1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * Modified by Wojciech Macek, Semihalf, May 2021 51 * 52 * MROUTING Revision: 3.5 53 * and PIM-SMv2 and PIM-DM support, advanced API support, 54 * bandwidth metering and signaling 55 */ 56 57 /* 58 * TODO: Prefix functions with ipmf_. 59 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 60 * domain attachment (if_afdata) so we can track consumers of that service. 61 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 62 * move it to socket options. 63 * TODO: Cleanup LSRR removal further. 64 * TODO: Push RSVP stubs into raw_ip.c. 65 * TODO: Use bitstring.h for vif set. 66 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 67 * TODO: Sync ip6_mroute.c with this file. 68 */ 69 70 #include <sys/cdefs.h> 71 #include "opt_inet.h" 72 #include "opt_mrouting.h" 73 74 #define _PIM_VT 1 75 76 #include <sys/types.h> 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/condvar.h> 81 #include <sys/eventhandler.h> 82 #include <sys/lock.h> 83 #include <sys/kthread.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/taskqueue.h> 99 #include <sys/time.h> 100 #include <sys/counter.h> 101 #include <machine/atomic.h> 102 103 #include <net/if.h> 104 #include <net/if_var.h> 105 #include <net/if_private.h> 106 #include <net/if_types.h> 107 #include <net/netisr.h> 108 #include <net/route.h> 109 #include <net/vnet.h> 110 111 #include <netinet/in.h> 112 #include <netinet/igmp.h> 113 #include <netinet/in_systm.h> 114 #include <netinet/in_var.h> 115 #include <netinet/ip.h> 116 #include <netinet/ip_encap.h> 117 #include <netinet/ip_mroute.h> 118 #include <netinet/ip_var.h> 119 #include <netinet/ip_options.h> 120 #include <netinet/pim.h> 121 #include <netinet/pim_var.h> 122 #include <netinet/udp.h> 123 124 #include <machine/in_cksum.h> 125 126 #ifndef KTR_IPMF 127 #define KTR_IPMF KTR_INET 128 #endif 129 130 #define VIFI_INVALID ((vifi_t) -1) 131 132 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 133 134 /* 135 * Locking. We use two locks: one for the virtual interface table and 136 * one for the forwarding table. These locks may be nested in which case 137 * the VIF lock must always be taken first. Note that each lock is used 138 * to cover not only the specific data structure but also related data 139 * structures. 140 */ 141 142 static struct rwlock mrouter_lock; 143 #define MRW_RLOCK() rw_rlock(&mrouter_lock) 144 #define MRW_WLOCK() rw_wlock(&mrouter_lock) 145 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) 146 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) 147 #define MRW_UNLOCK() rw_unlock(&mrouter_lock) 148 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) 149 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) 150 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) 151 #define MRW_WOWNED() rw_wowned(&mrouter_lock) 152 #define MRW_LOCK_INIT() \ 153 rw_init(&mrouter_lock, "IPv4 multicast forwarding") 154 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) 155 156 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 157 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 158 159 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 160 VNET_PCPUSTAT_SYSINIT(mrtstat); 161 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 162 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 163 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 164 "netinet/ip_mroute.h)"); 165 166 VNET_DEFINE_STATIC(u_long, mfchash); 167 #define V_mfchash VNET(mfchash) 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 171 #define MFCHASHSIZE 256 172 173 static u_long mfchashsize = MFCHASHSIZE; /* Hash size */ 174 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN, 175 &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size"); 176 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 177 #define V_nexpire VNET(nexpire) 178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 179 #define V_mfchashtbl VNET(mfchashtbl) 180 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 181 #define V_task_queue VNET(task_queue) 182 VNET_DEFINE_STATIC(struct task, task); 183 #define V_task VNET(task) 184 185 VNET_DEFINE_STATIC(vifi_t, numvifs); 186 #define V_numvifs VNET(numvifs) 187 VNET_DEFINE_STATIC(struct vif *, viftable); 188 #define V_viftable VNET(viftable) 189 190 static eventhandler_tag if_detach_event_tag = NULL; 191 192 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 193 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 194 195 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 196 #define V_buf_ring_mtx VNET(buf_ring_mtx) 197 198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 199 #define UPCALL_EXPIRE 6 /* number of timeouts */ 200 201 /* 202 * Bandwidth meter variables and constants 203 */ 204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 205 206 /* 207 * Pending upcalls are stored in a ring which is flushed when 208 * full, or periodically 209 */ 210 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 211 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 212 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 213 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 214 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 215 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 216 217 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 218 219 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 220 VNET_PCPUSTAT_SYSINIT(pimstat); 221 VNET_PCPUSTAT_SYSUNINIT(pimstat); 222 223 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 224 "PIM"); 225 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 226 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 227 228 static u_long pim_squelch_wholepkt = 0; 229 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN, 230 &pim_squelch_wholepkt, 0, 231 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 232 233 static const struct encaptab *pim_encap_cookie; 234 static int pim_encapcheck(const struct mbuf *, int, int, void *); 235 static int pim_input(struct mbuf *, int, int, void *); 236 237 extern int in_mcast_loop; 238 239 static const struct encap_config ipv4_encap_cfg = { 240 .proto = IPPROTO_PIM, 241 .min_length = sizeof(struct ip) + PIM_MINLEN, 242 .exact_match = 8, 243 .check = pim_encapcheck, 244 .input = pim_input 245 }; 246 247 /* 248 * Note: the PIM Register encapsulation adds the following in front of a 249 * data packet: 250 * 251 * struct pim_encap_hdr { 252 * struct ip ip; 253 * struct pim_encap_pimhdr pim; 254 * } 255 * 256 */ 257 258 struct pim_encap_pimhdr { 259 struct pim pim; 260 uint32_t flags; 261 }; 262 #define PIM_ENCAP_TTL 64 263 264 static struct ip pim_encap_iphdr = { 265 #if BYTE_ORDER == LITTLE_ENDIAN 266 sizeof(struct ip) >> 2, 267 IPVERSION, 268 #else 269 IPVERSION, 270 sizeof(struct ip) >> 2, 271 #endif 272 0, /* tos */ 273 sizeof(struct ip), /* total length */ 274 0, /* id */ 275 0, /* frag offset */ 276 PIM_ENCAP_TTL, 277 IPPROTO_PIM, 278 0, /* checksum */ 279 }; 280 281 static struct pim_encap_pimhdr pim_encap_pimhdr = { 282 { 283 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 284 0, /* reserved */ 285 0, /* checksum */ 286 }, 287 0 /* flags */ 288 }; 289 290 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 291 #define V_reg_vif_num VNET(reg_vif_num) 292 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 293 #define V_multicast_register_if VNET(multicast_register_if) 294 295 /* 296 * Private variables. 297 */ 298 299 static u_long X_ip_mcast_src(int); 300 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 301 struct ip_moptions *); 302 static int X_ip_mrouter_done(void); 303 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 304 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 305 static int X_legal_vif_num(int); 306 static int X_mrt_ioctl(u_long, caddr_t, int); 307 308 static int add_bw_upcall(struct bw_upcall *); 309 static int add_mfc(struct mfcctl2 *); 310 static int add_vif(struct vifctl *); 311 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 312 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 313 struct timeval *); 314 static void bw_upcalls_send(void); 315 static int del_bw_upcall(struct bw_upcall *); 316 static int del_mfc(struct mfcctl2 *); 317 static int del_vif(vifi_t); 318 static int del_vif_locked(vifi_t, struct ifnet **, struct ifnet **); 319 static void expire_bw_upcalls_send(void *); 320 static void expire_mfc(struct mfc *); 321 static void expire_upcalls(void *); 322 static void free_bw_list(struct bw_meter *); 323 static int get_sg_cnt(struct sioc_sg_req *); 324 static int get_vif_cnt(struct sioc_vif_req *); 325 static void if_detached_event(void *, struct ifnet *); 326 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 327 static int ip_mrouter_init(struct socket *, int); 328 static __inline struct mfc * 329 mfc_find(struct in_addr *, struct in_addr *); 330 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 331 static struct mbuf * 332 pim_register_prepare(struct ip *, struct mbuf *); 333 static int pim_register_send(struct ip *, struct vif *, 334 struct mbuf *, struct mfc *); 335 static int pim_register_send_rp(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_upcall(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static void send_packet(struct vif *, struct mbuf *); 340 static int set_api_config(uint32_t *); 341 static int set_assert(int); 342 static int socket_send(struct socket *, struct mbuf *, 343 struct sockaddr_in *); 344 345 /* 346 * Kernel multicast forwarding API capabilities and setup. 347 * If more API capabilities are added to the kernel, they should be 348 * recorded in `mrt_api_support'. 349 */ 350 #define MRT_API_VERSION 0x0305 351 352 static const int mrt_api_version = MRT_API_VERSION; 353 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 354 MRT_MFC_FLAGS_BORDER_VIF | 355 MRT_MFC_RP | 356 MRT_MFC_BW_UPCALL); 357 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 358 #define V_mrt_api_config VNET(mrt_api_config) 359 VNET_DEFINE_STATIC(int, pim_assert_enabled); 360 #define V_pim_assert_enabled VNET(pim_assert_enabled) 361 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 362 363 /* 364 * Find a route for a given origin IP address and multicast group address. 365 * Statistics must be updated by the caller. 366 */ 367 static __inline struct mfc * 368 mfc_find(struct in_addr *o, struct in_addr *g) 369 { 370 struct mfc *rt; 371 372 /* 373 * Might be called both RLOCK and WLOCK. 374 * Check if any, it's caller responsibility 375 * to choose correct option. 376 */ 377 MRW_LOCK_ASSERT(); 378 379 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 380 if (in_hosteq(rt->mfc_origin, *o) && 381 in_hosteq(rt->mfc_mcastgrp, *g) && 382 buf_ring_empty(rt->mfc_stall_ring)) 383 break; 384 } 385 386 return (rt); 387 } 388 389 static __inline struct mfc * 390 mfc_alloc(void) 391 { 392 struct mfc *rt; 393 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 394 if (rt == NULL) 395 return rt; 396 397 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 398 M_NOWAIT, &V_buf_ring_mtx); 399 if (rt->mfc_stall_ring == NULL) { 400 free(rt, M_MRTABLE); 401 return NULL; 402 } 403 404 return rt; 405 } 406 407 /* 408 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 409 */ 410 static int 411 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 412 { 413 int error, optval; 414 vifi_t vifi; 415 struct vifctl vifc; 416 struct mfcctl2 mfc; 417 struct bw_upcall bw_upcall; 418 uint32_t i; 419 420 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 421 return EPERM; 422 423 error = 0; 424 switch (sopt->sopt_name) { 425 case MRT_INIT: 426 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 427 if (error) 428 break; 429 error = ip_mrouter_init(so, optval); 430 break; 431 case MRT_DONE: 432 error = ip_mrouter_done(); 433 break; 434 case MRT_ADD_VIF: 435 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 436 if (error) 437 break; 438 error = add_vif(&vifc); 439 break; 440 case MRT_DEL_VIF: 441 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 442 if (error) 443 break; 444 error = del_vif(vifi); 445 break; 446 case MRT_ADD_MFC: 447 case MRT_DEL_MFC: 448 /* 449 * select data size depending on API version. 450 */ 451 if (sopt->sopt_name == MRT_ADD_MFC && 452 V_mrt_api_config & MRT_API_FLAGS_ALL) { 453 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 454 sizeof(struct mfcctl2)); 455 } else { 456 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 457 sizeof(struct mfcctl)); 458 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 459 sizeof(mfc) - sizeof(struct mfcctl)); 460 } 461 if (error) 462 break; 463 if (sopt->sopt_name == MRT_ADD_MFC) 464 error = add_mfc(&mfc); 465 else 466 error = del_mfc(&mfc); 467 break; 468 469 case MRT_ASSERT: 470 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 471 if (error) 472 break; 473 set_assert(optval); 474 break; 475 476 case MRT_API_CONFIG: 477 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 478 if (!error) 479 error = set_api_config(&i); 480 if (!error) 481 error = sooptcopyout(sopt, &i, sizeof i); 482 break; 483 484 case MRT_ADD_BW_UPCALL: 485 case MRT_DEL_BW_UPCALL: 486 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 487 sizeof bw_upcall); 488 if (error) 489 break; 490 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 491 error = add_bw_upcall(&bw_upcall); 492 else 493 error = del_bw_upcall(&bw_upcall); 494 break; 495 496 default: 497 error = EOPNOTSUPP; 498 break; 499 } 500 return error; 501 } 502 503 /* 504 * Handle MRT getsockopt commands 505 */ 506 static int 507 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 508 { 509 int error; 510 511 switch (sopt->sopt_name) { 512 case MRT_VERSION: 513 error = sooptcopyout(sopt, &mrt_api_version, 514 sizeof mrt_api_version); 515 break; 516 case MRT_ASSERT: 517 error = sooptcopyout(sopt, &V_pim_assert_enabled, 518 sizeof V_pim_assert_enabled); 519 break; 520 case MRT_API_SUPPORT: 521 error = sooptcopyout(sopt, &mrt_api_support, 522 sizeof mrt_api_support); 523 break; 524 case MRT_API_CONFIG: 525 error = sooptcopyout(sopt, &V_mrt_api_config, 526 sizeof V_mrt_api_config); 527 break; 528 default: 529 error = EOPNOTSUPP; 530 break; 531 } 532 return error; 533 } 534 535 /* 536 * Handle ioctl commands to obtain information from the cache 537 */ 538 static int 539 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 540 { 541 int error; 542 543 /* 544 * Currently the only function calling this ioctl routine is rtioctl_fib(). 545 * Typically, only root can create the raw socket in order to execute 546 * this ioctl method, however the request might be coming from a prison 547 */ 548 error = priv_check(curthread, PRIV_NETINET_MROUTE); 549 if (error) 550 return (error); 551 switch (cmd) { 552 case (SIOCGETVIFCNT): 553 error = get_vif_cnt((struct sioc_vif_req *)data); 554 break; 555 556 case (SIOCGETSGCNT): 557 error = get_sg_cnt((struct sioc_sg_req *)data); 558 break; 559 560 default: 561 error = EINVAL; 562 break; 563 } 564 return error; 565 } 566 567 /* 568 * returns the packet, byte, rpf-failure count for the source group provided 569 */ 570 static int 571 get_sg_cnt(struct sioc_sg_req *req) 572 { 573 struct mfc *rt; 574 575 MRW_RLOCK(); 576 rt = mfc_find(&req->src, &req->grp); 577 if (rt == NULL) { 578 MRW_RUNLOCK(); 579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 580 return EADDRNOTAVAIL; 581 } 582 req->pktcnt = rt->mfc_pkt_cnt; 583 req->bytecnt = rt->mfc_byte_cnt; 584 req->wrong_if = rt->mfc_wrong_if; 585 MRW_RUNLOCK(); 586 return 0; 587 } 588 589 /* 590 * returns the input and output packet and byte counts on the vif provided 591 */ 592 static int 593 get_vif_cnt(struct sioc_vif_req *req) 594 { 595 vifi_t vifi = req->vifi; 596 597 MRW_RLOCK(); 598 if (vifi >= V_numvifs) { 599 MRW_RUNLOCK(); 600 return EINVAL; 601 } 602 603 mtx_lock_spin(&V_viftable[vifi].v_spin); 604 req->icount = V_viftable[vifi].v_pkt_in; 605 req->ocount = V_viftable[vifi].v_pkt_out; 606 req->ibytes = V_viftable[vifi].v_bytes_in; 607 req->obytes = V_viftable[vifi].v_bytes_out; 608 mtx_unlock_spin(&V_viftable[vifi].v_spin); 609 MRW_RUNLOCK(); 610 611 return 0; 612 } 613 614 static void 615 if_detached_event(void *arg __unused, struct ifnet *ifp) 616 { 617 vifi_t vifi; 618 u_long i, vifi_cnt = 0; 619 struct ifnet *free_ptr, *multi_leave; 620 621 MRW_WLOCK(); 622 623 if (V_ip_mrouter == NULL) { 624 MRW_WUNLOCK(); 625 return; 626 } 627 628 /* 629 * Tear down multicast forwarder state associated with this ifnet. 630 * 1. Walk the vif list, matching vifs against this ifnet. 631 * 2. Walk the multicast forwarding cache (mfc) looking for 632 * inner matches with this vif's index. 633 * 3. Expire any matching multicast forwarding cache entries. 634 * 4. Free vif state. This should disable ALLMULTI on the interface. 635 */ 636 restart: 637 for (vifi = 0; vifi < V_numvifs; vifi++) { 638 if (V_viftable[vifi].v_ifp != ifp) 639 continue; 640 for (i = 0; i < mfchashsize; i++) { 641 struct mfc *rt, *nrt; 642 643 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 644 if (rt->mfc_parent == vifi) { 645 expire_mfc(rt); 646 } 647 } 648 } 649 del_vif_locked(vifi, &multi_leave, &free_ptr); 650 if (free_ptr != NULL) 651 vifi_cnt++; 652 if (multi_leave) { 653 MRW_WUNLOCK(); 654 if_allmulti(multi_leave, 0); 655 MRW_WLOCK(); 656 goto restart; 657 } 658 } 659 660 MRW_WUNLOCK(); 661 662 /* 663 * Free IFP. We don't have to use free_ptr here as it is the same 664 * that ifp. Perform free as many times as required in case 665 * refcount is greater than 1. 666 */ 667 for (i = 0; i < vifi_cnt; i++) 668 if_free(ifp); 669 } 670 671 static void 672 ip_mrouter_upcall_thread(void *arg, int pending __unused) 673 { 674 CURVNET_SET((struct vnet *) arg); 675 676 MRW_WLOCK(); 677 bw_upcalls_send(); 678 MRW_WUNLOCK(); 679 680 CURVNET_RESTORE(); 681 } 682 683 /* 684 * Enable multicast forwarding. 685 */ 686 static int 687 ip_mrouter_init(struct socket *so, int version) 688 { 689 690 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 691 692 if (version != 1) 693 return ENOPROTOOPT; 694 695 MRW_WLOCK(); 696 697 if (ip_mrouter_unloading) { 698 MRW_WUNLOCK(); 699 return ENOPROTOOPT; 700 } 701 702 if (V_ip_mrouter != NULL) { 703 MRW_WUNLOCK(); 704 return EADDRINUSE; 705 } 706 707 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 708 HASH_NOWAIT); 709 if (V_mfchashtbl == NULL) { 710 MRW_WUNLOCK(); 711 return (ENOMEM); 712 } 713 714 /* Create upcall ring */ 715 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 716 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 717 M_NOWAIT, &V_bw_upcalls_ring_mtx); 718 if (!V_bw_upcalls_ring) { 719 MRW_WUNLOCK(); 720 return (ENOMEM); 721 } 722 723 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 724 taskqueue_cancel(V_task_queue, &V_task, NULL); 725 taskqueue_unblock(V_task_queue); 726 727 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 728 curvnet); 729 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 730 curvnet); 731 732 V_ip_mrouter = so; 733 atomic_add_int(&ip_mrouter_cnt, 1); 734 735 /* This is a mutex required by buf_ring init, but not used internally */ 736 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 737 738 MRW_WUNLOCK(); 739 740 CTR1(KTR_IPMF, "%s: done", __func__); 741 742 return 0; 743 } 744 745 /* 746 * Disable multicast forwarding. 747 */ 748 static int 749 X_ip_mrouter_done(void) 750 { 751 struct ifnet **ifps; 752 int nifp; 753 u_long i; 754 vifi_t vifi; 755 struct bw_upcall *bu; 756 757 if (V_ip_mrouter == NULL) 758 return (EINVAL); 759 760 /* 761 * Detach/disable hooks to the reset of the system. 762 */ 763 V_ip_mrouter = NULL; 764 atomic_subtract_int(&ip_mrouter_cnt, 1); 765 V_mrt_api_config = 0; 766 767 /* 768 * Wait for all epoch sections to complete to ensure 769 * V_ip_mrouter = NULL is visible to others. 770 */ 771 NET_EPOCH_WAIT(); 772 773 /* Stop and drain task queue */ 774 taskqueue_block(V_task_queue); 775 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 776 taskqueue_drain(V_task_queue, &V_task); 777 } 778 779 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 780 781 MRW_WLOCK(); 782 taskqueue_cancel(V_task_queue, &V_task, NULL); 783 784 /* Destroy upcall ring */ 785 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 786 free(bu, M_MRTABLE); 787 } 788 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 789 mtx_destroy(&V_bw_upcalls_ring_mtx); 790 791 /* 792 * For each phyint in use, prepare to disable promiscuous reception 793 * of all IP multicasts. Defer the actual call until the lock is released; 794 * just record the list of interfaces while locked. Some interfaces use 795 * sx locks in their ioctl routines, which is not allowed while holding 796 * a non-sleepable lock. 797 */ 798 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 799 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 800 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 801 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 802 ifps[nifp++] = V_viftable[vifi].v_ifp; 803 } 804 } 805 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 806 V_numvifs = 0; 807 V_pim_assert_enabled = 0; 808 809 callout_stop(&V_expire_upcalls_ch); 810 callout_stop(&V_bw_upcalls_ch); 811 812 /* 813 * Free all multicast forwarding cache entries. 814 * Do not use hashdestroy(), as we must perform other cleanup. 815 */ 816 for (i = 0; i < mfchashsize; i++) { 817 struct mfc *rt, *nrt; 818 819 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 820 expire_mfc(rt); 821 } 822 } 823 free(V_mfchashtbl, M_MRTABLE); 824 V_mfchashtbl = NULL; 825 826 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 827 828 V_reg_vif_num = VIFI_INVALID; 829 830 mtx_destroy(&V_buf_ring_mtx); 831 832 MRW_WUNLOCK(); 833 834 /* 835 * Now drop our claim on promiscuous multicast on the interfaces recorded 836 * above. This is safe to do now because ALLMULTI is reference counted. 837 */ 838 for (vifi = 0; vifi < nifp; vifi++) 839 if_allmulti(ifps[vifi], 0); 840 free(ifps, M_TEMP); 841 842 CTR1(KTR_IPMF, "%s: done", __func__); 843 844 return 0; 845 } 846 847 /* 848 * Set PIM assert processing global 849 */ 850 static int 851 set_assert(int i) 852 { 853 if ((i != 1) && (i != 0)) 854 return EINVAL; 855 856 V_pim_assert_enabled = i; 857 858 return 0; 859 } 860 861 /* 862 * Configure API capabilities 863 */ 864 int 865 set_api_config(uint32_t *apival) 866 { 867 u_long i; 868 869 /* 870 * We can set the API capabilities only if it is the first operation 871 * after MRT_INIT. I.e.: 872 * - there are no vifs installed 873 * - pim_assert is not enabled 874 * - the MFC table is empty 875 */ 876 if (V_numvifs > 0) { 877 *apival = 0; 878 return EPERM; 879 } 880 if (V_pim_assert_enabled) { 881 *apival = 0; 882 return EPERM; 883 } 884 885 MRW_RLOCK(); 886 887 for (i = 0; i < mfchashsize; i++) { 888 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 889 MRW_RUNLOCK(); 890 *apival = 0; 891 return EPERM; 892 } 893 } 894 895 MRW_RUNLOCK(); 896 897 V_mrt_api_config = *apival & mrt_api_support; 898 *apival = V_mrt_api_config; 899 900 return 0; 901 } 902 903 /* 904 * Add a vif to the vif table 905 */ 906 static int 907 add_vif(struct vifctl *vifcp) 908 { 909 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 910 struct sockaddr_in sin = {sizeof sin, AF_INET}; 911 struct ifaddr *ifa; 912 struct ifnet *ifp; 913 int error; 914 915 if (vifcp->vifc_vifi >= MAXVIFS) 916 return EINVAL; 917 /* rate limiting is no longer supported by this code */ 918 if (vifcp->vifc_rate_limit != 0) { 919 log(LOG_ERR, "rate limiting is no longer supported\n"); 920 return EINVAL; 921 } 922 923 if (in_nullhost(vifcp->vifc_lcl_addr)) 924 return EADDRNOTAVAIL; 925 926 /* Find the interface with an address in AF_INET family */ 927 if (vifcp->vifc_flags & VIFF_REGISTER) { 928 /* 929 * XXX: Because VIFF_REGISTER does not really need a valid 930 * local interface (e.g. it could be 127.0.0.2), we don't 931 * check its address. 932 */ 933 ifp = NULL; 934 } else { 935 struct epoch_tracker et; 936 937 sin.sin_addr = vifcp->vifc_lcl_addr; 938 NET_EPOCH_ENTER(et); 939 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 940 if (ifa == NULL) { 941 NET_EPOCH_EXIT(et); 942 return EADDRNOTAVAIL; 943 } 944 ifp = ifa->ifa_ifp; 945 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 946 NET_EPOCH_EXIT(et); 947 } 948 949 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 950 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 951 return EOPNOTSUPP; 952 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 953 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 954 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 955 if (V_reg_vif_num == VIFI_INVALID) { 956 if_initname(V_multicast_register_if, "register_vif", 0); 957 V_reg_vif_num = vifcp->vifc_vifi; 958 } 959 } else { /* Make sure the interface supports multicast */ 960 if ((ifp->if_flags & IFF_MULTICAST) == 0) 961 return EOPNOTSUPP; 962 963 /* Enable promiscuous reception of all IP multicasts from the if */ 964 error = if_allmulti(ifp, 1); 965 if (error) 966 return error; 967 } 968 969 MRW_WLOCK(); 970 971 if (!in_nullhost(vifp->v_lcl_addr)) { 972 if (ifp) 973 V_multicast_register_if = NULL; 974 MRW_WUNLOCK(); 975 if (ifp) 976 if_free(ifp); 977 return EADDRINUSE; 978 } 979 980 vifp->v_flags = vifcp->vifc_flags; 981 vifp->v_threshold = vifcp->vifc_threshold; 982 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 983 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 984 vifp->v_ifp = ifp; 985 /* initialize per vif pkt counters */ 986 vifp->v_pkt_in = 0; 987 vifp->v_pkt_out = 0; 988 vifp->v_bytes_in = 0; 989 vifp->v_bytes_out = 0; 990 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 991 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 992 993 /* Adjust numvifs up if the vifi is higher than numvifs */ 994 if (V_numvifs <= vifcp->vifc_vifi) 995 V_numvifs = vifcp->vifc_vifi + 1; 996 997 MRW_WUNLOCK(); 998 999 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 1000 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 1001 (int)vifcp->vifc_threshold); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Delete a vif from the vif table 1008 */ 1009 static int 1010 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free) 1011 { 1012 struct vif *vifp; 1013 1014 *ifp_free = NULL; 1015 *ifp_multi_leave = NULL; 1016 1017 MRW_WLOCK_ASSERT(); 1018 1019 if (vifi >= V_numvifs) { 1020 return EINVAL; 1021 } 1022 vifp = &V_viftable[vifi]; 1023 if (in_nullhost(vifp->v_lcl_addr)) { 1024 return EADDRNOTAVAIL; 1025 } 1026 1027 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1028 *ifp_multi_leave = vifp->v_ifp; 1029 1030 if (vifp->v_flags & VIFF_REGISTER) { 1031 V_reg_vif_num = VIFI_INVALID; 1032 if (vifp->v_ifp) { 1033 if (vifp->v_ifp == V_multicast_register_if) 1034 V_multicast_register_if = NULL; 1035 *ifp_free = vifp->v_ifp; 1036 } 1037 } 1038 1039 mtx_destroy(&vifp->v_spin); 1040 1041 bzero((caddr_t)vifp, sizeof (*vifp)); 1042 1043 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1044 1045 /* Adjust numvifs down */ 1046 for (vifi = V_numvifs; vifi > 0; vifi--) 1047 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1048 break; 1049 V_numvifs = vifi; 1050 1051 return 0; 1052 } 1053 1054 static int 1055 del_vif(vifi_t vifi) 1056 { 1057 int cc; 1058 struct ifnet *free_ptr, *multi_leave; 1059 1060 MRW_WLOCK(); 1061 cc = del_vif_locked(vifi, &multi_leave, &free_ptr); 1062 MRW_WUNLOCK(); 1063 1064 if (multi_leave) 1065 if_allmulti(multi_leave, 0); 1066 if (free_ptr) { 1067 if_free(free_ptr); 1068 } 1069 1070 return cc; 1071 } 1072 1073 /* 1074 * update an mfc entry without resetting counters and S,G addresses. 1075 */ 1076 static void 1077 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1078 { 1079 int i; 1080 1081 rt->mfc_parent = mfccp->mfcc_parent; 1082 for (i = 0; i < V_numvifs; i++) { 1083 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1084 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1085 MRT_MFC_FLAGS_ALL; 1086 } 1087 /* set the RP address */ 1088 if (V_mrt_api_config & MRT_MFC_RP) 1089 rt->mfc_rp = mfccp->mfcc_rp; 1090 else 1091 rt->mfc_rp.s_addr = INADDR_ANY; 1092 } 1093 1094 /* 1095 * fully initialize an mfc entry from the parameter. 1096 */ 1097 static void 1098 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1099 { 1100 rt->mfc_origin = mfccp->mfcc_origin; 1101 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1102 1103 update_mfc_params(rt, mfccp); 1104 1105 /* initialize pkt counters per src-grp */ 1106 rt->mfc_pkt_cnt = 0; 1107 rt->mfc_byte_cnt = 0; 1108 rt->mfc_wrong_if = 0; 1109 timevalclear(&rt->mfc_last_assert); 1110 } 1111 1112 static void 1113 expire_mfc(struct mfc *rt) 1114 { 1115 struct rtdetq *rte; 1116 1117 MRW_WLOCK_ASSERT(); 1118 1119 free_bw_list(rt->mfc_bw_meter_leq); 1120 free_bw_list(rt->mfc_bw_meter_geq); 1121 1122 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1123 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1124 if (rte) { 1125 m_freem(rte->m); 1126 free(rte, M_MRTABLE); 1127 } 1128 } 1129 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1130 1131 LIST_REMOVE(rt, mfc_hash); 1132 free(rt, M_MRTABLE); 1133 } 1134 1135 /* 1136 * Add an mfc entry 1137 */ 1138 static int 1139 add_mfc(struct mfcctl2 *mfccp) 1140 { 1141 struct mfc *rt; 1142 struct rtdetq *rte; 1143 u_long hash = 0; 1144 u_short nstl; 1145 struct epoch_tracker et; 1146 1147 MRW_WLOCK(); 1148 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1149 1150 /* If an entry already exists, just update the fields */ 1151 if (rt) { 1152 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1153 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1154 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1155 mfccp->mfcc_parent); 1156 update_mfc_params(rt, mfccp); 1157 MRW_WUNLOCK(); 1158 return (0); 1159 } 1160 1161 /* 1162 * Find the entry for which the upcall was made and update 1163 */ 1164 nstl = 0; 1165 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1166 NET_EPOCH_ENTER(et); 1167 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1168 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1169 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1170 !buf_ring_empty(rt->mfc_stall_ring)) { 1171 CTR5(KTR_IPMF, 1172 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1173 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1174 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1175 mfccp->mfcc_parent, 1176 rt->mfc_stall_ring); 1177 if (nstl++) 1178 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1179 1180 init_mfc_params(rt, mfccp); 1181 rt->mfc_expire = 0; /* Don't clean this guy up */ 1182 V_nexpire[hash]--; 1183 1184 /* Free queued packets, but attempt to forward them first. */ 1185 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1186 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1187 if (rte->ifp != NULL) 1188 ip_mdq(rte->m, rte->ifp, rt, -1); 1189 m_freem(rte->m); 1190 free(rte, M_MRTABLE); 1191 } 1192 } 1193 } 1194 NET_EPOCH_EXIT(et); 1195 1196 /* 1197 * It is possible that an entry is being inserted without an upcall 1198 */ 1199 if (nstl == 0) { 1200 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1201 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1202 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1203 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1204 init_mfc_params(rt, mfccp); 1205 if (rt->mfc_expire) 1206 V_nexpire[hash]--; 1207 rt->mfc_expire = 0; 1208 break; /* XXX */ 1209 } 1210 } 1211 1212 if (rt == NULL) { /* no upcall, so make a new entry */ 1213 rt = mfc_alloc(); 1214 if (rt == NULL) { 1215 MRW_WUNLOCK(); 1216 return (ENOBUFS); 1217 } 1218 1219 init_mfc_params(rt, mfccp); 1220 1221 rt->mfc_expire = 0; 1222 rt->mfc_bw_meter_leq = NULL; 1223 rt->mfc_bw_meter_geq = NULL; 1224 1225 /* insert new entry at head of hash chain */ 1226 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1227 } 1228 } 1229 1230 MRW_WUNLOCK(); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Delete an mfc entry 1237 */ 1238 static int 1239 del_mfc(struct mfcctl2 *mfccp) 1240 { 1241 struct in_addr origin; 1242 struct in_addr mcastgrp; 1243 struct mfc *rt; 1244 1245 origin = mfccp->mfcc_origin; 1246 mcastgrp = mfccp->mfcc_mcastgrp; 1247 1248 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1249 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1250 1251 MRW_WLOCK(); 1252 1253 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(origin, mcastgrp)], mfc_hash) { 1254 if (in_hosteq(rt->mfc_origin, origin) && 1255 in_hosteq(rt->mfc_mcastgrp, mcastgrp)) 1256 break; 1257 } 1258 if (rt == NULL) { 1259 MRW_WUNLOCK(); 1260 return EADDRNOTAVAIL; 1261 } 1262 1263 expire_mfc(rt); 1264 1265 MRW_WUNLOCK(); 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * Send a message to the routing daemon on the multicast routing socket. 1272 */ 1273 static int 1274 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1275 { 1276 if (s) { 1277 SOCKBUF_LOCK(&s->so_rcv); 1278 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1279 NULL) != 0) { 1280 sorwakeup_locked(s); 1281 return 0; 1282 } 1283 soroverflow_locked(s); 1284 } 1285 m_freem(mm); 1286 return -1; 1287 } 1288 1289 /* 1290 * IP multicast forwarding function. This function assumes that the packet 1291 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1292 * pointed to by "ifp", and the packet is to be relayed to other networks 1293 * that have members of the packet's destination IP multicast group. 1294 * 1295 * The packet is returned unscathed to the caller, unless it is 1296 * erroneous, in which case a non-zero return value tells the caller to 1297 * discard it. 1298 */ 1299 1300 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1301 1302 static int 1303 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1304 struct ip_moptions *imo) 1305 { 1306 struct mfc *rt; 1307 int error; 1308 vifi_t vifi; 1309 struct mbuf *mb0; 1310 struct rtdetq *rte; 1311 u_long hash; 1312 int hlen; 1313 1314 M_ASSERTMAPPED(m); 1315 1316 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1317 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1318 1319 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1320 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1321 /* 1322 * Packet arrived via a physical interface or 1323 * an encapsulated tunnel or a register_vif. 1324 */ 1325 } else { 1326 /* 1327 * Packet arrived through a source-route tunnel. 1328 * Source-route tunnels are no longer supported. 1329 */ 1330 return (1); 1331 } 1332 1333 /* 1334 * BEGIN: MCAST ROUTING HOT PATH 1335 */ 1336 MRW_RLOCK(); 1337 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1338 if (ip->ip_ttl < MAXTTL) 1339 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1340 error = ip_mdq(m, ifp, NULL, vifi); 1341 MRW_RUNLOCK(); 1342 return error; 1343 } 1344 1345 /* 1346 * Don't forward a packet with time-to-live of zero or one, 1347 * or a packet destined to a local-only group. 1348 */ 1349 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1350 MRW_RUNLOCK(); 1351 return 0; 1352 } 1353 1354 mfc_find_retry: 1355 /* 1356 * Determine forwarding vifs from the forwarding cache table 1357 */ 1358 MRTSTAT_INC(mrts_mfc_lookups); 1359 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1360 1361 /* Entry exists, so forward if necessary */ 1362 if (rt != NULL) { 1363 error = ip_mdq(m, ifp, rt, -1); 1364 /* Generic unlock here as we might release R or W lock */ 1365 MRW_UNLOCK(); 1366 return error; 1367 } 1368 1369 /* 1370 * END: MCAST ROUTING HOT PATH 1371 */ 1372 1373 /* Further processing must be done with WLOCK taken */ 1374 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1375 MRW_RUNLOCK(); 1376 MRW_WLOCK(); 1377 goto mfc_find_retry; 1378 } 1379 1380 /* 1381 * If we don't have a route for packet's origin, 1382 * Make a copy of the packet & send message to routing daemon 1383 */ 1384 hlen = ip->ip_hl << 2; 1385 1386 MRTSTAT_INC(mrts_mfc_misses); 1387 MRTSTAT_INC(mrts_no_route); 1388 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1389 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1390 1391 /* 1392 * Allocate mbufs early so that we don't do extra work if we are 1393 * just going to fail anyway. Make sure to pullup the header so 1394 * that other people can't step on it. 1395 */ 1396 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); 1397 if (rte == NULL) { 1398 MRW_WUNLOCK(); 1399 return ENOBUFS; 1400 } 1401 1402 mb0 = m_copypacket(m, M_NOWAIT); 1403 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1404 mb0 = m_pullup(mb0, hlen); 1405 if (mb0 == NULL) { 1406 free(rte, M_MRTABLE); 1407 MRW_WUNLOCK(); 1408 return ENOBUFS; 1409 } 1410 1411 /* is there an upcall waiting for this flow ? */ 1412 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1413 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1414 { 1415 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1416 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1417 !buf_ring_empty(rt->mfc_stall_ring)) 1418 break; 1419 } 1420 1421 if (rt == NULL) { 1422 int i; 1423 struct igmpmsg *im; 1424 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1425 struct mbuf *mm; 1426 1427 /* 1428 * Locate the vifi for the incoming interface for this packet. 1429 * If none found, drop packet. 1430 */ 1431 for (vifi = 0; vifi < V_numvifs && 1432 V_viftable[vifi].v_ifp != ifp; vifi++) 1433 ; 1434 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1435 goto non_fatal; 1436 1437 /* no upcall, so make a new entry */ 1438 rt = mfc_alloc(); 1439 if (rt == NULL) 1440 goto fail; 1441 1442 /* Make a copy of the header to send to the user level process */ 1443 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1444 if (mm == NULL) 1445 goto fail1; 1446 1447 /* 1448 * Send message to routing daemon to install 1449 * a route into the kernel table 1450 */ 1451 1452 im = mtod(mm, struct igmpmsg*); 1453 im->im_msgtype = IGMPMSG_NOCACHE; 1454 im->im_mbz = 0; 1455 im->im_vif = vifi; 1456 1457 MRTSTAT_INC(mrts_upcalls); 1458 1459 k_igmpsrc.sin_addr = ip->ip_src; 1460 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1461 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1462 MRTSTAT_INC(mrts_upq_sockfull); 1463 fail1: free(rt, M_MRTABLE); 1464 fail: free(rte, M_MRTABLE); 1465 m_freem(mb0); 1466 MRW_WUNLOCK(); 1467 return ENOBUFS; 1468 } 1469 1470 /* insert new entry at head of hash chain */ 1471 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1472 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1473 rt->mfc_expire = UPCALL_EXPIRE; 1474 V_nexpire[hash]++; 1475 for (i = 0; i < V_numvifs; i++) { 1476 rt->mfc_ttls[i] = 0; 1477 rt->mfc_flags[i] = 0; 1478 } 1479 rt->mfc_parent = -1; 1480 1481 /* clear the RP address */ 1482 rt->mfc_rp.s_addr = INADDR_ANY; 1483 rt->mfc_bw_meter_leq = NULL; 1484 rt->mfc_bw_meter_geq = NULL; 1485 1486 /* initialize pkt counters per src-grp */ 1487 rt->mfc_pkt_cnt = 0; 1488 rt->mfc_byte_cnt = 0; 1489 rt->mfc_wrong_if = 0; 1490 timevalclear(&rt->mfc_last_assert); 1491 1492 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1493 1494 /* Add RT to hashtable as it didn't exist before */ 1495 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1496 } else { 1497 /* determine if queue has overflowed */ 1498 if (buf_ring_full(rt->mfc_stall_ring)) { 1499 MRTSTAT_INC(mrts_upq_ovflw); 1500 non_fatal: free(rte, M_MRTABLE); 1501 m_freem(mb0); 1502 MRW_WUNLOCK(); 1503 return (0); 1504 } 1505 1506 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1507 } 1508 1509 rte->m = mb0; 1510 rte->ifp = ifp; 1511 1512 MRW_WUNLOCK(); 1513 1514 return 0; 1515 } 1516 1517 /* 1518 * Clean up the cache entry if upcall is not serviced 1519 */ 1520 static void 1521 expire_upcalls(void *arg) 1522 { 1523 u_long i; 1524 1525 CURVNET_SET((struct vnet *) arg); 1526 1527 /*This callout is always run with MRW_WLOCK taken. */ 1528 1529 for (i = 0; i < mfchashsize; i++) { 1530 struct mfc *rt, *nrt; 1531 1532 if (V_nexpire[i] == 0) 1533 continue; 1534 1535 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1536 if (buf_ring_empty(rt->mfc_stall_ring)) 1537 continue; 1538 1539 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1540 continue; 1541 1542 MRTSTAT_INC(mrts_cache_cleanups); 1543 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1544 (u_long)ntohl(rt->mfc_origin.s_addr), 1545 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1546 1547 expire_mfc(rt); 1548 } 1549 } 1550 1551 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1552 curvnet); 1553 1554 CURVNET_RESTORE(); 1555 } 1556 1557 /* 1558 * Packet forwarding routine once entry in the cache is made 1559 */ 1560 static int 1561 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1562 { 1563 struct ip *ip = mtod(m, struct ip *); 1564 vifi_t vifi; 1565 int plen = ntohs(ip->ip_len); 1566 1567 M_ASSERTMAPPED(m); 1568 MRW_LOCK_ASSERT(); 1569 NET_EPOCH_ASSERT(); 1570 1571 /* 1572 * If xmt_vif is not -1, send on only the requested vif. 1573 * 1574 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1575 */ 1576 if (xmt_vif < V_numvifs) { 1577 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1578 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1579 else 1580 phyint_send(ip, V_viftable + xmt_vif, m); 1581 return 1; 1582 } 1583 1584 /* 1585 * Don't forward if it didn't arrive from the parent vif for its origin. 1586 */ 1587 vifi = rt->mfc_parent; 1588 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1589 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1590 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1591 MRTSTAT_INC(mrts_wrong_if); 1592 ++rt->mfc_wrong_if; 1593 /* 1594 * If we are doing PIM assert processing, send a message 1595 * to the routing daemon. 1596 * 1597 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1598 * can complete the SPT switch, regardless of the type 1599 * of the iif (broadcast media, GRE tunnel, etc). 1600 */ 1601 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1602 V_viftable[vifi].v_ifp) { 1603 if (ifp == V_multicast_register_if) 1604 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1605 1606 /* Get vifi for the incoming packet */ 1607 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) 1608 ; 1609 if (vifi >= V_numvifs) 1610 return 0; /* The iif is not found: ignore the packet. */ 1611 1612 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1613 return 0; /* WRONGVIF disabled: ignore the packet */ 1614 1615 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1616 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1617 struct igmpmsg *im; 1618 int hlen = ip->ip_hl << 2; 1619 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1620 1621 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1622 mm = m_pullup(mm, hlen); 1623 if (mm == NULL) 1624 return ENOBUFS; 1625 1626 im = mtod(mm, struct igmpmsg *); 1627 im->im_msgtype = IGMPMSG_WRONGVIF; 1628 im->im_mbz = 0; 1629 im->im_vif = vifi; 1630 1631 MRTSTAT_INC(mrts_upcalls); 1632 1633 k_igmpsrc.sin_addr = im->im_src; 1634 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1635 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1636 MRTSTAT_INC(mrts_upq_sockfull); 1637 return ENOBUFS; 1638 } 1639 } 1640 } 1641 return 0; 1642 } 1643 1644 /* If I sourced this packet, it counts as output, else it was input. */ 1645 mtx_lock_spin(&V_viftable[vifi].v_spin); 1646 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1647 V_viftable[vifi].v_pkt_out++; 1648 V_viftable[vifi].v_bytes_out += plen; 1649 } else { 1650 V_viftable[vifi].v_pkt_in++; 1651 V_viftable[vifi].v_bytes_in += plen; 1652 } 1653 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1654 1655 rt->mfc_pkt_cnt++; 1656 rt->mfc_byte_cnt += plen; 1657 1658 /* 1659 * For each vif, decide if a copy of the packet should be forwarded. 1660 * Forward if: 1661 * - the ttl exceeds the vif's threshold 1662 * - there are group members downstream on interface 1663 */ 1664 for (vifi = 0; vifi < V_numvifs; vifi++) 1665 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1666 V_viftable[vifi].v_pkt_out++; 1667 V_viftable[vifi].v_bytes_out += plen; 1668 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1669 pim_register_send(ip, V_viftable + vifi, m, rt); 1670 else 1671 phyint_send(ip, V_viftable + vifi, m); 1672 } 1673 1674 /* 1675 * Perform upcall-related bw measuring. 1676 */ 1677 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1678 struct bw_meter *x; 1679 struct timeval now; 1680 1681 microtime(&now); 1682 /* Process meters for Greater-or-EQual case */ 1683 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1684 bw_meter_geq_receive_packet(x, plen, &now); 1685 1686 /* Process meters for Lower-or-EQual case */ 1687 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1688 /* 1689 * Record that a packet is received. 1690 * Spin lock has to be taken as callout context 1691 * (expire_bw_meter_leq) might modify these fields 1692 * as well 1693 */ 1694 mtx_lock_spin(&x->bm_spin); 1695 x->bm_measured.b_packets++; 1696 x->bm_measured.b_bytes += plen; 1697 mtx_unlock_spin(&x->bm_spin); 1698 } 1699 } 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1706 */ 1707 static int 1708 X_legal_vif_num(int vif) 1709 { 1710 int ret; 1711 1712 ret = 0; 1713 if (vif < 0) 1714 return (ret); 1715 1716 MRW_RLOCK(); 1717 if (vif < V_numvifs) 1718 ret = 1; 1719 MRW_RUNLOCK(); 1720 1721 return (ret); 1722 } 1723 1724 /* 1725 * Return the local address used by this vif 1726 */ 1727 static u_long 1728 X_ip_mcast_src(int vifi) 1729 { 1730 in_addr_t addr; 1731 1732 addr = INADDR_ANY; 1733 if (vifi < 0) 1734 return (addr); 1735 1736 MRW_RLOCK(); 1737 if (vifi < V_numvifs) 1738 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1739 MRW_RUNLOCK(); 1740 1741 return (addr); 1742 } 1743 1744 static void 1745 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1746 { 1747 struct mbuf *mb_copy; 1748 int hlen = ip->ip_hl << 2; 1749 1750 MRW_LOCK_ASSERT(); 1751 M_ASSERTMAPPED(m); 1752 1753 /* 1754 * Make a new reference to the packet; make sure that 1755 * the IP header is actually copied, not just referenced, 1756 * so that ip_output() only scribbles on the copy. 1757 */ 1758 mb_copy = m_copypacket(m, M_NOWAIT); 1759 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1760 mb_copy = m_pullup(mb_copy, hlen); 1761 if (mb_copy == NULL) 1762 return; 1763 1764 send_packet(vifp, mb_copy); 1765 } 1766 1767 static void 1768 send_packet(struct vif *vifp, struct mbuf *m) 1769 { 1770 struct ip_moptions imo; 1771 int error __unused; 1772 1773 MRW_LOCK_ASSERT(); 1774 NET_EPOCH_ASSERT(); 1775 1776 imo.imo_multicast_ifp = vifp->v_ifp; 1777 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1778 imo.imo_multicast_loop = !!in_mcast_loop; 1779 imo.imo_multicast_vif = -1; 1780 STAILQ_INIT(&imo.imo_head); 1781 1782 /* 1783 * Re-entrancy should not be a problem here, because 1784 * the packets that we send out and are looped back at us 1785 * should get rejected because they appear to come from 1786 * the loopback interface, thus preventing looping. 1787 */ 1788 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1789 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1790 (ptrdiff_t)(vifp - V_viftable), error); 1791 } 1792 1793 /* 1794 * Stubs for old RSVP socket shim implementation. 1795 */ 1796 1797 static int 1798 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1799 { 1800 1801 return (EOPNOTSUPP); 1802 } 1803 1804 static void 1805 X_ip_rsvp_force_done(struct socket *so __unused) 1806 { 1807 1808 } 1809 1810 static int 1811 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1812 { 1813 struct mbuf *m; 1814 1815 m = *mp; 1816 *mp = NULL; 1817 if (!V_rsvp_on) 1818 m_freem(m); 1819 return (IPPROTO_DONE); 1820 } 1821 1822 /* 1823 * Code for bandwidth monitors 1824 */ 1825 1826 /* 1827 * Define common interface for timeval-related methods 1828 */ 1829 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1830 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1831 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1832 1833 static uint32_t 1834 compute_bw_meter_flags(struct bw_upcall *req) 1835 { 1836 uint32_t flags = 0; 1837 1838 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1839 flags |= BW_METER_UNIT_PACKETS; 1840 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1841 flags |= BW_METER_UNIT_BYTES; 1842 if (req->bu_flags & BW_UPCALL_GEQ) 1843 flags |= BW_METER_GEQ; 1844 if (req->bu_flags & BW_UPCALL_LEQ) 1845 flags |= BW_METER_LEQ; 1846 1847 return flags; 1848 } 1849 1850 static void 1851 expire_bw_meter_leq(void *arg) 1852 { 1853 struct bw_meter *x = arg; 1854 struct timeval now; 1855 /* 1856 * INFO: 1857 * callout is always executed with MRW_WLOCK taken 1858 */ 1859 1860 CURVNET_SET((struct vnet *)x->arg); 1861 1862 microtime(&now); 1863 1864 /* 1865 * Test if we should deliver an upcall 1866 */ 1867 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1868 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1869 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1870 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1871 /* Prepare an upcall for delivery */ 1872 bw_meter_prepare_upcall(x, &now); 1873 } 1874 1875 /* Send all upcalls that are pending delivery */ 1876 taskqueue_enqueue(V_task_queue, &V_task); 1877 1878 /* Reset counters */ 1879 x->bm_start_time = now; 1880 /* Spin lock has to be taken as ip_forward context 1881 * might modify these fields as well 1882 */ 1883 mtx_lock_spin(&x->bm_spin); 1884 x->bm_measured.b_bytes = 0; 1885 x->bm_measured.b_packets = 0; 1886 mtx_unlock_spin(&x->bm_spin); 1887 1888 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1889 1890 CURVNET_RESTORE(); 1891 } 1892 1893 /* 1894 * Add a bw_meter entry 1895 */ 1896 static int 1897 add_bw_upcall(struct bw_upcall *req) 1898 { 1899 struct mfc *mfc; 1900 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1901 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1902 struct timeval now; 1903 struct bw_meter *x, **bwm_ptr; 1904 uint32_t flags; 1905 1906 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1907 return EOPNOTSUPP; 1908 1909 /* Test if the flags are valid */ 1910 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1911 return EINVAL; 1912 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1913 return EINVAL; 1914 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1915 return EINVAL; 1916 1917 /* Test if the threshold time interval is valid */ 1918 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1919 return EINVAL; 1920 1921 flags = compute_bw_meter_flags(req); 1922 1923 /* 1924 * Find if we have already same bw_meter entry 1925 */ 1926 MRW_WLOCK(); 1927 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1928 if (mfc == NULL) { 1929 MRW_WUNLOCK(); 1930 return EADDRNOTAVAIL; 1931 } 1932 1933 /* Choose an appropriate bw_meter list */ 1934 if (req->bu_flags & BW_UPCALL_GEQ) 1935 bwm_ptr = &mfc->mfc_bw_meter_geq; 1936 else 1937 bwm_ptr = &mfc->mfc_bw_meter_leq; 1938 1939 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1940 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1941 &req->bu_threshold.b_time, ==)) 1942 && (x->bm_threshold.b_packets 1943 == req->bu_threshold.b_packets) 1944 && (x->bm_threshold.b_bytes 1945 == req->bu_threshold.b_bytes) 1946 && (x->bm_flags & BW_METER_USER_FLAGS) 1947 == flags) { 1948 MRW_WUNLOCK(); 1949 return 0; /* XXX Already installed */ 1950 } 1951 } 1952 1953 /* Allocate the new bw_meter entry */ 1954 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); 1955 if (x == NULL) { 1956 MRW_WUNLOCK(); 1957 return ENOBUFS; 1958 } 1959 1960 /* Set the new bw_meter entry */ 1961 x->bm_threshold.b_time = req->bu_threshold.b_time; 1962 microtime(&now); 1963 x->bm_start_time = now; 1964 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1965 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1966 x->bm_measured.b_packets = 0; 1967 x->bm_measured.b_bytes = 0; 1968 x->bm_flags = flags; 1969 x->bm_time_next = NULL; 1970 x->bm_mfc = mfc; 1971 x->arg = curvnet; 1972 sprintf(x->bm_spin_name, "BM spin %p", x); 1973 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1974 1975 /* For LEQ case create periodic callout */ 1976 if (req->bu_flags & BW_UPCALL_LEQ) { 1977 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); 1978 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1979 expire_bw_meter_leq, x); 1980 } 1981 1982 /* Add the new bw_meter entry to the front of entries for this MFC */ 1983 x->bm_mfc_next = *bwm_ptr; 1984 *bwm_ptr = x; 1985 1986 MRW_WUNLOCK(); 1987 1988 return 0; 1989 } 1990 1991 static void 1992 free_bw_list(struct bw_meter *list) 1993 { 1994 while (list != NULL) { 1995 struct bw_meter *x = list; 1996 1997 /* MRW_WLOCK must be held here */ 1998 if (x->bm_flags & BW_METER_LEQ) { 1999 callout_drain(&x->bm_meter_callout); 2000 mtx_destroy(&x->bm_spin); 2001 } 2002 2003 list = list->bm_mfc_next; 2004 free(x, M_BWMETER); 2005 } 2006 } 2007 2008 /* 2009 * Delete one or multiple bw_meter entries 2010 */ 2011 static int 2012 del_bw_upcall(struct bw_upcall *req) 2013 { 2014 struct mfc *mfc; 2015 struct bw_meter *x, **bwm_ptr; 2016 2017 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2018 return EOPNOTSUPP; 2019 2020 MRW_WLOCK(); 2021 2022 /* Find the corresponding MFC entry */ 2023 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2024 if (mfc == NULL) { 2025 MRW_WUNLOCK(); 2026 return EADDRNOTAVAIL; 2027 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2028 /* 2029 * Delete all bw_meter entries for this mfc 2030 */ 2031 struct bw_meter *list; 2032 2033 /* Free LEQ list */ 2034 list = mfc->mfc_bw_meter_leq; 2035 mfc->mfc_bw_meter_leq = NULL; 2036 free_bw_list(list); 2037 2038 /* Free GEQ list */ 2039 list = mfc->mfc_bw_meter_geq; 2040 mfc->mfc_bw_meter_geq = NULL; 2041 free_bw_list(list); 2042 MRW_WUNLOCK(); 2043 return 0; 2044 } else { /* Delete a single bw_meter entry */ 2045 struct bw_meter *prev; 2046 uint32_t flags = 0; 2047 2048 flags = compute_bw_meter_flags(req); 2049 2050 /* Choose an appropriate bw_meter list */ 2051 if (req->bu_flags & BW_UPCALL_GEQ) 2052 bwm_ptr = &mfc->mfc_bw_meter_geq; 2053 else 2054 bwm_ptr = &mfc->mfc_bw_meter_leq; 2055 2056 /* Find the bw_meter entry to delete */ 2057 for (prev = NULL, x = *bwm_ptr; x != NULL; 2058 prev = x, x = x->bm_mfc_next) { 2059 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && 2060 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2061 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2062 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2063 break; 2064 } 2065 if (x != NULL) { /* Delete entry from the list for this MFC */ 2066 if (prev != NULL) 2067 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2068 else 2069 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2070 2071 if (req->bu_flags & BW_UPCALL_LEQ) 2072 callout_stop(&x->bm_meter_callout); 2073 2074 MRW_WUNLOCK(); 2075 /* Free the bw_meter entry */ 2076 free(x, M_BWMETER); 2077 return 0; 2078 } else { 2079 MRW_WUNLOCK(); 2080 return EINVAL; 2081 } 2082 } 2083 __assert_unreachable(); 2084 } 2085 2086 /* 2087 * Perform bandwidth measurement processing that may result in an upcall 2088 */ 2089 static void 2090 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2091 { 2092 struct timeval delta; 2093 2094 MRW_LOCK_ASSERT(); 2095 2096 delta = *nowp; 2097 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2098 2099 /* 2100 * Processing for ">=" type of bw_meter entry. 2101 * bm_spin does not have to be hold here as in GEQ 2102 * case this is the only context accessing bm_measured. 2103 */ 2104 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2105 /* Reset the bw_meter entry */ 2106 x->bm_start_time = *nowp; 2107 x->bm_measured.b_packets = 0; 2108 x->bm_measured.b_bytes = 0; 2109 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2110 } 2111 2112 /* Record that a packet is received */ 2113 x->bm_measured.b_packets++; 2114 x->bm_measured.b_bytes += plen; 2115 2116 /* 2117 * Test if we should deliver an upcall 2118 */ 2119 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2120 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2121 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2122 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2123 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2124 /* Prepare an upcall for delivery */ 2125 bw_meter_prepare_upcall(x, nowp); 2126 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2127 } 2128 } 2129 } 2130 2131 /* 2132 * Prepare a bandwidth-related upcall 2133 */ 2134 static void 2135 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2136 { 2137 struct timeval delta; 2138 struct bw_upcall *u; 2139 2140 MRW_LOCK_ASSERT(); 2141 2142 /* 2143 * Compute the measured time interval 2144 */ 2145 delta = *nowp; 2146 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2147 2148 /* 2149 * Set the bw_upcall entry 2150 */ 2151 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2152 if (!u) { 2153 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2154 return; 2155 } 2156 u->bu_src = x->bm_mfc->mfc_origin; 2157 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2158 u->bu_threshold.b_time = x->bm_threshold.b_time; 2159 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2160 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2161 u->bu_measured.b_time = delta; 2162 u->bu_measured.b_packets = x->bm_measured.b_packets; 2163 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2164 u->bu_flags = 0; 2165 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2166 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2167 if (x->bm_flags & BW_METER_UNIT_BYTES) 2168 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2169 if (x->bm_flags & BW_METER_GEQ) 2170 u->bu_flags |= BW_UPCALL_GEQ; 2171 if (x->bm_flags & BW_METER_LEQ) 2172 u->bu_flags |= BW_UPCALL_LEQ; 2173 2174 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2175 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2176 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2177 taskqueue_enqueue(V_task_queue, &V_task); 2178 } 2179 } 2180 /* 2181 * Send the pending bandwidth-related upcalls 2182 */ 2183 static void 2184 bw_upcalls_send(void) 2185 { 2186 struct mbuf *m; 2187 int len = 0; 2188 struct bw_upcall *bu; 2189 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2190 static struct igmpmsg igmpmsg = { 2191 0, /* unused1 */ 2192 0, /* unused2 */ 2193 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2194 0, /* im_mbz */ 2195 0, /* im_vif */ 2196 0, /* unused3 */ 2197 { 0 }, /* im_src */ 2198 { 0 } /* im_dst */ 2199 }; 2200 2201 MRW_LOCK_ASSERT(); 2202 2203 if (buf_ring_empty(V_bw_upcalls_ring)) 2204 return; 2205 2206 /* 2207 * Allocate a new mbuf, initialize it with the header and 2208 * the payload for the pending calls. 2209 */ 2210 m = m_gethdr(M_NOWAIT, MT_DATA); 2211 if (m == NULL) { 2212 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2213 return; 2214 } 2215 2216 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2217 len += sizeof(struct igmpmsg); 2218 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2219 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2220 len += sizeof(struct bw_upcall); 2221 free(bu, M_MRTABLE); 2222 } 2223 2224 /* 2225 * Send the upcalls 2226 * XXX do we need to set the address in k_igmpsrc ? 2227 */ 2228 MRTSTAT_INC(mrts_upcalls); 2229 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2230 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2231 MRTSTAT_INC(mrts_upq_sockfull); 2232 } 2233 } 2234 2235 /* 2236 * A periodic function for sending all upcalls that are pending delivery 2237 */ 2238 static void 2239 expire_bw_upcalls_send(void *arg) 2240 { 2241 CURVNET_SET((struct vnet *) arg); 2242 2243 /* This callout is run with MRW_RLOCK taken */ 2244 2245 bw_upcalls_send(); 2246 2247 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2248 curvnet); 2249 CURVNET_RESTORE(); 2250 } 2251 2252 /* 2253 * End of bandwidth monitoring code 2254 */ 2255 2256 /* 2257 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2258 * 2259 */ 2260 static int 2261 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2262 struct mfc *rt) 2263 { 2264 struct mbuf *mb_copy, *mm; 2265 2266 /* 2267 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2268 * rendezvous point was unspecified, and we were told not to. 2269 */ 2270 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2271 in_nullhost(rt->mfc_rp)) 2272 return 0; 2273 2274 mb_copy = pim_register_prepare(ip, m); 2275 if (mb_copy == NULL) 2276 return ENOBUFS; 2277 2278 /* 2279 * Send all the fragments. Note that the mbuf for each fragment 2280 * is freed by the sending machinery. 2281 */ 2282 for (mm = mb_copy; mm; mm = mb_copy) { 2283 mb_copy = mm->m_nextpkt; 2284 mm->m_nextpkt = 0; 2285 mm = m_pullup(mm, sizeof(struct ip)); 2286 if (mm != NULL) { 2287 ip = mtod(mm, struct ip *); 2288 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2289 pim_register_send_rp(ip, vifp, mm, rt); 2290 } else { 2291 pim_register_send_upcall(ip, vifp, mm, rt); 2292 } 2293 } 2294 } 2295 2296 return 0; 2297 } 2298 2299 /* 2300 * Return a copy of the data packet that is ready for PIM Register 2301 * encapsulation. 2302 * XXX: Note that in the returned copy the IP header is a valid one. 2303 */ 2304 static struct mbuf * 2305 pim_register_prepare(struct ip *ip, struct mbuf *m) 2306 { 2307 struct mbuf *mb_copy = NULL; 2308 int mtu; 2309 2310 /* Take care of delayed checksums */ 2311 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2312 in_delayed_cksum(m); 2313 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2314 } 2315 2316 /* 2317 * Copy the old packet & pullup its IP header into the 2318 * new mbuf so we can modify it. 2319 */ 2320 mb_copy = m_copypacket(m, M_NOWAIT); 2321 if (mb_copy == NULL) 2322 return NULL; 2323 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2324 if (mb_copy == NULL) 2325 return NULL; 2326 2327 /* take care of the TTL */ 2328 ip = mtod(mb_copy, struct ip *); 2329 --ip->ip_ttl; 2330 2331 /* Compute the MTU after the PIM Register encapsulation */ 2332 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2333 2334 if (ntohs(ip->ip_len) <= mtu) { 2335 /* Turn the IP header into a valid one */ 2336 ip->ip_sum = 0; 2337 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2338 } else { 2339 /* Fragment the packet */ 2340 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2341 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2342 m_freem(mb_copy); 2343 return NULL; 2344 } 2345 } 2346 return mb_copy; 2347 } 2348 2349 /* 2350 * Send an upcall with the data packet to the user-level process. 2351 */ 2352 static int 2353 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2354 struct mbuf *mb_copy, struct mfc *rt) 2355 { 2356 struct mbuf *mb_first; 2357 int len = ntohs(ip->ip_len); 2358 struct igmpmsg *im; 2359 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2360 2361 MRW_LOCK_ASSERT(); 2362 2363 /* 2364 * Add a new mbuf with an upcall header 2365 */ 2366 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2367 if (mb_first == NULL) { 2368 m_freem(mb_copy); 2369 return ENOBUFS; 2370 } 2371 mb_first->m_data += max_linkhdr; 2372 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2373 mb_first->m_len = sizeof(struct igmpmsg); 2374 mb_first->m_next = mb_copy; 2375 2376 /* Send message to routing daemon */ 2377 im = mtod(mb_first, struct igmpmsg *); 2378 im->im_msgtype = IGMPMSG_WHOLEPKT; 2379 im->im_mbz = 0; 2380 im->im_vif = vifp - V_viftable; 2381 im->im_src = ip->ip_src; 2382 im->im_dst = ip->ip_dst; 2383 2384 k_igmpsrc.sin_addr = ip->ip_src; 2385 2386 MRTSTAT_INC(mrts_upcalls); 2387 2388 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2389 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2390 MRTSTAT_INC(mrts_upq_sockfull); 2391 return ENOBUFS; 2392 } 2393 2394 /* Keep statistics */ 2395 PIMSTAT_INC(pims_snd_registers_msgs); 2396 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2397 2398 return 0; 2399 } 2400 2401 /* 2402 * Encapsulate the data packet in PIM Register message and send it to the RP. 2403 */ 2404 static int 2405 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2406 struct mfc *rt) 2407 { 2408 struct mbuf *mb_first; 2409 struct ip *ip_outer; 2410 struct pim_encap_pimhdr *pimhdr; 2411 int len = ntohs(ip->ip_len); 2412 vifi_t vifi = rt->mfc_parent; 2413 2414 MRW_LOCK_ASSERT(); 2415 2416 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2417 m_freem(mb_copy); 2418 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2419 } 2420 2421 /* 2422 * Add a new mbuf with the encapsulating header 2423 */ 2424 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2425 if (mb_first == NULL) { 2426 m_freem(mb_copy); 2427 return ENOBUFS; 2428 } 2429 mb_first->m_data += max_linkhdr; 2430 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2431 mb_first->m_next = mb_copy; 2432 2433 mb_first->m_pkthdr.len = len + mb_first->m_len; 2434 2435 /* 2436 * Fill in the encapsulating IP and PIM header 2437 */ 2438 ip_outer = mtod(mb_first, struct ip *); 2439 *ip_outer = pim_encap_iphdr; 2440 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2441 sizeof(pim_encap_pimhdr)); 2442 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2443 ip_outer->ip_dst = rt->mfc_rp; 2444 /* 2445 * Copy the inner header TOS to the outer header, and take care of the 2446 * IP_DF bit. 2447 */ 2448 ip_outer->ip_tos = ip->ip_tos; 2449 if (ip->ip_off & htons(IP_DF)) 2450 ip_outer->ip_off |= htons(IP_DF); 2451 ip_fillid(ip_outer); 2452 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2453 + sizeof(pim_encap_iphdr)); 2454 *pimhdr = pim_encap_pimhdr; 2455 /* If the iif crosses a border, set the Border-bit */ 2456 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2457 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2458 2459 mb_first->m_data += sizeof(pim_encap_iphdr); 2460 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2461 mb_first->m_data -= sizeof(pim_encap_iphdr); 2462 2463 send_packet(vifp, mb_first); 2464 2465 /* Keep statistics */ 2466 PIMSTAT_INC(pims_snd_registers_msgs); 2467 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * pim_encapcheck() is called by the encap4_input() path at runtime to 2474 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2475 * into the kernel. 2476 */ 2477 static int 2478 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2479 int proto __unused, void *arg __unused) 2480 { 2481 2482 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2483 return (8); /* claim the datagram. */ 2484 } 2485 2486 /* 2487 * PIM-SMv2 and PIM-DM messages processing. 2488 * Receives and verifies the PIM control messages, and passes them 2489 * up to the listening socket, using rip_input(). 2490 * The only message with special processing is the PIM_REGISTER message 2491 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2492 * is passed to if_simloop(). 2493 */ 2494 static int 2495 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2496 { 2497 struct ip *ip = mtod(m, struct ip *); 2498 struct pim *pim; 2499 int iphlen = off; 2500 int minlen; 2501 int datalen = ntohs(ip->ip_len) - iphlen; 2502 int ip_tos; 2503 2504 /* Keep statistics */ 2505 PIMSTAT_INC(pims_rcv_total_msgs); 2506 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2507 2508 /* 2509 * Validate lengths 2510 */ 2511 if (datalen < PIM_MINLEN) { 2512 PIMSTAT_INC(pims_rcv_tooshort); 2513 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2514 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2515 m_freem(m); 2516 return (IPPROTO_DONE); 2517 } 2518 2519 /* 2520 * If the packet is at least as big as a REGISTER, go agead 2521 * and grab the PIM REGISTER header size, to avoid another 2522 * possible m_pullup() later. 2523 * 2524 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2525 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2526 */ 2527 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2528 /* 2529 * Get the IP and PIM headers in contiguous memory, and 2530 * possibly the PIM REGISTER header. 2531 */ 2532 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2533 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2534 return (IPPROTO_DONE); 2535 } 2536 2537 /* m_pullup() may have given us a new mbuf so reset ip. */ 2538 ip = mtod(m, struct ip *); 2539 ip_tos = ip->ip_tos; 2540 2541 /* adjust mbuf to point to the PIM header */ 2542 m->m_data += iphlen; 2543 m->m_len -= iphlen; 2544 pim = mtod(m, struct pim *); 2545 2546 /* 2547 * Validate checksum. If PIM REGISTER, exclude the data packet. 2548 * 2549 * XXX: some older PIMv2 implementations don't make this distinction, 2550 * so for compatibility reason perform the checksum over part of the 2551 * message, and if error, then over the whole message. 2552 */ 2553 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2554 /* do nothing, checksum okay */ 2555 } else if (in_cksum(m, datalen)) { 2556 PIMSTAT_INC(pims_rcv_badsum); 2557 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2558 m_freem(m); 2559 return (IPPROTO_DONE); 2560 } 2561 2562 /* PIM version check */ 2563 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2564 PIMSTAT_INC(pims_rcv_badversion); 2565 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2566 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2567 m_freem(m); 2568 return (IPPROTO_DONE); 2569 } 2570 2571 /* restore mbuf back to the outer IP */ 2572 m->m_data -= iphlen; 2573 m->m_len += iphlen; 2574 2575 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2576 /* 2577 * Since this is a REGISTER, we'll make a copy of the register 2578 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2579 * routing daemon. 2580 */ 2581 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2582 struct mbuf *mcp; 2583 struct ip *encap_ip; 2584 u_int32_t *reghdr; 2585 struct ifnet *vifp; 2586 2587 MRW_RLOCK(); 2588 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2589 MRW_RUNLOCK(); 2590 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2591 (int)V_reg_vif_num); 2592 m_freem(m); 2593 return (IPPROTO_DONE); 2594 } 2595 /* XXX need refcnt? */ 2596 vifp = V_viftable[V_reg_vif_num].v_ifp; 2597 MRW_RUNLOCK(); 2598 2599 /* 2600 * Validate length 2601 */ 2602 if (datalen < PIM_REG_MINLEN) { 2603 PIMSTAT_INC(pims_rcv_tooshort); 2604 PIMSTAT_INC(pims_rcv_badregisters); 2605 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2606 m_freem(m); 2607 return (IPPROTO_DONE); 2608 } 2609 2610 reghdr = (u_int32_t *)(pim + 1); 2611 encap_ip = (struct ip *)(reghdr + 1); 2612 2613 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2614 __func__, ntohl(encap_ip->ip_src.s_addr), 2615 ntohs(encap_ip->ip_len)); 2616 2617 /* verify the version number of the inner packet */ 2618 if (encap_ip->ip_v != IPVERSION) { 2619 PIMSTAT_INC(pims_rcv_badregisters); 2620 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2621 m_freem(m); 2622 return (IPPROTO_DONE); 2623 } 2624 2625 /* verify the inner packet is destined to a mcast group */ 2626 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2627 PIMSTAT_INC(pims_rcv_badregisters); 2628 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2629 ntohl(encap_ip->ip_dst.s_addr)); 2630 m_freem(m); 2631 return (IPPROTO_DONE); 2632 } 2633 2634 /* If a NULL_REGISTER, pass it to the daemon */ 2635 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2636 goto pim_input_to_daemon; 2637 2638 /* 2639 * Copy the TOS from the outer IP header to the inner IP header. 2640 */ 2641 if (encap_ip->ip_tos != ip_tos) { 2642 /* Outer TOS -> inner TOS */ 2643 encap_ip->ip_tos = ip_tos; 2644 /* Recompute the inner header checksum. Sigh... */ 2645 2646 /* adjust mbuf to point to the inner IP header */ 2647 m->m_data += (iphlen + PIM_MINLEN); 2648 m->m_len -= (iphlen + PIM_MINLEN); 2649 2650 encap_ip->ip_sum = 0; 2651 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2652 2653 /* restore mbuf to point back to the outer IP header */ 2654 m->m_data -= (iphlen + PIM_MINLEN); 2655 m->m_len += (iphlen + PIM_MINLEN); 2656 } 2657 2658 /* 2659 * Decapsulate the inner IP packet and loopback to forward it 2660 * as a normal multicast packet. Also, make a copy of the 2661 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2662 * to pass to the daemon later, so it can take the appropriate 2663 * actions (e.g., send back PIM_REGISTER_STOP). 2664 * XXX: here m->m_data points to the outer IP header. 2665 */ 2666 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2667 if (mcp == NULL) { 2668 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2669 m_freem(m); 2670 return (IPPROTO_DONE); 2671 } 2672 2673 /* Keep statistics */ 2674 /* XXX: registers_bytes include only the encap. mcast pkt */ 2675 PIMSTAT_INC(pims_rcv_registers_msgs); 2676 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2677 2678 /* 2679 * forward the inner ip packet; point m_data at the inner ip. 2680 */ 2681 m_adj(m, iphlen + PIM_MINLEN); 2682 2683 CTR4(KTR_IPMF, 2684 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2685 __func__, 2686 (u_long)ntohl(encap_ip->ip_src.s_addr), 2687 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2688 (int)V_reg_vif_num); 2689 2690 /* NB: vifp was collected above; can it change on us? */ 2691 if_simloop(vifp, m, dst.sin_family, 0); 2692 2693 /* prepare the register head to send to the mrouting daemon */ 2694 m = mcp; 2695 } 2696 2697 pim_input_to_daemon: 2698 /* 2699 * Pass the PIM message up to the daemon; if it is a Register message, 2700 * pass the 'head' only up to the daemon. This includes the 2701 * outer IP header, PIM header, PIM-Register header and the 2702 * inner IP header. 2703 * XXX: the outer IP header pkt size of a Register is not adjust to 2704 * reflect the fact that the inner multicast data is truncated. 2705 */ 2706 return (rip_input(&m, &off, proto)); 2707 } 2708 2709 static int 2710 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2711 { 2712 struct mfc *rt; 2713 int error, i; 2714 2715 if (req->newptr) 2716 return (EPERM); 2717 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2718 return (0); 2719 error = sysctl_wire_old_buffer(req, 0); 2720 if (error) 2721 return (error); 2722 2723 MRW_RLOCK(); 2724 for (i = 0; i < mfchashsize; i++) { 2725 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2726 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2727 if (error) 2728 goto out_locked; 2729 } 2730 } 2731 out_locked: 2732 MRW_RUNLOCK(); 2733 return (error); 2734 } 2735 2736 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2737 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2738 "IPv4 Multicast Forwarding Table " 2739 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2740 2741 static int 2742 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2743 { 2744 int error, i; 2745 2746 if (req->newptr) 2747 return (EPERM); 2748 if (V_viftable == NULL) /* XXX unlocked */ 2749 return (0); 2750 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2751 if (error) 2752 return (error); 2753 2754 MRW_RLOCK(); 2755 /* Copy out user-visible portion of vif entry. */ 2756 for (i = 0; i < MAXVIFS; i++) { 2757 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2758 if (error) 2759 break; 2760 } 2761 MRW_RUNLOCK(); 2762 return (error); 2763 } 2764 2765 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2766 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2767 sysctl_viflist, "S,vif[MAXVIFS]", 2768 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2769 2770 static void 2771 vnet_mroute_init(const void *unused __unused) 2772 { 2773 2774 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2775 2776 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2777 M_MRTABLE, M_WAITOK|M_ZERO); 2778 2779 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); 2780 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); 2781 2782 /* Prepare taskqueue */ 2783 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2784 taskqueue_thread_enqueue, &V_task_queue); 2785 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2786 } 2787 2788 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2789 NULL); 2790 2791 static void 2792 vnet_mroute_uninit(const void *unused __unused) 2793 { 2794 2795 /* Taskqueue should be cancelled and drained before freeing */ 2796 taskqueue_free(V_task_queue); 2797 2798 free(V_viftable, M_MRTABLE); 2799 free(V_nexpire, M_MRTABLE); 2800 V_nexpire = NULL; 2801 } 2802 2803 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2804 vnet_mroute_uninit, NULL); 2805 2806 static int 2807 ip_mroute_modevent(module_t mod, int type, void *unused) 2808 { 2809 2810 switch (type) { 2811 case MOD_LOAD: 2812 MRW_LOCK_INIT(); 2813 2814 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2815 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2816 if (if_detach_event_tag == NULL) { 2817 printf("ip_mroute: unable to register " 2818 "ifnet_departure_event handler\n"); 2819 MRW_LOCK_DESTROY(); 2820 return (EINVAL); 2821 } 2822 2823 if (!powerof2(mfchashsize)) { 2824 printf("WARNING: %s not a power of 2; using default\n", 2825 "net.inet.ip.mfchashsize"); 2826 mfchashsize = MFCHASHSIZE; 2827 } 2828 2829 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2830 2831 ip_mcast_src = X_ip_mcast_src; 2832 ip_mforward = X_ip_mforward; 2833 ip_mrouter_done = X_ip_mrouter_done; 2834 ip_mrouter_get = X_ip_mrouter_get; 2835 ip_mrouter_set = X_ip_mrouter_set; 2836 2837 ip_rsvp_force_done = X_ip_rsvp_force_done; 2838 ip_rsvp_vif = X_ip_rsvp_vif; 2839 2840 legal_vif_num = X_legal_vif_num; 2841 mrt_ioctl = X_mrt_ioctl; 2842 rsvp_input_p = X_rsvp_input; 2843 break; 2844 2845 case MOD_UNLOAD: 2846 /* 2847 * Typically module unload happens after the user-level 2848 * process has shutdown the kernel services (the check 2849 * below insures someone can't just yank the module out 2850 * from under a running process). But if the module is 2851 * just loaded and then unloaded w/o starting up a user 2852 * process we still need to cleanup. 2853 */ 2854 MRW_WLOCK(); 2855 if (ip_mrouter_cnt != 0) { 2856 MRW_WUNLOCK(); 2857 return (EINVAL); 2858 } 2859 ip_mrouter_unloading = 1; 2860 MRW_WUNLOCK(); 2861 2862 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2863 2864 if (pim_encap_cookie) { 2865 ip_encap_detach(pim_encap_cookie); 2866 pim_encap_cookie = NULL; 2867 } 2868 2869 ip_mcast_src = NULL; 2870 ip_mforward = NULL; 2871 ip_mrouter_done = NULL; 2872 ip_mrouter_get = NULL; 2873 ip_mrouter_set = NULL; 2874 2875 ip_rsvp_force_done = NULL; 2876 ip_rsvp_vif = NULL; 2877 2878 legal_vif_num = NULL; 2879 mrt_ioctl = NULL; 2880 rsvp_input_p = NULL; 2881 2882 MRW_LOCK_DESTROY(); 2883 break; 2884 2885 default: 2886 return EOPNOTSUPP; 2887 } 2888 return 0; 2889 } 2890 2891 static moduledata_t ip_mroutemod = { 2892 "ip_mroute", 2893 ip_mroute_modevent, 2894 0 2895 }; 2896 2897 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2898