}
738     }
739     bzero((caddr_t)viftable, sizeof(viftable));
740     numvifs = 0;
741     pim_assert_enabled = 0;
742 
743     VIF_UNLOCK();
744 
745     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
746 
747     callout_stop(&expire_upcalls_ch);
748     callout_stop(&bw_upcalls_ch);
749     callout_stop(&bw_meter_ch);
750 
751     MFC_LOCK();
752 
753     /*
754      * Free all multicast forwarding cache entries.
755      * Do not use hashdestroy(), as we must perform other cleanup.
756      */
757     for (i = 0; i < mfchashsize; i++) {
758 	struct mfc *rt, *nrt;
759 	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
760 		nrt = LIST_NEXT(rt, mfc_hash);
761 		expire_mfc(rt);
762 	}
763     }
764     free(mfchashtbl, M_MRTABLE);
765     mfchashtbl = NULL;
766 
767     bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
768 
769     bw_upcalls_n = 0;
770     bzero(bw_meter_timers, sizeof(bw_meter_timers));
771 
772     MFC_UNLOCK();
773 
774     reg_vif_num = VIFI_INVALID;
775 
776     MROUTER_UNLOCK();
777 
778     CTR1(KTR_IPMF, "%s: done", __func__);
779 
780     return 0;
781 }
782 
783 /*
784  * Set PIM assert processing global
785  */
786 static int
787 set_assert(int i)
788 {
789     if ((i != 1) && (i != 0))
790 	return EINVAL;
791 
792     pim_assert_enabled = i;
793 
794     return 0;
795 }
796 
797 /*
798  * Configure API capabilities
799  */
800 int
801 set_api_config(uint32_t *apival)
802 {
803     int i;
804 
805     /*
806      * We can set the API capabilities only if it is the first operation
807      * after MRT_INIT. I.e.:
808      *  - there are no vifs installed
809      *  - pim_assert is not enabled
810      *  - the MFC table is empty
811      */
812     if (numvifs > 0) {
813 	*apival = 0;
814 	return EPERM;
815     }
816     if (pim_assert_enabled) {
817 	*apival = 0;
818 	return EPERM;
819     }
820 
821     MFC_LOCK();
822 
823     for (i = 0; i < mfchashsize; i++) {
824 	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
825 	    *apival = 0;
826 	    return EPERM;
827 	}
828     }
829 
830     MFC_UNLOCK();
831 
832     mrt_api_config = *apival & mrt_api_support;
833     *apival = mrt_api_config;
834 
835     return 0;
836 }
837 
838 /*
839  * Add a vif to the vif table
840  */
841 static int
842 add_vif(struct vifctl *vifcp)
843 {
844     struct vif *vifp = viftable + vifcp->vifc_vifi;
845     struct sockaddr_in sin = {sizeof sin, AF_INET};
846     struct ifaddr *ifa;
847     struct ifnet *ifp;
848     int error;
849 
850     VIF_LOCK();
851     if (vifcp->vifc_vifi >= MAXVIFS) {
852 	VIF_UNLOCK();
853 	return EINVAL;
854     }
855     /* rate limiting is no longer supported by this code */
856     if (vifcp->vifc_rate_limit != 0) {
857 	log(LOG_ERR, "rate limiting is no longer supported\n");
858 	VIF_UNLOCK();
859 	return EINVAL;
860     }
861     if (!in_nullhost(vifp->v_lcl_addr)) {
862 	VIF_UNLOCK();
863 	return EADDRINUSE;
864     }
865     if (in_nullhost(vifcp->vifc_lcl_addr)) {
866 	VIF_UNLOCK();
867 	return EADDRNOTAVAIL;
868     }
869 
870     /* Find the interface with an address in AF_INET family */
871     if (vifcp->vifc_flags & VIFF_REGISTER) {
872 	/*
873 	 * XXX: Because VIFF_REGISTER does not really need a valid
874 	 * local interface (e.g. it could be 127.0.0.2), we don't
875 	 * check its address.
876 	 */
877 	ifp = NULL;
878     } else {
879 	sin.sin_addr = vifcp->vifc_lcl_addr;
880 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
881 	if (ifa == NULL) {
882 	    VIF_UNLOCK();
883 	    return EADDRNOTAVAIL;
884 	}
885 	ifp = ifa->ifa_ifp;
886     }
887 
888     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
889 	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
890 	VIF_UNLOCK();
891 	return EOPNOTSUPP;
892     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
893 	ifp = &multicast_register_if;
894 	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
895 	if (reg_vif_num == VIFI_INVALID) {
896 	    if_initname(&multicast_register_if, "register_vif", 0);
897 	    multicast_register_if.if_flags = IFF_LOOPBACK;
898 	    reg_vif_num = vifcp->vifc_vifi;
899 	}
900     } else {		/* Make sure the interface supports multicast */
901 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
902 	    VIF_UNLOCK();
903 	    return EOPNOTSUPP;
904 	}
905 
906 	/* Enable promiscuous reception of all IP multicasts from the if */
907 	error = if_allmulti(ifp, 1);
908 	if (error) {
909 	    VIF_UNLOCK();
910 	    return error;
911 	}
912     }
913 
914     vifp->v_flags     = vifcp->vifc_flags;
915     vifp->v_threshold = vifcp->vifc_threshold;
916     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
917     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
918     vifp->v_ifp       = ifp;
919     /* initialize per vif pkt counters */
920     vifp->v_pkt_in    = 0;
921     vifp->v_pkt_out   = 0;
922     vifp->v_bytes_in  = 0;
923     vifp->v_bytes_out = 0;
924     bzero(&vifp->v_route, sizeof(vifp->v_route));
925 
926     /* Adjust numvifs up if the vifi is higher than numvifs */
927     if (numvifs <= vifcp->vifc_vifi)
928 	numvifs = vifcp->vifc_vifi + 1;
929 
930     VIF_UNLOCK();
931 
932     CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
933 	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
934 	(int)vifcp->vifc_threshold);
935 
936     return 0;
937 }
938 
939 /*
940  * Delete a vif from the vif table
941  */
942 static int
943 del_vif_locked(vifi_t vifi)
944 {
945     struct vif *vifp;
946 
947     VIF_LOCK_ASSERT();
948 
949     if (vifi >= numvifs) {
950 	return EINVAL;
951     }
952     vifp = &viftable[vifi];
953     if (in_nullhost(vifp->v_lcl_addr)) {
954 	return EADDRNOTAVAIL;
955     }
956 
957     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
958 	if_allmulti(vifp->v_ifp, 0);
959 
960     if (vifp->v_flags & VIFF_REGISTER)
961 	reg_vif_num = VIFI_INVALID;
962 
963     bzero((caddr_t)vifp, sizeof (*vifp));
964 
965     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
966 
967     /* Adjust numvifs down */
968     for (vifi = numvifs; vifi > 0; vifi--)
969 	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
970 	    break;
971     numvifs = vifi;
972 
973     return 0;
974 }
975 
976 static int
977 del_vif(vifi_t vifi)
978 {
979     int cc;
980 
981     VIF_LOCK();
982     cc = del_vif_locked(vifi);
983     VIF_UNLOCK();
984 
985     return cc;
986 }
987 
988 /*
989  * update an mfc entry without resetting counters and S,G addresses.
990  */
991 static void
992 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
993 {
994     int i;
995 
996     rt->mfc_parent = mfccp->mfcc_parent;
997     for (i = 0; i < numvifs; i++) {
998 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
999 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1000 	    MRT_MFC_FLAGS_ALL;
1001     }
1002     /* set the RP address */
1003     if (mrt_api_config & MRT_MFC_RP)
1004 	rt->mfc_rp = mfccp->mfcc_rp;
1005     else
1006 	rt->mfc_rp.s_addr = INADDR_ANY;
1007 }
1008 
1009 /*
1010  * fully initialize an mfc entry from the parameter.
1011  */
1012 static void
1013 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1014 {
1015     rt->mfc_origin     = mfccp->mfcc_origin;
1016     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1017 
1018     update_mfc_params(rt, mfccp);
1019 
1020     /* initialize pkt counters per src-grp */
1021     rt->mfc_pkt_cnt    = 0;
1022     rt->mfc_byte_cnt   = 0;
1023     rt->mfc_wrong_if   = 0;
1024     timevalclear(&rt->mfc_last_assert);
1025 }
1026 
1027 static void
1028 expire_mfc(struct mfc *rt)
1029 {
1030 	struct rtdetq *rte, *nrte;
1031 
1032 	free_bw_list(rt->mfc_bw_meter);
1033 
1034 	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1035 		m_freem(rte->m);
1036 		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1037 		free(rte, M_MRTABLE);
1038 	}
1039 
1040 	LIST_REMOVE(rt, mfc_hash);
1041 	free(rt, M_MRTABLE);
1042 }
1043 
1044 /*
1045  * Add an mfc entry
1046  */
1047 static int
1048 add_mfc(struct mfcctl2 *mfccp)
1049 {
1050     struct mfc *rt;
1051     struct rtdetq *rte, *nrte;
1052     u_long hash = 0;
1053     u_short nstl;
1054 
1055     VIF_LOCK();
1056     MFC_LOCK();
1057 
1058     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1059 
1060     /* If an entry already exists, just update the fields */
1061     if (rt) {
1062 	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1063 	    __func__, inet_ntoa(mfccp->mfcc_origin),
1064 	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1065 	    mfccp->mfcc_parent);
1066 	update_mfc_params(rt, mfccp);
1067 	MFC_UNLOCK();
1068 	VIF_UNLOCK();
1069 	return (0);
1070     }
1071 
1072     /*
1073      * Find the entry for which the upcall was made and update
1074      */
1075     nstl = 0;
1076     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1077     LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1078 	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1079 	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1080 	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1081 		CTR5(KTR_IPMF,
1082 		    "%s: add mfc orig %s group %lx parent %x qh %p",
1083 		    __func__, inet_ntoa(mfccp->mfcc_origin),
1084 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1085 		    mfccp->mfcc_parent,
1086 		    TAILQ_FIRST(&rt->mfc_stall));
1087 		if (nstl++)
1088 			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1089 
1090 		init_mfc_params(rt, mfccp);
1091 		rt->mfc_expire = 0;	/* Don't clean this guy up */
1092 		nexpire[hash]--;
1093 
1094 		/* Free queued packets, but attempt to forward them first. */
1095 		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1096 			if (rte->ifp != NULL)
1097 				ip_mdq(rte->m, rte->ifp, rt, -1);
1098 			m_freem(rte->m);
1099 			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1100 			rt->mfc_nstall--;
1101 			free(rte, M_MRTABLE);
1102 		}
1103 	}
1104     }
1105 
1106     /*
1107      * It is possible that an entry is being inserted without an upcall
1108      */
1109     if (nstl == 0) {
1110 	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1111 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1112 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1113 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1114 			init_mfc_params(rt, mfccp);
1115 			if (rt->mfc_expire)
1116 			    nexpire[hash]--;
1117 			rt->mfc_expire = 0;
1118 			break; /* XXX */
1119 		}
1120 	}
1121 
1122 	if (rt == NULL) {		/* no upcall, so make a new entry */
1123 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1124 	    if (rt == NULL) {
1125 		MFC_UNLOCK();
1126 		VIF_UNLOCK();
1127 		return (ENOBUFS);
1128 	    }
1129 
1130 	    init_mfc_params(rt, mfccp);
1131 	    TAILQ_INIT(&rt->mfc_stall);
1132 	    rt->mfc_nstall = 0;
1133 
1134 	    rt->mfc_expire     = 0;
1135 	    rt->mfc_bw_meter = NULL;
1136 
1137 	    /* insert new entry at head of hash chain */
1138 	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1139 	}
1140     }
1141 
1142     MFC_UNLOCK();
1143     VIF_UNLOCK();
1144 
1145     return (0);
1146 }
1147 
1148 /*
1149  * Delete an mfc entry
1150  */
1151 static int
1152 del_mfc(struct mfcctl2 *mfccp)
1153 {
1154     struct in_addr	origin;
1155     struct in_addr	mcastgrp;
1156     struct mfc		*rt;
1157 
1158     origin = mfccp->mfcc_origin;
1159     mcastgrp = mfccp->mfcc_mcastgrp;
1160 
1161     CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1162 	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1163 
1164     MFC_LOCK();
1165 
1166     rt = mfc_find(&origin, &mcastgrp);
1167     if (rt == NULL) {
1168 	MFC_UNLOCK();
1169 	return EADDRNOTAVAIL;
1170     }
1171 
1172     /*
1173      * free the bw_meter entries
1174      */
1175     free_bw_list(rt->mfc_bw_meter);
1176     rt->mfc_bw_meter = NULL;
1177 
1178     LIST_REMOVE(rt, mfc_hash);
1179     free(rt, M_MRTABLE);
1180 
1181     MFC_UNLOCK();
1182 
1183     return (0);
1184 }
1185 
1186 /*
1187  * Send a message to the routing daemon on the multicast routing socket.
1188  */
1189 static int
1190 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1191 {
1192     if (s) {
1193 	SOCKBUF_LOCK(&s->so_rcv);
1194 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1195 	    NULL) != 0) {
1196 	    sorwakeup_locked(s);
1197 	    return 0;
1198 	}
1199 	SOCKBUF_UNLOCK(&s->so_rcv);
1200     }
1201     m_freem(mm);
1202     return -1;
1203 }
1204 
1205 /*
1206  * IP multicast forwarding function. This function assumes that the packet
1207  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1208  * pointed to by "ifp", and the packet is to be relayed to other networks
1209  * that have members of the packet's destination IP multicast group.
1210  *
1211  * The packet is returned unscathed to the caller, unless it is
1212  * erroneous, in which case a non-zero return value tells the caller to
1213  * discard it.
1214  */
1215 
1216 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1217 
1218 static int
1219 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1220     struct ip_moptions *imo)
1221 {
1222     INIT_VNET_INET(curvnet);
1223     struct mfc *rt;
1224     int error;
1225     vifi_t vifi;
1226 
1227     CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1228 	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1229 
1230     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1231 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1232 	/*
1233 	 * Packet arrived via a physical interface or
1234 	 * an encapsulated tunnel or a register_vif.
1235 	 */
1236     } else {
1237 	/*
1238 	 * Packet arrived through a source-route tunnel.
1239 	 * Source-route tunnels are no longer supported.
1240 	 */
1241 	return (1);
1242     }
1243 
1244     VIF_LOCK();
1245     MFC_LOCK();
1246     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1247 	if (ip->ip_ttl < MAXTTL)
1248 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1249 	error = ip_mdq(m, ifp, NULL, vifi);
1250 	MFC_UNLOCK();
1251 	VIF_UNLOCK();
1252 	return error;
1253     }
1254 
1255     /*
1256      * Don't forward a packet with time-to-live of zero or one,
1257      * or a packet destined to a local-only group.
1258      */
1259     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1260 	MFC_UNLOCK();
1261 	VIF_UNLOCK();
1262 	return 0;
1263     }
1264 
1265     /*
1266      * Determine forwarding vifs from the forwarding cache table
1267      */
1268     MRTSTAT_INC(mrts_mfc_lookups);
1269     rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1270 
1271     /* Entry exists, so forward if necessary */
1272     if (rt != NULL) {
1273 	error = ip_mdq(m, ifp, rt, -1);
1274 	MFC_UNLOCK();
1275 	VIF_UNLOCK();
1276 	return error;
1277     } else {
1278 	/*
1279 	 * If we don't have a route for packet's origin,
1280 	 * Make a copy of the packet & send message to routing daemon
1281 	 */
1282 
1283 	struct mbuf *mb0;
1284 	struct rtdetq *rte;
1285 	u_long hash;
1286 	int hlen = ip->ip_hl << 2;
1287 
1288 	MRTSTAT_INC(mrts_mfc_misses);
1289 	MRTSTAT_INC(mrts_no_route);
1290 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1291 	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1292 
1293 	/*
1294 	 * Allocate mbufs early so that we don't do extra work if we are
1295 	 * just going to fail anyway.  Make sure to pullup the header so
1296 	 * that other people can't step on it.
1297 	 */
1298 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1299 	    M_NOWAIT|M_ZERO);
1300 	if (rte == NULL) {
1301 	    MFC_UNLOCK();
1302 	    VIF_UNLOCK();
1303 	    return ENOBUFS;
1304 	}
1305 
1306 	mb0 = m_copypacket(m, M_DONTWAIT);
1307 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1308 	    mb0 = m_pullup(mb0, hlen);
1309 	if (mb0 == NULL) {
1310 	    free(rte, M_MRTABLE);
1311 	    MFC_UNLOCK();
1312 	    VIF_UNLOCK();
1313 	    return ENOBUFS;
1314 	}
1315 
1316 	/* is there an upcall waiting for this flow ? */
1317 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1318 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1319 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1320 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1321 		    !TAILQ_EMPTY(&rt->mfc_stall))
1322 			break;
1323 	}
1324 
1325 	if (rt == NULL) {
1326 	    int i;
1327 	    struct igmpmsg *im;
1328 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1329 	    struct mbuf *mm;
1330 
1331 	    /*
1332 	     * Locate the vifi for the incoming interface for this packet.
1333 	     * If none found, drop packet.
1334 	     */
1335 	    for (vifi = 0; vifi < numvifs &&
1336 		    viftable[vifi].v_ifp != ifp; vifi++)
1337 		;
1338 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1339 		goto non_fatal;
1340 
1341 	    /* no upcall, so make a new entry */
1342 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1343 	    if (rt == NULL)
1344 		goto fail;
1345 
1346 	    /* Make a copy of the header to send to the user level process */
1347 	    mm = m_copy(mb0, 0, hlen);
1348 	    if (mm == NULL)
1349 		goto fail1;
1350 
1351 	    /*
1352 	     * Send message to routing daemon to install
1353 	     * a route into the kernel table
1354 	     */
1355 
1356 	    im = mtod(mm, struct igmpmsg *);
1357 	    im->im_msgtype = IGMPMSG_NOCACHE;
1358 	    im->im_mbz = 0;
1359 	    im->im_vif = vifi;
1360 
1361 	    MRTSTAT_INC(mrts_upcalls);
1362 
1363 	    k_igmpsrc.sin_addr = ip->ip_src;
1364 	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1365 		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1366 		MRTSTAT_INC(mrts_upq_sockfull);
1367 fail1:
1368 		free(rt, M_MRTABLE);
1369 fail:
1370 		free(rte, M_MRTABLE);
1371 		m_freem(mb0);
1372 		MFC_UNLOCK();
1373 		VIF_UNLOCK();
1374 		return ENOBUFS;
1375 	    }
1376 
1377 	    /* insert new entry at head of hash chain */
1378 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1379 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1380 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1381 	    nexpire[hash]++;
1382 	    for (i = 0; i < numvifs; i++) {
1383 		rt->mfc_ttls[i] = 0;
1384 		rt->mfc_flags[i] = 0;
1385 	    }
1386 	    rt->mfc_parent = -1;
1387 
1388 	    /* clear the RP address */
1389 	    rt->mfc_rp.s_addr = INADDR_ANY;
1390 	    rt->mfc_bw_meter = NULL;
1391 
1392 	    /* link into table */
1393 	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1394 	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1395 	    rt->mfc_nstall++;
1396 
1397 	} else {
1398 	    /* determine if queue has overflowed */
1399 	    if (rt->mfc_nstall > MAX_UPQ) {
1400 		MRTSTAT_INC(mrts_upq_ovflw);
1401 non_fatal:
1402 		free(rte, M_MRTABLE);
1403 		m_freem(mb0);
1404 		MFC_UNLOCK();
1405 		VIF_UNLOCK();
1406 		return (0);
1407 	    }
1408 	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1409 	    rt->mfc_nstall++;
1410 	}
1411 
1412 	rte->m			= mb0;
1413 	rte->ifp		= ifp;
1414 
1415 	MFC_UNLOCK();
1416 	VIF_UNLOCK();
1417 
1418 	return 0;
1419     }
1420 }
1421 
1422 /*
1423  * Clean up the cache entry if upcall is not serviced
1424  */
1425 static void
1426 expire_upcalls(void *unused)
1427 {
1428     int i;
1429 
1430     MFC_LOCK();
1431 
1432     for (i = 0; i < mfchashsize; i++) {
1433 	struct mfc *rt, *nrt;
1434 
1435 	if (nexpire[i] == 0)
1436 	    continue;
1437 
1438 	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1439 		nrt = LIST_NEXT(rt, mfc_hash);
1440 
1441 		if (TAILQ_EMPTY(&rt->mfc_stall))
1442 			continue;
1443 
1444 		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1445 			continue;
1446 
1447 		/*
1448 		 * free the bw_meter entries
1449 		 */
1450 		while (rt->mfc_bw_meter != NULL) {
1451 		    struct bw_meter *x = rt->mfc_bw_meter;
1452 
1453 		    rt->mfc_bw_meter = x->bm_mfc_next;
1454 		    free(x, M_BWMETER);
1455 		}
1456 
1457 		MRTSTAT_INC(mrts_cache_cleanups);
1458 		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1459 		    (u_long)ntohl(rt->mfc_origin.s_addr),
1460 		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1461 
1462 		expire_mfc(rt);
1463 	    }
1464     }
1465 
1466     MFC_UNLOCK();
1467 
1468     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1469 }
1470 
1471 /*
1472  * Packet forwarding routine once entry in the cache is made
1473  */
1474 static int
1475 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1476 {
1477     INIT_VNET_INET(curvnet);
1478     struct ip  *ip = mtod(m, struct ip *);
1479     vifi_t vifi;
1480     int plen = ip->ip_len;
1481 
1482     VIF_LOCK_ASSERT();
1483 
1484     /*
1485      * If xmt_vif is not -1, send on only the requested vif.
1486      *
1487      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1488      */
1489     if (xmt_vif < numvifs) {
1490 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1491 		pim_register_send(ip, viftable + xmt_vif, m, rt);
1492 	else
1493 		phyint_send(ip, viftable + xmt_vif, m);
1494 	return 1;
1495     }
1496 
1497     /*
1498      * Don't forward if it didn't arrive from the parent vif for its origin.
1499      */
1500     vifi = rt->mfc_parent;
1501     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1502 	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1503 	    __func__, ifp, (int)vifi, viftable[vifi].v_ifp);
1504 	MRTSTAT_INC(mrts_wrong_if);
1505 	++rt->mfc_wrong_if;
1506 	/*
1507 	 * If we are doing PIM assert processing, send a message
1508 	 * to the routing daemon.
1509 	 *
1510 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1511 	 * can complete the SPT switch, regardless of the type
1512 	 * of the iif (broadcast media, GRE tunnel, etc).
1513 	 */
1514 	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1515 
1516 	    if (ifp == &multicast_register_if)
1517 		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1518 
1519 	    /* Get vifi for the incoming packet */
1520 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1521 		;
1522 	    if (vifi >= numvifs)
1523 		return 0;	/* The iif is not found: ignore the packet. */
1524 
1525 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1526 		return 0;	/* WRONGVIF disabled: ignore the packet */
1527 
1528 	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1529 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1530 		struct igmpmsg *im;
1531 		int hlen = ip->ip_hl << 2;
1532 		struct mbuf *mm = m_copy(m, 0, hlen);
1533 
1534 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1535 		    mm = m_pullup(mm, hlen);
1536 		if (mm == NULL)
1537 		    return ENOBUFS;
1538 
1539 		im = mtod(mm, struct igmpmsg *);
1540 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1541 		im->im_mbz		= 0;
1542 		im->im_vif		= vifi;
1543 
1544 		MRTSTAT_INC(mrts_upcalls);
1545 
1546 		k_igmpsrc.sin_addr = im->im_src;
1547 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1548 		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1549 		    MRTSTAT_INC(mrts_upq_sockfull);
1550 		    return ENOBUFS;
1551 		}
1552 	    }
1553 	}
1554 	return 0;
1555     }
1556 
1557 
1558     /* If I sourced this packet, it counts as output, else it was input. */
1559     if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1560 	viftable[vifi].v_pkt_out++;
1561 	viftable[vifi].v_bytes_out += plen;
1562     } else {
1563 	viftable[vifi].v_pkt_in++;
1564 	viftable[vifi].v_bytes_in += plen;
1565     }
1566     rt->mfc_pkt_cnt++;
1567     rt->mfc_byte_cnt += plen;
1568 
1569     /*
1570      * For each vif, decide if a copy of the packet should be forwarded.
1571      * Forward if:
1572      *		- the ttl exceeds the vif's threshold
1573      *		- there are group members downstream on interface
1574      */
1575     for (vifi = 0; vifi < numvifs; vifi++)
1576 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1577 	    viftable[vifi].v_pkt_out++;
1578 	    viftable[vifi].v_bytes_out += plen;
1579 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1580 		pim_register_send(ip, viftable + vifi, m, rt);
1581 	    else
1582 		phyint_send(ip, viftable + vifi, m);
1583 	}
1584 
1585     /*
1586      * Perform upcall-related bw measuring.
1587      */
1588     if (rt->mfc_bw_meter != NULL) {
1589 	struct bw_meter *x;
1590 	struct timeval now;
1591 
1592 	microtime(&now);
1593 	MFC_LOCK_ASSERT();
1594 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1595 	    bw_meter_receive_packet(x, plen, &now);
1596     }
1597 
1598     return 0;
1599 }
1600 
1601 /*
1602  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1603  */
1604 static int
1605 X_legal_vif_num(int vif)
1606 {
1607 	int ret;
1608 
1609 	ret = 0;
1610 	if (vif < 0)
1611 		return (ret);
1612 
1613 	VIF_LOCK();
1614 	if (vif < numvifs)
1615 		ret = 1;
1616 	VIF_UNLOCK();
1617 
1618 	return (ret);
1619 }
1620 
1621 /*
1622  * Return the local address used by this vif
1623  */
1624 static u_long
1625 X_ip_mcast_src(int vifi)
1626 {
1627 	in_addr_t addr;
1628 
1629 	addr = INADDR_ANY;
1630 	if (vifi < 0)
1631 		return (addr);
1632 
1633 	VIF_LOCK();
1634 	if (vifi < numvifs)
1635 		addr = viftable[vifi].v_lcl_addr.s_addr;
1636 	VIF_UNLOCK();
1637 
1638 	return (addr);
1639 }
1640 
1641 static void
1642 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1643 {
1644     struct mbuf *mb_copy;
1645     int hlen = ip->ip_hl << 2;
1646 
1647     VIF_LOCK_ASSERT();
1648 
1649     /*
1650      * Make a new reference to the packet; make sure that
1651      * the IP header is actually copied, not just referenced,
1652      * so that ip_output() only scribbles on the copy.
1653      */
1654     mb_copy = m_copypacket(m, M_DONTWAIT);
1655     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1656 	mb_copy = m_pullup(mb_copy, hlen);
1657     if (mb_copy == NULL)
1658 	return;
1659 
1660     send_packet(vifp, mb_copy);
1661 }
1662 
1663 static void
1664 send_packet(struct vif *vifp, struct mbuf *m)
1665 {
1666 	struct ip_moptions imo;
1667 	struct in_multi *imm[2];
1668 	int error;
1669 
1670 	VIF_LOCK_ASSERT();
1671 
1672 	imo.imo_multicast_ifp  = vifp->v_ifp;
1673 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1674 	imo.imo_multicast_loop = 1;
1675 	imo.imo_multicast_vif  = -1;
1676 	imo.imo_num_memberships = 0;
1677 	imo.imo_max_memberships = 2;
1678 	imo.imo_membership  = &imm[0];
1679 
1680 	/*
1681 	 * Re-entrancy should not be a problem here, because
1682 	 * the packets that we send out and are looped back at us
1683 	 * should get rejected because they appear to come from
1684 	 * the loopback interface, thus preventing looping.
1685 	 */
1686 	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1687 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1688 	    (ptrdiff_t)(vifp - viftable), error);
1689 }
1690 
1691 /*
1692  * Stubs for old RSVP socket shim implementation.
1693  */
1694 
1695 static int
1696 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1697 {
1698 
1699 	return (EOPNOTSUPP);
1700 }
1701 
1702 static void
1703 X_ip_rsvp_force_done(struct socket *so __unused)
1704 {
1705 
1706 }
1707 
1708 static void
1709 X_rsvp_input(struct mbuf *m, int off __unused)
1710 {
1711 	INIT_VNET_INET(curvnet);
1712 
1713 	if (!V_rsvp_on)
1714 		m_freem(m);
1715 }
1716 
1717 /*
1718  * Code for bandwidth monitors
1719  */
1720 
1721 /*
1722  * Define common interface for timeval-related methods
1723  */
1724 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1725 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1726 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1727 
1728 static uint32_t
1729 compute_bw_meter_flags(struct bw_upcall *req)
1730 {
1731     uint32_t flags = 0;
1732 
1733     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1734 	flags |= BW_METER_UNIT_PACKETS;
1735     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1736 	flags |= BW_METER_UNIT_BYTES;
1737     if (req->bu_flags & BW_UPCALL_GEQ)
1738 	flags |= BW_METER_GEQ;
1739     if (req->bu_flags & BW_UPCALL_LEQ)
1740 	flags |= BW_METER_LEQ;
1741 
1742     return flags;
1743 }
1744 
1745 /*
1746  * Add a bw_meter entry
1747  */
1748 static int
1749 add_bw_upcall(struct bw_upcall *req)
1750 {
1751     struct mfc *mfc;
1752     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1753 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1754     struct timeval now;
1755     struct bw_meter *x;
1756     uint32_t flags;
1757 
1758     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1759 	return EOPNOTSUPP;
1760 
1761     /* Test if the flags are valid */
1762     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1763 	return EINVAL;
1764     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1765 	return EINVAL;
1766     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1767 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1768 	return EINVAL;
1769 
1770     /* Test if the threshold time interval is valid */
1771     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1772 	return EINVAL;
1773 
1774     flags = compute_bw_meter_flags(req);
1775 
1776     /*
1777      * Find if we have already same bw_meter entry
1778      */
1779     MFC_LOCK();
1780     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1781     if (mfc == NULL) {
1782 	MFC_UNLOCK();
1783 	return EADDRNOTAVAIL;
1784     }
1785     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1786 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1787 			   &req->bu_threshold.b_time, ==)) &&
1788 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1789 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1790 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1791 	    MFC_UNLOCK();
1792 	    return 0;		/* XXX Already installed */
1793 	}
1794     }
1795 
1796     /* Allocate the new bw_meter entry */
1797     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1798     if (x == NULL) {
1799 	MFC_UNLOCK();
1800 	return ENOBUFS;
1801     }
1802 
1803     /* Set the new bw_meter entry */
1804     x->bm_threshold.b_time = req->bu_threshold.b_time;
1805     microtime(&now);
1806     x->bm_start_time = now;
1807     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1808     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1809     x->bm_measured.b_packets = 0;
1810     x->bm_measured.b_bytes = 0;
1811     x->bm_flags = flags;
1812     x->bm_time_next = NULL;
1813     x->bm_time_hash = BW_METER_BUCKETS;
1814 
1815     /* Add the new bw_meter entry to the front of entries for this MFC */
1816     x->bm_mfc = mfc;
1817     x->bm_mfc_next = mfc->mfc_bw_meter;
1818     mfc->mfc_bw_meter = x;
1819     schedule_bw_meter(x, &now);
1820     MFC_UNLOCK();
1821 
1822     return 0;
1823 }
1824 
1825 static void
1826 free_bw_list(struct bw_meter *list)
1827 {
1828     while (list != NULL) {
1829 	struct bw_meter *x = list;
1830 
1831 	list = list->bm_mfc_next;
1832 	unschedule_bw_meter(x);
1833 	free(x, M_BWMETER);
1834     }
1835 }
1836 
1837 /*
1838  * Delete one or multiple bw_meter entries
1839  */
1840 static int
1841 del_bw_upcall(struct bw_upcall *req)
1842 {
1843     struct mfc *mfc;
1844     struct bw_meter *x;
1845 
1846     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1847 	return EOPNOTSUPP;
1848 
1849     MFC_LOCK();
1850 
1851     /* Find the corresponding MFC entry */
1852     mfc = mfc_find(&req->bu_src, &req->bu_dst);
1853     if (mfc == NULL) {
1854 	MFC_UNLOCK();
1855 	return EADDRNOTAVAIL;
1856     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1857 	/*
1858 	 * Delete all bw_meter entries for this mfc
1859 	 */
1860 	struct bw_meter *list;
1861 
1862 	list = mfc->mfc_bw_meter;
1863 	mfc->mfc_bw_meter = NULL;
1864 	free_bw_list(list);
1865 	MFC_UNLOCK();
1866 	return 0;
1867     } else {			/* Delete a single bw_meter entry */
1868 	struct bw_meter *prev;
1869 	uint32_t flags = 0;
1870 
1871 	flags = compute_bw_meter_flags(req);
1872 
1873 	/* Find the bw_meter entry to delete */
1874 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1875 	     prev = x, x = x->bm_mfc_next) {
1876 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1877 			       &req->bu_threshold.b_time, ==)) &&
1878 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1879 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1880 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1881 		break;
1882 	}
1883 	if (x != NULL) { /* Delete entry from the list for this MFC */
1884 	    if (prev != NULL)
1885 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1886 	    else
1887 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1888 
1889 	    unschedule_bw_meter(x);
1890 	    MFC_UNLOCK();
1891 	    /* Free the bw_meter entry */
1892 	    free(x, M_BWMETER);
1893 	    return 0;
1894 	} else {
1895 	    MFC_UNLOCK();
1896 	    return EINVAL;
1897 	}
1898     }
1899     /* NOTREACHED */
1900 }
1901 
1902 /*
1903  * Perform bandwidth measurement processing that may result in an upcall
1904  */
1905 static void
1906 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1907 {
1908     struct timeval delta;
1909 
1910     MFC_LOCK_ASSERT();
1911 
1912     delta = *nowp;
1913     BW_TIMEVALDECR(&delta, &x->bm_start_time);
1914 
1915     if (x->bm_flags & BW_METER_GEQ) {
1916 	/*
1917 	 * Processing for ">=" type of bw_meter entry
1918 	 */
1919 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1920 	    /* Reset the bw_meter entry */
1921 	    x->bm_start_time = *nowp;
1922 	    x->bm_measured.b_packets = 0;
1923 	    x->bm_measured.b_bytes = 0;
1924 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1925 	}
1926 
1927 	/* Record that a packet is received */
1928 	x->bm_measured.b_packets++;
1929 	x->bm_measured.b_bytes += plen;
1930 
1931 	/*
1932 	 * Test if we should deliver an upcall
1933 	 */
1934 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1935 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1936 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1937 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1938 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1939 		/* Prepare an upcall for delivery */
1940 		bw_meter_prepare_upcall(x, nowp);
1941 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1942 	    }
1943 	}
1944     } else if (x->bm_flags & BW_METER_LEQ) {
1945 	/*
1946 	 * Processing for "<=" type of bw_meter entry
1947 	 */
1948 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1949 	    /*
1950 	     * We are behind time with the multicast forwarding table
1951 	     * scanning for "<=" type of bw_meter entries, so test now
1952 	     * if we should deliver an upcall.
1953 	     */
1954 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1955 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1956 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1957 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1958 		/* Prepare an upcall for delivery */
1959 		bw_meter_prepare_upcall(x, nowp);
1960 	    }
1961 	    /* Reschedule the bw_meter entry */
1962 	    unschedule_bw_meter(x);
1963 	    schedule_bw_meter(x, nowp);
1964 	}
1965 
1966 	/* Record that a packet is received */
1967 	x->bm_measured.b_packets++;
1968 	x->bm_measured.b_bytes += plen;
1969 
1970 	/*
1971 	 * Test if we should restart the measuring interval
1972 	 */
1973 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1974 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1975 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1976 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1977 	    /* Don't restart the measuring interval */
1978 	} else {
1979 	    /* Do restart the measuring interval */
1980 	    /*
1981 	     * XXX: note that we don't unschedule and schedule, because this
1982 	     * might be too much overhead per packet. Instead, when we process
1983 	     * all entries for a given timer hash bin, we check whether it is
1984 	     * really a timeout. If not, we reschedule at that time.
1985 	     */
1986 	    x->bm_start_time = *nowp;
1987 	    x->bm_measured.b_packets = 0;
1988 	    x->bm_measured.b_bytes = 0;
1989 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1990 	}
1991     }
1992 }
1993 
1994 /*
1995  * Prepare a bandwidth-related upcall
1996  */
1997 static void
1998 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
1999 {
2000     struct timeval delta;
2001     struct bw_upcall *u;
2002 
2003     MFC_LOCK_ASSERT();
2004 
2005     /*
2006      * Compute the measured time interval
2007      */
2008     delta = *nowp;
2009     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2010 
2011     /*
2012      * If there are too many pending upcalls, deliver them now
2013      */
2014     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2015 	bw_upcalls_send();
2016 
2017     /*
2018      * Set the bw_upcall entry
2019      */
2020     u = &bw_upcalls[bw_upcalls_n++];
2021     u->bu_src = x->bm_mfc->mfc_origin;
2022     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2023     u->bu_threshold.b_time = x->bm_threshold.b_time;
2024     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2025     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2026     u->bu_measured.b_time = delta;
2027     u->bu_measured.b_packets = x->bm_measured.b_packets;
2028     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2029     u->bu_flags = 0;
2030     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2031 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2032     if (x->bm_flags & BW_METER_UNIT_BYTES)
2033 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2034     if (x->bm_flags & BW_METER_GEQ)
2035 	u->bu_flags |= BW_UPCALL_GEQ;
2036     if (x->bm_flags & BW_METER_LEQ)
2037 	u->bu_flags |= BW_UPCALL_LEQ;
2038 }
2039 
2040 /*
2041  * Send the pending bandwidth-related upcalls
2042  */
2043 static void
2044 bw_upcalls_send(void)
2045 {
2046     INIT_VNET_INET(curvnet);
2047     struct mbuf *m;
2048     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2049     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2050     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2051 				      0,		/* unused2 */
2052 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2053 				      0,		/* im_mbz  */
2054 				      0,		/* im_vif  */
2055 				      0,		/* unused3 */
2056 				      { 0 },		/* im_src  */
2057 				      { 0 } };		/* im_dst  */
2058 
2059     MFC_LOCK_ASSERT();
2060 
2061     if (bw_upcalls_n == 0)
2062 	return;			/* No pending upcalls */
2063 
2064     bw_upcalls_n = 0;
2065 
2066     /*
2067      * Allocate a new mbuf, initialize it with the header and
2068      * the payload for the pending calls.
2069      */
2070     MGETHDR(m, M_DONTWAIT, MT_DATA);
2071     if (m == NULL) {
2072 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2073 	return;
2074     }
2075 
2076     m->m_len = m->m_pkthdr.len = 0;
2077     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2078     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2079 
2080     /*
2081      * Send the upcalls
2082      * XXX do we need to set the address in k_igmpsrc ?
2083      */
2084     MRTSTAT_INC(mrts_upcalls);
2085     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2086 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2087 	MRTSTAT_INC(mrts_upq_sockfull);
2088     }
2089 }
2090 
2091 /*
2092  * Compute the timeout hash value for the bw_meter entries
2093  */
2094 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2095     do {								\
2096 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2097 									\
2098 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2099 	(hash) = next_timeval.tv_sec;					\
2100 	if (next_timeval.tv_usec)					\
2101 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2102 	(hash) %= BW_METER_BUCKETS;					\
2103     } while (0)
2104 
2105 /*
2106  * Schedule a timer to process periodically bw_meter entry of type "<="
2107  * by linking the entry in the proper hash bucket.
2108  */
2109 static void
2110 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2111 {
2112     int time_hash;
2113 
2114     MFC_LOCK_ASSERT();
2115 
2116     if (!(x->bm_flags & BW_METER_LEQ))
2117 	return;		/* XXX: we schedule timers only for "<=" entries */
2118 
2119     /*
2120      * Reset the bw_meter entry
2121      */
2122     x->bm_start_time = *nowp;
2123     x->bm_measured.b_packets = 0;
2124     x->bm_measured.b_bytes = 0;
2125     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2126 
2127     /*
2128      * Compute the timeout hash value and insert the entry
2129      */
2130     BW_METER_TIMEHASH(x, time_hash);
2131     x->bm_time_next = bw_meter_timers[time_hash];
2132     bw_meter_timers[time_hash] = x;
2133     x->bm_time_hash = time_hash;
2134 }
2135 
2136 /*
2137  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2138  * by removing the entry from the proper hash bucket.
2139  */
2140 static void
2141 unschedule_bw_meter(struct bw_meter *x)
2142 {
2143     int time_hash;
2144     struct bw_meter *prev, *tmp;
2145 
2146     MFC_LOCK_ASSERT();
2147 
2148     if (!(x->bm_flags & BW_METER_LEQ))
2149 	return;		/* XXX: we schedule timers only for "<=" entries */
2150 
2151     /*
2152      * Compute the timeout hash value and delete the entry
2153      */
2154     time_hash = x->bm_time_hash;
2155     if (time_hash >= BW_METER_BUCKETS)
2156 	return;		/* Entry was not scheduled */
2157 
2158     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2159 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2160 	if (tmp == x)
2161 	    break;
2162 
2163     if (tmp == NULL)
2164 	panic("unschedule_bw_meter: bw_meter entry not found");
2165 
2166     if (prev != NULL)
2167 	prev->bm_time_next = x->bm_time_next;
2168     else
2169 	bw_meter_timers[time_hash] = x->bm_time_next;
2170 
2171     x->bm_time_next = NULL;
2172     x->bm_time_hash = BW_METER_BUCKETS;
2173 }
2174 
2175 
2176 /*
2177  * Process all "<=" type of bw_meter that should be processed now,
2178  * and for each entry prepare an upcall if necessary. Each processed
2179  * entry is rescheduled again for the (periodic) processing.
2180  *
2181  * This is run periodically (once per second normally). On each round,
2182  * all the potentially matching entries are in the hash slot that we are
2183  * looking at.
2184  */
2185 static void
2186 bw_meter_process()
2187 {
2188     static uint32_t last_tv_sec;	/* last time we processed this */
2189 
2190     uint32_t loops;
2191     int i;
2192     struct timeval now, process_endtime;
2193 
2194     microtime(&now);
2195     if (last_tv_sec == now.tv_sec)
2196 	return;		/* nothing to do */
2197 
2198     loops = now.tv_sec - last_tv_sec;
2199     last_tv_sec = now.tv_sec;
2200     if (loops > BW_METER_BUCKETS)
2201 	loops = BW_METER_BUCKETS;
2202 
2203     MFC_LOCK();
2204     /*
2205      * Process all bins of bw_meter entries from the one after the last
2206      * processed to the current one. On entry, i points to the last bucket
2207      * visited, so we need to increment i at the beginning of the loop.
2208      */
2209     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2210 	struct bw_meter *x, *tmp_list;
2211 
2212 	if (++i >= BW_METER_BUCKETS)
2213 	    i = 0;
2214 
2215 	/* Disconnect the list of bw_meter entries from the bin */
2216 	tmp_list = bw_meter_timers[i];
2217 	bw_meter_timers[i] = NULL;
2218 
2219 	/* Process the list of bw_meter entries */
2220 	while (tmp_list != NULL) {
2221 	    x = tmp_list;
2222 	    tmp_list = tmp_list->bm_time_next;
2223 
2224 	    /* Test if the time interval is over */
2225 	    process_endtime = x->bm_start_time;
2226 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2227 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2228 		/* Not yet: reschedule, but don't reset */
2229 		int time_hash;
2230 
2231 		BW_METER_TIMEHASH(x, time_hash);
2232 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2233 		    /*
2234 		     * XXX: somehow the bin processing is a bit ahead of time.
2235 		     * Put the entry in the next bin.
2236 		     */
2237 		    if (++time_hash >= BW_METER_BUCKETS)
2238 			time_hash = 0;
2239 		}
2240 		x->bm_time_next = bw_meter_timers[time_hash];
2241 		bw_meter_timers[time_hash] = x;
2242 		x->bm_time_hash = time_hash;
2243 
2244 		continue;
2245 	    }
2246 
2247 	    /*
2248 	     * Test if we should deliver an upcall
2249 	     */
2250 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2251 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2252 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2253 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2254 		/* Prepare an upcall for delivery */
2255 		bw_meter_prepare_upcall(x, &now);
2256 	    }
2257 
2258 	    /*
2259 	     * Reschedule for next processing
2260 	     */
2261 	    schedule_bw_meter(x, &now);
2262 	}
2263     }
2264 
2265     /* Send all upcalls that are pending delivery */
2266     bw_upcalls_send();
2267 
2268     MFC_UNLOCK();
2269 }
2270 
2271 /*
2272  * A periodic function for sending all upcalls that are pending delivery
2273  */
2274 static void
2275 expire_bw_upcalls_send(void *unused)
2276 {
2277     MFC_LOCK();
2278     bw_upcalls_send();
2279     MFC_UNLOCK();
2280 
2281     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2282 	expire_bw_upcalls_send, NULL);
2283 }
2284 
2285 /*
2286  * A periodic function for periodic scanning of the multicast forwarding
2287  * table for processing all "<=" bw_meter entries.
2288  */
2289 static void
2290 expire_bw_meter_process(void *unused)
2291 {
2292     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2293 	bw_meter_process();
2294 
2295     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2296 }
2297 
2298 /*
2299  * End of bandwidth monitoring code
2300  */
2301 
2302 /*
2303  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2304  *
2305  */
2306 static int
2307 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2308     struct mfc *rt)
2309 {
2310     struct mbuf *mb_copy, *mm;
2311 
2312     /*
2313      * Do not send IGMP_WHOLEPKT notifications to userland, if the
2314      * rendezvous point was unspecified, and we were told not to.
2315      */
2316     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2317 	in_nullhost(rt->mfc_rp))
2318 	return 0;
2319 
2320     mb_copy = pim_register_prepare(ip, m);
2321     if (mb_copy == NULL)
2322 	return ENOBUFS;
2323 
2324     /*
2325      * Send all the fragments. Note that the mbuf for each fragment
2326      * is freed by the sending machinery.
2327      */
2328     for (mm = mb_copy; mm; mm = mb_copy) {
2329 	mb_copy = mm->m_nextpkt;
2330 	mm->m_nextpkt = 0;
2331 	mm = m_pullup(mm, sizeof(struct ip));
2332 	if (mm != NULL) {
2333 	    ip = mtod(mm, struct ip *);
2334 	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2335 		pim_register_send_rp(ip, vifp, mm, rt);
2336 	    } else {
2337 		pim_register_send_upcall(ip, vifp, mm, rt);
2338 	    }
2339 	}
2340     }
2341 
2342     return 0;
2343 }
2344 
2345 /*
2346  * Return a copy of the data packet that is ready for PIM Register
2347  * encapsulation.
2348  * XXX: Note that in the returned copy the IP header is a valid one.
2349  */
2350 static struct mbuf *
2351 pim_register_prepare(struct ip *ip, struct mbuf *m)
2352 {
2353     struct mbuf *mb_copy = NULL;
2354     int mtu;
2355 
2356     /* Take care of delayed checksums */
2357     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2358 	in_delayed_cksum(m);
2359 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2360     }
2361 
2362     /*
2363      * Copy the old packet & pullup its IP header into the
2364      * new mbuf so we can modify it.
2365      */
2366     mb_copy = m_copypacket(m, M_DONTWAIT);
2367     if (mb_copy == NULL)
2368 	return NULL;
2369     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2370     if (mb_copy == NULL)
2371 	return NULL;
2372 
2373     /* take care of the TTL */
2374     ip = mtod(mb_copy, struct ip *);
2375     --ip->ip_ttl;
2376 
2377     /* Compute the MTU after the PIM Register encapsulation */
2378     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2379 
2380     if (ip->ip_len <= mtu) {
2381 	/* Turn the IP header into a valid one */
2382 	ip->ip_len = htons(ip->ip_len);
2383 	ip->ip_off = htons(ip->ip_off);
2384 	ip->ip_sum = 0;
2385 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2386     } else {
2387 	/* Fragment the packet */
2388 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2389 	    m_freem(mb_copy);
2390 	    return NULL;
2391 	}
2392     }
2393     return mb_copy;
2394 }
2395 
2396 /*
2397  * Send an upcall with the data packet to the user-level process.
2398  */
2399 static int
2400 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2401     struct mbuf *mb_copy, struct mfc *rt)
2402 {
2403     INIT_VNET_INET(curvnet);
2404     struct mbuf *mb_first;
2405     int len = ntohs(ip->ip_len);
2406     struct igmpmsg *im;
2407     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2408 
2409     VIF_LOCK_ASSERT();
2410 
2411     /*
2412      * Add a new mbuf with an upcall header
2413      */
2414     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2415     if (mb_first == NULL) {
2416 	m_freem(mb_copy);
2417 	return ENOBUFS;
2418     }
2419     mb_first->m_data += max_linkhdr;
2420     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2421     mb_first->m_len = sizeof(struct igmpmsg);
2422     mb_first->m_next = mb_copy;
2423 
2424     /* Send message to routing daemon */
2425     im = mtod(mb_first, struct igmpmsg *);
2426     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2427     im->im_mbz		= 0;
2428     im->im_vif		= vifp - viftable;
2429     im->im_src		= ip->ip_src;
2430     im->im_dst		= ip->ip_dst;
2431 
2432     k_igmpsrc.sin_addr	= ip->ip_src;
2433 
2434     MRTSTAT_INC(mrts_upcalls);
2435 
2436     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2437 	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2438 	MRTSTAT_INC(mrts_upq_sockfull);
2439 	return ENOBUFS;
2440     }
2441 
2442     /* Keep statistics */
2443     PIMSTAT_INC(pims_snd_registers_msgs);
2444     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2445 
2446     return 0;
2447 }
2448 
2449 /*
2450  * Encapsulate the data packet in PIM Register message and send it to the RP.
2451  */
2452 static int
2453 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2454     struct mfc *rt)
2455 {
2456     INIT_VNET_INET(curvnet);
2457     struct mbuf *mb_first;
2458     struct ip *ip_outer;
2459     struct pim_encap_pimhdr *pimhdr;
2460     int len = ntohs(ip->ip_len);
2461     vifi_t vifi = rt->mfc_parent;
2462 
2463     VIF_LOCK_ASSERT();
2464 
2465     if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2466 	m_freem(mb_copy);
2467 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2468     }
2469 
2470     /*
2471      * Add a new mbuf with the encapsulating header
2472      */
2473     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2474     if (mb_first == NULL) {
2475 	m_freem(mb_copy);
2476 	return ENOBUFS;
2477     }
2478     mb_first->m_data += max_linkhdr;
2479     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2480     mb_first->m_next = mb_copy;
2481 
2482     mb_first->m_pkthdr.len = len + mb_first->m_len;
2483 
2484     /*
2485      * Fill in the encapsulating IP and PIM header
2486      */
2487     ip_outer = mtod(mb_first, struct ip *);
2488     *ip_outer = pim_encap_iphdr;
2489     ip_outer->ip_id = ip_newid();
2490     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2491     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2492     ip_outer->ip_dst = rt->mfc_rp;
2493     /*
2494      * Copy the inner header TOS to the outer header, and take care of the
2495      * IP_DF bit.
2496      */
2497     ip_outer->ip_tos = ip->ip_tos;
2498     if (ntohs(ip->ip_off) & IP_DF)
2499 	ip_outer->ip_off |= IP_DF;
2500     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2501 					 + sizeof(pim_encap_iphdr));
2502     *pimhdr = pim_encap_pimhdr;
2503     /* If the iif crosses a border, set the Border-bit */
2504     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2505 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2506 
2507     mb_first->m_data += sizeof(pim_encap_iphdr);
2508     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2509     mb_first->m_data -= sizeof(pim_encap_iphdr);
2510 
2511     send_packet(vifp, mb_first);
2512 
2513     /* Keep statistics */
2514     PIMSTAT_INC(pims_snd_registers_msgs);
2515     PIMSTAT_ADD(pims_snd_registers_bytes, len);
2516 
2517     return 0;
2518 }
2519 
2520 /*
2521  * pim_encapcheck() is called by the encap4_input() path at runtime to
2522  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2523  * into the kernel.
2524  */
2525 static int
2526 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2527 {
2528 
2529 #ifdef DIAGNOSTIC
2530     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2531 #endif
2532     if (proto != IPPROTO_PIM)
2533 	return 0;	/* not for us; reject the datagram. */
2534 
2535     return 64;		/* claim the datagram. */
2536 }
2537 
2538 /*
2539  * PIM-SMv2 and PIM-DM messages processing.
2540  * Receives and verifies the PIM control messages, and passes them
2541  * up to the listening socket, using rip_input().
2542  * The only message with special processing is the PIM_REGISTER message
2543  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2544  * is passed to if_simloop().
2545  */
2546 void
2547 pim_input(struct mbuf *m, int off)
2548 {
2549     struct ip *ip = mtod(m, struct ip *);
2550     struct pim *pim;
2551     int minlen;
2552     int datalen = ip->ip_len;
2553     int ip_tos;
2554     int iphlen = off;
2555 
2556     /* Keep statistics */
2557     PIMSTAT_INC(pims_rcv_total_msgs);
2558     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2559 
2560     /*
2561      * Validate lengths
2562      */
2563     if (datalen < PIM_MINLEN) {
2564 	PIMSTAT_INC(pims_rcv_tooshort);
2565 	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2566 	    __func__, datalen, inet_ntoa(ip->ip_src));
2567 	m_freem(m);
2568 	return;
2569     }
2570 
2571     /*
2572      * If the packet is at least as big as a REGISTER, go agead
2573      * and grab the PIM REGISTER header size, to avoid another
2574      * possible m_pullup() later.
2575      *
2576      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2577      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2578      */
2579     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2580     /*
2581      * Get the IP and PIM headers in contiguous memory, and
2582      * possibly the PIM REGISTER header.
2583      */
2584     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2585 	(m = m_pullup(m, minlen)) == 0) {
2586 	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2587 	return;
2588     }
2589 
2590     /* m_pullup() may have given us a new mbuf so reset ip. */
2591     ip = mtod(m, struct ip *);
2592     ip_tos = ip->ip_tos;
2593 
2594     /* adjust mbuf to point to the PIM header */
2595     m->m_data += iphlen;
2596     m->m_len  -= iphlen;
2597     pim = mtod(m, struct pim *);
2598 
2599     /*
2600      * Validate checksum. If PIM REGISTER, exclude the data packet.
2601      *
2602      * XXX: some older PIMv2 implementations don't make this distinction,
2603      * so for compatibility reason perform the checksum over part of the
2604      * message, and if error, then over the whole message.
2605      */
2606     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2607 	/* do nothing, checksum okay */
2608     } else if (in_cksum(m, datalen)) {
2609 	PIMSTAT_INC(pims_rcv_badsum);
2610 	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2611 	m_freem(m);
2612 	return;
2613     }
2614 
2615     /* PIM version check */
2616     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2617 	PIMSTAT_INC(pims_rcv_badversion);
2618 	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2619 	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2620 	m_freem(m);
2621 	return;
2622     }
2623 
2624     /* restore mbuf back to the outer IP */
2625     m->m_data -= iphlen;
2626     m->m_len  += iphlen;
2627 
2628     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2629 	/*
2630 	 * Since this is a REGISTER, we'll make a copy of the register
2631 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2632 	 * routing daemon.
2633 	 */
2634 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2635 	struct mbuf *mcp;
2636 	struct ip *encap_ip;
2637 	u_int32_t *reghdr;
2638 	struct ifnet *vifp;
2639 
2640 	VIF_LOCK();
2641 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2642 	    VIF_UNLOCK();
2643 	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2644 		(int)reg_vif_num);
2645 	    m_freem(m);
2646 	    return;
2647 	}
2648 	/* XXX need refcnt? */
2649 	vifp = viftable[reg_vif_num].v_ifp;
2650 	VIF_UNLOCK();
2651 
2652 	/*
2653 	 * Validate length
2654 	 */
2655 	if (datalen < PIM_REG_MINLEN) {
2656 	    PIMSTAT_INC(pims_rcv_tooshort);
2657 	    PIMSTAT_INC(pims_rcv_badregisters);
2658 	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2659 	    m_freem(m);
2660 	    return;
2661 	}
2662 
2663 	reghdr = (u_int32_t *)(pim + 1);
2664 	encap_ip = (struct ip *)(reghdr + 1);
2665 
2666 	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2667 	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2668 
2669 	/* verify the version number of the inner packet */
2670 	if (encap_ip->ip_v != IPVERSION) {
2671 	    PIMSTAT_INC(pims_rcv_badregisters);
2672 	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2673 	    m_freem(m);
2674 	    return;
2675 	}
2676 
2677 	/* verify the inner packet is destined to a mcast group */
2678 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2679 	    PIMSTAT_INC(pims_rcv_badregisters);
2680 	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2681 		inet_ntoa(encap_ip->ip_dst));
2682 	    m_freem(m);
2683 	    return;
2684 	}
2685 
2686 	/* If a NULL_REGISTER, pass it to the daemon */
2687 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2688 	    goto pim_input_to_daemon;
2689 
2690 	/*
2691 	 * Copy the TOS from the outer IP header to the inner IP header.
2692 	 */
2693 	if (encap_ip->ip_tos != ip_tos) {
2694 	    /* Outer TOS -> inner TOS */
2695 	    encap_ip->ip_tos = ip_tos;
2696 	    /* Recompute the inner header checksum. Sigh... */
2697 
2698 	    /* adjust mbuf to point to the inner IP header */
2699 	    m->m_data += (iphlen + PIM_MINLEN);
2700 	    m->m_len  -= (iphlen + PIM_MINLEN);
2701 
2702 	    encap_ip->ip_sum = 0;
2703 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2704 
2705 	    /* restore mbuf to point back to the outer IP header */
2706 	    m->m_data -= (iphlen + PIM_MINLEN);
2707 	    m->m_len  += (iphlen + PIM_MINLEN);
2708 	}
2709 
2710 	/*
2711 	 * Decapsulate the inner IP packet and loopback to forward it
2712 	 * as a normal multicast packet. Also, make a copy of the
2713 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2714 	 * to pass to the daemon later, so it can take the appropriate
2715 	 * actions (e.g., send back PIM_REGISTER_STOP).
2716 	 * XXX: here m->m_data points to the outer IP header.
2717 	 */
2718 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2719 	if (mcp == NULL) {
2720 	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2721 	    m_freem(m);
2722 	    return;
2723 	}
2724 
2725 	/* Keep statistics */
2726 	/* XXX: registers_bytes include only the encap. mcast pkt */
2727 	PIMSTAT_INC(pims_rcv_registers_msgs);
2728 	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2729 
2730 	/*
2731 	 * forward the inner ip packet; point m_data at the inner ip.
2732 	 */
2733 	m_adj(m, iphlen + PIM_MINLEN);
2734 
2735 	CTR4(KTR_IPMF,
2736 	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2737 	    __func__,
2738 	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2739 	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2740 	    (int)reg_vif_num);
2741 
2742 	/* NB: vifp was collected above; can it change on us? */
2743 	if_simloop(vifp, m, dst.sin_family, 0);
2744 
2745 	/* prepare the register head to send to the mrouting daemon */
2746 	m = mcp;
2747     }
2748 
2749 pim_input_to_daemon:
2750     /*
2751      * Pass the PIM message up to the daemon; if it is a Register message,
2752      * pass the 'head' only up to the daemon. This includes the
2753      * outer IP header, PIM header, PIM-Register header and the
2754      * inner IP header.
2755      * XXX: the outer IP header pkt size of a Register is not adjust to
2756      * reflect the fact that the inner multicast data is truncated.
2757      */
2758     rip_input(m, iphlen);
2759 
2760     return;
2761 }
2762 
2763 static int
2764 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2765 {
2766 	struct mfc	*rt;
2767 	int		 error, i;
2768 
2769 	if (req->newptr)
2770 		return (EPERM);
2771 	if (mfchashtbl == NULL)	/* XXX unlocked */
2772 		return (0);
2773 	error = sysctl_wire_old_buffer(req, 0);
2774 	if (error)
2775 		return (error);
2776 
2777 	MFC_LOCK();
2778 	for (i = 0; i < mfchashsize; i++) {
2779 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2780 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2781 			if (error)
2782 				goto out_locked;
2783 		}
2784 	}
2785 out_locked:
2786 	MFC_UNLOCK();
2787 	return (error);
2788 }
2789 
2790 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2791     "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2792     "netinet/ip_mroute.h)");
2793 
2794 static int
2795 ip_mroute_modevent(module_t mod, int type, void *unused)
2796 {
2797     INIT_VNET_INET(curvnet);
2798 
2799     switch (type) {
2800     case MOD_LOAD:
2801 	MROUTER_LOCK_INIT();
2802 	MFC_LOCK_INIT();
2803 	VIF_LOCK_INIT();
2804 
2805 	mfchashsize = MFCHASHSIZE;
2806 	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2807 	    !powerof2(mfchashsize)) {
2808 		printf("WARNING: %s not a power of 2; using default\n",
2809 		    "net.inet.ip.mfchashsize");
2810 		mfchashsize = MFCHASHSIZE;
2811 	}
2812 	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2813 
2814 	pim_squelch_wholepkt = 0;
2815 	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2816 	    &pim_squelch_wholepkt);
2817 	ip_mrouter_reset();
2818 
2819 	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2820 	    pim_encapcheck, &in_pim_protosw, NULL);
2821 	if (pim_encap_cookie == NULL) {
2822 		printf("ip_mroute: unable to attach pim encap\n");
2823 		VIF_LOCK_DESTROY();
2824 		MFC_LOCK_DESTROY();
2825 		MROUTER_LOCK_DESTROY();
2826 		return (EINVAL);
2827 	}
2828 
2829 	ip_mcast_src = X_ip_mcast_src;
2830 	ip_mforward = X_ip_mforward;
2831 	ip_mrouter_done = X_ip_mrouter_done;
2832 	ip_mrouter_get = X_ip_mrouter_get;
2833 	ip_mrouter_set = X_ip_mrouter_set;
2834 
2835 	ip_rsvp_force_done = X_ip_rsvp_force_done;
2836 	ip_rsvp_vif = X_ip_rsvp_vif;
2837 
2838 	legal_vif_num = X_legal_vif_num;
2839 	mrt_ioctl = X_mrt_ioctl;
2840 	rsvp_input_p = X_rsvp_input;
2841 	break;
2842 
2843     case MOD_UNLOAD:
2844 	/*
2845 	 * Typically module unload happens after the user-level
2846 	 * process has shutdown the kernel services (the check
2847 	 * below insures someone can't just yank the module out
2848 	 * from under a running process).  But if the module is
2849 	 * just loaded and then unloaded w/o starting up a user
2850 	 * process we still need to cleanup.
2851 	 */
2852 	if (V_ip_mrouter != NULL)
2853 	    return (EINVAL);
2854 
2855 	if (pim_encap_cookie) {
2856 	    encap_detach(pim_encap_cookie);
2857 	    pim_encap_cookie = NULL;
2858 	}
2859 	X_ip_mrouter_done();
2860 
2861 	FREE(nexpire, M_MRTABLE);
2862 	nexpire = NULL;
2863 
2864 	ip_mcast_src = NULL;
2865 	ip_mforward = NULL;
2866 	ip_mrouter_done = NULL;
2867 	ip_mrouter_get = NULL;
2868 	ip_mrouter_set = NULL;
2869 
2870 	ip_rsvp_force_done = NULL;
2871 	ip_rsvp_vif = NULL;
2872 
2873 	legal_vif_num = NULL;
2874 	mrt_ioctl = NULL;
2875 	rsvp_input_p = NULL;
2876 
2877 	VIF_LOCK_DESTROY();
2878 	MFC_LOCK_DESTROY();
2879 	MROUTER_LOCK_DESTROY();
2880 	break;
2881 
2882     default:
2883 	return EOPNOTSUPP;
2884     }
2885     return 0;
2886 }
2887 
2888 static moduledata_t ip_mroutemod = {
2889     "ip_mroute",
2890     ip_mroute_modevent,
2891     0
2892 };
2893 
2894 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2895