1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * 53 * MROUTING Revision: 3.5 54 * and PIM-SMv2 and PIM-DM support, advanced API support, 55 * bandwidth metering and signaling 56 */ 57 58 /* 59 * TODO: Prefix functions with ipmf_. 60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 61 * domain attachment (if_afdata) so we can track consumers of that service. 62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 63 * move it to socket options. 64 * TODO: Cleanup LSRR removal further. 65 * TODO: Push RSVP stubs into raw_ip.c. 66 * TODO: Use bitstring.h for vif set. 67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 68 * TODO: Sync ip6_mroute.c with this file. 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_inet.h" 75 #include "opt_mrouting.h" 76 77 #define _PIM_VT 1 78 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/time.h> 99 #include <sys/counter.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/netisr.h> 104 #include <net/route.h> 105 #include <net/vnet.h> 106 107 #include <netinet/in.h> 108 #include <netinet/igmp.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/ip_encap.h> 113 #include <netinet/ip_mroute.h> 114 #include <netinet/ip_var.h> 115 #include <netinet/ip_options.h> 116 #include <netinet/pim.h> 117 #include <netinet/pim_var.h> 118 #include <netinet/udp.h> 119 120 #include <machine/in_cksum.h> 121 122 #ifndef KTR_IPMF 123 #define KTR_IPMF KTR_INET 124 #endif 125 126 #define VIFI_INVALID ((vifi_t) -1) 127 128 VNET_DEFINE_STATIC(uint32_t, last_tv_sec); /* last time we processed this */ 129 #define V_last_tv_sec VNET(last_tv_sec) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct mtx mrouter_mtx; 142 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 143 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 144 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 145 #define MROUTER_LOCK_INIT() \ 146 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 147 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 148 149 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 151 152 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 153 VNET_PCPUSTAT_SYSINIT(mrtstat); 154 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 156 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 157 "netinet/ip_mroute.h)"); 158 159 VNET_DEFINE_STATIC(u_long, mfchash); 160 #define V_mfchash VNET(mfchash) 161 #define MFCHASH(a, g) \ 162 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 163 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 164 #define MFCHASHSIZE 256 165 166 static u_long mfchashsize; /* Hash size */ 167 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 168 #define V_nexpire VNET(nexpire) 169 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 170 #define V_mfchashtbl VNET(mfchashtbl) 171 172 static struct mtx mfc_mtx; 173 #define MFC_LOCK() mtx_lock(&mfc_mtx) 174 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 175 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 176 #define MFC_LOCK_INIT() \ 177 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 178 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 179 180 VNET_DEFINE_STATIC(vifi_t, numvifs); 181 #define V_numvifs VNET(numvifs) 182 VNET_DEFINE_STATIC(struct vif *, viftable); 183 #define V_viftable VNET(viftable) 184 /* 185 * No one should be able to "query" this before initialisation happened in 186 * vnet_mroute_init(), so we should still be fine. 187 */ 188 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 189 &VNET_NAME(viftable), sizeof(*V_viftable) * MAXVIFS, "S,vif[MAXVIFS]", 190 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 191 192 static struct mtx vif_mtx; 193 #define VIF_LOCK() mtx_lock(&vif_mtx) 194 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 195 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 196 #define VIF_LOCK_INIT() \ 197 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 198 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 199 200 static eventhandler_tag if_detach_event_tag = NULL; 201 202 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 203 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 204 205 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 206 #define UPCALL_EXPIRE 6 /* number of timeouts */ 207 208 /* 209 * Bandwidth meter variables and constants 210 */ 211 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 212 /* 213 * Pending timeouts are stored in a hash table, the key being the 214 * expiration time. Periodically, the entries are analysed and processed. 215 */ 216 #define BW_METER_BUCKETS 1024 217 VNET_DEFINE_STATIC(struct bw_meter **, bw_meter_timers); 218 #define V_bw_meter_timers VNET(bw_meter_timers) 219 VNET_DEFINE_STATIC(struct callout, bw_meter_ch); 220 #define V_bw_meter_ch VNET(bw_meter_ch) 221 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 222 223 /* 224 * Pending upcalls are stored in a vector which is flushed when 225 * full, or periodically 226 */ 227 VNET_DEFINE_STATIC(struct bw_upcall *, bw_upcalls); 228 #define V_bw_upcalls VNET(bw_upcalls) 229 VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */ 230 #define V_bw_upcalls_n VNET(bw_upcalls_n) 231 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 232 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 233 234 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 235 236 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 237 VNET_PCPUSTAT_SYSINIT(pimstat); 238 VNET_PCPUSTAT_SYSUNINIT(pimstat); 239 240 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 241 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 242 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 243 244 static u_long pim_squelch_wholepkt = 0; 245 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 246 &pim_squelch_wholepkt, 0, 247 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 248 249 static const struct encaptab *pim_encap_cookie; 250 static int pim_encapcheck(const struct mbuf *, int, int, void *); 251 static int pim_input(struct mbuf *, int, int, void *); 252 253 static const struct encap_config ipv4_encap_cfg = { 254 .proto = IPPROTO_PIM, 255 .min_length = sizeof(struct ip) + PIM_MINLEN, 256 .exact_match = 8, 257 .check = pim_encapcheck, 258 .input = pim_input 259 }; 260 261 /* 262 * Note: the PIM Register encapsulation adds the following in front of a 263 * data packet: 264 * 265 * struct pim_encap_hdr { 266 * struct ip ip; 267 * struct pim_encap_pimhdr pim; 268 * } 269 * 270 */ 271 272 struct pim_encap_pimhdr { 273 struct pim pim; 274 uint32_t flags; 275 }; 276 #define PIM_ENCAP_TTL 64 277 278 static struct ip pim_encap_iphdr = { 279 #if BYTE_ORDER == LITTLE_ENDIAN 280 sizeof(struct ip) >> 2, 281 IPVERSION, 282 #else 283 IPVERSION, 284 sizeof(struct ip) >> 2, 285 #endif 286 0, /* tos */ 287 sizeof(struct ip), /* total length */ 288 0, /* id */ 289 0, /* frag offset */ 290 PIM_ENCAP_TTL, 291 IPPROTO_PIM, 292 0, /* checksum */ 293 }; 294 295 static struct pim_encap_pimhdr pim_encap_pimhdr = { 296 { 297 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 298 0, /* reserved */ 299 0, /* checksum */ 300 }, 301 0 /* flags */ 302 }; 303 304 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 305 #define V_reg_vif_num VNET(reg_vif_num) 306 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if); 307 #define V_multicast_register_if VNET(multicast_register_if) 308 309 /* 310 * Private variables. 311 */ 312 313 static u_long X_ip_mcast_src(int); 314 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 315 struct ip_moptions *); 316 static int X_ip_mrouter_done(void); 317 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 318 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 319 static int X_legal_vif_num(int); 320 static int X_mrt_ioctl(u_long, caddr_t, int); 321 322 static int add_bw_upcall(struct bw_upcall *); 323 static int add_mfc(struct mfcctl2 *); 324 static int add_vif(struct vifctl *); 325 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 326 static void bw_meter_process(void); 327 static void bw_meter_receive_packet(struct bw_meter *, int, 328 struct timeval *); 329 static void bw_upcalls_send(void); 330 static int del_bw_upcall(struct bw_upcall *); 331 static int del_mfc(struct mfcctl2 *); 332 static int del_vif(vifi_t); 333 static int del_vif_locked(vifi_t); 334 static void expire_bw_meter_process(void *); 335 static void expire_bw_upcalls_send(void *); 336 static void expire_mfc(struct mfc *); 337 static void expire_upcalls(void *); 338 static void free_bw_list(struct bw_meter *); 339 static int get_sg_cnt(struct sioc_sg_req *); 340 static int get_vif_cnt(struct sioc_vif_req *); 341 static void if_detached_event(void *, struct ifnet *); 342 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 343 static int ip_mrouter_init(struct socket *, int); 344 static __inline struct mfc * 345 mfc_find(struct in_addr *, struct in_addr *); 346 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 347 static struct mbuf * 348 pim_register_prepare(struct ip *, struct mbuf *); 349 static int pim_register_send(struct ip *, struct vif *, 350 struct mbuf *, struct mfc *); 351 static int pim_register_send_rp(struct ip *, struct vif *, 352 struct mbuf *, struct mfc *); 353 static int pim_register_send_upcall(struct ip *, struct vif *, 354 struct mbuf *, struct mfc *); 355 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 356 static void send_packet(struct vif *, struct mbuf *); 357 static int set_api_config(uint32_t *); 358 static int set_assert(int); 359 static int socket_send(struct socket *, struct mbuf *, 360 struct sockaddr_in *); 361 static void unschedule_bw_meter(struct bw_meter *); 362 363 /* 364 * Kernel multicast forwarding API capabilities and setup. 365 * If more API capabilities are added to the kernel, they should be 366 * recorded in `mrt_api_support'. 367 */ 368 #define MRT_API_VERSION 0x0305 369 370 static const int mrt_api_version = MRT_API_VERSION; 371 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 372 MRT_MFC_FLAGS_BORDER_VIF | 373 MRT_MFC_RP | 374 MRT_MFC_BW_UPCALL); 375 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 376 #define V_mrt_api_config VNET(mrt_api_config) 377 VNET_DEFINE_STATIC(int, pim_assert_enabled); 378 #define V_pim_assert_enabled VNET(pim_assert_enabled) 379 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 380 381 /* 382 * Find a route for a given origin IP address and multicast group address. 383 * Statistics must be updated by the caller. 384 */ 385 static __inline struct mfc * 386 mfc_find(struct in_addr *o, struct in_addr *g) 387 { 388 struct mfc *rt; 389 390 MFC_LOCK_ASSERT(); 391 392 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 393 if (in_hosteq(rt->mfc_origin, *o) && 394 in_hosteq(rt->mfc_mcastgrp, *g) && 395 TAILQ_EMPTY(&rt->mfc_stall)) 396 break; 397 } 398 399 return (rt); 400 } 401 402 /* 403 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 404 */ 405 static int 406 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 407 { 408 int error, optval; 409 vifi_t vifi; 410 struct vifctl vifc; 411 struct mfcctl2 mfc; 412 struct bw_upcall bw_upcall; 413 uint32_t i; 414 415 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 416 return EPERM; 417 418 error = 0; 419 switch (sopt->sopt_name) { 420 case MRT_INIT: 421 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 422 if (error) 423 break; 424 error = ip_mrouter_init(so, optval); 425 break; 426 427 case MRT_DONE: 428 error = ip_mrouter_done(); 429 break; 430 431 case MRT_ADD_VIF: 432 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 433 if (error) 434 break; 435 error = add_vif(&vifc); 436 break; 437 438 case MRT_DEL_VIF: 439 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 440 if (error) 441 break; 442 error = del_vif(vifi); 443 break; 444 445 case MRT_ADD_MFC: 446 case MRT_DEL_MFC: 447 /* 448 * select data size depending on API version. 449 */ 450 if (sopt->sopt_name == MRT_ADD_MFC && 451 V_mrt_api_config & MRT_API_FLAGS_ALL) { 452 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 453 sizeof(struct mfcctl2)); 454 } else { 455 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 456 sizeof(struct mfcctl)); 457 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 458 sizeof(mfc) - sizeof(struct mfcctl)); 459 } 460 if (error) 461 break; 462 if (sopt->sopt_name == MRT_ADD_MFC) 463 error = add_mfc(&mfc); 464 else 465 error = del_mfc(&mfc); 466 break; 467 468 case MRT_ASSERT: 469 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 470 if (error) 471 break; 472 set_assert(optval); 473 break; 474 475 case MRT_API_CONFIG: 476 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 477 if (!error) 478 error = set_api_config(&i); 479 if (!error) 480 error = sooptcopyout(sopt, &i, sizeof i); 481 break; 482 483 case MRT_ADD_BW_UPCALL: 484 case MRT_DEL_BW_UPCALL: 485 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 486 sizeof bw_upcall); 487 if (error) 488 break; 489 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 490 error = add_bw_upcall(&bw_upcall); 491 else 492 error = del_bw_upcall(&bw_upcall); 493 break; 494 495 default: 496 error = EOPNOTSUPP; 497 break; 498 } 499 return error; 500 } 501 502 /* 503 * Handle MRT getsockopt commands 504 */ 505 static int 506 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 507 { 508 int error; 509 510 switch (sopt->sopt_name) { 511 case MRT_VERSION: 512 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 513 break; 514 515 case MRT_ASSERT: 516 error = sooptcopyout(sopt, &V_pim_assert_enabled, 517 sizeof V_pim_assert_enabled); 518 break; 519 520 case MRT_API_SUPPORT: 521 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 522 break; 523 524 case MRT_API_CONFIG: 525 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 526 break; 527 528 default: 529 error = EOPNOTSUPP; 530 break; 531 } 532 return error; 533 } 534 535 /* 536 * Handle ioctl commands to obtain information from the cache 537 */ 538 static int 539 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 540 { 541 int error = 0; 542 543 /* 544 * Currently the only function calling this ioctl routine is rtioctl_fib(). 545 * Typically, only root can create the raw socket in order to execute 546 * this ioctl method, however the request might be coming from a prison 547 */ 548 error = priv_check(curthread, PRIV_NETINET_MROUTE); 549 if (error) 550 return (error); 551 switch (cmd) { 552 case (SIOCGETVIFCNT): 553 error = get_vif_cnt((struct sioc_vif_req *)data); 554 break; 555 556 case (SIOCGETSGCNT): 557 error = get_sg_cnt((struct sioc_sg_req *)data); 558 break; 559 560 default: 561 error = EINVAL; 562 break; 563 } 564 return error; 565 } 566 567 /* 568 * returns the packet, byte, rpf-failure count for the source group provided 569 */ 570 static int 571 get_sg_cnt(struct sioc_sg_req *req) 572 { 573 struct mfc *rt; 574 575 MFC_LOCK(); 576 rt = mfc_find(&req->src, &req->grp); 577 if (rt == NULL) { 578 MFC_UNLOCK(); 579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 580 return EADDRNOTAVAIL; 581 } 582 req->pktcnt = rt->mfc_pkt_cnt; 583 req->bytecnt = rt->mfc_byte_cnt; 584 req->wrong_if = rt->mfc_wrong_if; 585 MFC_UNLOCK(); 586 return 0; 587 } 588 589 /* 590 * returns the input and output packet and byte counts on the vif provided 591 */ 592 static int 593 get_vif_cnt(struct sioc_vif_req *req) 594 { 595 vifi_t vifi = req->vifi; 596 597 VIF_LOCK(); 598 if (vifi >= V_numvifs) { 599 VIF_UNLOCK(); 600 return EINVAL; 601 } 602 603 req->icount = V_viftable[vifi].v_pkt_in; 604 req->ocount = V_viftable[vifi].v_pkt_out; 605 req->ibytes = V_viftable[vifi].v_bytes_in; 606 req->obytes = V_viftable[vifi].v_bytes_out; 607 VIF_UNLOCK(); 608 609 return 0; 610 } 611 612 static void 613 if_detached_event(void *arg __unused, struct ifnet *ifp) 614 { 615 vifi_t vifi; 616 u_long i; 617 618 MROUTER_LOCK(); 619 620 if (V_ip_mrouter == NULL) { 621 MROUTER_UNLOCK(); 622 return; 623 } 624 625 VIF_LOCK(); 626 MFC_LOCK(); 627 628 /* 629 * Tear down multicast forwarder state associated with this ifnet. 630 * 1. Walk the vif list, matching vifs against this ifnet. 631 * 2. Walk the multicast forwarding cache (mfc) looking for 632 * inner matches with this vif's index. 633 * 3. Expire any matching multicast forwarding cache entries. 634 * 4. Free vif state. This should disable ALLMULTI on the interface. 635 */ 636 for (vifi = 0; vifi < V_numvifs; vifi++) { 637 if (V_viftable[vifi].v_ifp != ifp) 638 continue; 639 for (i = 0; i < mfchashsize; i++) { 640 struct mfc *rt, *nrt; 641 642 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 643 if (rt->mfc_parent == vifi) { 644 expire_mfc(rt); 645 } 646 } 647 } 648 del_vif_locked(vifi); 649 } 650 651 MFC_UNLOCK(); 652 VIF_UNLOCK(); 653 654 MROUTER_UNLOCK(); 655 } 656 657 /* 658 * Enable multicast forwarding. 659 */ 660 static int 661 ip_mrouter_init(struct socket *so, int version) 662 { 663 664 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 665 so->so_type, so->so_proto->pr_protocol); 666 667 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 668 return EOPNOTSUPP; 669 670 if (version != 1) 671 return ENOPROTOOPT; 672 673 MROUTER_LOCK(); 674 675 if (ip_mrouter_unloading) { 676 MROUTER_UNLOCK(); 677 return ENOPROTOOPT; 678 } 679 680 if (V_ip_mrouter != NULL) { 681 MROUTER_UNLOCK(); 682 return EADDRINUSE; 683 } 684 685 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 686 HASH_NOWAIT); 687 688 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 689 curvnet); 690 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 691 curvnet); 692 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 693 curvnet); 694 695 V_ip_mrouter = so; 696 ip_mrouter_cnt++; 697 698 MROUTER_UNLOCK(); 699 700 CTR1(KTR_IPMF, "%s: done", __func__); 701 702 return 0; 703 } 704 705 /* 706 * Disable multicast forwarding. 707 */ 708 static int 709 X_ip_mrouter_done(void) 710 { 711 struct ifnet *ifp; 712 u_long i; 713 vifi_t vifi; 714 715 MROUTER_LOCK(); 716 717 if (V_ip_mrouter == NULL) { 718 MROUTER_UNLOCK(); 719 return EINVAL; 720 } 721 722 /* 723 * Detach/disable hooks to the reset of the system. 724 */ 725 V_ip_mrouter = NULL; 726 ip_mrouter_cnt--; 727 V_mrt_api_config = 0; 728 729 VIF_LOCK(); 730 731 /* 732 * For each phyint in use, disable promiscuous reception of all IP 733 * multicasts. 734 */ 735 for (vifi = 0; vifi < V_numvifs; vifi++) { 736 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 737 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 738 ifp = V_viftable[vifi].v_ifp; 739 if_allmulti(ifp, 0); 740 } 741 } 742 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 743 V_numvifs = 0; 744 V_pim_assert_enabled = 0; 745 746 VIF_UNLOCK(); 747 748 callout_stop(&V_expire_upcalls_ch); 749 callout_stop(&V_bw_upcalls_ch); 750 callout_stop(&V_bw_meter_ch); 751 752 MFC_LOCK(); 753 754 /* 755 * Free all multicast forwarding cache entries. 756 * Do not use hashdestroy(), as we must perform other cleanup. 757 */ 758 for (i = 0; i < mfchashsize; i++) { 759 struct mfc *rt, *nrt; 760 761 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 762 expire_mfc(rt); 763 } 764 } 765 free(V_mfchashtbl, M_MRTABLE); 766 V_mfchashtbl = NULL; 767 768 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 769 770 V_bw_upcalls_n = 0; 771 bzero(V_bw_meter_timers, BW_METER_BUCKETS * sizeof(*V_bw_meter_timers)); 772 773 MFC_UNLOCK(); 774 775 V_reg_vif_num = VIFI_INVALID; 776 777 MROUTER_UNLOCK(); 778 779 CTR1(KTR_IPMF, "%s: done", __func__); 780 781 return 0; 782 } 783 784 /* 785 * Set PIM assert processing global 786 */ 787 static int 788 set_assert(int i) 789 { 790 if ((i != 1) && (i != 0)) 791 return EINVAL; 792 793 V_pim_assert_enabled = i; 794 795 return 0; 796 } 797 798 /* 799 * Configure API capabilities 800 */ 801 int 802 set_api_config(uint32_t *apival) 803 { 804 u_long i; 805 806 /* 807 * We can set the API capabilities only if it is the first operation 808 * after MRT_INIT. I.e.: 809 * - there are no vifs installed 810 * - pim_assert is not enabled 811 * - the MFC table is empty 812 */ 813 if (V_numvifs > 0) { 814 *apival = 0; 815 return EPERM; 816 } 817 if (V_pim_assert_enabled) { 818 *apival = 0; 819 return EPERM; 820 } 821 822 MFC_LOCK(); 823 824 for (i = 0; i < mfchashsize; i++) { 825 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 826 MFC_UNLOCK(); 827 *apival = 0; 828 return EPERM; 829 } 830 } 831 832 MFC_UNLOCK(); 833 834 V_mrt_api_config = *apival & mrt_api_support; 835 *apival = V_mrt_api_config; 836 837 return 0; 838 } 839 840 /* 841 * Add a vif to the vif table 842 */ 843 static int 844 add_vif(struct vifctl *vifcp) 845 { 846 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 847 struct sockaddr_in sin = {sizeof sin, AF_INET}; 848 struct ifaddr *ifa; 849 struct ifnet *ifp; 850 int error; 851 852 VIF_LOCK(); 853 if (vifcp->vifc_vifi >= MAXVIFS) { 854 VIF_UNLOCK(); 855 return EINVAL; 856 } 857 /* rate limiting is no longer supported by this code */ 858 if (vifcp->vifc_rate_limit != 0) { 859 log(LOG_ERR, "rate limiting is no longer supported\n"); 860 VIF_UNLOCK(); 861 return EINVAL; 862 } 863 if (!in_nullhost(vifp->v_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRINUSE; 866 } 867 if (in_nullhost(vifcp->vifc_lcl_addr)) { 868 VIF_UNLOCK(); 869 return EADDRNOTAVAIL; 870 } 871 872 /* Find the interface with an address in AF_INET family */ 873 if (vifcp->vifc_flags & VIFF_REGISTER) { 874 /* 875 * XXX: Because VIFF_REGISTER does not really need a valid 876 * local interface (e.g. it could be 127.0.0.2), we don't 877 * check its address. 878 */ 879 ifp = NULL; 880 } else { 881 sin.sin_addr = vifcp->vifc_lcl_addr; 882 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 883 if (ifa == NULL) { 884 VIF_UNLOCK(); 885 return EADDRNOTAVAIL; 886 } 887 ifp = ifa->ifa_ifp; 888 } 889 890 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 891 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 892 VIF_UNLOCK(); 893 return EOPNOTSUPP; 894 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 895 ifp = &V_multicast_register_if; 896 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 897 if (V_reg_vif_num == VIFI_INVALID) { 898 if_initname(&V_multicast_register_if, "register_vif", 0); 899 V_multicast_register_if.if_flags = IFF_LOOPBACK; 900 V_reg_vif_num = vifcp->vifc_vifi; 901 } 902 } else { /* Make sure the interface supports multicast */ 903 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 904 VIF_UNLOCK(); 905 return EOPNOTSUPP; 906 } 907 908 /* Enable promiscuous reception of all IP multicasts from the if */ 909 error = if_allmulti(ifp, 1); 910 if (error) { 911 VIF_UNLOCK(); 912 return error; 913 } 914 } 915 916 vifp->v_flags = vifcp->vifc_flags; 917 vifp->v_threshold = vifcp->vifc_threshold; 918 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 919 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 920 vifp->v_ifp = ifp; 921 /* initialize per vif pkt counters */ 922 vifp->v_pkt_in = 0; 923 vifp->v_pkt_out = 0; 924 vifp->v_bytes_in = 0; 925 vifp->v_bytes_out = 0; 926 927 /* Adjust numvifs up if the vifi is higher than numvifs */ 928 if (V_numvifs <= vifcp->vifc_vifi) 929 V_numvifs = vifcp->vifc_vifi + 1; 930 931 VIF_UNLOCK(); 932 933 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 934 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 935 (int)vifcp->vifc_threshold); 936 937 return 0; 938 } 939 940 /* 941 * Delete a vif from the vif table 942 */ 943 static int 944 del_vif_locked(vifi_t vifi) 945 { 946 struct vif *vifp; 947 948 VIF_LOCK_ASSERT(); 949 950 if (vifi >= V_numvifs) { 951 return EINVAL; 952 } 953 vifp = &V_viftable[vifi]; 954 if (in_nullhost(vifp->v_lcl_addr)) { 955 return EADDRNOTAVAIL; 956 } 957 958 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 959 if_allmulti(vifp->v_ifp, 0); 960 961 if (vifp->v_flags & VIFF_REGISTER) 962 V_reg_vif_num = VIFI_INVALID; 963 964 bzero((caddr_t)vifp, sizeof (*vifp)); 965 966 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 967 968 /* Adjust numvifs down */ 969 for (vifi = V_numvifs; vifi > 0; vifi--) 970 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 971 break; 972 V_numvifs = vifi; 973 974 return 0; 975 } 976 977 static int 978 del_vif(vifi_t vifi) 979 { 980 int cc; 981 982 VIF_LOCK(); 983 cc = del_vif_locked(vifi); 984 VIF_UNLOCK(); 985 986 return cc; 987 } 988 989 /* 990 * update an mfc entry without resetting counters and S,G addresses. 991 */ 992 static void 993 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 994 { 995 int i; 996 997 rt->mfc_parent = mfccp->mfcc_parent; 998 for (i = 0; i < V_numvifs; i++) { 999 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1000 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1001 MRT_MFC_FLAGS_ALL; 1002 } 1003 /* set the RP address */ 1004 if (V_mrt_api_config & MRT_MFC_RP) 1005 rt->mfc_rp = mfccp->mfcc_rp; 1006 else 1007 rt->mfc_rp.s_addr = INADDR_ANY; 1008 } 1009 1010 /* 1011 * fully initialize an mfc entry from the parameter. 1012 */ 1013 static void 1014 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1015 { 1016 rt->mfc_origin = mfccp->mfcc_origin; 1017 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1018 1019 update_mfc_params(rt, mfccp); 1020 1021 /* initialize pkt counters per src-grp */ 1022 rt->mfc_pkt_cnt = 0; 1023 rt->mfc_byte_cnt = 0; 1024 rt->mfc_wrong_if = 0; 1025 timevalclear(&rt->mfc_last_assert); 1026 } 1027 1028 static void 1029 expire_mfc(struct mfc *rt) 1030 { 1031 struct rtdetq *rte, *nrte; 1032 1033 MFC_LOCK_ASSERT(); 1034 1035 free_bw_list(rt->mfc_bw_meter); 1036 1037 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1038 m_freem(rte->m); 1039 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1040 free(rte, M_MRTABLE); 1041 } 1042 1043 LIST_REMOVE(rt, mfc_hash); 1044 free(rt, M_MRTABLE); 1045 } 1046 1047 /* 1048 * Add an mfc entry 1049 */ 1050 static int 1051 add_mfc(struct mfcctl2 *mfccp) 1052 { 1053 struct mfc *rt; 1054 struct rtdetq *rte, *nrte; 1055 u_long hash = 0; 1056 u_short nstl; 1057 1058 VIF_LOCK(); 1059 MFC_LOCK(); 1060 1061 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1062 1063 /* If an entry already exists, just update the fields */ 1064 if (rt) { 1065 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1066 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1067 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1068 mfccp->mfcc_parent); 1069 update_mfc_params(rt, mfccp); 1070 MFC_UNLOCK(); 1071 VIF_UNLOCK(); 1072 return (0); 1073 } 1074 1075 /* 1076 * Find the entry for which the upcall was made and update 1077 */ 1078 nstl = 0; 1079 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1080 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1081 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1082 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1083 !TAILQ_EMPTY(&rt->mfc_stall)) { 1084 CTR5(KTR_IPMF, 1085 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1086 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1087 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1088 mfccp->mfcc_parent, 1089 TAILQ_FIRST(&rt->mfc_stall)); 1090 if (nstl++) 1091 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1092 1093 init_mfc_params(rt, mfccp); 1094 rt->mfc_expire = 0; /* Don't clean this guy up */ 1095 V_nexpire[hash]--; 1096 1097 /* Free queued packets, but attempt to forward them first. */ 1098 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1099 if (rte->ifp != NULL) 1100 ip_mdq(rte->m, rte->ifp, rt, -1); 1101 m_freem(rte->m); 1102 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1103 rt->mfc_nstall--; 1104 free(rte, M_MRTABLE); 1105 } 1106 } 1107 } 1108 1109 /* 1110 * It is possible that an entry is being inserted without an upcall 1111 */ 1112 if (nstl == 0) { 1113 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1114 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1115 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1116 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1117 init_mfc_params(rt, mfccp); 1118 if (rt->mfc_expire) 1119 V_nexpire[hash]--; 1120 rt->mfc_expire = 0; 1121 break; /* XXX */ 1122 } 1123 } 1124 1125 if (rt == NULL) { /* no upcall, so make a new entry */ 1126 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1127 if (rt == NULL) { 1128 MFC_UNLOCK(); 1129 VIF_UNLOCK(); 1130 return (ENOBUFS); 1131 } 1132 1133 init_mfc_params(rt, mfccp); 1134 TAILQ_INIT(&rt->mfc_stall); 1135 rt->mfc_nstall = 0; 1136 1137 rt->mfc_expire = 0; 1138 rt->mfc_bw_meter = NULL; 1139 1140 /* insert new entry at head of hash chain */ 1141 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1142 } 1143 } 1144 1145 MFC_UNLOCK(); 1146 VIF_UNLOCK(); 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Delete an mfc entry 1153 */ 1154 static int 1155 del_mfc(struct mfcctl2 *mfccp) 1156 { 1157 struct in_addr origin; 1158 struct in_addr mcastgrp; 1159 struct mfc *rt; 1160 1161 origin = mfccp->mfcc_origin; 1162 mcastgrp = mfccp->mfcc_mcastgrp; 1163 1164 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1165 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1166 1167 MFC_LOCK(); 1168 1169 rt = mfc_find(&origin, &mcastgrp); 1170 if (rt == NULL) { 1171 MFC_UNLOCK(); 1172 return EADDRNOTAVAIL; 1173 } 1174 1175 /* 1176 * free the bw_meter entries 1177 */ 1178 free_bw_list(rt->mfc_bw_meter); 1179 rt->mfc_bw_meter = NULL; 1180 1181 LIST_REMOVE(rt, mfc_hash); 1182 free(rt, M_MRTABLE); 1183 1184 MFC_UNLOCK(); 1185 1186 return (0); 1187 } 1188 1189 /* 1190 * Send a message to the routing daemon on the multicast routing socket. 1191 */ 1192 static int 1193 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1194 { 1195 if (s) { 1196 SOCKBUF_LOCK(&s->so_rcv); 1197 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1198 NULL) != 0) { 1199 sorwakeup_locked(s); 1200 return 0; 1201 } 1202 SOCKBUF_UNLOCK(&s->so_rcv); 1203 } 1204 m_freem(mm); 1205 return -1; 1206 } 1207 1208 /* 1209 * IP multicast forwarding function. This function assumes that the packet 1210 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1211 * pointed to by "ifp", and the packet is to be relayed to other networks 1212 * that have members of the packet's destination IP multicast group. 1213 * 1214 * The packet is returned unscathed to the caller, unless it is 1215 * erroneous, in which case a non-zero return value tells the caller to 1216 * discard it. 1217 */ 1218 1219 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1220 1221 static int 1222 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1223 struct ip_moptions *imo) 1224 { 1225 struct mfc *rt; 1226 int error; 1227 vifi_t vifi; 1228 1229 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1230 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1231 1232 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1233 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1234 /* 1235 * Packet arrived via a physical interface or 1236 * an encapsulated tunnel or a register_vif. 1237 */ 1238 } else { 1239 /* 1240 * Packet arrived through a source-route tunnel. 1241 * Source-route tunnels are no longer supported. 1242 */ 1243 return (1); 1244 } 1245 1246 VIF_LOCK(); 1247 MFC_LOCK(); 1248 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1249 if (ip->ip_ttl < MAXTTL) 1250 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1251 error = ip_mdq(m, ifp, NULL, vifi); 1252 MFC_UNLOCK(); 1253 VIF_UNLOCK(); 1254 return error; 1255 } 1256 1257 /* 1258 * Don't forward a packet with time-to-live of zero or one, 1259 * or a packet destined to a local-only group. 1260 */ 1261 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1262 MFC_UNLOCK(); 1263 VIF_UNLOCK(); 1264 return 0; 1265 } 1266 1267 /* 1268 * Determine forwarding vifs from the forwarding cache table 1269 */ 1270 MRTSTAT_INC(mrts_mfc_lookups); 1271 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1272 1273 /* Entry exists, so forward if necessary */ 1274 if (rt != NULL) { 1275 error = ip_mdq(m, ifp, rt, -1); 1276 MFC_UNLOCK(); 1277 VIF_UNLOCK(); 1278 return error; 1279 } else { 1280 /* 1281 * If we don't have a route for packet's origin, 1282 * Make a copy of the packet & send message to routing daemon 1283 */ 1284 1285 struct mbuf *mb0; 1286 struct rtdetq *rte; 1287 u_long hash; 1288 int hlen = ip->ip_hl << 2; 1289 1290 MRTSTAT_INC(mrts_mfc_misses); 1291 MRTSTAT_INC(mrts_no_route); 1292 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1293 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1294 1295 /* 1296 * Allocate mbufs early so that we don't do extra work if we are 1297 * just going to fail anyway. Make sure to pullup the header so 1298 * that other people can't step on it. 1299 */ 1300 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1301 M_NOWAIT|M_ZERO); 1302 if (rte == NULL) { 1303 MFC_UNLOCK(); 1304 VIF_UNLOCK(); 1305 return ENOBUFS; 1306 } 1307 1308 mb0 = m_copypacket(m, M_NOWAIT); 1309 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1310 mb0 = m_pullup(mb0, hlen); 1311 if (mb0 == NULL) { 1312 free(rte, M_MRTABLE); 1313 MFC_UNLOCK(); 1314 VIF_UNLOCK(); 1315 return ENOBUFS; 1316 } 1317 1318 /* is there an upcall waiting for this flow ? */ 1319 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1320 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1321 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1322 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1323 !TAILQ_EMPTY(&rt->mfc_stall)) 1324 break; 1325 } 1326 1327 if (rt == NULL) { 1328 int i; 1329 struct igmpmsg *im; 1330 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1331 struct mbuf *mm; 1332 1333 /* 1334 * Locate the vifi for the incoming interface for this packet. 1335 * If none found, drop packet. 1336 */ 1337 for (vifi = 0; vifi < V_numvifs && 1338 V_viftable[vifi].v_ifp != ifp; vifi++) 1339 ; 1340 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1341 goto non_fatal; 1342 1343 /* no upcall, so make a new entry */ 1344 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1345 if (rt == NULL) 1346 goto fail; 1347 1348 /* Make a copy of the header to send to the user level process */ 1349 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1350 if (mm == NULL) 1351 goto fail1; 1352 1353 /* 1354 * Send message to routing daemon to install 1355 * a route into the kernel table 1356 */ 1357 1358 im = mtod(mm, struct igmpmsg *); 1359 im->im_msgtype = IGMPMSG_NOCACHE; 1360 im->im_mbz = 0; 1361 im->im_vif = vifi; 1362 1363 MRTSTAT_INC(mrts_upcalls); 1364 1365 k_igmpsrc.sin_addr = ip->ip_src; 1366 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1367 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1368 MRTSTAT_INC(mrts_upq_sockfull); 1369 fail1: 1370 free(rt, M_MRTABLE); 1371 fail: 1372 free(rte, M_MRTABLE); 1373 m_freem(mb0); 1374 MFC_UNLOCK(); 1375 VIF_UNLOCK(); 1376 return ENOBUFS; 1377 } 1378 1379 /* insert new entry at head of hash chain */ 1380 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1381 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1382 rt->mfc_expire = UPCALL_EXPIRE; 1383 V_nexpire[hash]++; 1384 for (i = 0; i < V_numvifs; i++) { 1385 rt->mfc_ttls[i] = 0; 1386 rt->mfc_flags[i] = 0; 1387 } 1388 rt->mfc_parent = -1; 1389 1390 /* clear the RP address */ 1391 rt->mfc_rp.s_addr = INADDR_ANY; 1392 rt->mfc_bw_meter = NULL; 1393 1394 /* initialize pkt counters per src-grp */ 1395 rt->mfc_pkt_cnt = 0; 1396 rt->mfc_byte_cnt = 0; 1397 rt->mfc_wrong_if = 0; 1398 timevalclear(&rt->mfc_last_assert); 1399 1400 TAILQ_INIT(&rt->mfc_stall); 1401 rt->mfc_nstall = 0; 1402 1403 /* link into table */ 1404 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1405 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1406 rt->mfc_nstall++; 1407 1408 } else { 1409 /* determine if queue has overflowed */ 1410 if (rt->mfc_nstall > MAX_UPQ) { 1411 MRTSTAT_INC(mrts_upq_ovflw); 1412 non_fatal: 1413 free(rte, M_MRTABLE); 1414 m_freem(mb0); 1415 MFC_UNLOCK(); 1416 VIF_UNLOCK(); 1417 return (0); 1418 } 1419 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1420 rt->mfc_nstall++; 1421 } 1422 1423 rte->m = mb0; 1424 rte->ifp = ifp; 1425 1426 MFC_UNLOCK(); 1427 VIF_UNLOCK(); 1428 1429 return 0; 1430 } 1431 } 1432 1433 /* 1434 * Clean up the cache entry if upcall is not serviced 1435 */ 1436 static void 1437 expire_upcalls(void *arg) 1438 { 1439 u_long i; 1440 1441 CURVNET_SET((struct vnet *) arg); 1442 1443 MFC_LOCK(); 1444 1445 for (i = 0; i < mfchashsize; i++) { 1446 struct mfc *rt, *nrt; 1447 1448 if (V_nexpire[i] == 0) 1449 continue; 1450 1451 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1452 if (TAILQ_EMPTY(&rt->mfc_stall)) 1453 continue; 1454 1455 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1456 continue; 1457 1458 /* 1459 * free the bw_meter entries 1460 */ 1461 while (rt->mfc_bw_meter != NULL) { 1462 struct bw_meter *x = rt->mfc_bw_meter; 1463 1464 rt->mfc_bw_meter = x->bm_mfc_next; 1465 free(x, M_BWMETER); 1466 } 1467 1468 MRTSTAT_INC(mrts_cache_cleanups); 1469 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1470 (u_long)ntohl(rt->mfc_origin.s_addr), 1471 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1472 1473 expire_mfc(rt); 1474 } 1475 } 1476 1477 MFC_UNLOCK(); 1478 1479 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1480 curvnet); 1481 1482 CURVNET_RESTORE(); 1483 } 1484 1485 /* 1486 * Packet forwarding routine once entry in the cache is made 1487 */ 1488 static int 1489 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1490 { 1491 struct ip *ip = mtod(m, struct ip *); 1492 vifi_t vifi; 1493 int plen = ntohs(ip->ip_len); 1494 1495 VIF_LOCK_ASSERT(); 1496 1497 /* 1498 * If xmt_vif is not -1, send on only the requested vif. 1499 * 1500 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1501 */ 1502 if (xmt_vif < V_numvifs) { 1503 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1504 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1505 else 1506 phyint_send(ip, V_viftable + xmt_vif, m); 1507 return 1; 1508 } 1509 1510 /* 1511 * Don't forward if it didn't arrive from the parent vif for its origin. 1512 */ 1513 vifi = rt->mfc_parent; 1514 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1515 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1516 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1517 MRTSTAT_INC(mrts_wrong_if); 1518 ++rt->mfc_wrong_if; 1519 /* 1520 * If we are doing PIM assert processing, send a message 1521 * to the routing daemon. 1522 * 1523 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1524 * can complete the SPT switch, regardless of the type 1525 * of the iif (broadcast media, GRE tunnel, etc). 1526 */ 1527 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1528 V_viftable[vifi].v_ifp) { 1529 1530 if (ifp == &V_multicast_register_if) 1531 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1532 1533 /* Get vifi for the incoming packet */ 1534 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1535 vifi++) 1536 ; 1537 if (vifi >= V_numvifs) 1538 return 0; /* The iif is not found: ignore the packet. */ 1539 1540 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1541 return 0; /* WRONGVIF disabled: ignore the packet */ 1542 1543 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1544 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1545 struct igmpmsg *im; 1546 int hlen = ip->ip_hl << 2; 1547 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1548 1549 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1550 mm = m_pullup(mm, hlen); 1551 if (mm == NULL) 1552 return ENOBUFS; 1553 1554 im = mtod(mm, struct igmpmsg *); 1555 im->im_msgtype = IGMPMSG_WRONGVIF; 1556 im->im_mbz = 0; 1557 im->im_vif = vifi; 1558 1559 MRTSTAT_INC(mrts_upcalls); 1560 1561 k_igmpsrc.sin_addr = im->im_src; 1562 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1563 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1564 MRTSTAT_INC(mrts_upq_sockfull); 1565 return ENOBUFS; 1566 } 1567 } 1568 } 1569 return 0; 1570 } 1571 1572 1573 /* If I sourced this packet, it counts as output, else it was input. */ 1574 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1575 V_viftable[vifi].v_pkt_out++; 1576 V_viftable[vifi].v_bytes_out += plen; 1577 } else { 1578 V_viftable[vifi].v_pkt_in++; 1579 V_viftable[vifi].v_bytes_in += plen; 1580 } 1581 rt->mfc_pkt_cnt++; 1582 rt->mfc_byte_cnt += plen; 1583 1584 /* 1585 * For each vif, decide if a copy of the packet should be forwarded. 1586 * Forward if: 1587 * - the ttl exceeds the vif's threshold 1588 * - there are group members downstream on interface 1589 */ 1590 for (vifi = 0; vifi < V_numvifs; vifi++) 1591 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1592 V_viftable[vifi].v_pkt_out++; 1593 V_viftable[vifi].v_bytes_out += plen; 1594 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1595 pim_register_send(ip, V_viftable + vifi, m, rt); 1596 else 1597 phyint_send(ip, V_viftable + vifi, m); 1598 } 1599 1600 /* 1601 * Perform upcall-related bw measuring. 1602 */ 1603 if (rt->mfc_bw_meter != NULL) { 1604 struct bw_meter *x; 1605 struct timeval now; 1606 1607 microtime(&now); 1608 MFC_LOCK_ASSERT(); 1609 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1610 bw_meter_receive_packet(x, plen, &now); 1611 } 1612 1613 return 0; 1614 } 1615 1616 /* 1617 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1618 */ 1619 static int 1620 X_legal_vif_num(int vif) 1621 { 1622 int ret; 1623 1624 ret = 0; 1625 if (vif < 0) 1626 return (ret); 1627 1628 VIF_LOCK(); 1629 if (vif < V_numvifs) 1630 ret = 1; 1631 VIF_UNLOCK(); 1632 1633 return (ret); 1634 } 1635 1636 /* 1637 * Return the local address used by this vif 1638 */ 1639 static u_long 1640 X_ip_mcast_src(int vifi) 1641 { 1642 in_addr_t addr; 1643 1644 addr = INADDR_ANY; 1645 if (vifi < 0) 1646 return (addr); 1647 1648 VIF_LOCK(); 1649 if (vifi < V_numvifs) 1650 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1651 VIF_UNLOCK(); 1652 1653 return (addr); 1654 } 1655 1656 static void 1657 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1658 { 1659 struct mbuf *mb_copy; 1660 int hlen = ip->ip_hl << 2; 1661 1662 VIF_LOCK_ASSERT(); 1663 1664 /* 1665 * Make a new reference to the packet; make sure that 1666 * the IP header is actually copied, not just referenced, 1667 * so that ip_output() only scribbles on the copy. 1668 */ 1669 mb_copy = m_copypacket(m, M_NOWAIT); 1670 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1671 mb_copy = m_pullup(mb_copy, hlen); 1672 if (mb_copy == NULL) 1673 return; 1674 1675 send_packet(vifp, mb_copy); 1676 } 1677 1678 static void 1679 send_packet(struct vif *vifp, struct mbuf *m) 1680 { 1681 struct ip_moptions imo; 1682 int error __unused; 1683 1684 VIF_LOCK_ASSERT(); 1685 1686 imo.imo_multicast_ifp = vifp->v_ifp; 1687 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1688 imo.imo_multicast_loop = 1; 1689 imo.imo_multicast_vif = -1; 1690 STAILQ_INIT(&imo.imo_head); 1691 1692 /* 1693 * Re-entrancy should not be a problem here, because 1694 * the packets that we send out and are looped back at us 1695 * should get rejected because they appear to come from 1696 * the loopback interface, thus preventing looping. 1697 */ 1698 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1699 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1700 (ptrdiff_t)(vifp - V_viftable), error); 1701 } 1702 1703 /* 1704 * Stubs for old RSVP socket shim implementation. 1705 */ 1706 1707 static int 1708 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1709 { 1710 1711 return (EOPNOTSUPP); 1712 } 1713 1714 static void 1715 X_ip_rsvp_force_done(struct socket *so __unused) 1716 { 1717 1718 } 1719 1720 static int 1721 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1722 { 1723 struct mbuf *m; 1724 1725 m = *mp; 1726 *mp = NULL; 1727 if (!V_rsvp_on) 1728 m_freem(m); 1729 return (IPPROTO_DONE); 1730 } 1731 1732 /* 1733 * Code for bandwidth monitors 1734 */ 1735 1736 /* 1737 * Define common interface for timeval-related methods 1738 */ 1739 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1740 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1741 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1742 1743 static uint32_t 1744 compute_bw_meter_flags(struct bw_upcall *req) 1745 { 1746 uint32_t flags = 0; 1747 1748 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1749 flags |= BW_METER_UNIT_PACKETS; 1750 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1751 flags |= BW_METER_UNIT_BYTES; 1752 if (req->bu_flags & BW_UPCALL_GEQ) 1753 flags |= BW_METER_GEQ; 1754 if (req->bu_flags & BW_UPCALL_LEQ) 1755 flags |= BW_METER_LEQ; 1756 1757 return flags; 1758 } 1759 1760 /* 1761 * Add a bw_meter entry 1762 */ 1763 static int 1764 add_bw_upcall(struct bw_upcall *req) 1765 { 1766 struct mfc *mfc; 1767 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1768 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1769 struct timeval now; 1770 struct bw_meter *x; 1771 uint32_t flags; 1772 1773 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1774 return EOPNOTSUPP; 1775 1776 /* Test if the flags are valid */ 1777 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1778 return EINVAL; 1779 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1780 return EINVAL; 1781 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1782 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1783 return EINVAL; 1784 1785 /* Test if the threshold time interval is valid */ 1786 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1787 return EINVAL; 1788 1789 flags = compute_bw_meter_flags(req); 1790 1791 /* 1792 * Find if we have already same bw_meter entry 1793 */ 1794 MFC_LOCK(); 1795 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1796 if (mfc == NULL) { 1797 MFC_UNLOCK(); 1798 return EADDRNOTAVAIL; 1799 } 1800 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1801 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1802 &req->bu_threshold.b_time, ==)) && 1803 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1804 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1805 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1806 MFC_UNLOCK(); 1807 return 0; /* XXX Already installed */ 1808 } 1809 } 1810 1811 /* Allocate the new bw_meter entry */ 1812 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1813 if (x == NULL) { 1814 MFC_UNLOCK(); 1815 return ENOBUFS; 1816 } 1817 1818 /* Set the new bw_meter entry */ 1819 x->bm_threshold.b_time = req->bu_threshold.b_time; 1820 microtime(&now); 1821 x->bm_start_time = now; 1822 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1823 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1824 x->bm_measured.b_packets = 0; 1825 x->bm_measured.b_bytes = 0; 1826 x->bm_flags = flags; 1827 x->bm_time_next = NULL; 1828 x->bm_time_hash = BW_METER_BUCKETS; 1829 1830 /* Add the new bw_meter entry to the front of entries for this MFC */ 1831 x->bm_mfc = mfc; 1832 x->bm_mfc_next = mfc->mfc_bw_meter; 1833 mfc->mfc_bw_meter = x; 1834 schedule_bw_meter(x, &now); 1835 MFC_UNLOCK(); 1836 1837 return 0; 1838 } 1839 1840 static void 1841 free_bw_list(struct bw_meter *list) 1842 { 1843 while (list != NULL) { 1844 struct bw_meter *x = list; 1845 1846 list = list->bm_mfc_next; 1847 unschedule_bw_meter(x); 1848 free(x, M_BWMETER); 1849 } 1850 } 1851 1852 /* 1853 * Delete one or multiple bw_meter entries 1854 */ 1855 static int 1856 del_bw_upcall(struct bw_upcall *req) 1857 { 1858 struct mfc *mfc; 1859 struct bw_meter *x; 1860 1861 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1862 return EOPNOTSUPP; 1863 1864 MFC_LOCK(); 1865 1866 /* Find the corresponding MFC entry */ 1867 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1868 if (mfc == NULL) { 1869 MFC_UNLOCK(); 1870 return EADDRNOTAVAIL; 1871 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1872 /* 1873 * Delete all bw_meter entries for this mfc 1874 */ 1875 struct bw_meter *list; 1876 1877 list = mfc->mfc_bw_meter; 1878 mfc->mfc_bw_meter = NULL; 1879 free_bw_list(list); 1880 MFC_UNLOCK(); 1881 return 0; 1882 } else { /* Delete a single bw_meter entry */ 1883 struct bw_meter *prev; 1884 uint32_t flags = 0; 1885 1886 flags = compute_bw_meter_flags(req); 1887 1888 /* Find the bw_meter entry to delete */ 1889 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1890 prev = x, x = x->bm_mfc_next) { 1891 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1892 &req->bu_threshold.b_time, ==)) && 1893 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1894 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1895 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1896 break; 1897 } 1898 if (x != NULL) { /* Delete entry from the list for this MFC */ 1899 if (prev != NULL) 1900 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1901 else 1902 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1903 1904 unschedule_bw_meter(x); 1905 MFC_UNLOCK(); 1906 /* Free the bw_meter entry */ 1907 free(x, M_BWMETER); 1908 return 0; 1909 } else { 1910 MFC_UNLOCK(); 1911 return EINVAL; 1912 } 1913 } 1914 /* NOTREACHED */ 1915 } 1916 1917 /* 1918 * Perform bandwidth measurement processing that may result in an upcall 1919 */ 1920 static void 1921 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1922 { 1923 struct timeval delta; 1924 1925 MFC_LOCK_ASSERT(); 1926 1927 delta = *nowp; 1928 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1929 1930 if (x->bm_flags & BW_METER_GEQ) { 1931 /* 1932 * Processing for ">=" type of bw_meter entry 1933 */ 1934 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1935 /* Reset the bw_meter entry */ 1936 x->bm_start_time = *nowp; 1937 x->bm_measured.b_packets = 0; 1938 x->bm_measured.b_bytes = 0; 1939 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1940 } 1941 1942 /* Record that a packet is received */ 1943 x->bm_measured.b_packets++; 1944 x->bm_measured.b_bytes += plen; 1945 1946 /* 1947 * Test if we should deliver an upcall 1948 */ 1949 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1950 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1951 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1952 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1953 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1954 /* Prepare an upcall for delivery */ 1955 bw_meter_prepare_upcall(x, nowp); 1956 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1957 } 1958 } 1959 } else if (x->bm_flags & BW_METER_LEQ) { 1960 /* 1961 * Processing for "<=" type of bw_meter entry 1962 */ 1963 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1964 /* 1965 * We are behind time with the multicast forwarding table 1966 * scanning for "<=" type of bw_meter entries, so test now 1967 * if we should deliver an upcall. 1968 */ 1969 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1970 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1971 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1972 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1973 /* Prepare an upcall for delivery */ 1974 bw_meter_prepare_upcall(x, nowp); 1975 } 1976 /* Reschedule the bw_meter entry */ 1977 unschedule_bw_meter(x); 1978 schedule_bw_meter(x, nowp); 1979 } 1980 1981 /* Record that a packet is received */ 1982 x->bm_measured.b_packets++; 1983 x->bm_measured.b_bytes += plen; 1984 1985 /* 1986 * Test if we should restart the measuring interval 1987 */ 1988 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1989 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1990 (x->bm_flags & BW_METER_UNIT_BYTES && 1991 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1992 /* Don't restart the measuring interval */ 1993 } else { 1994 /* Do restart the measuring interval */ 1995 /* 1996 * XXX: note that we don't unschedule and schedule, because this 1997 * might be too much overhead per packet. Instead, when we process 1998 * all entries for a given timer hash bin, we check whether it is 1999 * really a timeout. If not, we reschedule at that time. 2000 */ 2001 x->bm_start_time = *nowp; 2002 x->bm_measured.b_packets = 0; 2003 x->bm_measured.b_bytes = 0; 2004 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2005 } 2006 } 2007 } 2008 2009 /* 2010 * Prepare a bandwidth-related upcall 2011 */ 2012 static void 2013 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2014 { 2015 struct timeval delta; 2016 struct bw_upcall *u; 2017 2018 MFC_LOCK_ASSERT(); 2019 2020 /* 2021 * Compute the measured time interval 2022 */ 2023 delta = *nowp; 2024 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2025 2026 /* 2027 * If there are too many pending upcalls, deliver them now 2028 */ 2029 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2030 bw_upcalls_send(); 2031 2032 /* 2033 * Set the bw_upcall entry 2034 */ 2035 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2036 u->bu_src = x->bm_mfc->mfc_origin; 2037 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2038 u->bu_threshold.b_time = x->bm_threshold.b_time; 2039 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2040 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2041 u->bu_measured.b_time = delta; 2042 u->bu_measured.b_packets = x->bm_measured.b_packets; 2043 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2044 u->bu_flags = 0; 2045 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2046 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2047 if (x->bm_flags & BW_METER_UNIT_BYTES) 2048 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2049 if (x->bm_flags & BW_METER_GEQ) 2050 u->bu_flags |= BW_UPCALL_GEQ; 2051 if (x->bm_flags & BW_METER_LEQ) 2052 u->bu_flags |= BW_UPCALL_LEQ; 2053 } 2054 2055 /* 2056 * Send the pending bandwidth-related upcalls 2057 */ 2058 static void 2059 bw_upcalls_send(void) 2060 { 2061 struct mbuf *m; 2062 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2063 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2064 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2065 0, /* unused2 */ 2066 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2067 0, /* im_mbz */ 2068 0, /* im_vif */ 2069 0, /* unused3 */ 2070 { 0 }, /* im_src */ 2071 { 0 } }; /* im_dst */ 2072 2073 MFC_LOCK_ASSERT(); 2074 2075 if (V_bw_upcalls_n == 0) 2076 return; /* No pending upcalls */ 2077 2078 V_bw_upcalls_n = 0; 2079 2080 /* 2081 * Allocate a new mbuf, initialize it with the header and 2082 * the payload for the pending calls. 2083 */ 2084 m = m_gethdr(M_NOWAIT, MT_DATA); 2085 if (m == NULL) { 2086 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2087 return; 2088 } 2089 2090 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2091 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2092 2093 /* 2094 * Send the upcalls 2095 * XXX do we need to set the address in k_igmpsrc ? 2096 */ 2097 MRTSTAT_INC(mrts_upcalls); 2098 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2099 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2100 MRTSTAT_INC(mrts_upq_sockfull); 2101 } 2102 } 2103 2104 /* 2105 * Compute the timeout hash value for the bw_meter entries 2106 */ 2107 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2108 do { \ 2109 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2110 \ 2111 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2112 (hash) = next_timeval.tv_sec; \ 2113 if (next_timeval.tv_usec) \ 2114 (hash)++; /* XXX: make sure we don't timeout early */ \ 2115 (hash) %= BW_METER_BUCKETS; \ 2116 } while (0) 2117 2118 /* 2119 * Schedule a timer to process periodically bw_meter entry of type "<=" 2120 * by linking the entry in the proper hash bucket. 2121 */ 2122 static void 2123 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2124 { 2125 int time_hash; 2126 2127 MFC_LOCK_ASSERT(); 2128 2129 if (!(x->bm_flags & BW_METER_LEQ)) 2130 return; /* XXX: we schedule timers only for "<=" entries */ 2131 2132 /* 2133 * Reset the bw_meter entry 2134 */ 2135 x->bm_start_time = *nowp; 2136 x->bm_measured.b_packets = 0; 2137 x->bm_measured.b_bytes = 0; 2138 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2139 2140 /* 2141 * Compute the timeout hash value and insert the entry 2142 */ 2143 BW_METER_TIMEHASH(x, time_hash); 2144 x->bm_time_next = V_bw_meter_timers[time_hash]; 2145 V_bw_meter_timers[time_hash] = x; 2146 x->bm_time_hash = time_hash; 2147 } 2148 2149 /* 2150 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2151 * by removing the entry from the proper hash bucket. 2152 */ 2153 static void 2154 unschedule_bw_meter(struct bw_meter *x) 2155 { 2156 int time_hash; 2157 struct bw_meter *prev, *tmp; 2158 2159 MFC_LOCK_ASSERT(); 2160 2161 if (!(x->bm_flags & BW_METER_LEQ)) 2162 return; /* XXX: we schedule timers only for "<=" entries */ 2163 2164 /* 2165 * Compute the timeout hash value and delete the entry 2166 */ 2167 time_hash = x->bm_time_hash; 2168 if (time_hash >= BW_METER_BUCKETS) 2169 return; /* Entry was not scheduled */ 2170 2171 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2172 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2173 if (tmp == x) 2174 break; 2175 2176 if (tmp == NULL) 2177 panic("unschedule_bw_meter: bw_meter entry not found"); 2178 2179 if (prev != NULL) 2180 prev->bm_time_next = x->bm_time_next; 2181 else 2182 V_bw_meter_timers[time_hash] = x->bm_time_next; 2183 2184 x->bm_time_next = NULL; 2185 x->bm_time_hash = BW_METER_BUCKETS; 2186 } 2187 2188 2189 /* 2190 * Process all "<=" type of bw_meter that should be processed now, 2191 * and for each entry prepare an upcall if necessary. Each processed 2192 * entry is rescheduled again for the (periodic) processing. 2193 * 2194 * This is run periodically (once per second normally). On each round, 2195 * all the potentially matching entries are in the hash slot that we are 2196 * looking at. 2197 */ 2198 static void 2199 bw_meter_process() 2200 { 2201 uint32_t loops; 2202 int i; 2203 struct timeval now, process_endtime; 2204 2205 microtime(&now); 2206 if (V_last_tv_sec == now.tv_sec) 2207 return; /* nothing to do */ 2208 2209 loops = now.tv_sec - V_last_tv_sec; 2210 V_last_tv_sec = now.tv_sec; 2211 if (loops > BW_METER_BUCKETS) 2212 loops = BW_METER_BUCKETS; 2213 2214 MFC_LOCK(); 2215 /* 2216 * Process all bins of bw_meter entries from the one after the last 2217 * processed to the current one. On entry, i points to the last bucket 2218 * visited, so we need to increment i at the beginning of the loop. 2219 */ 2220 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2221 struct bw_meter *x, *tmp_list; 2222 2223 if (++i >= BW_METER_BUCKETS) 2224 i = 0; 2225 2226 /* Disconnect the list of bw_meter entries from the bin */ 2227 tmp_list = V_bw_meter_timers[i]; 2228 V_bw_meter_timers[i] = NULL; 2229 2230 /* Process the list of bw_meter entries */ 2231 while (tmp_list != NULL) { 2232 x = tmp_list; 2233 tmp_list = tmp_list->bm_time_next; 2234 2235 /* Test if the time interval is over */ 2236 process_endtime = x->bm_start_time; 2237 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2238 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2239 /* Not yet: reschedule, but don't reset */ 2240 int time_hash; 2241 2242 BW_METER_TIMEHASH(x, time_hash); 2243 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2244 /* 2245 * XXX: somehow the bin processing is a bit ahead of time. 2246 * Put the entry in the next bin. 2247 */ 2248 if (++time_hash >= BW_METER_BUCKETS) 2249 time_hash = 0; 2250 } 2251 x->bm_time_next = V_bw_meter_timers[time_hash]; 2252 V_bw_meter_timers[time_hash] = x; 2253 x->bm_time_hash = time_hash; 2254 2255 continue; 2256 } 2257 2258 /* 2259 * Test if we should deliver an upcall 2260 */ 2261 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2262 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2263 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2264 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2265 /* Prepare an upcall for delivery */ 2266 bw_meter_prepare_upcall(x, &now); 2267 } 2268 2269 /* 2270 * Reschedule for next processing 2271 */ 2272 schedule_bw_meter(x, &now); 2273 } 2274 } 2275 2276 /* Send all upcalls that are pending delivery */ 2277 bw_upcalls_send(); 2278 2279 MFC_UNLOCK(); 2280 } 2281 2282 /* 2283 * A periodic function for sending all upcalls that are pending delivery 2284 */ 2285 static void 2286 expire_bw_upcalls_send(void *arg) 2287 { 2288 CURVNET_SET((struct vnet *) arg); 2289 2290 MFC_LOCK(); 2291 bw_upcalls_send(); 2292 MFC_UNLOCK(); 2293 2294 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2295 curvnet); 2296 CURVNET_RESTORE(); 2297 } 2298 2299 /* 2300 * A periodic function for periodic scanning of the multicast forwarding 2301 * table for processing all "<=" bw_meter entries. 2302 */ 2303 static void 2304 expire_bw_meter_process(void *arg) 2305 { 2306 CURVNET_SET((struct vnet *) arg); 2307 2308 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2309 bw_meter_process(); 2310 2311 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2312 curvnet); 2313 CURVNET_RESTORE(); 2314 } 2315 2316 /* 2317 * End of bandwidth monitoring code 2318 */ 2319 2320 /* 2321 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2322 * 2323 */ 2324 static int 2325 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2326 struct mfc *rt) 2327 { 2328 struct mbuf *mb_copy, *mm; 2329 2330 /* 2331 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2332 * rendezvous point was unspecified, and we were told not to. 2333 */ 2334 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2335 in_nullhost(rt->mfc_rp)) 2336 return 0; 2337 2338 mb_copy = pim_register_prepare(ip, m); 2339 if (mb_copy == NULL) 2340 return ENOBUFS; 2341 2342 /* 2343 * Send all the fragments. Note that the mbuf for each fragment 2344 * is freed by the sending machinery. 2345 */ 2346 for (mm = mb_copy; mm; mm = mb_copy) { 2347 mb_copy = mm->m_nextpkt; 2348 mm->m_nextpkt = 0; 2349 mm = m_pullup(mm, sizeof(struct ip)); 2350 if (mm != NULL) { 2351 ip = mtod(mm, struct ip *); 2352 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2353 pim_register_send_rp(ip, vifp, mm, rt); 2354 } else { 2355 pim_register_send_upcall(ip, vifp, mm, rt); 2356 } 2357 } 2358 } 2359 2360 return 0; 2361 } 2362 2363 /* 2364 * Return a copy of the data packet that is ready for PIM Register 2365 * encapsulation. 2366 * XXX: Note that in the returned copy the IP header is a valid one. 2367 */ 2368 static struct mbuf * 2369 pim_register_prepare(struct ip *ip, struct mbuf *m) 2370 { 2371 struct mbuf *mb_copy = NULL; 2372 int mtu; 2373 2374 /* Take care of delayed checksums */ 2375 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2376 in_delayed_cksum(m); 2377 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2378 } 2379 2380 /* 2381 * Copy the old packet & pullup its IP header into the 2382 * new mbuf so we can modify it. 2383 */ 2384 mb_copy = m_copypacket(m, M_NOWAIT); 2385 if (mb_copy == NULL) 2386 return NULL; 2387 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2388 if (mb_copy == NULL) 2389 return NULL; 2390 2391 /* take care of the TTL */ 2392 ip = mtod(mb_copy, struct ip *); 2393 --ip->ip_ttl; 2394 2395 /* Compute the MTU after the PIM Register encapsulation */ 2396 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2397 2398 if (ntohs(ip->ip_len) <= mtu) { 2399 /* Turn the IP header into a valid one */ 2400 ip->ip_sum = 0; 2401 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2402 } else { 2403 /* Fragment the packet */ 2404 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2405 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2406 m_freem(mb_copy); 2407 return NULL; 2408 } 2409 } 2410 return mb_copy; 2411 } 2412 2413 /* 2414 * Send an upcall with the data packet to the user-level process. 2415 */ 2416 static int 2417 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2418 struct mbuf *mb_copy, struct mfc *rt) 2419 { 2420 struct mbuf *mb_first; 2421 int len = ntohs(ip->ip_len); 2422 struct igmpmsg *im; 2423 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2424 2425 VIF_LOCK_ASSERT(); 2426 2427 /* 2428 * Add a new mbuf with an upcall header 2429 */ 2430 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2431 if (mb_first == NULL) { 2432 m_freem(mb_copy); 2433 return ENOBUFS; 2434 } 2435 mb_first->m_data += max_linkhdr; 2436 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2437 mb_first->m_len = sizeof(struct igmpmsg); 2438 mb_first->m_next = mb_copy; 2439 2440 /* Send message to routing daemon */ 2441 im = mtod(mb_first, struct igmpmsg *); 2442 im->im_msgtype = IGMPMSG_WHOLEPKT; 2443 im->im_mbz = 0; 2444 im->im_vif = vifp - V_viftable; 2445 im->im_src = ip->ip_src; 2446 im->im_dst = ip->ip_dst; 2447 2448 k_igmpsrc.sin_addr = ip->ip_src; 2449 2450 MRTSTAT_INC(mrts_upcalls); 2451 2452 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2453 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2454 MRTSTAT_INC(mrts_upq_sockfull); 2455 return ENOBUFS; 2456 } 2457 2458 /* Keep statistics */ 2459 PIMSTAT_INC(pims_snd_registers_msgs); 2460 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2461 2462 return 0; 2463 } 2464 2465 /* 2466 * Encapsulate the data packet in PIM Register message and send it to the RP. 2467 */ 2468 static int 2469 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2470 struct mfc *rt) 2471 { 2472 struct mbuf *mb_first; 2473 struct ip *ip_outer; 2474 struct pim_encap_pimhdr *pimhdr; 2475 int len = ntohs(ip->ip_len); 2476 vifi_t vifi = rt->mfc_parent; 2477 2478 VIF_LOCK_ASSERT(); 2479 2480 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2481 m_freem(mb_copy); 2482 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2483 } 2484 2485 /* 2486 * Add a new mbuf with the encapsulating header 2487 */ 2488 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2489 if (mb_first == NULL) { 2490 m_freem(mb_copy); 2491 return ENOBUFS; 2492 } 2493 mb_first->m_data += max_linkhdr; 2494 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2495 mb_first->m_next = mb_copy; 2496 2497 mb_first->m_pkthdr.len = len + mb_first->m_len; 2498 2499 /* 2500 * Fill in the encapsulating IP and PIM header 2501 */ 2502 ip_outer = mtod(mb_first, struct ip *); 2503 *ip_outer = pim_encap_iphdr; 2504 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2505 sizeof(pim_encap_pimhdr)); 2506 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2507 ip_outer->ip_dst = rt->mfc_rp; 2508 /* 2509 * Copy the inner header TOS to the outer header, and take care of the 2510 * IP_DF bit. 2511 */ 2512 ip_outer->ip_tos = ip->ip_tos; 2513 if (ip->ip_off & htons(IP_DF)) 2514 ip_outer->ip_off |= htons(IP_DF); 2515 ip_fillid(ip_outer); 2516 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2517 + sizeof(pim_encap_iphdr)); 2518 *pimhdr = pim_encap_pimhdr; 2519 /* If the iif crosses a border, set the Border-bit */ 2520 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2521 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2522 2523 mb_first->m_data += sizeof(pim_encap_iphdr); 2524 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2525 mb_first->m_data -= sizeof(pim_encap_iphdr); 2526 2527 send_packet(vifp, mb_first); 2528 2529 /* Keep statistics */ 2530 PIMSTAT_INC(pims_snd_registers_msgs); 2531 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2532 2533 return 0; 2534 } 2535 2536 /* 2537 * pim_encapcheck() is called by the encap4_input() path at runtime to 2538 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2539 * into the kernel. 2540 */ 2541 static int 2542 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2543 int proto __unused, void *arg __unused) 2544 { 2545 2546 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2547 return (8); /* claim the datagram. */ 2548 } 2549 2550 /* 2551 * PIM-SMv2 and PIM-DM messages processing. 2552 * Receives and verifies the PIM control messages, and passes them 2553 * up to the listening socket, using rip_input(). 2554 * The only message with special processing is the PIM_REGISTER message 2555 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2556 * is passed to if_simloop(). 2557 */ 2558 static int 2559 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2560 { 2561 struct ip *ip = mtod(m, struct ip *); 2562 struct pim *pim; 2563 int iphlen = off; 2564 int minlen; 2565 int datalen = ntohs(ip->ip_len) - iphlen; 2566 int ip_tos; 2567 2568 /* Keep statistics */ 2569 PIMSTAT_INC(pims_rcv_total_msgs); 2570 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2571 2572 /* 2573 * Validate lengths 2574 */ 2575 if (datalen < PIM_MINLEN) { 2576 PIMSTAT_INC(pims_rcv_tooshort); 2577 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2578 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2579 m_freem(m); 2580 return (IPPROTO_DONE); 2581 } 2582 2583 /* 2584 * If the packet is at least as big as a REGISTER, go agead 2585 * and grab the PIM REGISTER header size, to avoid another 2586 * possible m_pullup() later. 2587 * 2588 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2589 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2590 */ 2591 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2592 /* 2593 * Get the IP and PIM headers in contiguous memory, and 2594 * possibly the PIM REGISTER header. 2595 */ 2596 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2597 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2598 return (IPPROTO_DONE); 2599 } 2600 2601 /* m_pullup() may have given us a new mbuf so reset ip. */ 2602 ip = mtod(m, struct ip *); 2603 ip_tos = ip->ip_tos; 2604 2605 /* adjust mbuf to point to the PIM header */ 2606 m->m_data += iphlen; 2607 m->m_len -= iphlen; 2608 pim = mtod(m, struct pim *); 2609 2610 /* 2611 * Validate checksum. If PIM REGISTER, exclude the data packet. 2612 * 2613 * XXX: some older PIMv2 implementations don't make this distinction, 2614 * so for compatibility reason perform the checksum over part of the 2615 * message, and if error, then over the whole message. 2616 */ 2617 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2618 /* do nothing, checksum okay */ 2619 } else if (in_cksum(m, datalen)) { 2620 PIMSTAT_INC(pims_rcv_badsum); 2621 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2622 m_freem(m); 2623 return (IPPROTO_DONE); 2624 } 2625 2626 /* PIM version check */ 2627 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2628 PIMSTAT_INC(pims_rcv_badversion); 2629 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2630 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2631 m_freem(m); 2632 return (IPPROTO_DONE); 2633 } 2634 2635 /* restore mbuf back to the outer IP */ 2636 m->m_data -= iphlen; 2637 m->m_len += iphlen; 2638 2639 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2640 /* 2641 * Since this is a REGISTER, we'll make a copy of the register 2642 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2643 * routing daemon. 2644 */ 2645 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2646 struct mbuf *mcp; 2647 struct ip *encap_ip; 2648 u_int32_t *reghdr; 2649 struct ifnet *vifp; 2650 2651 VIF_LOCK(); 2652 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2653 VIF_UNLOCK(); 2654 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2655 (int)V_reg_vif_num); 2656 m_freem(m); 2657 return (IPPROTO_DONE); 2658 } 2659 /* XXX need refcnt? */ 2660 vifp = V_viftable[V_reg_vif_num].v_ifp; 2661 VIF_UNLOCK(); 2662 2663 /* 2664 * Validate length 2665 */ 2666 if (datalen < PIM_REG_MINLEN) { 2667 PIMSTAT_INC(pims_rcv_tooshort); 2668 PIMSTAT_INC(pims_rcv_badregisters); 2669 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2670 m_freem(m); 2671 return (IPPROTO_DONE); 2672 } 2673 2674 reghdr = (u_int32_t *)(pim + 1); 2675 encap_ip = (struct ip *)(reghdr + 1); 2676 2677 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2678 __func__, ntohl(encap_ip->ip_src.s_addr), 2679 ntohs(encap_ip->ip_len)); 2680 2681 /* verify the version number of the inner packet */ 2682 if (encap_ip->ip_v != IPVERSION) { 2683 PIMSTAT_INC(pims_rcv_badregisters); 2684 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2685 m_freem(m); 2686 return (IPPROTO_DONE); 2687 } 2688 2689 /* verify the inner packet is destined to a mcast group */ 2690 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2691 PIMSTAT_INC(pims_rcv_badregisters); 2692 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2693 ntohl(encap_ip->ip_dst.s_addr)); 2694 m_freem(m); 2695 return (IPPROTO_DONE); 2696 } 2697 2698 /* If a NULL_REGISTER, pass it to the daemon */ 2699 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2700 goto pim_input_to_daemon; 2701 2702 /* 2703 * Copy the TOS from the outer IP header to the inner IP header. 2704 */ 2705 if (encap_ip->ip_tos != ip_tos) { 2706 /* Outer TOS -> inner TOS */ 2707 encap_ip->ip_tos = ip_tos; 2708 /* Recompute the inner header checksum. Sigh... */ 2709 2710 /* adjust mbuf to point to the inner IP header */ 2711 m->m_data += (iphlen + PIM_MINLEN); 2712 m->m_len -= (iphlen + PIM_MINLEN); 2713 2714 encap_ip->ip_sum = 0; 2715 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2716 2717 /* restore mbuf to point back to the outer IP header */ 2718 m->m_data -= (iphlen + PIM_MINLEN); 2719 m->m_len += (iphlen + PIM_MINLEN); 2720 } 2721 2722 /* 2723 * Decapsulate the inner IP packet and loopback to forward it 2724 * as a normal multicast packet. Also, make a copy of the 2725 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2726 * to pass to the daemon later, so it can take the appropriate 2727 * actions (e.g., send back PIM_REGISTER_STOP). 2728 * XXX: here m->m_data points to the outer IP header. 2729 */ 2730 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2731 if (mcp == NULL) { 2732 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2733 m_freem(m); 2734 return (IPPROTO_DONE); 2735 } 2736 2737 /* Keep statistics */ 2738 /* XXX: registers_bytes include only the encap. mcast pkt */ 2739 PIMSTAT_INC(pims_rcv_registers_msgs); 2740 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2741 2742 /* 2743 * forward the inner ip packet; point m_data at the inner ip. 2744 */ 2745 m_adj(m, iphlen + PIM_MINLEN); 2746 2747 CTR4(KTR_IPMF, 2748 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2749 __func__, 2750 (u_long)ntohl(encap_ip->ip_src.s_addr), 2751 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2752 (int)V_reg_vif_num); 2753 2754 /* NB: vifp was collected above; can it change on us? */ 2755 if_simloop(vifp, m, dst.sin_family, 0); 2756 2757 /* prepare the register head to send to the mrouting daemon */ 2758 m = mcp; 2759 } 2760 2761 pim_input_to_daemon: 2762 /* 2763 * Pass the PIM message up to the daemon; if it is a Register message, 2764 * pass the 'head' only up to the daemon. This includes the 2765 * outer IP header, PIM header, PIM-Register header and the 2766 * inner IP header. 2767 * XXX: the outer IP header pkt size of a Register is not adjust to 2768 * reflect the fact that the inner multicast data is truncated. 2769 */ 2770 return (rip_input(&m, &off, proto)); 2771 } 2772 2773 static int 2774 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2775 { 2776 struct mfc *rt; 2777 int error, i; 2778 2779 if (req->newptr) 2780 return (EPERM); 2781 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2782 return (0); 2783 error = sysctl_wire_old_buffer(req, 0); 2784 if (error) 2785 return (error); 2786 2787 MFC_LOCK(); 2788 for (i = 0; i < mfchashsize; i++) { 2789 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2790 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2791 if (error) 2792 goto out_locked; 2793 } 2794 } 2795 out_locked: 2796 MFC_UNLOCK(); 2797 return (error); 2798 } 2799 2800 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2801 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2802 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2803 2804 static void 2805 vnet_mroute_init(const void *unused __unused) 2806 { 2807 2808 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2809 2810 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2811 M_MRTABLE, M_WAITOK|M_ZERO); 2812 V_bw_meter_timers = mallocarray(BW_METER_BUCKETS, 2813 sizeof(*V_bw_meter_timers), M_MRTABLE, M_WAITOK|M_ZERO); 2814 V_bw_upcalls = mallocarray(BW_UPCALLS_MAX, sizeof(*V_bw_upcalls), 2815 M_MRTABLE, M_WAITOK|M_ZERO); 2816 2817 callout_init(&V_expire_upcalls_ch, 1); 2818 callout_init(&V_bw_upcalls_ch, 1); 2819 callout_init(&V_bw_meter_ch, 1); 2820 } 2821 2822 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2823 NULL); 2824 2825 static void 2826 vnet_mroute_uninit(const void *unused __unused) 2827 { 2828 2829 free(V_bw_upcalls, M_MRTABLE); 2830 free(V_bw_meter_timers, M_MRTABLE); 2831 free(V_viftable, M_MRTABLE); 2832 free(V_nexpire, M_MRTABLE); 2833 V_nexpire = NULL; 2834 } 2835 2836 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2837 vnet_mroute_uninit, NULL); 2838 2839 static int 2840 ip_mroute_modevent(module_t mod, int type, void *unused) 2841 { 2842 2843 switch (type) { 2844 case MOD_LOAD: 2845 MROUTER_LOCK_INIT(); 2846 2847 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2848 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2849 if (if_detach_event_tag == NULL) { 2850 printf("ip_mroute: unable to register " 2851 "ifnet_departure_event handler\n"); 2852 MROUTER_LOCK_DESTROY(); 2853 return (EINVAL); 2854 } 2855 2856 MFC_LOCK_INIT(); 2857 VIF_LOCK_INIT(); 2858 2859 mfchashsize = MFCHASHSIZE; 2860 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2861 !powerof2(mfchashsize)) { 2862 printf("WARNING: %s not a power of 2; using default\n", 2863 "net.inet.ip.mfchashsize"); 2864 mfchashsize = MFCHASHSIZE; 2865 } 2866 2867 pim_squelch_wholepkt = 0; 2868 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2869 &pim_squelch_wholepkt); 2870 2871 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2872 if (pim_encap_cookie == NULL) { 2873 printf("ip_mroute: unable to attach pim encap\n"); 2874 VIF_LOCK_DESTROY(); 2875 MFC_LOCK_DESTROY(); 2876 MROUTER_LOCK_DESTROY(); 2877 return (EINVAL); 2878 } 2879 2880 ip_mcast_src = X_ip_mcast_src; 2881 ip_mforward = X_ip_mforward; 2882 ip_mrouter_done = X_ip_mrouter_done; 2883 ip_mrouter_get = X_ip_mrouter_get; 2884 ip_mrouter_set = X_ip_mrouter_set; 2885 2886 ip_rsvp_force_done = X_ip_rsvp_force_done; 2887 ip_rsvp_vif = X_ip_rsvp_vif; 2888 2889 legal_vif_num = X_legal_vif_num; 2890 mrt_ioctl = X_mrt_ioctl; 2891 rsvp_input_p = X_rsvp_input; 2892 break; 2893 2894 case MOD_UNLOAD: 2895 /* 2896 * Typically module unload happens after the user-level 2897 * process has shutdown the kernel services (the check 2898 * below insures someone can't just yank the module out 2899 * from under a running process). But if the module is 2900 * just loaded and then unloaded w/o starting up a user 2901 * process we still need to cleanup. 2902 */ 2903 MROUTER_LOCK(); 2904 if (ip_mrouter_cnt != 0) { 2905 MROUTER_UNLOCK(); 2906 return (EINVAL); 2907 } 2908 ip_mrouter_unloading = 1; 2909 MROUTER_UNLOCK(); 2910 2911 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2912 2913 if (pim_encap_cookie) { 2914 ip_encap_detach(pim_encap_cookie); 2915 pim_encap_cookie = NULL; 2916 } 2917 2918 ip_mcast_src = NULL; 2919 ip_mforward = NULL; 2920 ip_mrouter_done = NULL; 2921 ip_mrouter_get = NULL; 2922 ip_mrouter_set = NULL; 2923 2924 ip_rsvp_force_done = NULL; 2925 ip_rsvp_vif = NULL; 2926 2927 legal_vif_num = NULL; 2928 mrt_ioctl = NULL; 2929 rsvp_input_p = NULL; 2930 2931 VIF_LOCK_DESTROY(); 2932 MFC_LOCK_DESTROY(); 2933 MROUTER_LOCK_DESTROY(); 2934 break; 2935 2936 default: 2937 return EOPNOTSUPP; 2938 } 2939 return 0; 2940 } 2941 2942 static moduledata_t ip_mroutemod = { 2943 "ip_mroute", 2944 ip_mroute_modevent, 2945 0 2946 }; 2947 2948 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2949