xref: /freebsd/sys/netinet/ip_mroute.c (revision 84ee9401a3fc8d3c22424266f421a928989cd692)
1 /*-
2  * Copyright (c) 1989 Stephen Deering
3  * Copyright (c) 1992, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Stephen Deering of Stanford University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  *
51  * MROUTING Revision: 3.5
52  * and PIM-SMv2 and PIM-DM support, advanced API support,
53  * bandwidth metering and signaling
54  *
55  * $FreeBSD$
56  */
57 
58 #include "opt_mac.h"
59 #include "opt_mrouting.h"
60 
61 #ifdef PIM
62 #define _PIM_VT 1
63 #endif
64 
65 #include <sys/param.h>
66 #include <sys/kernel.h>
67 #include <sys/lock.h>
68 #include <sys/mac.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/module.h>
72 #include <sys/protosw.h>
73 #include <sys/signalvar.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 #include <sys/systm.h>
81 #include <sys/time.h>
82 #include <net/if.h>
83 #include <net/netisr.h>
84 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/igmp.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_encap.h>
91 #include <netinet/ip_mroute.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_options.h>
94 #ifdef PIM
95 #include <netinet/pim.h>
96 #include <netinet/pim_var.h>
97 #endif
98 #include <netinet/udp.h>
99 #include <machine/in_cksum.h>
100 
101 /*
102  * Control debugging code for rsvp and multicast routing code.
103  * Can only set them with the debugger.
104  */
105 static u_int    rsvpdebug;		/* non-zero enables debugging	*/
106 
107 static u_int	mrtdebug;		/* any set of the flags below	*/
108 #define		DEBUG_MFC	0x02
109 #define		DEBUG_FORWARD	0x04
110 #define		DEBUG_EXPIRE	0x08
111 #define		DEBUG_XMIT	0x10
112 #define		DEBUG_PIM	0x20
113 
114 #define		VIFI_INVALID	((vifi_t) -1)
115 
116 #define M_HASCL(m)	((m)->m_flags & M_EXT)
117 
118 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
119 
120 /*
121  * Locking.  We use two locks: one for the virtual interface table and
122  * one for the forwarding table.  These locks may be nested in which case
123  * the VIF lock must always be taken first.  Note that each lock is used
124  * to cover not only the specific data structure but also related data
125  * structures.  It may be better to add more fine-grained locking later;
126  * it's not clear how performance-critical this code is.
127  *
128  * XXX: This module could particularly benefit from being cleaned
129  *      up to use the <sys/queue.h> macros.
130  *
131  */
132 
133 static struct mrtstat	mrtstat;
134 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
135     &mrtstat, mrtstat,
136     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
137 
138 static struct mfc	*mfctable[MFCTBLSIZ];
139 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
140     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
141     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
142 
143 static struct mtx mfc_mtx;
144 #define	MFC_LOCK()	mtx_lock(&mfc_mtx)
145 #define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
146 #define	MFC_LOCK_ASSERT()	do {					\
147 	mtx_assert(&mfc_mtx, MA_OWNED);					\
148 	NET_ASSERT_GIANT();						\
149 } while (0)
150 #define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
151 #define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
152 
153 static struct vif	viftable[MAXVIFS];
154 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
155     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
156     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
157 
158 static struct mtx vif_mtx;
159 #define	VIF_LOCK()	mtx_lock(&vif_mtx)
160 #define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
161 #define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
162 #define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
163 #define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
164 
165 static u_char		nexpire[MFCTBLSIZ];
166 
167 static eventhandler_tag if_detach_event_tag = NULL;
168 
169 static struct callout expire_upcalls_ch;
170 
171 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
172 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
173 
174 /*
175  * Define the token bucket filter structures
176  * tbftable -> each vif has one of these for storing info
177  */
178 
179 static struct tbf tbftable[MAXVIFS];
180 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
181 
182 /*
183  * 'Interfaces' associated with decapsulator (so we can tell
184  * packets that went through it from ones that get reflected
185  * by a broken gateway).  These interfaces are never linked into
186  * the system ifnet list & no routes point to them.  I.e., packets
187  * can't be sent this way.  They only exist as a placeholder for
188  * multicast source verification.
189  */
190 static struct ifnet multicast_decap_if[MAXVIFS];
191 
192 #define ENCAP_TTL 64
193 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
194 
195 /* prototype IP hdr for encapsulated packets */
196 static struct ip multicast_encap_iphdr = {
197 #if BYTE_ORDER == LITTLE_ENDIAN
198 	sizeof(struct ip) >> 2, IPVERSION,
199 #else
200 	IPVERSION, sizeof(struct ip) >> 2,
201 #endif
202 	0,				/* tos */
203 	sizeof(struct ip),		/* total length */
204 	0,				/* id */
205 	0,				/* frag offset */
206 	ENCAP_TTL, ENCAP_PROTO,
207 	0,				/* checksum */
208 };
209 
210 /*
211  * Bandwidth meter variables and constants
212  */
213 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
214 /*
215  * Pending timeouts are stored in a hash table, the key being the
216  * expiration time. Periodically, the entries are analysed and processed.
217  */
218 #define BW_METER_BUCKETS	1024
219 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
220 static struct callout bw_meter_ch;
221 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
222 
223 /*
224  * Pending upcalls are stored in a vector which is flushed when
225  * full, or periodically
226  */
227 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
228 static u_int	bw_upcalls_n; /* # of pending upcalls */
229 static struct callout bw_upcalls_ch;
230 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
231 
232 #ifdef PIM
233 static struct pimstat pimstat;
234 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
235     &pimstat, pimstat,
236     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
237 
238 /*
239  * Note: the PIM Register encapsulation adds the following in front of a
240  * data packet:
241  *
242  * struct pim_encap_hdr {
243  *    struct ip ip;
244  *    struct pim_encap_pimhdr  pim;
245  * }
246  *
247  */
248 
249 struct pim_encap_pimhdr {
250 	struct pim pim;
251 	uint32_t   flags;
252 };
253 
254 static struct ip pim_encap_iphdr = {
255 #if BYTE_ORDER == LITTLE_ENDIAN
256 	sizeof(struct ip) >> 2,
257 	IPVERSION,
258 #else
259 	IPVERSION,
260 	sizeof(struct ip) >> 2,
261 #endif
262 	0,			/* tos */
263 	sizeof(struct ip),	/* total length */
264 	0,			/* id */
265 	0,			/* frag offset */
266 	ENCAP_TTL,
267 	IPPROTO_PIM,
268 	0,			/* checksum */
269 };
270 
271 static struct pim_encap_pimhdr pim_encap_pimhdr = {
272     {
273 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
274 	0,			/* reserved */
275 	0,			/* checksum */
276     },
277     0				/* flags */
278 };
279 
280 static struct ifnet multicast_register_if;
281 static vifi_t reg_vif_num = VIFI_INVALID;
282 #endif /* PIM */
283 
284 /*
285  * Private variables.
286  */
287 static vifi_t	   numvifs;
288 static const struct encaptab *encap_cookie;
289 
290 /*
291  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
292  * given a datagram's src ip address.
293  */
294 static u_long last_encap_src;
295 static struct vif *last_encap_vif;
296 
297 /*
298  * Callout for queue processing.
299  */
300 static struct callout tbf_reprocess_ch;
301 
302 static u_long	X_ip_mcast_src(int vifi);
303 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
304 			struct mbuf *m, struct ip_moptions *imo);
305 static int	X_ip_mrouter_done(void);
306 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
307 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
308 static int	X_legal_vif_num(int vif);
309 static int	X_mrt_ioctl(int cmd, caddr_t data);
310 
311 static int get_sg_cnt(struct sioc_sg_req *);
312 static int get_vif_cnt(struct sioc_vif_req *);
313 static void if_detached_event(void *arg __unused, struct ifnet *);
314 static int ip_mrouter_init(struct socket *, int);
315 static int add_vif(struct vifctl *);
316 static int del_vif_locked(vifi_t);
317 static int del_vif(vifi_t);
318 static int add_mfc(struct mfcctl2 *);
319 static int del_mfc(struct mfcctl2 *);
320 static int set_api_config(uint32_t *); /* chose API capabilities */
321 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
322 static int set_assert(int);
323 static void expire_upcalls(void *);
324 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
325 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
326 static void encap_send(struct ip *, struct vif *, struct mbuf *);
327 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
328 static void tbf_queue(struct vif *, struct mbuf *);
329 static void tbf_process_q(struct vif *);
330 static void tbf_reprocess_q(void *);
331 static int tbf_dq_sel(struct vif *, struct ip *);
332 static void tbf_send_packet(struct vif *, struct mbuf *);
333 static void tbf_update_tokens(struct vif *);
334 static int priority(struct vif *, struct ip *);
335 
336 /*
337  * Bandwidth monitoring
338  */
339 static void free_bw_list(struct bw_meter *list);
340 static int add_bw_upcall(struct bw_upcall *);
341 static int del_bw_upcall(struct bw_upcall *);
342 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
343 		struct timeval *nowp);
344 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
345 static void bw_upcalls_send(void);
346 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
347 static void unschedule_bw_meter(struct bw_meter *x);
348 static void bw_meter_process(void);
349 static void expire_bw_upcalls_send(void *);
350 static void expire_bw_meter_process(void *);
351 
352 #ifdef PIM
353 static int pim_register_send(struct ip *, struct vif *,
354 		struct mbuf *, struct mfc *);
355 static int pim_register_send_rp(struct ip *, struct vif *,
356 		struct mbuf *, struct mfc *);
357 static int pim_register_send_upcall(struct ip *, struct vif *,
358 		struct mbuf *, struct mfc *);
359 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
360 #endif
361 
362 /*
363  * whether or not special PIM assert processing is enabled.
364  */
365 static int pim_assert;
366 /*
367  * Rate limit for assert notification messages, in usec
368  */
369 #define ASSERT_MSG_TIME		3000000
370 
371 /*
372  * Kernel multicast routing API capabilities and setup.
373  * If more API capabilities are added to the kernel, they should be
374  * recorded in `mrt_api_support'.
375  */
376 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
377 					 MRT_MFC_FLAGS_BORDER_VIF |
378 					 MRT_MFC_RP |
379 					 MRT_MFC_BW_UPCALL);
380 static uint32_t mrt_api_config = 0;
381 
382 /*
383  * Hash function for a source, group entry
384  */
385 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
386 			((g) >> 20) ^ ((g) >> 10) ^ (g))
387 
388 /*
389  * Find a route for a given origin IP address and Multicast group address
390  * Type of service parameter to be added in the future!!!
391  * Statistics are updated by the caller if needed
392  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
393  */
394 static struct mfc *
395 mfc_find(in_addr_t o, in_addr_t g)
396 {
397     struct mfc *rt;
398 
399     MFC_LOCK_ASSERT();
400 
401     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
402 	if ((rt->mfc_origin.s_addr == o) &&
403 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
404 	    break;
405     return rt;
406 }
407 
408 /*
409  * Macros to compute elapsed time efficiently
410  * Borrowed from Van Jacobson's scheduling code
411  */
412 #define TV_DELTA(a, b, delta) {					\
413 	int xxs;						\
414 	delta = (a).tv_usec - (b).tv_usec;			\
415 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
416 		switch (xxs) {					\
417 		case 2:						\
418 		      delta += 1000000;				\
419 		      /* FALLTHROUGH */				\
420 		case 1:						\
421 		      delta += 1000000;				\
422 		      break;					\
423 		default:					\
424 		      delta += (1000000 * xxs);			\
425 		}						\
426 	}							\
427 }
428 
429 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
430 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
431 
432 /*
433  * Handle MRT setsockopt commands to modify the multicast routing tables.
434  */
435 static int
436 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
437 {
438     int	error, optval;
439     vifi_t	vifi;
440     struct	vifctl vifc;
441     struct	mfcctl2 mfc;
442     struct	bw_upcall bw_upcall;
443     uint32_t	i;
444 
445     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
446 	return EPERM;
447 
448     error = 0;
449     switch (sopt->sopt_name) {
450     case MRT_INIT:
451 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
452 	if (error)
453 	    break;
454 	error = ip_mrouter_init(so, optval);
455 	break;
456 
457     case MRT_DONE:
458 	error = ip_mrouter_done();
459 	break;
460 
461     case MRT_ADD_VIF:
462 	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
463 	if (error)
464 	    break;
465 	error = add_vif(&vifc);
466 	break;
467 
468     case MRT_DEL_VIF:
469 	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
470 	if (error)
471 	    break;
472 	error = del_vif(vifi);
473 	break;
474 
475     case MRT_ADD_MFC:
476     case MRT_DEL_MFC:
477 	/*
478 	 * select data size depending on API version.
479 	 */
480 	if (sopt->sopt_name == MRT_ADD_MFC &&
481 		mrt_api_config & MRT_API_FLAGS_ALL) {
482 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
483 				sizeof(struct mfcctl2));
484 	} else {
485 	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
486 				sizeof(struct mfcctl));
487 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
488 			sizeof(mfc) - sizeof(struct mfcctl));
489 	}
490 	if (error)
491 	    break;
492 	if (sopt->sopt_name == MRT_ADD_MFC)
493 	    error = add_mfc(&mfc);
494 	else
495 	    error = del_mfc(&mfc);
496 	break;
497 
498     case MRT_ASSERT:
499 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
500 	if (error)
501 	    break;
502 	set_assert(optval);
503 	break;
504 
505     case MRT_API_CONFIG:
506 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
507 	if (!error)
508 	    error = set_api_config(&i);
509 	if (!error)
510 	    error = sooptcopyout(sopt, &i, sizeof i);
511 	break;
512 
513     case MRT_ADD_BW_UPCALL:
514     case MRT_DEL_BW_UPCALL:
515 	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
516 				sizeof bw_upcall);
517 	if (error)
518 	    break;
519 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
520 	    error = add_bw_upcall(&bw_upcall);
521 	else
522 	    error = del_bw_upcall(&bw_upcall);
523 	break;
524 
525     default:
526 	error = EOPNOTSUPP;
527 	break;
528     }
529     return error;
530 }
531 
532 /*
533  * Handle MRT getsockopt commands
534  */
535 static int
536 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
537 {
538     int error;
539     static int version = 0x0305; /* !!! why is this here? XXX */
540 
541     switch (sopt->sopt_name) {
542     case MRT_VERSION:
543 	error = sooptcopyout(sopt, &version, sizeof version);
544 	break;
545 
546     case MRT_ASSERT:
547 	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
548 	break;
549 
550     case MRT_API_SUPPORT:
551 	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
552 	break;
553 
554     case MRT_API_CONFIG:
555 	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
556 	break;
557 
558     default:
559 	error = EOPNOTSUPP;
560 	break;
561     }
562     return error;
563 }
564 
565 /*
566  * Handle ioctl commands to obtain information from the cache
567  */
568 static int
569 X_mrt_ioctl(int cmd, caddr_t data)
570 {
571     int error = 0;
572 
573     /*
574      * Currently the only function calling this ioctl routine is rtioctl().
575      * Typically, only root can create the raw socket in order to execute
576      * this ioctl method, however the request might be coming from a prison
577      */
578     error = suser(curthread);
579     if (error)
580 	return (error);
581     switch (cmd) {
582     case (SIOCGETVIFCNT):
583 	error = get_vif_cnt((struct sioc_vif_req *)data);
584 	break;
585 
586     case (SIOCGETSGCNT):
587 	error = get_sg_cnt((struct sioc_sg_req *)data);
588 	break;
589 
590     default:
591 	error = EINVAL;
592 	break;
593     }
594     return error;
595 }
596 
597 /*
598  * returns the packet, byte, rpf-failure count for the source group provided
599  */
600 static int
601 get_sg_cnt(struct sioc_sg_req *req)
602 {
603     struct mfc *rt;
604 
605     MFC_LOCK();
606     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
607     if (rt == NULL) {
608 	MFC_UNLOCK();
609 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
610 	return EADDRNOTAVAIL;
611     }
612     req->pktcnt = rt->mfc_pkt_cnt;
613     req->bytecnt = rt->mfc_byte_cnt;
614     req->wrong_if = rt->mfc_wrong_if;
615     MFC_UNLOCK();
616     return 0;
617 }
618 
619 /*
620  * returns the input and output packet and byte counts on the vif provided
621  */
622 static int
623 get_vif_cnt(struct sioc_vif_req *req)
624 {
625     vifi_t vifi = req->vifi;
626 
627     VIF_LOCK();
628     if (vifi >= numvifs) {
629 	VIF_UNLOCK();
630 	return EINVAL;
631     }
632 
633     req->icount = viftable[vifi].v_pkt_in;
634     req->ocount = viftable[vifi].v_pkt_out;
635     req->ibytes = viftable[vifi].v_bytes_in;
636     req->obytes = viftable[vifi].v_bytes_out;
637     VIF_UNLOCK();
638 
639     return 0;
640 }
641 
642 static void
643 ip_mrouter_reset(void)
644 {
645     bzero((caddr_t)mfctable, sizeof(mfctable));
646     bzero((caddr_t)nexpire, sizeof(nexpire));
647 
648     pim_assert = 0;
649     mrt_api_config = 0;
650 
651     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
652 
653     bw_upcalls_n = 0;
654     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
655     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
656     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
657 
658     callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
659 }
660 
661 static struct mtx mrouter_mtx;		/* used to synch init/done work */
662 
663 static void
664 if_detached_event(void *arg __unused, struct ifnet *ifp)
665 {
666     vifi_t vifi;
667     int i;
668     struct mfc *mfc;
669     struct mfc *nmfc;
670     struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
671     struct rtdetq *pq;
672     struct rtdetq *npq;
673 
674     mtx_lock(&mrouter_mtx);
675     if (ip_mrouter == NULL) {
676 	mtx_unlock(&mrouter_mtx);
677     }
678 
679     /*
680      * Tear down multicast forwarder state associated with this ifnet.
681      * 1. Walk the vif list, matching vifs against this ifnet.
682      * 2. Walk the multicast forwarding cache (mfc) looking for
683      *    inner matches with this vif's index.
684      * 3. Free any pending mbufs for this mfc.
685      * 4. Free the associated mfc entry and state associated with this vif.
686      *    Be very careful about unlinking from a singly-linked list whose
687      *    "head node" is a pointer in a simple array.
688      * 5. Free vif state. This should disable ALLMULTI on the interface.
689      */
690     VIF_LOCK();
691     MFC_LOCK();
692     for (vifi = 0; vifi < numvifs; vifi++) {
693 	if (viftable[vifi].v_ifp != ifp)
694 		continue;
695 	for (i = 0; i < MFCTBLSIZ; i++) {
696 	    ppmfc = &mfctable[i];
697 	    for (mfc = mfctable[i]; mfc != NULL; ) {
698 		nmfc = mfc->mfc_next;
699 		if (mfc->mfc_parent == vifi) {
700 		    for (pq = mfc->mfc_stall; pq != NULL; ) {
701 			npq = pq->next;
702 			m_freem(pq->m);
703 			free(pq, M_MRTABLE);
704 			pq = npq;
705 		    }
706 		    free_bw_list(mfc->mfc_bw_meter);
707 		    free(mfc, M_MRTABLE);
708 		    *ppmfc = nmfc;
709 		} else {
710 		    ppmfc = &mfc->mfc_next;
711 		}
712 		mfc = nmfc;
713 	    }
714 	}
715 	del_vif_locked(vifi);
716     }
717     MFC_UNLOCK();
718     VIF_UNLOCK();
719 
720     mtx_unlock(&mrouter_mtx);
721 }
722 
723 /*
724  * Enable multicast routing
725  */
726 static int
727 ip_mrouter_init(struct socket *so, int version)
728 {
729     if (mrtdebug)
730 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
731 	    so->so_type, so->so_proto->pr_protocol);
732 
733     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
734 	return EOPNOTSUPP;
735 
736     if (version != 1)
737 	return ENOPROTOOPT;
738 
739     mtx_lock(&mrouter_mtx);
740 
741     if (ip_mrouter != NULL) {
742 	mtx_unlock(&mrouter_mtx);
743 	return EADDRINUSE;
744     }
745 
746     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
747         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
748     if (if_detach_event_tag == NULL)
749 	return (ENOMEM);
750 
751     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
752 
753     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
754 	expire_bw_upcalls_send, NULL);
755     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
756 
757     ip_mrouter = so;
758 
759     mtx_unlock(&mrouter_mtx);
760 
761     if (mrtdebug)
762 	log(LOG_DEBUG, "ip_mrouter_init\n");
763 
764     return 0;
765 }
766 
767 /*
768  * Disable multicast routing
769  */
770 static int
771 X_ip_mrouter_done(void)
772 {
773     vifi_t vifi;
774     int i;
775     struct ifnet *ifp;
776     struct ifreq ifr;
777     struct mfc *rt;
778     struct rtdetq *rte;
779 
780     mtx_lock(&mrouter_mtx);
781 
782     if (ip_mrouter == NULL) {
783 	mtx_unlock(&mrouter_mtx);
784 	return EINVAL;
785     }
786 
787     /*
788      * Detach/disable hooks to the reset of the system.
789      */
790     ip_mrouter = NULL;
791     mrt_api_config = 0;
792 
793     VIF_LOCK();
794     if (encap_cookie) {
795 	const struct encaptab *c = encap_cookie;
796 	encap_cookie = NULL;
797 	encap_detach(c);
798     }
799     VIF_UNLOCK();
800 
801     callout_stop(&tbf_reprocess_ch);
802 
803     VIF_LOCK();
804     /*
805      * For each phyint in use, disable promiscuous reception of all IP
806      * multicasts.
807      */
808     for (vifi = 0; vifi < numvifs; vifi++) {
809 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
810 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
811 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
812 
813 	    so->sin_len = sizeof(struct sockaddr_in);
814 	    so->sin_family = AF_INET;
815 	    so->sin_addr.s_addr = INADDR_ANY;
816 	    ifp = viftable[vifi].v_ifp;
817 	    if_allmulti(ifp, 0);
818 	}
819     }
820     bzero((caddr_t)tbftable, sizeof(tbftable));
821     bzero((caddr_t)viftable, sizeof(viftable));
822     numvifs = 0;
823     pim_assert = 0;
824     VIF_UNLOCK();
825     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
826 
827     /*
828      * Free all multicast forwarding cache entries.
829      */
830     callout_stop(&expire_upcalls_ch);
831     callout_stop(&bw_upcalls_ch);
832     callout_stop(&bw_meter_ch);
833 
834     MFC_LOCK();
835     for (i = 0; i < MFCTBLSIZ; i++) {
836 	for (rt = mfctable[i]; rt != NULL; ) {
837 	    struct mfc *nr = rt->mfc_next;
838 
839 	    for (rte = rt->mfc_stall; rte != NULL; ) {
840 		struct rtdetq *n = rte->next;
841 
842 		m_freem(rte->m);
843 		free(rte, M_MRTABLE);
844 		rte = n;
845 	    }
846 	    free_bw_list(rt->mfc_bw_meter);
847 	    free(rt, M_MRTABLE);
848 	    rt = nr;
849 	}
850     }
851     bzero((caddr_t)mfctable, sizeof(mfctable));
852     bzero((caddr_t)nexpire, sizeof(nexpire));
853     bw_upcalls_n = 0;
854     bzero(bw_meter_timers, sizeof(bw_meter_timers));
855     MFC_UNLOCK();
856 
857     /*
858      * Reset de-encapsulation cache
859      */
860     last_encap_src = INADDR_ANY;
861     last_encap_vif = NULL;
862 #ifdef PIM
863     reg_vif_num = VIFI_INVALID;
864 #endif
865 
866     mtx_unlock(&mrouter_mtx);
867 
868     if (mrtdebug)
869 	log(LOG_DEBUG, "ip_mrouter_done\n");
870 
871     return 0;
872 }
873 
874 /*
875  * Set PIM assert processing global
876  */
877 static int
878 set_assert(int i)
879 {
880     if ((i != 1) && (i != 0))
881 	return EINVAL;
882 
883     pim_assert = i;
884 
885     return 0;
886 }
887 
888 /*
889  * Configure API capabilities
890  */
891 int
892 set_api_config(uint32_t *apival)
893 {
894     int i;
895 
896     /*
897      * We can set the API capabilities only if it is the first operation
898      * after MRT_INIT. I.e.:
899      *  - there are no vifs installed
900      *  - pim_assert is not enabled
901      *  - the MFC table is empty
902      */
903     if (numvifs > 0) {
904 	*apival = 0;
905 	return EPERM;
906     }
907     if (pim_assert) {
908 	*apival = 0;
909 	return EPERM;
910     }
911     for (i = 0; i < MFCTBLSIZ; i++) {
912 	if (mfctable[i] != NULL) {
913 	    *apival = 0;
914 	    return EPERM;
915 	}
916     }
917 
918     mrt_api_config = *apival & mrt_api_support;
919     *apival = mrt_api_config;
920 
921     return 0;
922 }
923 
924 /*
925  * Decide if a packet is from a tunnelled peer.
926  * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
927  */
928 static int
929 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
930 {
931     struct ip *ip = mtod(m, struct ip *);
932     int hlen = ip->ip_hl << 2;
933 
934     /*
935      * don't claim the packet if it's not to a multicast destination or if
936      * we don't have an encapsulating tunnel with the source.
937      * Note:  This code assumes that the remote site IP address
938      * uniquely identifies the tunnel (i.e., that this site has
939      * at most one tunnel with the remote site).
940      */
941     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
942 	return 0;
943     if (ip->ip_src.s_addr != last_encap_src) {
944 	struct vif *vifp = viftable;
945 	struct vif *vife = vifp + numvifs;
946 
947 	last_encap_src = ip->ip_src.s_addr;
948 	last_encap_vif = NULL;
949 	for ( ; vifp < vife; ++vifp)
950 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
951 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
952 		    last_encap_vif = vifp;
953 		break;
954 	    }
955     }
956     if (last_encap_vif == NULL) {
957 	last_encap_src = INADDR_ANY;
958 	return 0;
959     }
960     return 64;
961 }
962 
963 /*
964  * De-encapsulate a packet and feed it back through ip input (this
965  * routine is called whenever IP gets a packet that mroute_encap_func()
966  * claimed).
967  */
968 static void
969 mroute_encap_input(struct mbuf *m, int off)
970 {
971     struct ip *ip = mtod(m, struct ip *);
972     int hlen = ip->ip_hl << 2;
973 
974     if (hlen > sizeof(struct ip))
975 	ip_stripoptions(m, (struct mbuf *) 0);
976     m->m_data += sizeof(struct ip);
977     m->m_len -= sizeof(struct ip);
978     m->m_pkthdr.len -= sizeof(struct ip);
979 
980     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
981 
982     netisr_queue(NETISR_IP, m);		/* mbuf is free'd on failure. */
983     /*
984      * normally we would need a "schednetisr(NETISR_IP)"
985      * here but we were called by ip_input and it is going
986      * to loop back & try to dequeue the packet we just
987      * queued as soon as we return so we avoid the
988      * unnecessary software interrrupt.
989      *
990      * XXX
991      * This no longer holds - we may have direct-dispatched the packet,
992      * or there may be a queue processing limit.
993      */
994 }
995 
996 extern struct domain inetdomain;
997 static struct protosw mroute_encap_protosw =
998 {
999 	.pr_type =		SOCK_RAW,
1000 	.pr_domain =		&inetdomain,
1001 	.pr_protocol =		IPPROTO_IPV4,
1002 	.pr_flags =		PR_ATOMIC|PR_ADDR,
1003 	.pr_input =		mroute_encap_input,
1004 	.pr_ctloutput =		rip_ctloutput,
1005 	.pr_usrreqs =		&rip_usrreqs
1006 };
1007 
1008 /*
1009  * Add a vif to the vif table
1010  */
1011 static int
1012 add_vif(struct vifctl *vifcp)
1013 {
1014     struct vif *vifp = viftable + vifcp->vifc_vifi;
1015     struct sockaddr_in sin = {sizeof sin, AF_INET};
1016     struct ifaddr *ifa;
1017     struct ifnet *ifp;
1018     int error;
1019     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
1020 
1021     VIF_LOCK();
1022     if (vifcp->vifc_vifi >= MAXVIFS) {
1023 	VIF_UNLOCK();
1024 	return EINVAL;
1025     }
1026     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
1027 	VIF_UNLOCK();
1028 	return EADDRINUSE;
1029     }
1030     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
1031 	VIF_UNLOCK();
1032 	return EADDRNOTAVAIL;
1033     }
1034 
1035     /* Find the interface with an address in AF_INET family */
1036 #ifdef PIM
1037     if (vifcp->vifc_flags & VIFF_REGISTER) {
1038 	/*
1039 	 * XXX: Because VIFF_REGISTER does not really need a valid
1040 	 * local interface (e.g. it could be 127.0.0.2), we don't
1041 	 * check its address.
1042 	 */
1043 	ifp = NULL;
1044     } else
1045 #endif
1046     {
1047 	sin.sin_addr = vifcp->vifc_lcl_addr;
1048 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
1049 	if (ifa == NULL) {
1050 	    VIF_UNLOCK();
1051 	    return EADDRNOTAVAIL;
1052 	}
1053 	ifp = ifa->ifa_ifp;
1054     }
1055 
1056     if (vifcp->vifc_flags & VIFF_TUNNEL) {
1057 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
1058 	    /*
1059 	     * An encapsulating tunnel is wanted.  Tell
1060 	     * mroute_encap_input() to start paying attention
1061 	     * to encapsulated packets.
1062 	     */
1063 	    if (encap_cookie == NULL) {
1064 		int i;
1065 
1066 		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
1067 				mroute_encapcheck,
1068 				(struct protosw *)&mroute_encap_protosw, NULL);
1069 
1070 		if (encap_cookie == NULL) {
1071 		    printf("ip_mroute: unable to attach encap\n");
1072 		    VIF_UNLOCK();
1073 		    return EIO;	/* XXX */
1074 		}
1075 		for (i = 0; i < MAXVIFS; ++i) {
1076 		    if_initname(&multicast_decap_if[i], "mdecap", i);
1077 		}
1078 	    }
1079 	    /*
1080 	     * Set interface to fake encapsulator interface
1081 	     */
1082 	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
1083 	    /*
1084 	     * Prepare cached route entry
1085 	     */
1086 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1087 	} else {
1088 	    log(LOG_ERR, "source routed tunnels not supported\n");
1089 	    VIF_UNLOCK();
1090 	    return EOPNOTSUPP;
1091 	}
1092 #ifdef PIM
1093     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
1094 	ifp = &multicast_register_if;
1095 	if (mrtdebug)
1096 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
1097 		    (void *)&multicast_register_if);
1098 	if (reg_vif_num == VIFI_INVALID) {
1099 	    if_initname(&multicast_register_if, "register_vif", 0);
1100 	    multicast_register_if.if_flags = IFF_LOOPBACK;
1101 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1102 	    reg_vif_num = vifcp->vifc_vifi;
1103 	}
1104 #endif
1105     } else {		/* Make sure the interface supports multicast */
1106 	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1107 	    VIF_UNLOCK();
1108 	    return EOPNOTSUPP;
1109 	}
1110 
1111 	/* Enable promiscuous reception of all IP multicasts from the if */
1112 	error = if_allmulti(ifp, 1);
1113 	if (error) {
1114 	    VIF_UNLOCK();
1115 	    return error;
1116 	}
1117     }
1118 
1119     /* define parameters for the tbf structure */
1120     vifp->v_tbf = v_tbf;
1121     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
1122     vifp->v_tbf->tbf_n_tok = 0;
1123     vifp->v_tbf->tbf_q_len = 0;
1124     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
1125     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
1126 
1127     vifp->v_flags     = vifcp->vifc_flags;
1128     vifp->v_threshold = vifcp->vifc_threshold;
1129     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1130     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1131     vifp->v_ifp       = ifp;
1132     /* scaling up here allows division by 1024 in critical code */
1133     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
1134     vifp->v_rsvp_on   = 0;
1135     vifp->v_rsvpd     = NULL;
1136     /* initialize per vif pkt counters */
1137     vifp->v_pkt_in    = 0;
1138     vifp->v_pkt_out   = 0;
1139     vifp->v_bytes_in  = 0;
1140     vifp->v_bytes_out = 0;
1141 
1142     /* Adjust numvifs up if the vifi is higher than numvifs */
1143     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1144 
1145     VIF_UNLOCK();
1146 
1147     if (mrtdebug)
1148 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1149 	    vifcp->vifc_vifi,
1150 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1151 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1152 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1153 	    vifcp->vifc_threshold,
1154 	    vifcp->vifc_rate_limit);
1155 
1156     return 0;
1157 }
1158 
1159 /*
1160  * Delete a vif from the vif table
1161  */
1162 static int
1163 del_vif_locked(vifi_t vifi)
1164 {
1165     struct vif *vifp;
1166 
1167     VIF_LOCK_ASSERT();
1168 
1169     if (vifi >= numvifs) {
1170 	return EINVAL;
1171     }
1172     vifp = &viftable[vifi];
1173     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1174 	return EADDRNOTAVAIL;
1175     }
1176 
1177     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1178 	if_allmulti(vifp->v_ifp, 0);
1179 
1180     if (vifp == last_encap_vif) {
1181 	last_encap_vif = NULL;
1182 	last_encap_src = INADDR_ANY;
1183     }
1184 
1185     /*
1186      * Free packets queued at the interface
1187      */
1188     while (vifp->v_tbf->tbf_q) {
1189 	struct mbuf *m = vifp->v_tbf->tbf_q;
1190 
1191 	vifp->v_tbf->tbf_q = m->m_act;
1192 	m_freem(m);
1193     }
1194 
1195 #ifdef PIM
1196     if (vifp->v_flags & VIFF_REGISTER)
1197 	reg_vif_num = VIFI_INVALID;
1198 #endif
1199 
1200     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1201     bzero((caddr_t)vifp, sizeof (*vifp));
1202 
1203     if (mrtdebug)
1204 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1205 
1206     /* Adjust numvifs down */
1207     for (vifi = numvifs; vifi > 0; vifi--)
1208 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1209 	    break;
1210     numvifs = vifi;
1211 
1212     return 0;
1213 }
1214 
1215 static int
1216 del_vif(vifi_t vifi)
1217 {
1218     int cc;
1219 
1220     VIF_LOCK();
1221     cc = del_vif_locked(vifi);
1222     VIF_UNLOCK();
1223 
1224     return cc;
1225 }
1226 
1227 /*
1228  * update an mfc entry without resetting counters and S,G addresses.
1229  */
1230 static void
1231 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1232 {
1233     int i;
1234 
1235     rt->mfc_parent = mfccp->mfcc_parent;
1236     for (i = 0; i < numvifs; i++) {
1237 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1238 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1239 	    MRT_MFC_FLAGS_ALL;
1240     }
1241     /* set the RP address */
1242     if (mrt_api_config & MRT_MFC_RP)
1243 	rt->mfc_rp = mfccp->mfcc_rp;
1244     else
1245 	rt->mfc_rp.s_addr = INADDR_ANY;
1246 }
1247 
1248 /*
1249  * fully initialize an mfc entry from the parameter.
1250  */
1251 static void
1252 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1253 {
1254     rt->mfc_origin     = mfccp->mfcc_origin;
1255     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1256 
1257     update_mfc_params(rt, mfccp);
1258 
1259     /* initialize pkt counters per src-grp */
1260     rt->mfc_pkt_cnt    = 0;
1261     rt->mfc_byte_cnt   = 0;
1262     rt->mfc_wrong_if   = 0;
1263     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1264 }
1265 
1266 
1267 /*
1268  * Add an mfc entry
1269  */
1270 static int
1271 add_mfc(struct mfcctl2 *mfccp)
1272 {
1273     struct mfc *rt;
1274     u_long hash;
1275     struct rtdetq *rte;
1276     u_short nstl;
1277 
1278     VIF_LOCK();
1279     MFC_LOCK();
1280 
1281     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1282 
1283     /* If an entry already exists, just update the fields */
1284     if (rt) {
1285 	if (mrtdebug & DEBUG_MFC)
1286 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1287 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1288 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1289 		mfccp->mfcc_parent);
1290 
1291 	update_mfc_params(rt, mfccp);
1292 	MFC_UNLOCK();
1293 	VIF_UNLOCK();
1294 	return 0;
1295     }
1296 
1297     /*
1298      * Find the entry for which the upcall was made and update
1299      */
1300     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1301     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1302 
1303 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1304 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1305 		(rt->mfc_stall != NULL)) {
1306 
1307 	    if (nstl++)
1308 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1309 		    "multiple kernel entries",
1310 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1311 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1312 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1313 
1314 	    if (mrtdebug & DEBUG_MFC)
1315 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1316 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1317 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1318 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1319 
1320 	    init_mfc_params(rt, mfccp);
1321 
1322 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1323 	    nexpire[hash]--;
1324 
1325 	    /* free packets Qed at the end of this entry */
1326 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1327 		struct rtdetq *n = rte->next;
1328 
1329 		ip_mdq(rte->m, rte->ifp, rt, -1);
1330 		m_freem(rte->m);
1331 		free(rte, M_MRTABLE);
1332 		rte = n;
1333 	    }
1334 	    rt->mfc_stall = NULL;
1335 	}
1336     }
1337 
1338     /*
1339      * It is possible that an entry is being inserted without an upcall
1340      */
1341     if (nstl == 0) {
1342 	if (mrtdebug & DEBUG_MFC)
1343 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1344 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1345 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1346 		mfccp->mfcc_parent);
1347 
1348 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1349 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1350 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1351 		init_mfc_params(rt, mfccp);
1352 		if (rt->mfc_expire)
1353 		    nexpire[hash]--;
1354 		rt->mfc_expire = 0;
1355 		break; /* XXX */
1356 	    }
1357 	}
1358 	if (rt == NULL) {		/* no upcall, so make a new entry */
1359 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1360 	    if (rt == NULL) {
1361 		MFC_UNLOCK();
1362 		VIF_UNLOCK();
1363 		return ENOBUFS;
1364 	    }
1365 
1366 	    init_mfc_params(rt, mfccp);
1367 	    rt->mfc_expire     = 0;
1368 	    rt->mfc_stall      = NULL;
1369 
1370 	    rt->mfc_bw_meter = NULL;
1371 	    /* insert new entry at head of hash chain */
1372 	    rt->mfc_next = mfctable[hash];
1373 	    mfctable[hash] = rt;
1374 	}
1375     }
1376     MFC_UNLOCK();
1377     VIF_UNLOCK();
1378     return 0;
1379 }
1380 
1381 /*
1382  * Delete an mfc entry
1383  */
1384 static int
1385 del_mfc(struct mfcctl2 *mfccp)
1386 {
1387     struct in_addr	origin;
1388     struct in_addr	mcastgrp;
1389     struct mfc		*rt;
1390     struct mfc		**nptr;
1391     u_long		hash;
1392     struct bw_meter	*list;
1393 
1394     origin = mfccp->mfcc_origin;
1395     mcastgrp = mfccp->mfcc_mcastgrp;
1396 
1397     if (mrtdebug & DEBUG_MFC)
1398 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1399 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1400 
1401     MFC_LOCK();
1402 
1403     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1404     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1405 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1406 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1407 		rt->mfc_stall == NULL)
1408 	    break;
1409     if (rt == NULL) {
1410 	MFC_UNLOCK();
1411 	return EADDRNOTAVAIL;
1412     }
1413 
1414     *nptr = rt->mfc_next;
1415 
1416     /*
1417      * free the bw_meter entries
1418      */
1419     list = rt->mfc_bw_meter;
1420     rt->mfc_bw_meter = NULL;
1421 
1422     free(rt, M_MRTABLE);
1423 
1424     free_bw_list(list);
1425 
1426     MFC_UNLOCK();
1427 
1428     return 0;
1429 }
1430 
1431 /*
1432  * Send a message to the routing daemon on the multicast routing socket
1433  */
1434 static int
1435 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1436 {
1437     if (s) {
1438 	SOCKBUF_LOCK(&s->so_rcv);
1439 	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1440 	    NULL) != 0) {
1441 	    sorwakeup_locked(s);
1442 	    return 0;
1443 	}
1444 	SOCKBUF_UNLOCK(&s->so_rcv);
1445     }
1446     m_freem(mm);
1447     return -1;
1448 }
1449 
1450 /*
1451  * IP multicast forwarding function. This function assumes that the packet
1452  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1453  * pointed to by "ifp", and the packet is to be relayed to other networks
1454  * that have members of the packet's destination IP multicast group.
1455  *
1456  * The packet is returned unscathed to the caller, unless it is
1457  * erroneous, in which case a non-zero return value tells the caller to
1458  * discard it.
1459  */
1460 
1461 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1462 
1463 static int
1464 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1465     struct ip_moptions *imo)
1466 {
1467     struct mfc *rt;
1468     int error;
1469     vifi_t vifi;
1470 
1471     if (mrtdebug & DEBUG_FORWARD)
1472 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1473 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1474 	    (void *)ifp);
1475 
1476     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1477 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1478 	/*
1479 	 * Packet arrived via a physical interface or
1480 	 * an encapsulated tunnel or a register_vif.
1481 	 */
1482     } else {
1483 	/*
1484 	 * Packet arrived through a source-route tunnel.
1485 	 * Source-route tunnels are no longer supported.
1486 	 */
1487 	static int last_log;
1488 	if (last_log != time_uptime) {
1489 	    last_log = time_uptime;
1490 	    log(LOG_ERR,
1491 		"ip_mforward: received source-routed packet from %lx\n",
1492 		(u_long)ntohl(ip->ip_src.s_addr));
1493 	}
1494 	return 1;
1495     }
1496 
1497     VIF_LOCK();
1498     MFC_LOCK();
1499     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1500 	if (ip->ip_ttl < 255)
1501 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1502 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1503 	    struct vif *vifp = viftable + vifi;
1504 
1505 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1506 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1507 		vifi,
1508 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1509 		vifp->v_ifp->if_xname);
1510 	}
1511 	error = ip_mdq(m, ifp, NULL, vifi);
1512 	MFC_UNLOCK();
1513 	VIF_UNLOCK();
1514 	return error;
1515     }
1516     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1517 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1518 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1519 	if (!imo)
1520 	    printf("In fact, no options were specified at all\n");
1521     }
1522 
1523     /*
1524      * Don't forward a packet with time-to-live of zero or one,
1525      * or a packet destined to a local-only group.
1526      */
1527     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1528 	MFC_UNLOCK();
1529 	VIF_UNLOCK();
1530 	return 0;
1531     }
1532 
1533     /*
1534      * Determine forwarding vifs from the forwarding cache table
1535      */
1536     ++mrtstat.mrts_mfc_lookups;
1537     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1538 
1539     /* Entry exists, so forward if necessary */
1540     if (rt != NULL) {
1541 	error = ip_mdq(m, ifp, rt, -1);
1542 	MFC_UNLOCK();
1543 	VIF_UNLOCK();
1544 	return error;
1545     } else {
1546 	/*
1547 	 * If we don't have a route for packet's origin,
1548 	 * Make a copy of the packet & send message to routing daemon
1549 	 */
1550 
1551 	struct mbuf *mb0;
1552 	struct rtdetq *rte;
1553 	u_long hash;
1554 	int hlen = ip->ip_hl << 2;
1555 
1556 	++mrtstat.mrts_mfc_misses;
1557 
1558 	mrtstat.mrts_no_route++;
1559 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1560 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1561 		(u_long)ntohl(ip->ip_src.s_addr),
1562 		(u_long)ntohl(ip->ip_dst.s_addr));
1563 
1564 	/*
1565 	 * Allocate mbufs early so that we don't do extra work if we are
1566 	 * just going to fail anyway.  Make sure to pullup the header so
1567 	 * that other people can't step on it.
1568 	 */
1569 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1570 	if (rte == NULL) {
1571 	    MFC_UNLOCK();
1572 	    VIF_UNLOCK();
1573 	    return ENOBUFS;
1574 	}
1575 	mb0 = m_copypacket(m, M_DONTWAIT);
1576 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1577 	    mb0 = m_pullup(mb0, hlen);
1578 	if (mb0 == NULL) {
1579 	    free(rte, M_MRTABLE);
1580 	    MFC_UNLOCK();
1581 	    VIF_UNLOCK();
1582 	    return ENOBUFS;
1583 	}
1584 
1585 	/* is there an upcall waiting for this flow ? */
1586 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1587 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1588 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1589 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1590 		    (rt->mfc_stall != NULL))
1591 		break;
1592 	}
1593 
1594 	if (rt == NULL) {
1595 	    int i;
1596 	    struct igmpmsg *im;
1597 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1598 	    struct mbuf *mm;
1599 
1600 	    /*
1601 	     * Locate the vifi for the incoming interface for this packet.
1602 	     * If none found, drop packet.
1603 	     */
1604 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1605 		;
1606 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1607 		goto non_fatal;
1608 
1609 	    /* no upcall, so make a new entry */
1610 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1611 	    if (rt == NULL)
1612 		goto fail;
1613 	    /* Make a copy of the header to send to the user level process */
1614 	    mm = m_copy(mb0, 0, hlen);
1615 	    if (mm == NULL)
1616 		goto fail1;
1617 
1618 	    /*
1619 	     * Send message to routing daemon to install
1620 	     * a route into the kernel table
1621 	     */
1622 
1623 	    im = mtod(mm, struct igmpmsg *);
1624 	    im->im_msgtype = IGMPMSG_NOCACHE;
1625 	    im->im_mbz = 0;
1626 	    im->im_vif = vifi;
1627 
1628 	    mrtstat.mrts_upcalls++;
1629 
1630 	    k_igmpsrc.sin_addr = ip->ip_src;
1631 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1632 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1633 		++mrtstat.mrts_upq_sockfull;
1634 fail1:
1635 		free(rt, M_MRTABLE);
1636 fail:
1637 		free(rte, M_MRTABLE);
1638 		m_freem(mb0);
1639 		MFC_UNLOCK();
1640 		VIF_UNLOCK();
1641 		return ENOBUFS;
1642 	    }
1643 
1644 	    /* insert new entry at head of hash chain */
1645 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1646 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1647 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1648 	    nexpire[hash]++;
1649 	    for (i = 0; i < numvifs; i++) {
1650 		rt->mfc_ttls[i] = 0;
1651 		rt->mfc_flags[i] = 0;
1652 	    }
1653 	    rt->mfc_parent = -1;
1654 
1655 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1656 
1657 	    rt->mfc_bw_meter = NULL;
1658 
1659 	    /* link into table */
1660 	    rt->mfc_next   = mfctable[hash];
1661 	    mfctable[hash] = rt;
1662 	    rt->mfc_stall = rte;
1663 
1664 	} else {
1665 	    /* determine if q has overflowed */
1666 	    int npkts = 0;
1667 	    struct rtdetq **p;
1668 
1669 	    /*
1670 	     * XXX ouch! we need to append to the list, but we
1671 	     * only have a pointer to the front, so we have to
1672 	     * scan the entire list every time.
1673 	     */
1674 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1675 		npkts++;
1676 
1677 	    if (npkts > MAX_UPQ) {
1678 		mrtstat.mrts_upq_ovflw++;
1679 non_fatal:
1680 		free(rte, M_MRTABLE);
1681 		m_freem(mb0);
1682 		MFC_UNLOCK();
1683 		VIF_UNLOCK();
1684 		return 0;
1685 	    }
1686 
1687 	    /* Add this entry to the end of the queue */
1688 	    *p = rte;
1689 	}
1690 
1691 	rte->m			= mb0;
1692 	rte->ifp		= ifp;
1693 	rte->next		= NULL;
1694 
1695 	MFC_UNLOCK();
1696 	VIF_UNLOCK();
1697 
1698 	return 0;
1699     }
1700 }
1701 
1702 /*
1703  * Clean up the cache entry if upcall is not serviced
1704  */
1705 static void
1706 expire_upcalls(void *unused)
1707 {
1708     struct rtdetq *rte;
1709     struct mfc *mfc, **nptr;
1710     int i;
1711 
1712     MFC_LOCK();
1713     for (i = 0; i < MFCTBLSIZ; i++) {
1714 	if (nexpire[i] == 0)
1715 	    continue;
1716 	nptr = &mfctable[i];
1717 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1718 	    /*
1719 	     * Skip real cache entries
1720 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1721 	     * If it expires now
1722 	     */
1723 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1724 		    --mfc->mfc_expire == 0) {
1725 		if (mrtdebug & DEBUG_EXPIRE)
1726 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1727 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1728 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1729 		/*
1730 		 * drop all the packets
1731 		 * free the mbuf with the pkt, if, timing info
1732 		 */
1733 		for (rte = mfc->mfc_stall; rte; ) {
1734 		    struct rtdetq *n = rte->next;
1735 
1736 		    m_freem(rte->m);
1737 		    free(rte, M_MRTABLE);
1738 		    rte = n;
1739 		}
1740 		++mrtstat.mrts_cache_cleanups;
1741 		nexpire[i]--;
1742 
1743 		/*
1744 		 * free the bw_meter entries
1745 		 */
1746 		while (mfc->mfc_bw_meter != NULL) {
1747 		    struct bw_meter *x = mfc->mfc_bw_meter;
1748 
1749 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1750 		    free(x, M_BWMETER);
1751 		}
1752 
1753 		*nptr = mfc->mfc_next;
1754 		free(mfc, M_MRTABLE);
1755 	    } else {
1756 		nptr = &mfc->mfc_next;
1757 	    }
1758 	}
1759     }
1760     MFC_UNLOCK();
1761 
1762     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1763 }
1764 
1765 /*
1766  * Packet forwarding routine once entry in the cache is made
1767  */
1768 static int
1769 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1770 {
1771     struct ip  *ip = mtod(m, struct ip *);
1772     vifi_t vifi;
1773     int plen = ip->ip_len;
1774 
1775     VIF_LOCK_ASSERT();
1776 /*
1777  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1778  * input, they shouldn't get counted on output, so statistics keeping is
1779  * separate.
1780  */
1781 #define MC_SEND(ip,vifp,m) {				\
1782 		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1783 		    encap_send((ip), (vifp), (m));	\
1784 		else					\
1785 		    phyint_send((ip), (vifp), (m));	\
1786 }
1787 
1788     /*
1789      * If xmt_vif is not -1, send on only the requested vif.
1790      *
1791      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1792      */
1793     if (xmt_vif < numvifs) {
1794 #ifdef PIM
1795 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1796 	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1797 	else
1798 #endif
1799 	MC_SEND(ip, viftable + xmt_vif, m);
1800 	return 1;
1801     }
1802 
1803     /*
1804      * Don't forward if it didn't arrive from the parent vif for its origin.
1805      */
1806     vifi = rt->mfc_parent;
1807     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1808 	/* came in the wrong interface */
1809 	if (mrtdebug & DEBUG_FORWARD)
1810 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1811 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1812 	++mrtstat.mrts_wrong_if;
1813 	++rt->mfc_wrong_if;
1814 	/*
1815 	 * If we are doing PIM assert processing, send a message
1816 	 * to the routing daemon.
1817 	 *
1818 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1819 	 * can complete the SPT switch, regardless of the type
1820 	 * of the iif (broadcast media, GRE tunnel, etc).
1821 	 */
1822 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1823 	    struct timeval now;
1824 	    u_long delta;
1825 
1826 #ifdef PIM
1827 	    if (ifp == &multicast_register_if)
1828 		pimstat.pims_rcv_registers_wrongiif++;
1829 #endif
1830 
1831 	    /* Get vifi for the incoming packet */
1832 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1833 		;
1834 	    if (vifi >= numvifs)
1835 		return 0;	/* The iif is not found: ignore the packet. */
1836 
1837 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1838 		return 0;	/* WRONGVIF disabled: ignore the packet */
1839 
1840 	    GET_TIME(now);
1841 
1842 	    TV_DELTA(now, rt->mfc_last_assert, delta);
1843 
1844 	    if (delta > ASSERT_MSG_TIME) {
1845 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1846 		struct igmpmsg *im;
1847 		int hlen = ip->ip_hl << 2;
1848 		struct mbuf *mm = m_copy(m, 0, hlen);
1849 
1850 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1851 		    mm = m_pullup(mm, hlen);
1852 		if (mm == NULL)
1853 		    return ENOBUFS;
1854 
1855 		rt->mfc_last_assert = now;
1856 
1857 		im = mtod(mm, struct igmpmsg *);
1858 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1859 		im->im_mbz		= 0;
1860 		im->im_vif		= vifi;
1861 
1862 		mrtstat.mrts_upcalls++;
1863 
1864 		k_igmpsrc.sin_addr = im->im_src;
1865 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1866 		    log(LOG_WARNING,
1867 			"ip_mforward: ip_mrouter socket queue full\n");
1868 		    ++mrtstat.mrts_upq_sockfull;
1869 		    return ENOBUFS;
1870 		}
1871 	    }
1872 	}
1873 	return 0;
1874     }
1875 
1876     /* If I sourced this packet, it counts as output, else it was input. */
1877     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1878 	viftable[vifi].v_pkt_out++;
1879 	viftable[vifi].v_bytes_out += plen;
1880     } else {
1881 	viftable[vifi].v_pkt_in++;
1882 	viftable[vifi].v_bytes_in += plen;
1883     }
1884     rt->mfc_pkt_cnt++;
1885     rt->mfc_byte_cnt += plen;
1886 
1887     /*
1888      * For each vif, decide if a copy of the packet should be forwarded.
1889      * Forward if:
1890      *		- the ttl exceeds the vif's threshold
1891      *		- there are group members downstream on interface
1892      */
1893     for (vifi = 0; vifi < numvifs; vifi++)
1894 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1895 	    viftable[vifi].v_pkt_out++;
1896 	    viftable[vifi].v_bytes_out += plen;
1897 #ifdef PIM
1898 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1899 		pim_register_send(ip, viftable + vifi, m, rt);
1900 	    else
1901 #endif
1902 	    MC_SEND(ip, viftable+vifi, m);
1903 	}
1904 
1905     /*
1906      * Perform upcall-related bw measuring.
1907      */
1908     if (rt->mfc_bw_meter != NULL) {
1909 	struct bw_meter *x;
1910 	struct timeval now;
1911 
1912 	GET_TIME(now);
1913 	MFC_LOCK_ASSERT();
1914 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1915 	    bw_meter_receive_packet(x, plen, &now);
1916     }
1917 
1918     return 0;
1919 }
1920 
1921 /*
1922  * check if a vif number is legal/ok. This is used by ip_output.
1923  */
1924 static int
1925 X_legal_vif_num(int vif)
1926 {
1927     /* XXX unlocked, matter? */
1928     return (vif >= 0 && vif < numvifs);
1929 }
1930 
1931 /*
1932  * Return the local address used by this vif
1933  */
1934 static u_long
1935 X_ip_mcast_src(int vifi)
1936 {
1937     /* XXX unlocked, matter? */
1938     if (vifi >= 0 && vifi < numvifs)
1939 	return viftable[vifi].v_lcl_addr.s_addr;
1940     else
1941 	return INADDR_ANY;
1942 }
1943 
1944 static void
1945 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1946 {
1947     struct mbuf *mb_copy;
1948     int hlen = ip->ip_hl << 2;
1949 
1950     VIF_LOCK_ASSERT();
1951 
1952     /*
1953      * Make a new reference to the packet; make sure that
1954      * the IP header is actually copied, not just referenced,
1955      * so that ip_output() only scribbles on the copy.
1956      */
1957     mb_copy = m_copypacket(m, M_DONTWAIT);
1958     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1959 	mb_copy = m_pullup(mb_copy, hlen);
1960     if (mb_copy == NULL)
1961 	return;
1962 
1963     if (vifp->v_rate_limit == 0)
1964 	tbf_send_packet(vifp, mb_copy);
1965     else
1966 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1967 }
1968 
1969 static void
1970 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1971 {
1972     struct mbuf *mb_copy;
1973     struct ip *ip_copy;
1974     int i, len = ip->ip_len;
1975 
1976     VIF_LOCK_ASSERT();
1977 
1978     /* Take care of delayed checksums */
1979     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1980 	in_delayed_cksum(m);
1981 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1982     }
1983 
1984     /*
1985      * copy the old packet & pullup its IP header into the
1986      * new mbuf so we can modify it.  Try to fill the new
1987      * mbuf since if we don't the ethernet driver will.
1988      */
1989     MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1990     if (mb_copy == NULL)
1991 	return;
1992 #ifdef MAC
1993     mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1994 #endif
1995     mb_copy->m_data += max_linkhdr;
1996     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1997 
1998     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1999 	m_freem(mb_copy);
2000 	return;
2001     }
2002     i = MHLEN - M_LEADINGSPACE(mb_copy);
2003     if (i > len)
2004 	i = len;
2005     mb_copy = m_pullup(mb_copy, i);
2006     if (mb_copy == NULL)
2007 	return;
2008     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
2009 
2010     /*
2011      * fill in the encapsulating IP header.
2012      */
2013     ip_copy = mtod(mb_copy, struct ip *);
2014     *ip_copy = multicast_encap_iphdr;
2015     ip_copy->ip_id = ip_newid();
2016     ip_copy->ip_len += len;
2017     ip_copy->ip_src = vifp->v_lcl_addr;
2018     ip_copy->ip_dst = vifp->v_rmt_addr;
2019 
2020     /*
2021      * turn the encapsulated IP header back into a valid one.
2022      */
2023     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
2024     --ip->ip_ttl;
2025     ip->ip_len = htons(ip->ip_len);
2026     ip->ip_off = htons(ip->ip_off);
2027     ip->ip_sum = 0;
2028     mb_copy->m_data += sizeof(multicast_encap_iphdr);
2029     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2030     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
2031 
2032     if (vifp->v_rate_limit == 0)
2033 	tbf_send_packet(vifp, mb_copy);
2034     else
2035 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
2036 }
2037 
2038 /*
2039  * Token bucket filter module
2040  */
2041 
2042 static void
2043 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
2044 {
2045     struct tbf *t = vifp->v_tbf;
2046 
2047     VIF_LOCK_ASSERT();
2048 
2049     if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
2050 	mrtstat.mrts_pkt2large++;
2051 	m_freem(m);
2052 	return;
2053     }
2054 
2055     tbf_update_tokens(vifp);
2056 
2057     if (t->tbf_q_len == 0) {		/* queue empty...		*/
2058 	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
2059 	    t->tbf_n_tok -= p_len;
2060 	    tbf_send_packet(vifp, m);
2061 	} else {			/* no, queue packet and try later */
2062 	    tbf_queue(vifp, m);
2063 	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
2064 		tbf_reprocess_q, vifp);
2065 	}
2066     } else if (t->tbf_q_len < t->tbf_max_q_len) {
2067 	/* finite queue length, so queue pkts and process queue */
2068 	tbf_queue(vifp, m);
2069 	tbf_process_q(vifp);
2070     } else {
2071 	/* queue full, try to dq and queue and process */
2072 	if (!tbf_dq_sel(vifp, ip)) {
2073 	    mrtstat.mrts_q_overflow++;
2074 	    m_freem(m);
2075 	} else {
2076 	    tbf_queue(vifp, m);
2077 	    tbf_process_q(vifp);
2078 	}
2079     }
2080 }
2081 
2082 /*
2083  * adds a packet to the queue at the interface
2084  */
2085 static void
2086 tbf_queue(struct vif *vifp, struct mbuf *m)
2087 {
2088     struct tbf *t = vifp->v_tbf;
2089 
2090     VIF_LOCK_ASSERT();
2091 
2092     if (t->tbf_t == NULL)	/* Queue was empty */
2093 	t->tbf_q = m;
2094     else			/* Insert at tail */
2095 	t->tbf_t->m_act = m;
2096 
2097     t->tbf_t = m;		/* Set new tail pointer */
2098 
2099 #ifdef DIAGNOSTIC
2100     /* Make sure we didn't get fed a bogus mbuf */
2101     if (m->m_act)
2102 	panic("tbf_queue: m_act");
2103 #endif
2104     m->m_act = NULL;
2105 
2106     t->tbf_q_len++;
2107 }
2108 
2109 /*
2110  * processes the queue at the interface
2111  */
2112 static void
2113 tbf_process_q(struct vif *vifp)
2114 {
2115     struct tbf *t = vifp->v_tbf;
2116 
2117     VIF_LOCK_ASSERT();
2118 
2119     /* loop through the queue at the interface and send as many packets
2120      * as possible
2121      */
2122     while (t->tbf_q_len > 0) {
2123 	struct mbuf *m = t->tbf_q;
2124 	int len = mtod(m, struct ip *)->ip_len;
2125 
2126 	/* determine if the packet can be sent */
2127 	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
2128 	    break;
2129 	/* ok, reduce no of tokens, dequeue and send the packet. */
2130 	t->tbf_n_tok -= len;
2131 
2132 	t->tbf_q = m->m_act;
2133 	if (--t->tbf_q_len == 0)
2134 	    t->tbf_t = NULL;
2135 
2136 	m->m_act = NULL;
2137 	tbf_send_packet(vifp, m);
2138     }
2139 }
2140 
2141 static void
2142 tbf_reprocess_q(void *xvifp)
2143 {
2144     struct vif *vifp = xvifp;
2145 
2146     if (ip_mrouter == NULL)
2147 	return;
2148     VIF_LOCK();
2149     tbf_update_tokens(vifp);
2150     tbf_process_q(vifp);
2151     if (vifp->v_tbf->tbf_q_len)
2152 	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2153     VIF_UNLOCK();
2154 }
2155 
2156 /* function that will selectively discard a member of the queue
2157  * based on the precedence value and the priority
2158  */
2159 static int
2160 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2161 {
2162     u_int p;
2163     struct mbuf *m, *last;
2164     struct mbuf **np;
2165     struct tbf *t = vifp->v_tbf;
2166 
2167     VIF_LOCK_ASSERT();
2168 
2169     p = priority(vifp, ip);
2170 
2171     np = &t->tbf_q;
2172     last = NULL;
2173     while ((m = *np) != NULL) {
2174 	if (p > priority(vifp, mtod(m, struct ip *))) {
2175 	    *np = m->m_act;
2176 	    /* If we're removing the last packet, fix the tail pointer */
2177 	    if (m == t->tbf_t)
2178 		t->tbf_t = last;
2179 	    m_freem(m);
2180 	    /* It's impossible for the queue to be empty, but check anyways. */
2181 	    if (--t->tbf_q_len == 0)
2182 		t->tbf_t = NULL;
2183 	    mrtstat.mrts_drop_sel++;
2184 	    return 1;
2185 	}
2186 	np = &m->m_act;
2187 	last = m;
2188     }
2189     return 0;
2190 }
2191 
2192 static void
2193 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2194 {
2195     VIF_LOCK_ASSERT();
2196 
2197     if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2198 	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2199     else {
2200 	struct ip_moptions imo;
2201 	struct in_multi *imm[2];
2202 	int error;
2203 	static struct route ro; /* XXX check this */
2204 
2205 	imo.imo_multicast_ifp  = vifp->v_ifp;
2206 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2207 	imo.imo_multicast_loop = 1;
2208 	imo.imo_multicast_vif  = -1;
2209 	imo.imo_num_memberships = 0;
2210 	imo.imo_max_memberships = 2;
2211 	imo.imo_membership  = &imm[0];
2212 
2213 	/*
2214 	 * Re-entrancy should not be a problem here, because
2215 	 * the packets that we send out and are looped back at us
2216 	 * should get rejected because they appear to come from
2217 	 * the loopback interface, thus preventing looping.
2218 	 */
2219 	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2220 
2221 	if (mrtdebug & DEBUG_XMIT)
2222 	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
2223 		vifp - viftable, error);
2224     }
2225 }
2226 
2227 /* determine the current time and then
2228  * the elapsed time (between the last time and time now)
2229  * in milliseconds & update the no. of tokens in the bucket
2230  */
2231 static void
2232 tbf_update_tokens(struct vif *vifp)
2233 {
2234     struct timeval tp;
2235     u_long tm;
2236     struct tbf *t = vifp->v_tbf;
2237 
2238     VIF_LOCK_ASSERT();
2239 
2240     GET_TIME(tp);
2241 
2242     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2243 
2244     /*
2245      * This formula is actually
2246      * "time in seconds" * "bytes/second".
2247      *
2248      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2249      *
2250      * The (1000/1024) was introduced in add_vif to optimize
2251      * this divide into a shift.
2252      */
2253     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2254     t->tbf_last_pkt_t = tp;
2255 
2256     if (t->tbf_n_tok > MAX_BKT_SIZE)
2257 	t->tbf_n_tok = MAX_BKT_SIZE;
2258 }
2259 
2260 static int
2261 priority(struct vif *vifp, struct ip *ip)
2262 {
2263     int prio = 50; /* the lowest priority -- default case */
2264 
2265     /* temporary hack; may add general packet classifier some day */
2266 
2267     /*
2268      * The UDP port space is divided up into four priority ranges:
2269      * [0, 16384)     : unclassified - lowest priority
2270      * [16384, 32768) : audio - highest priority
2271      * [32768, 49152) : whiteboard - medium priority
2272      * [49152, 65536) : video - low priority
2273      *
2274      * Everything else gets lowest priority.
2275      */
2276     if (ip->ip_p == IPPROTO_UDP) {
2277 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2278 	switch (ntohs(udp->uh_dport) & 0xc000) {
2279 	case 0x4000:
2280 	    prio = 70;
2281 	    break;
2282 	case 0x8000:
2283 	    prio = 60;
2284 	    break;
2285 	case 0xc000:
2286 	    prio = 55;
2287 	    break;
2288 	}
2289     }
2290     return prio;
2291 }
2292 
2293 /*
2294  * End of token bucket filter modifications
2295  */
2296 
2297 static int
2298 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2299 {
2300     int error, vifi;
2301 
2302     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2303 	return EOPNOTSUPP;
2304 
2305     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2306     if (error)
2307 	return error;
2308 
2309     VIF_LOCK();
2310 
2311     if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2312 	VIF_UNLOCK();
2313 	return EADDRNOTAVAIL;
2314     }
2315 
2316     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2317 	/* Check if socket is available. */
2318 	if (viftable[vifi].v_rsvpd != NULL) {
2319 	    VIF_UNLOCK();
2320 	    return EADDRINUSE;
2321 	}
2322 
2323 	viftable[vifi].v_rsvpd = so;
2324 	/* This may seem silly, but we need to be sure we don't over-increment
2325 	 * the RSVP counter, in case something slips up.
2326 	 */
2327 	if (!viftable[vifi].v_rsvp_on) {
2328 	    viftable[vifi].v_rsvp_on = 1;
2329 	    rsvp_on++;
2330 	}
2331     } else { /* must be VIF_OFF */
2332 	/*
2333 	 * XXX as an additional consistency check, one could make sure
2334 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2335 	 * first parameter is pretty useless.
2336 	 */
2337 	viftable[vifi].v_rsvpd = NULL;
2338 	/*
2339 	 * This may seem silly, but we need to be sure we don't over-decrement
2340 	 * the RSVP counter, in case something slips up.
2341 	 */
2342 	if (viftable[vifi].v_rsvp_on) {
2343 	    viftable[vifi].v_rsvp_on = 0;
2344 	    rsvp_on--;
2345 	}
2346     }
2347     VIF_UNLOCK();
2348     return 0;
2349 }
2350 
2351 static void
2352 X_ip_rsvp_force_done(struct socket *so)
2353 {
2354     int vifi;
2355 
2356     /* Don't bother if it is not the right type of socket. */
2357     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2358 	return;
2359 
2360     VIF_LOCK();
2361 
2362     /* The socket may be attached to more than one vif...this
2363      * is perfectly legal.
2364      */
2365     for (vifi = 0; vifi < numvifs; vifi++) {
2366 	if (viftable[vifi].v_rsvpd == so) {
2367 	    viftable[vifi].v_rsvpd = NULL;
2368 	    /* This may seem silly, but we need to be sure we don't
2369 	     * over-decrement the RSVP counter, in case something slips up.
2370 	     */
2371 	    if (viftable[vifi].v_rsvp_on) {
2372 		viftable[vifi].v_rsvp_on = 0;
2373 		rsvp_on--;
2374 	    }
2375 	}
2376     }
2377 
2378     VIF_UNLOCK();
2379 }
2380 
2381 static void
2382 X_rsvp_input(struct mbuf *m, int off)
2383 {
2384     int vifi;
2385     struct ip *ip = mtod(m, struct ip *);
2386     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2387     struct ifnet *ifp;
2388 
2389     if (rsvpdebug)
2390 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2391 
2392     /* Can still get packets with rsvp_on = 0 if there is a local member
2393      * of the group to which the RSVP packet is addressed.  But in this
2394      * case we want to throw the packet away.
2395      */
2396     if (!rsvp_on) {
2397 	m_freem(m);
2398 	return;
2399     }
2400 
2401     if (rsvpdebug)
2402 	printf("rsvp_input: check vifs\n");
2403 
2404 #ifdef DIAGNOSTIC
2405     M_ASSERTPKTHDR(m);
2406 #endif
2407 
2408     ifp = m->m_pkthdr.rcvif;
2409 
2410     VIF_LOCK();
2411     /* Find which vif the packet arrived on. */
2412     for (vifi = 0; vifi < numvifs; vifi++)
2413 	if (viftable[vifi].v_ifp == ifp)
2414 	    break;
2415 
2416     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2417 	/*
2418 	 * Drop the lock here to avoid holding it across rip_input.
2419 	 * This could make rsvpdebug printfs wrong.  If you care,
2420 	 * record the state of stuff before dropping the lock.
2421 	 */
2422 	VIF_UNLOCK();
2423 	/*
2424 	 * If the old-style non-vif-associated socket is set,
2425 	 * then use it.  Otherwise, drop packet since there
2426 	 * is no specific socket for this vif.
2427 	 */
2428 	if (ip_rsvpd != NULL) {
2429 	    if (rsvpdebug)
2430 		printf("rsvp_input: Sending packet up old-style socket\n");
2431 	    rip_input(m, off);  /* xxx */
2432 	} else {
2433 	    if (rsvpdebug && vifi == numvifs)
2434 		printf("rsvp_input: Can't find vif for packet.\n");
2435 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2436 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2437 	    m_freem(m);
2438 	}
2439 	return;
2440     }
2441     rsvp_src.sin_addr = ip->ip_src;
2442 
2443     if (rsvpdebug && m)
2444 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2445 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2446 
2447     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2448 	if (rsvpdebug)
2449 	    printf("rsvp_input: Failed to append to socket\n");
2450     } else {
2451 	if (rsvpdebug)
2452 	    printf("rsvp_input: send packet up\n");
2453     }
2454     VIF_UNLOCK();
2455 }
2456 
2457 /*
2458  * Code for bandwidth monitors
2459  */
2460 
2461 /*
2462  * Define common interface for timeval-related methods
2463  */
2464 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2465 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2466 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2467 
2468 static uint32_t
2469 compute_bw_meter_flags(struct bw_upcall *req)
2470 {
2471     uint32_t flags = 0;
2472 
2473     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2474 	flags |= BW_METER_UNIT_PACKETS;
2475     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2476 	flags |= BW_METER_UNIT_BYTES;
2477     if (req->bu_flags & BW_UPCALL_GEQ)
2478 	flags |= BW_METER_GEQ;
2479     if (req->bu_flags & BW_UPCALL_LEQ)
2480 	flags |= BW_METER_LEQ;
2481 
2482     return flags;
2483 }
2484 
2485 /*
2486  * Add a bw_meter entry
2487  */
2488 static int
2489 add_bw_upcall(struct bw_upcall *req)
2490 {
2491     struct mfc *mfc;
2492     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2493 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2494     struct timeval now;
2495     struct bw_meter *x;
2496     uint32_t flags;
2497 
2498     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2499 	return EOPNOTSUPP;
2500 
2501     /* Test if the flags are valid */
2502     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2503 	return EINVAL;
2504     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2505 	return EINVAL;
2506     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2507 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2508 	return EINVAL;
2509 
2510     /* Test if the threshold time interval is valid */
2511     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2512 	return EINVAL;
2513 
2514     flags = compute_bw_meter_flags(req);
2515 
2516     /*
2517      * Find if we have already same bw_meter entry
2518      */
2519     MFC_LOCK();
2520     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2521     if (mfc == NULL) {
2522 	MFC_UNLOCK();
2523 	return EADDRNOTAVAIL;
2524     }
2525     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2526 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2527 			   &req->bu_threshold.b_time, ==)) &&
2528 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2529 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2530 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2531 	    MFC_UNLOCK();
2532 	    return 0;		/* XXX Already installed */
2533 	}
2534     }
2535 
2536     /* Allocate the new bw_meter entry */
2537     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2538     if (x == NULL) {
2539 	MFC_UNLOCK();
2540 	return ENOBUFS;
2541     }
2542 
2543     /* Set the new bw_meter entry */
2544     x->bm_threshold.b_time = req->bu_threshold.b_time;
2545     GET_TIME(now);
2546     x->bm_start_time = now;
2547     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2548     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2549     x->bm_measured.b_packets = 0;
2550     x->bm_measured.b_bytes = 0;
2551     x->bm_flags = flags;
2552     x->bm_time_next = NULL;
2553     x->bm_time_hash = BW_METER_BUCKETS;
2554 
2555     /* Add the new bw_meter entry to the front of entries for this MFC */
2556     x->bm_mfc = mfc;
2557     x->bm_mfc_next = mfc->mfc_bw_meter;
2558     mfc->mfc_bw_meter = x;
2559     schedule_bw_meter(x, &now);
2560     MFC_UNLOCK();
2561 
2562     return 0;
2563 }
2564 
2565 static void
2566 free_bw_list(struct bw_meter *list)
2567 {
2568     while (list != NULL) {
2569 	struct bw_meter *x = list;
2570 
2571 	list = list->bm_mfc_next;
2572 	unschedule_bw_meter(x);
2573 	free(x, M_BWMETER);
2574     }
2575 }
2576 
2577 /*
2578  * Delete one or multiple bw_meter entries
2579  */
2580 static int
2581 del_bw_upcall(struct bw_upcall *req)
2582 {
2583     struct mfc *mfc;
2584     struct bw_meter *x;
2585 
2586     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2587 	return EOPNOTSUPP;
2588 
2589     MFC_LOCK();
2590     /* Find the corresponding MFC entry */
2591     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2592     if (mfc == NULL) {
2593 	MFC_UNLOCK();
2594 	return EADDRNOTAVAIL;
2595     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2596 	/*
2597 	 * Delete all bw_meter entries for this mfc
2598 	 */
2599 	struct bw_meter *list;
2600 
2601 	list = mfc->mfc_bw_meter;
2602 	mfc->mfc_bw_meter = NULL;
2603 	free_bw_list(list);
2604 	MFC_UNLOCK();
2605 	return 0;
2606     } else {			/* Delete a single bw_meter entry */
2607 	struct bw_meter *prev;
2608 	uint32_t flags = 0;
2609 
2610 	flags = compute_bw_meter_flags(req);
2611 
2612 	/* Find the bw_meter entry to delete */
2613 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2614 	     prev = x, x = x->bm_mfc_next) {
2615 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2616 			       &req->bu_threshold.b_time, ==)) &&
2617 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2618 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2619 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2620 		break;
2621 	}
2622 	if (x != NULL) { /* Delete entry from the list for this MFC */
2623 	    if (prev != NULL)
2624 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2625 	    else
2626 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2627 
2628 	    unschedule_bw_meter(x);
2629 	    MFC_UNLOCK();
2630 	    /* Free the bw_meter entry */
2631 	    free(x, M_BWMETER);
2632 	    return 0;
2633 	} else {
2634 	    MFC_UNLOCK();
2635 	    return EINVAL;
2636 	}
2637     }
2638     /* NOTREACHED */
2639 }
2640 
2641 /*
2642  * Perform bandwidth measurement processing that may result in an upcall
2643  */
2644 static void
2645 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2646 {
2647     struct timeval delta;
2648 
2649     MFC_LOCK_ASSERT();
2650 
2651     delta = *nowp;
2652     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2653 
2654     if (x->bm_flags & BW_METER_GEQ) {
2655 	/*
2656 	 * Processing for ">=" type of bw_meter entry
2657 	 */
2658 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2659 	    /* Reset the bw_meter entry */
2660 	    x->bm_start_time = *nowp;
2661 	    x->bm_measured.b_packets = 0;
2662 	    x->bm_measured.b_bytes = 0;
2663 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2664 	}
2665 
2666 	/* Record that a packet is received */
2667 	x->bm_measured.b_packets++;
2668 	x->bm_measured.b_bytes += plen;
2669 
2670 	/*
2671 	 * Test if we should deliver an upcall
2672 	 */
2673 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2674 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2675 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2676 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2677 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2678 		/* Prepare an upcall for delivery */
2679 		bw_meter_prepare_upcall(x, nowp);
2680 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2681 	    }
2682 	}
2683     } else if (x->bm_flags & BW_METER_LEQ) {
2684 	/*
2685 	 * Processing for "<=" type of bw_meter entry
2686 	 */
2687 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2688 	    /*
2689 	     * We are behind time with the multicast forwarding table
2690 	     * scanning for "<=" type of bw_meter entries, so test now
2691 	     * if we should deliver an upcall.
2692 	     */
2693 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2694 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2695 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2696 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2697 		/* Prepare an upcall for delivery */
2698 		bw_meter_prepare_upcall(x, nowp);
2699 	    }
2700 	    /* Reschedule the bw_meter entry */
2701 	    unschedule_bw_meter(x);
2702 	    schedule_bw_meter(x, nowp);
2703 	}
2704 
2705 	/* Record that a packet is received */
2706 	x->bm_measured.b_packets++;
2707 	x->bm_measured.b_bytes += plen;
2708 
2709 	/*
2710 	 * Test if we should restart the measuring interval
2711 	 */
2712 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2713 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2714 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2715 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2716 	    /* Don't restart the measuring interval */
2717 	} else {
2718 	    /* Do restart the measuring interval */
2719 	    /*
2720 	     * XXX: note that we don't unschedule and schedule, because this
2721 	     * might be too much overhead per packet. Instead, when we process
2722 	     * all entries for a given timer hash bin, we check whether it is
2723 	     * really a timeout. If not, we reschedule at that time.
2724 	     */
2725 	    x->bm_start_time = *nowp;
2726 	    x->bm_measured.b_packets = 0;
2727 	    x->bm_measured.b_bytes = 0;
2728 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2729 	}
2730     }
2731 }
2732 
2733 /*
2734  * Prepare a bandwidth-related upcall
2735  */
2736 static void
2737 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2738 {
2739     struct timeval delta;
2740     struct bw_upcall *u;
2741 
2742     MFC_LOCK_ASSERT();
2743 
2744     /*
2745      * Compute the measured time interval
2746      */
2747     delta = *nowp;
2748     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2749 
2750     /*
2751      * If there are too many pending upcalls, deliver them now
2752      */
2753     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2754 	bw_upcalls_send();
2755 
2756     /*
2757      * Set the bw_upcall entry
2758      */
2759     u = &bw_upcalls[bw_upcalls_n++];
2760     u->bu_src = x->bm_mfc->mfc_origin;
2761     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2762     u->bu_threshold.b_time = x->bm_threshold.b_time;
2763     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2764     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2765     u->bu_measured.b_time = delta;
2766     u->bu_measured.b_packets = x->bm_measured.b_packets;
2767     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2768     u->bu_flags = 0;
2769     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2770 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2771     if (x->bm_flags & BW_METER_UNIT_BYTES)
2772 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2773     if (x->bm_flags & BW_METER_GEQ)
2774 	u->bu_flags |= BW_UPCALL_GEQ;
2775     if (x->bm_flags & BW_METER_LEQ)
2776 	u->bu_flags |= BW_UPCALL_LEQ;
2777 }
2778 
2779 /*
2780  * Send the pending bandwidth-related upcalls
2781  */
2782 static void
2783 bw_upcalls_send(void)
2784 {
2785     struct mbuf *m;
2786     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2787     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2788     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2789 				      0,		/* unused2 */
2790 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2791 				      0,		/* im_mbz  */
2792 				      0,		/* im_vif  */
2793 				      0,		/* unused3 */
2794 				      { 0 },		/* im_src  */
2795 				      { 0 } };		/* im_dst  */
2796 
2797     MFC_LOCK_ASSERT();
2798 
2799     if (bw_upcalls_n == 0)
2800 	return;			/* No pending upcalls */
2801 
2802     bw_upcalls_n = 0;
2803 
2804     /*
2805      * Allocate a new mbuf, initialize it with the header and
2806      * the payload for the pending calls.
2807      */
2808     MGETHDR(m, M_DONTWAIT, MT_DATA);
2809     if (m == NULL) {
2810 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2811 	return;
2812     }
2813 
2814     m->m_len = m->m_pkthdr.len = 0;
2815     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2816     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2817 
2818     /*
2819      * Send the upcalls
2820      * XXX do we need to set the address in k_igmpsrc ?
2821      */
2822     mrtstat.mrts_upcalls++;
2823     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2824 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2825 	++mrtstat.mrts_upq_sockfull;
2826     }
2827 }
2828 
2829 /*
2830  * Compute the timeout hash value for the bw_meter entries
2831  */
2832 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2833     do {								\
2834 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2835 									\
2836 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2837 	(hash) = next_timeval.tv_sec;					\
2838 	if (next_timeval.tv_usec)					\
2839 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2840 	(hash) %= BW_METER_BUCKETS;					\
2841     } while (0)
2842 
2843 /*
2844  * Schedule a timer to process periodically bw_meter entry of type "<="
2845  * by linking the entry in the proper hash bucket.
2846  */
2847 static void
2848 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2849 {
2850     int time_hash;
2851 
2852     MFC_LOCK_ASSERT();
2853 
2854     if (!(x->bm_flags & BW_METER_LEQ))
2855 	return;		/* XXX: we schedule timers only for "<=" entries */
2856 
2857     /*
2858      * Reset the bw_meter entry
2859      */
2860     x->bm_start_time = *nowp;
2861     x->bm_measured.b_packets = 0;
2862     x->bm_measured.b_bytes = 0;
2863     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2864 
2865     /*
2866      * Compute the timeout hash value and insert the entry
2867      */
2868     BW_METER_TIMEHASH(x, time_hash);
2869     x->bm_time_next = bw_meter_timers[time_hash];
2870     bw_meter_timers[time_hash] = x;
2871     x->bm_time_hash = time_hash;
2872 }
2873 
2874 /*
2875  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2876  * by removing the entry from the proper hash bucket.
2877  */
2878 static void
2879 unschedule_bw_meter(struct bw_meter *x)
2880 {
2881     int time_hash;
2882     struct bw_meter *prev, *tmp;
2883 
2884     MFC_LOCK_ASSERT();
2885 
2886     if (!(x->bm_flags & BW_METER_LEQ))
2887 	return;		/* XXX: we schedule timers only for "<=" entries */
2888 
2889     /*
2890      * Compute the timeout hash value and delete the entry
2891      */
2892     time_hash = x->bm_time_hash;
2893     if (time_hash >= BW_METER_BUCKETS)
2894 	return;		/* Entry was not scheduled */
2895 
2896     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2897 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2898 	if (tmp == x)
2899 	    break;
2900 
2901     if (tmp == NULL)
2902 	panic("unschedule_bw_meter: bw_meter entry not found");
2903 
2904     if (prev != NULL)
2905 	prev->bm_time_next = x->bm_time_next;
2906     else
2907 	bw_meter_timers[time_hash] = x->bm_time_next;
2908 
2909     x->bm_time_next = NULL;
2910     x->bm_time_hash = BW_METER_BUCKETS;
2911 }
2912 
2913 
2914 /*
2915  * Process all "<=" type of bw_meter that should be processed now,
2916  * and for each entry prepare an upcall if necessary. Each processed
2917  * entry is rescheduled again for the (periodic) processing.
2918  *
2919  * This is run periodically (once per second normally). On each round,
2920  * all the potentially matching entries are in the hash slot that we are
2921  * looking at.
2922  */
2923 static void
2924 bw_meter_process()
2925 {
2926     static uint32_t last_tv_sec;	/* last time we processed this */
2927 
2928     uint32_t loops;
2929     int i;
2930     struct timeval now, process_endtime;
2931 
2932     GET_TIME(now);
2933     if (last_tv_sec == now.tv_sec)
2934 	return;		/* nothing to do */
2935 
2936     loops = now.tv_sec - last_tv_sec;
2937     last_tv_sec = now.tv_sec;
2938     if (loops > BW_METER_BUCKETS)
2939 	loops = BW_METER_BUCKETS;
2940 
2941     MFC_LOCK();
2942     /*
2943      * Process all bins of bw_meter entries from the one after the last
2944      * processed to the current one. On entry, i points to the last bucket
2945      * visited, so we need to increment i at the beginning of the loop.
2946      */
2947     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2948 	struct bw_meter *x, *tmp_list;
2949 
2950 	if (++i >= BW_METER_BUCKETS)
2951 	    i = 0;
2952 
2953 	/* Disconnect the list of bw_meter entries from the bin */
2954 	tmp_list = bw_meter_timers[i];
2955 	bw_meter_timers[i] = NULL;
2956 
2957 	/* Process the list of bw_meter entries */
2958 	while (tmp_list != NULL) {
2959 	    x = tmp_list;
2960 	    tmp_list = tmp_list->bm_time_next;
2961 
2962 	    /* Test if the time interval is over */
2963 	    process_endtime = x->bm_start_time;
2964 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2965 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2966 		/* Not yet: reschedule, but don't reset */
2967 		int time_hash;
2968 
2969 		BW_METER_TIMEHASH(x, time_hash);
2970 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2971 		    /*
2972 		     * XXX: somehow the bin processing is a bit ahead of time.
2973 		     * Put the entry in the next bin.
2974 		     */
2975 		    if (++time_hash >= BW_METER_BUCKETS)
2976 			time_hash = 0;
2977 		}
2978 		x->bm_time_next = bw_meter_timers[time_hash];
2979 		bw_meter_timers[time_hash] = x;
2980 		x->bm_time_hash = time_hash;
2981 
2982 		continue;
2983 	    }
2984 
2985 	    /*
2986 	     * Test if we should deliver an upcall
2987 	     */
2988 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2989 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2990 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2991 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2992 		/* Prepare an upcall for delivery */
2993 		bw_meter_prepare_upcall(x, &now);
2994 	    }
2995 
2996 	    /*
2997 	     * Reschedule for next processing
2998 	     */
2999 	    schedule_bw_meter(x, &now);
3000 	}
3001     }
3002 
3003     /* Send all upcalls that are pending delivery */
3004     bw_upcalls_send();
3005 
3006     MFC_UNLOCK();
3007 }
3008 
3009 /*
3010  * A periodic function for sending all upcalls that are pending delivery
3011  */
3012 static void
3013 expire_bw_upcalls_send(void *unused)
3014 {
3015     MFC_LOCK();
3016     bw_upcalls_send();
3017     MFC_UNLOCK();
3018 
3019     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3020 	expire_bw_upcalls_send, NULL);
3021 }
3022 
3023 /*
3024  * A periodic function for periodic scanning of the multicast forwarding
3025  * table for processing all "<=" bw_meter entries.
3026  */
3027 static void
3028 expire_bw_meter_process(void *unused)
3029 {
3030     if (mrt_api_config & MRT_MFC_BW_UPCALL)
3031 	bw_meter_process();
3032 
3033     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
3034 }
3035 
3036 /*
3037  * End of bandwidth monitoring code
3038  */
3039 
3040 #ifdef PIM
3041 /*
3042  * Send the packet up to the user daemon, or eventually do kernel encapsulation
3043  *
3044  */
3045 static int
3046 pim_register_send(struct ip *ip, struct vif *vifp,
3047 	struct mbuf *m, struct mfc *rt)
3048 {
3049     struct mbuf *mb_copy, *mm;
3050 
3051     if (mrtdebug & DEBUG_PIM)
3052 	log(LOG_DEBUG, "pim_register_send: ");
3053 
3054     mb_copy = pim_register_prepare(ip, m);
3055     if (mb_copy == NULL)
3056 	return ENOBUFS;
3057 
3058     /*
3059      * Send all the fragments. Note that the mbuf for each fragment
3060      * is freed by the sending machinery.
3061      */
3062     for (mm = mb_copy; mm; mm = mb_copy) {
3063 	mb_copy = mm->m_nextpkt;
3064 	mm->m_nextpkt = 0;
3065 	mm = m_pullup(mm, sizeof(struct ip));
3066 	if (mm != NULL) {
3067 	    ip = mtod(mm, struct ip *);
3068 	    if ((mrt_api_config & MRT_MFC_RP) &&
3069 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
3070 		pim_register_send_rp(ip, vifp, mm, rt);
3071 	    } else {
3072 		pim_register_send_upcall(ip, vifp, mm, rt);
3073 	    }
3074 	}
3075     }
3076 
3077     return 0;
3078 }
3079 
3080 /*
3081  * Return a copy of the data packet that is ready for PIM Register
3082  * encapsulation.
3083  * XXX: Note that in the returned copy the IP header is a valid one.
3084  */
3085 static struct mbuf *
3086 pim_register_prepare(struct ip *ip, struct mbuf *m)
3087 {
3088     struct mbuf *mb_copy = NULL;
3089     int mtu;
3090 
3091     /* Take care of delayed checksums */
3092     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
3093 	in_delayed_cksum(m);
3094 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
3095     }
3096 
3097     /*
3098      * Copy the old packet & pullup its IP header into the
3099      * new mbuf so we can modify it.
3100      */
3101     mb_copy = m_copypacket(m, M_DONTWAIT);
3102     if (mb_copy == NULL)
3103 	return NULL;
3104     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3105     if (mb_copy == NULL)
3106 	return NULL;
3107 
3108     /* take care of the TTL */
3109     ip = mtod(mb_copy, struct ip *);
3110     --ip->ip_ttl;
3111 
3112     /* Compute the MTU after the PIM Register encapsulation */
3113     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3114 
3115     if (ip->ip_len <= mtu) {
3116 	/* Turn the IP header into a valid one */
3117 	ip->ip_len = htons(ip->ip_len);
3118 	ip->ip_off = htons(ip->ip_off);
3119 	ip->ip_sum = 0;
3120 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3121     } else {
3122 	/* Fragment the packet */
3123 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
3124 	    m_freem(mb_copy);
3125 	    return NULL;
3126 	}
3127     }
3128     return mb_copy;
3129 }
3130 
3131 /*
3132  * Send an upcall with the data packet to the user-level process.
3133  */
3134 static int
3135 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3136 	struct mbuf *mb_copy, struct mfc *rt)
3137 {
3138     struct mbuf *mb_first;
3139     int len = ntohs(ip->ip_len);
3140     struct igmpmsg *im;
3141     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3142 
3143     VIF_LOCK_ASSERT();
3144 
3145     /*
3146      * Add a new mbuf with an upcall header
3147      */
3148     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
3149     if (mb_first == NULL) {
3150 	m_freem(mb_copy);
3151 	return ENOBUFS;
3152     }
3153     mb_first->m_data += max_linkhdr;
3154     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3155     mb_first->m_len = sizeof(struct igmpmsg);
3156     mb_first->m_next = mb_copy;
3157 
3158     /* Send message to routing daemon */
3159     im = mtod(mb_first, struct igmpmsg *);
3160     im->im_msgtype	= IGMPMSG_WHOLEPKT;
3161     im->im_mbz		= 0;
3162     im->im_vif		= vifp - viftable;
3163     im->im_src		= ip->ip_src;
3164     im->im_dst		= ip->ip_dst;
3165 
3166     k_igmpsrc.sin_addr	= ip->ip_src;
3167 
3168     mrtstat.mrts_upcalls++;
3169 
3170     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3171 	if (mrtdebug & DEBUG_PIM)
3172 	    log(LOG_WARNING,
3173 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3174 	++mrtstat.mrts_upq_sockfull;
3175 	return ENOBUFS;
3176     }
3177 
3178     /* Keep statistics */
3179     pimstat.pims_snd_registers_msgs++;
3180     pimstat.pims_snd_registers_bytes += len;
3181 
3182     return 0;
3183 }
3184 
3185 /*
3186  * Encapsulate the data packet in PIM Register message and send it to the RP.
3187  */
3188 static int
3189 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3190 	struct mbuf *mb_copy, struct mfc *rt)
3191 {
3192     struct mbuf *mb_first;
3193     struct ip *ip_outer;
3194     struct pim_encap_pimhdr *pimhdr;
3195     int len = ntohs(ip->ip_len);
3196     vifi_t vifi = rt->mfc_parent;
3197 
3198     VIF_LOCK_ASSERT();
3199 
3200     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3201 	m_freem(mb_copy);
3202 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3203     }
3204 
3205     /*
3206      * Add a new mbuf with the encapsulating header
3207      */
3208     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
3209     if (mb_first == NULL) {
3210 	m_freem(mb_copy);
3211 	return ENOBUFS;
3212     }
3213     mb_first->m_data += max_linkhdr;
3214     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3215     mb_first->m_next = mb_copy;
3216 
3217     mb_first->m_pkthdr.len = len + mb_first->m_len;
3218 
3219     /*
3220      * Fill in the encapsulating IP and PIM header
3221      */
3222     ip_outer = mtod(mb_first, struct ip *);
3223     *ip_outer = pim_encap_iphdr;
3224     ip_outer->ip_id = ip_newid();
3225     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3226     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3227     ip_outer->ip_dst = rt->mfc_rp;
3228     /*
3229      * Copy the inner header TOS to the outer header, and take care of the
3230      * IP_DF bit.
3231      */
3232     ip_outer->ip_tos = ip->ip_tos;
3233     if (ntohs(ip->ip_off) & IP_DF)
3234 	ip_outer->ip_off |= IP_DF;
3235     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3236 					 + sizeof(pim_encap_iphdr));
3237     *pimhdr = pim_encap_pimhdr;
3238     /* If the iif crosses a border, set the Border-bit */
3239     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3240 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3241 
3242     mb_first->m_data += sizeof(pim_encap_iphdr);
3243     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3244     mb_first->m_data -= sizeof(pim_encap_iphdr);
3245 
3246     if (vifp->v_rate_limit == 0)
3247 	tbf_send_packet(vifp, mb_first);
3248     else
3249 	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3250 
3251     /* Keep statistics */
3252     pimstat.pims_snd_registers_msgs++;
3253     pimstat.pims_snd_registers_bytes += len;
3254 
3255     return 0;
3256 }
3257 
3258 /*
3259  * PIM-SMv2 and PIM-DM messages processing.
3260  * Receives and verifies the PIM control messages, and passes them
3261  * up to the listening socket, using rip_input().
3262  * The only message with special processing is the PIM_REGISTER message
3263  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3264  * is passed to if_simloop().
3265  */
3266 void
3267 pim_input(struct mbuf *m, int off)
3268 {
3269     struct ip *ip = mtod(m, struct ip *);
3270     struct pim *pim;
3271     int minlen;
3272     int datalen = ip->ip_len;
3273     int ip_tos;
3274     int iphlen = off;
3275 
3276     /* Keep statistics */
3277     pimstat.pims_rcv_total_msgs++;
3278     pimstat.pims_rcv_total_bytes += datalen;
3279 
3280     /*
3281      * Validate lengths
3282      */
3283     if (datalen < PIM_MINLEN) {
3284 	pimstat.pims_rcv_tooshort++;
3285 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3286 	    datalen, (u_long)ip->ip_src.s_addr);
3287 	m_freem(m);
3288 	return;
3289     }
3290 
3291     /*
3292      * If the packet is at least as big as a REGISTER, go agead
3293      * and grab the PIM REGISTER header size, to avoid another
3294      * possible m_pullup() later.
3295      *
3296      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3297      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3298      */
3299     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3300     /*
3301      * Get the IP and PIM headers in contiguous memory, and
3302      * possibly the PIM REGISTER header.
3303      */
3304     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3305 	(m = m_pullup(m, minlen)) == 0) {
3306 	log(LOG_ERR, "pim_input: m_pullup failure\n");
3307 	return;
3308     }
3309     /* m_pullup() may have given us a new mbuf so reset ip. */
3310     ip = mtod(m, struct ip *);
3311     ip_tos = ip->ip_tos;
3312 
3313     /* adjust mbuf to point to the PIM header */
3314     m->m_data += iphlen;
3315     m->m_len  -= iphlen;
3316     pim = mtod(m, struct pim *);
3317 
3318     /*
3319      * Validate checksum. If PIM REGISTER, exclude the data packet.
3320      *
3321      * XXX: some older PIMv2 implementations don't make this distinction,
3322      * so for compatibility reason perform the checksum over part of the
3323      * message, and if error, then over the whole message.
3324      */
3325     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3326 	/* do nothing, checksum okay */
3327     } else if (in_cksum(m, datalen)) {
3328 	pimstat.pims_rcv_badsum++;
3329 	if (mrtdebug & DEBUG_PIM)
3330 	    log(LOG_DEBUG, "pim_input: invalid checksum");
3331 	m_freem(m);
3332 	return;
3333     }
3334 
3335     /* PIM version check */
3336     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3337 	pimstat.pims_rcv_badversion++;
3338 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3339 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3340 	m_freem(m);
3341 	return;
3342     }
3343 
3344     /* restore mbuf back to the outer IP */
3345     m->m_data -= iphlen;
3346     m->m_len  += iphlen;
3347 
3348     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3349 	/*
3350 	 * Since this is a REGISTER, we'll make a copy of the register
3351 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3352 	 * routing daemon.
3353 	 */
3354 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3355 	struct mbuf *mcp;
3356 	struct ip *encap_ip;
3357 	u_int32_t *reghdr;
3358 	struct ifnet *vifp;
3359 
3360 	VIF_LOCK();
3361 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3362 	    VIF_UNLOCK();
3363 	    if (mrtdebug & DEBUG_PIM)
3364 		log(LOG_DEBUG,
3365 		    "pim_input: register vif not set: %d\n", reg_vif_num);
3366 	    m_freem(m);
3367 	    return;
3368 	}
3369 	/* XXX need refcnt? */
3370 	vifp = viftable[reg_vif_num].v_ifp;
3371 	VIF_UNLOCK();
3372 
3373 	/*
3374 	 * Validate length
3375 	 */
3376 	if (datalen < PIM_REG_MINLEN) {
3377 	    pimstat.pims_rcv_tooshort++;
3378 	    pimstat.pims_rcv_badregisters++;
3379 	    log(LOG_ERR,
3380 		"pim_input: register packet size too small %d from %lx\n",
3381 		datalen, (u_long)ip->ip_src.s_addr);
3382 	    m_freem(m);
3383 	    return;
3384 	}
3385 
3386 	reghdr = (u_int32_t *)(pim + 1);
3387 	encap_ip = (struct ip *)(reghdr + 1);
3388 
3389 	if (mrtdebug & DEBUG_PIM) {
3390 	    log(LOG_DEBUG,
3391 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3392 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3393 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3394 		ntohs(encap_ip->ip_len));
3395 	}
3396 
3397 	/* verify the version number of the inner packet */
3398 	if (encap_ip->ip_v != IPVERSION) {
3399 	    pimstat.pims_rcv_badregisters++;
3400 	    if (mrtdebug & DEBUG_PIM) {
3401 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3402 		    "of the inner packet\n", encap_ip->ip_v);
3403 	    }
3404 	    m_freem(m);
3405 	    return;
3406 	}
3407 
3408 	/* verify the inner packet is destined to a mcast group */
3409 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3410 	    pimstat.pims_rcv_badregisters++;
3411 	    if (mrtdebug & DEBUG_PIM)
3412 		log(LOG_DEBUG,
3413 		    "pim_input: inner packet of register is not "
3414 		    "multicast %lx\n",
3415 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3416 	    m_freem(m);
3417 	    return;
3418 	}
3419 
3420 	/* If a NULL_REGISTER, pass it to the daemon */
3421 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3422 	    goto pim_input_to_daemon;
3423 
3424 	/*
3425 	 * Copy the TOS from the outer IP header to the inner IP header.
3426 	 */
3427 	if (encap_ip->ip_tos != ip_tos) {
3428 	    /* Outer TOS -> inner TOS */
3429 	    encap_ip->ip_tos = ip_tos;
3430 	    /* Recompute the inner header checksum. Sigh... */
3431 
3432 	    /* adjust mbuf to point to the inner IP header */
3433 	    m->m_data += (iphlen + PIM_MINLEN);
3434 	    m->m_len  -= (iphlen + PIM_MINLEN);
3435 
3436 	    encap_ip->ip_sum = 0;
3437 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3438 
3439 	    /* restore mbuf to point back to the outer IP header */
3440 	    m->m_data -= (iphlen + PIM_MINLEN);
3441 	    m->m_len  += (iphlen + PIM_MINLEN);
3442 	}
3443 
3444 	/*
3445 	 * Decapsulate the inner IP packet and loopback to forward it
3446 	 * as a normal multicast packet. Also, make a copy of the
3447 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3448 	 * to pass to the daemon later, so it can take the appropriate
3449 	 * actions (e.g., send back PIM_REGISTER_STOP).
3450 	 * XXX: here m->m_data points to the outer IP header.
3451 	 */
3452 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3453 	if (mcp == NULL) {
3454 	    log(LOG_ERR,
3455 		"pim_input: pim register: could not copy register head\n");
3456 	    m_freem(m);
3457 	    return;
3458 	}
3459 
3460 	/* Keep statistics */
3461 	/* XXX: registers_bytes include only the encap. mcast pkt */
3462 	pimstat.pims_rcv_registers_msgs++;
3463 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3464 
3465 	/*
3466 	 * forward the inner ip packet; point m_data at the inner ip.
3467 	 */
3468 	m_adj(m, iphlen + PIM_MINLEN);
3469 
3470 	if (mrtdebug & DEBUG_PIM) {
3471 	    log(LOG_DEBUG,
3472 		"pim_input: forwarding decapsulated register: "
3473 		"src %lx, dst %lx, vif %d\n",
3474 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3475 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3476 		reg_vif_num);
3477 	}
3478 	/* NB: vifp was collected above; can it change on us? */
3479 	if_simloop(vifp, m, dst.sin_family, 0);
3480 
3481 	/* prepare the register head to send to the mrouting daemon */
3482 	m = mcp;
3483     }
3484 
3485 pim_input_to_daemon:
3486     /*
3487      * Pass the PIM message up to the daemon; if it is a Register message,
3488      * pass the 'head' only up to the daemon. This includes the
3489      * outer IP header, PIM header, PIM-Register header and the
3490      * inner IP header.
3491      * XXX: the outer IP header pkt size of a Register is not adjust to
3492      * reflect the fact that the inner multicast data is truncated.
3493      */
3494     rip_input(m, iphlen);
3495 
3496     return;
3497 }
3498 #endif /* PIM */
3499 
3500 static int
3501 ip_mroute_modevent(module_t mod, int type, void *unused)
3502 {
3503     switch (type) {
3504     case MOD_LOAD:
3505 	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3506 	MFC_LOCK_INIT();
3507 	VIF_LOCK_INIT();
3508 	ip_mrouter_reset();
3509 	ip_mcast_src = X_ip_mcast_src;
3510 	ip_mforward = X_ip_mforward;
3511 	ip_mrouter_done = X_ip_mrouter_done;
3512 	ip_mrouter_get = X_ip_mrouter_get;
3513 	ip_mrouter_set = X_ip_mrouter_set;
3514 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3515 	ip_rsvp_vif = X_ip_rsvp_vif;
3516 	legal_vif_num = X_legal_vif_num;
3517 	mrt_ioctl = X_mrt_ioctl;
3518 	rsvp_input_p = X_rsvp_input;
3519 	break;
3520 
3521     case MOD_UNLOAD:
3522 	/*
3523 	 * Typically module unload happens after the user-level
3524 	 * process has shutdown the kernel services (the check
3525 	 * below insures someone can't just yank the module out
3526 	 * from under a running process).  But if the module is
3527 	 * just loaded and then unloaded w/o starting up a user
3528 	 * process we still need to cleanup.
3529 	 */
3530 	if (ip_mrouter)
3531 	    return EINVAL;
3532 
3533 	X_ip_mrouter_done();
3534 	ip_mcast_src = NULL;
3535 	ip_mforward = NULL;
3536 	ip_mrouter_done = NULL;
3537 	ip_mrouter_get = NULL;
3538 	ip_mrouter_set = NULL;
3539 	ip_rsvp_force_done = NULL;
3540 	ip_rsvp_vif = NULL;
3541 	legal_vif_num = NULL;
3542 	mrt_ioctl = NULL;
3543 	rsvp_input_p = NULL;
3544 	VIF_LOCK_DESTROY();
3545 	MFC_LOCK_DESTROY();
3546 	mtx_destroy(&mrouter_mtx);
3547 	break;
3548     default:
3549 	return EOPNOTSUPP;
3550     }
3551     return 0;
3552 }
3553 
3554 static moduledata_t ip_mroutemod = {
3555     "ip_mroute",
3556     ip_mroute_modevent,
3557     0
3558 };
3559 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3560