1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * Modified by Wojciech Macek, Semihalf, May 2021 51 * 52 * MROUTING Revision: 3.5 53 * and PIM-SMv2 and PIM-DM support, advanced API support, 54 * bandwidth metering and signaling 55 */ 56 57 /* 58 * TODO: Prefix functions with ipmf_. 59 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 60 * domain attachment (if_afdata) so we can track consumers of that service. 61 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 62 * move it to socket options. 63 * TODO: Cleanup LSRR removal further. 64 * TODO: Push RSVP stubs into raw_ip.c. 65 * TODO: Use bitstring.h for vif set. 66 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 67 * TODO: Sync ip6_mroute.c with this file. 68 */ 69 70 #include <sys/cdefs.h> 71 #include "opt_inet.h" 72 #include "opt_mrouting.h" 73 74 #define _PIM_VT 1 75 76 #include <sys/types.h> 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/condvar.h> 81 #include <sys/eventhandler.h> 82 #include <sys/lock.h> 83 #include <sys/kthread.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/taskqueue.h> 99 #include <sys/time.h> 100 #include <sys/counter.h> 101 #include <machine/atomic.h> 102 103 #include <net/if.h> 104 #include <net/if_var.h> 105 #include <net/if_private.h> 106 #include <net/if_types.h> 107 #include <net/netisr.h> 108 #include <net/route.h> 109 #include <net/vnet.h> 110 111 #include <netinet/in.h> 112 #include <netinet/igmp.h> 113 #include <netinet/in_systm.h> 114 #include <netinet/in_var.h> 115 #include <netinet/ip.h> 116 #include <netinet/ip_encap.h> 117 #include <netinet/ip_mroute.h> 118 #include <netinet/ip_var.h> 119 #include <netinet/ip_options.h> 120 #include <netinet/pim.h> 121 #include <netinet/pim_var.h> 122 #include <netinet/udp.h> 123 124 #include <machine/in_cksum.h> 125 126 #ifndef KTR_IPMF 127 #define KTR_IPMF KTR_INET 128 #endif 129 130 #define VIFI_INVALID ((vifi_t) -1) 131 132 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 133 134 /* 135 * Locking. We use two locks: one for the virtual interface table and 136 * one for the forwarding table. These locks may be nested in which case 137 * the VIF lock must always be taken first. Note that each lock is used 138 * to cover not only the specific data structure but also related data 139 * structures. 140 */ 141 142 static struct rwlock mrouter_lock; 143 #define MRW_RLOCK() rw_rlock(&mrouter_lock) 144 #define MRW_WLOCK() rw_wlock(&mrouter_lock) 145 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) 146 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) 147 #define MRW_UNLOCK() rw_unlock(&mrouter_lock) 148 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) 149 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) 150 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) 151 #define MRW_WOWNED() rw_wowned(&mrouter_lock) 152 #define MRW_LOCK_INIT() \ 153 rw_init(&mrouter_lock, "IPv4 multicast forwarding") 154 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) 155 156 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 157 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 158 159 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 160 VNET_PCPUSTAT_SYSINIT(mrtstat); 161 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 162 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 163 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 164 "netinet/ip_mroute.h)"); 165 166 VNET_DEFINE_STATIC(u_long, mfchash); 167 #define V_mfchash VNET(mfchash) 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 171 #define MFCHASHSIZE 256 172 173 static u_long mfchashsize = MFCHASHSIZE; /* Hash size */ 174 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN, 175 &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size"); 176 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 177 #define V_nexpire VNET(nexpire) 178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 179 #define V_mfchashtbl VNET(mfchashtbl) 180 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 181 #define V_task_queue VNET(task_queue) 182 VNET_DEFINE_STATIC(struct task, task); 183 #define V_task VNET(task) 184 185 VNET_DEFINE_STATIC(vifi_t, numvifs); 186 #define V_numvifs VNET(numvifs) 187 VNET_DEFINE_STATIC(struct vif *, viftable); 188 #define V_viftable VNET(viftable) 189 190 static eventhandler_tag if_detach_event_tag = NULL; 191 192 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 193 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 194 195 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 196 #define V_buf_ring_mtx VNET(buf_ring_mtx) 197 198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 199 #define UPCALL_EXPIRE 6 /* number of timeouts */ 200 201 /* 202 * Bandwidth meter variables and constants 203 */ 204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 205 206 /* 207 * Pending upcalls are stored in a ring which is flushed when 208 * full, or periodically 209 */ 210 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 211 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 212 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 213 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 214 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 215 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 216 217 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 218 219 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 220 VNET_PCPUSTAT_SYSINIT(pimstat); 221 VNET_PCPUSTAT_SYSUNINIT(pimstat); 222 223 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 224 "PIM"); 225 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 226 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 227 228 static u_long pim_squelch_wholepkt = 0; 229 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN, 230 &pim_squelch_wholepkt, 0, 231 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 232 233 static const struct encaptab *pim_encap_cookie; 234 static int pim_encapcheck(const struct mbuf *, int, int, void *); 235 static int pim_input(struct mbuf *, int, int, void *); 236 237 extern int in_mcast_loop; 238 239 static const struct encap_config ipv4_encap_cfg = { 240 .proto = IPPROTO_PIM, 241 .min_length = sizeof(struct ip) + PIM_MINLEN, 242 .exact_match = 8, 243 .check = pim_encapcheck, 244 .input = pim_input 245 }; 246 247 /* 248 * Note: the PIM Register encapsulation adds the following in front of a 249 * data packet: 250 * 251 * struct pim_encap_hdr { 252 * struct ip ip; 253 * struct pim_encap_pimhdr pim; 254 * } 255 * 256 */ 257 258 struct pim_encap_pimhdr { 259 struct pim pim; 260 uint32_t flags; 261 }; 262 #define PIM_ENCAP_TTL 64 263 264 static struct ip pim_encap_iphdr = { 265 #if BYTE_ORDER == LITTLE_ENDIAN 266 sizeof(struct ip) >> 2, 267 IPVERSION, 268 #else 269 IPVERSION, 270 sizeof(struct ip) >> 2, 271 #endif 272 0, /* tos */ 273 sizeof(struct ip), /* total length */ 274 0, /* id */ 275 0, /* frag offset */ 276 PIM_ENCAP_TTL, 277 IPPROTO_PIM, 278 0, /* checksum */ 279 }; 280 281 static struct pim_encap_pimhdr pim_encap_pimhdr = { 282 { 283 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 284 0, /* reserved */ 285 0, /* checksum */ 286 }, 287 0 /* flags */ 288 }; 289 290 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 291 #define V_reg_vif_num VNET(reg_vif_num) 292 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 293 #define V_multicast_register_if VNET(multicast_register_if) 294 295 /* 296 * Private variables. 297 */ 298 299 static u_long X_ip_mcast_src(int); 300 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 301 struct ip_moptions *); 302 static int X_ip_mrouter_done(void); 303 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 304 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 305 static int X_legal_vif_num(int); 306 static int X_mrt_ioctl(u_long, caddr_t, int); 307 308 static int add_bw_upcall(struct bw_upcall *); 309 static int add_mfc(struct mfcctl2 *); 310 static int add_vif(struct vifctl *); 311 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 312 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 313 struct timeval *); 314 static void bw_upcalls_send(void); 315 static int del_bw_upcall(struct bw_upcall *); 316 static int del_mfc(struct mfcctl2 *); 317 static int del_vif(vifi_t); 318 static int del_vif_locked(vifi_t, struct ifnet **, struct ifnet **); 319 static void expire_bw_upcalls_send(void *); 320 static void expire_mfc(struct mfc *); 321 static void expire_upcalls(void *); 322 static void free_bw_list(struct bw_meter *); 323 static int get_sg_cnt(struct sioc_sg_req *); 324 static int get_vif_cnt(struct sioc_vif_req *); 325 static void if_detached_event(void *, struct ifnet *); 326 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 327 static int ip_mrouter_init(struct socket *, int); 328 static __inline struct mfc * 329 mfc_find(struct in_addr *, struct in_addr *); 330 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 331 static struct mbuf * 332 pim_register_prepare(struct ip *, struct mbuf *); 333 static int pim_register_send(struct ip *, struct vif *, 334 struct mbuf *, struct mfc *); 335 static int pim_register_send_rp(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_upcall(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static void send_packet(struct vif *, struct mbuf *); 340 static int set_api_config(uint32_t *); 341 static int set_assert(int); 342 static int socket_send(struct socket *, struct mbuf *, 343 struct sockaddr_in *); 344 345 /* 346 * Kernel multicast forwarding API capabilities and setup. 347 * If more API capabilities are added to the kernel, they should be 348 * recorded in `mrt_api_support'. 349 */ 350 #define MRT_API_VERSION 0x0305 351 352 static const int mrt_api_version = MRT_API_VERSION; 353 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 354 MRT_MFC_FLAGS_BORDER_VIF | 355 MRT_MFC_RP | 356 MRT_MFC_BW_UPCALL); 357 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 358 #define V_mrt_api_config VNET(mrt_api_config) 359 VNET_DEFINE_STATIC(int, pim_assert_enabled); 360 #define V_pim_assert_enabled VNET(pim_assert_enabled) 361 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 362 363 /* 364 * Find a route for a given origin IP address and multicast group address. 365 * Statistics must be updated by the caller. 366 */ 367 static __inline struct mfc * 368 mfc_find(struct in_addr *o, struct in_addr *g) 369 { 370 struct mfc *rt; 371 372 /* 373 * Might be called both RLOCK and WLOCK. 374 * Check if any, it's caller responsibility 375 * to choose correct option. 376 */ 377 MRW_LOCK_ASSERT(); 378 379 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 380 if (in_hosteq(rt->mfc_origin, *o) && 381 in_hosteq(rt->mfc_mcastgrp, *g) && 382 buf_ring_empty(rt->mfc_stall_ring)) 383 break; 384 } 385 386 return (rt); 387 } 388 389 static __inline struct mfc * 390 mfc_alloc(void) 391 { 392 struct mfc *rt; 393 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 394 if (rt == NULL) 395 return rt; 396 397 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 398 M_NOWAIT, &V_buf_ring_mtx); 399 if (rt->mfc_stall_ring == NULL) { 400 free(rt, M_MRTABLE); 401 return NULL; 402 } 403 404 return rt; 405 } 406 407 /* 408 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 409 */ 410 static int 411 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 412 { 413 int error, optval; 414 vifi_t vifi; 415 struct vifctl vifc; 416 struct mfcctl2 mfc; 417 struct bw_upcall bw_upcall; 418 uint32_t i; 419 420 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 421 return EPERM; 422 423 error = 0; 424 switch (sopt->sopt_name) { 425 case MRT_INIT: 426 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 427 if (error) 428 break; 429 error = ip_mrouter_init(so, optval); 430 break; 431 case MRT_DONE: 432 error = ip_mrouter_done(); 433 break; 434 case MRT_ADD_VIF: 435 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 436 if (error) 437 break; 438 error = add_vif(&vifc); 439 break; 440 case MRT_DEL_VIF: 441 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 442 if (error) 443 break; 444 error = del_vif(vifi); 445 break; 446 case MRT_ADD_MFC: 447 case MRT_DEL_MFC: 448 /* 449 * select data size depending on API version. 450 */ 451 if (sopt->sopt_name == MRT_ADD_MFC && 452 V_mrt_api_config & MRT_API_FLAGS_ALL) { 453 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 454 sizeof(struct mfcctl2)); 455 } else { 456 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 457 sizeof(struct mfcctl)); 458 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 459 sizeof(mfc) - sizeof(struct mfcctl)); 460 } 461 if (error) 462 break; 463 if (sopt->sopt_name == MRT_ADD_MFC) 464 error = add_mfc(&mfc); 465 else 466 error = del_mfc(&mfc); 467 break; 468 469 case MRT_ASSERT: 470 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 471 if (error) 472 break; 473 set_assert(optval); 474 break; 475 476 case MRT_API_CONFIG: 477 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 478 if (!error) 479 error = set_api_config(&i); 480 if (!error) 481 error = sooptcopyout(sopt, &i, sizeof i); 482 break; 483 484 case MRT_ADD_BW_UPCALL: 485 case MRT_DEL_BW_UPCALL: 486 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 487 sizeof bw_upcall); 488 if (error) 489 break; 490 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 491 error = add_bw_upcall(&bw_upcall); 492 else 493 error = del_bw_upcall(&bw_upcall); 494 break; 495 496 default: 497 error = EOPNOTSUPP; 498 break; 499 } 500 return error; 501 } 502 503 /* 504 * Handle MRT getsockopt commands 505 */ 506 static int 507 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 508 { 509 int error; 510 511 switch (sopt->sopt_name) { 512 case MRT_VERSION: 513 error = sooptcopyout(sopt, &mrt_api_version, 514 sizeof mrt_api_version); 515 break; 516 case MRT_ASSERT: 517 error = sooptcopyout(sopt, &V_pim_assert_enabled, 518 sizeof V_pim_assert_enabled); 519 break; 520 case MRT_API_SUPPORT: 521 error = sooptcopyout(sopt, &mrt_api_support, 522 sizeof mrt_api_support); 523 break; 524 case MRT_API_CONFIG: 525 error = sooptcopyout(sopt, &V_mrt_api_config, 526 sizeof V_mrt_api_config); 527 break; 528 default: 529 error = EOPNOTSUPP; 530 break; 531 } 532 return error; 533 } 534 535 /* 536 * Handle ioctl commands to obtain information from the cache 537 */ 538 static int 539 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 540 { 541 int error; 542 543 /* 544 * Currently the only function calling this ioctl routine is rtioctl_fib(). 545 * Typically, only root can create the raw socket in order to execute 546 * this ioctl method, however the request might be coming from a prison 547 */ 548 error = priv_check(curthread, PRIV_NETINET_MROUTE); 549 if (error) 550 return (error); 551 switch (cmd) { 552 case (SIOCGETVIFCNT): 553 error = get_vif_cnt((struct sioc_vif_req *)data); 554 break; 555 556 case (SIOCGETSGCNT): 557 error = get_sg_cnt((struct sioc_sg_req *)data); 558 break; 559 560 default: 561 error = EINVAL; 562 break; 563 } 564 return error; 565 } 566 567 /* 568 * returns the packet, byte, rpf-failure count for the source group provided 569 */ 570 static int 571 get_sg_cnt(struct sioc_sg_req *req) 572 { 573 struct mfc *rt; 574 575 MRW_RLOCK(); 576 rt = mfc_find(&req->src, &req->grp); 577 if (rt == NULL) { 578 MRW_RUNLOCK(); 579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 580 return EADDRNOTAVAIL; 581 } 582 req->pktcnt = rt->mfc_pkt_cnt; 583 req->bytecnt = rt->mfc_byte_cnt; 584 req->wrong_if = rt->mfc_wrong_if; 585 MRW_RUNLOCK(); 586 return 0; 587 } 588 589 /* 590 * returns the input and output packet and byte counts on the vif provided 591 */ 592 static int 593 get_vif_cnt(struct sioc_vif_req *req) 594 { 595 vifi_t vifi = req->vifi; 596 597 MRW_RLOCK(); 598 if (vifi >= V_numvifs) { 599 MRW_RUNLOCK(); 600 return EINVAL; 601 } 602 603 mtx_lock_spin(&V_viftable[vifi].v_spin); 604 req->icount = V_viftable[vifi].v_pkt_in; 605 req->ocount = V_viftable[vifi].v_pkt_out; 606 req->ibytes = V_viftable[vifi].v_bytes_in; 607 req->obytes = V_viftable[vifi].v_bytes_out; 608 mtx_unlock_spin(&V_viftable[vifi].v_spin); 609 MRW_RUNLOCK(); 610 611 return 0; 612 } 613 614 static void 615 if_detached_event(void *arg __unused, struct ifnet *ifp) 616 { 617 vifi_t vifi; 618 u_long i, vifi_cnt = 0; 619 struct ifnet *free_ptr, *multi_leave; 620 621 MRW_WLOCK(); 622 623 if (V_ip_mrouter == NULL) { 624 MRW_WUNLOCK(); 625 return; 626 } 627 628 /* 629 * Tear down multicast forwarder state associated with this ifnet. 630 * 1. Walk the vif list, matching vifs against this ifnet. 631 * 2. Walk the multicast forwarding cache (mfc) looking for 632 * inner matches with this vif's index. 633 * 3. Expire any matching multicast forwarding cache entries. 634 * 4. Free vif state. This should disable ALLMULTI on the interface. 635 */ 636 restart: 637 for (vifi = 0; vifi < V_numvifs; vifi++) { 638 if (V_viftable[vifi].v_ifp != ifp) 639 continue; 640 for (i = 0; i < mfchashsize; i++) { 641 struct mfc *rt, *nrt; 642 643 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 644 if (rt->mfc_parent == vifi) { 645 expire_mfc(rt); 646 } 647 } 648 } 649 del_vif_locked(vifi, &multi_leave, &free_ptr); 650 if (free_ptr != NULL) 651 vifi_cnt++; 652 if (multi_leave) { 653 MRW_WUNLOCK(); 654 if_allmulti(multi_leave, 0); 655 MRW_WLOCK(); 656 goto restart; 657 } 658 } 659 660 MRW_WUNLOCK(); 661 662 /* 663 * Free IFP. We don't have to use free_ptr here as it is the same 664 * that ifp. Perform free as many times as required in case 665 * refcount is greater than 1. 666 */ 667 for (i = 0; i < vifi_cnt; i++) 668 if_free(ifp); 669 } 670 671 static void 672 ip_mrouter_upcall_thread(void *arg, int pending __unused) 673 { 674 CURVNET_SET((struct vnet *) arg); 675 676 MRW_WLOCK(); 677 bw_upcalls_send(); 678 MRW_WUNLOCK(); 679 680 CURVNET_RESTORE(); 681 } 682 683 /* 684 * Enable multicast forwarding. 685 */ 686 static int 687 ip_mrouter_init(struct socket *so, int version) 688 { 689 690 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 691 692 if (version != 1) 693 return ENOPROTOOPT; 694 695 MRW_WLOCK(); 696 697 if (ip_mrouter_unloading) { 698 MRW_WUNLOCK(); 699 return ENOPROTOOPT; 700 } 701 702 if (V_ip_mrouter != NULL) { 703 MRW_WUNLOCK(); 704 return EADDRINUSE; 705 } 706 707 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 708 HASH_NOWAIT); 709 if (V_mfchashtbl == NULL) { 710 MRW_WUNLOCK(); 711 return (ENOMEM); 712 } 713 714 /* Create upcall ring */ 715 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 716 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 717 M_NOWAIT, &V_bw_upcalls_ring_mtx); 718 if (!V_bw_upcalls_ring) { 719 MRW_WUNLOCK(); 720 return (ENOMEM); 721 } 722 723 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 724 taskqueue_cancel(V_task_queue, &V_task, NULL); 725 taskqueue_unblock(V_task_queue); 726 727 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 728 curvnet); 729 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 730 curvnet); 731 732 V_ip_mrouter = so; 733 atomic_add_int(&ip_mrouter_cnt, 1); 734 735 /* This is a mutex required by buf_ring init, but not used internally */ 736 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 737 738 MRW_WUNLOCK(); 739 740 CTR1(KTR_IPMF, "%s: done", __func__); 741 742 return 0; 743 } 744 745 /* 746 * Disable multicast forwarding. 747 */ 748 static int 749 X_ip_mrouter_done(void) 750 { 751 struct ifnet **ifps; 752 int nifp; 753 u_long i; 754 vifi_t vifi; 755 struct bw_upcall *bu; 756 757 if (V_ip_mrouter == NULL) 758 return (EINVAL); 759 760 /* 761 * Detach/disable hooks to the reset of the system. 762 */ 763 V_ip_mrouter = NULL; 764 atomic_subtract_int(&ip_mrouter_cnt, 1); 765 V_mrt_api_config = 0; 766 767 /* 768 * Wait for all epoch sections to complete to ensure 769 * V_ip_mrouter = NULL is visible to others. 770 */ 771 epoch_wait_preempt(net_epoch_preempt); 772 773 /* Stop and drain task queue */ 774 taskqueue_block(V_task_queue); 775 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 776 taskqueue_drain(V_task_queue, &V_task); 777 } 778 779 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 780 781 MRW_WLOCK(); 782 taskqueue_cancel(V_task_queue, &V_task, NULL); 783 784 /* Destroy upcall ring */ 785 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 786 free(bu, M_MRTABLE); 787 } 788 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 789 mtx_destroy(&V_bw_upcalls_ring_mtx); 790 791 /* 792 * For each phyint in use, prepare to disable promiscuous reception 793 * of all IP multicasts. Defer the actual call until the lock is released; 794 * just record the list of interfaces while locked. Some interfaces use 795 * sx locks in their ioctl routines, which is not allowed while holding 796 * a non-sleepable lock. 797 */ 798 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 799 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 800 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 801 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 802 ifps[nifp++] = V_viftable[vifi].v_ifp; 803 } 804 } 805 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 806 V_numvifs = 0; 807 V_pim_assert_enabled = 0; 808 809 callout_stop(&V_expire_upcalls_ch); 810 callout_stop(&V_bw_upcalls_ch); 811 812 /* 813 * Free all multicast forwarding cache entries. 814 * Do not use hashdestroy(), as we must perform other cleanup. 815 */ 816 for (i = 0; i < mfchashsize; i++) { 817 struct mfc *rt, *nrt; 818 819 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 820 expire_mfc(rt); 821 } 822 } 823 free(V_mfchashtbl, M_MRTABLE); 824 V_mfchashtbl = NULL; 825 826 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 827 828 V_reg_vif_num = VIFI_INVALID; 829 830 mtx_destroy(&V_buf_ring_mtx); 831 832 MRW_WUNLOCK(); 833 834 /* 835 * Now drop our claim on promiscuous multicast on the interfaces recorded 836 * above. This is safe to do now because ALLMULTI is reference counted. 837 */ 838 for (vifi = 0; vifi < nifp; vifi++) 839 if_allmulti(ifps[vifi], 0); 840 free(ifps, M_TEMP); 841 842 CTR1(KTR_IPMF, "%s: done", __func__); 843 844 return 0; 845 } 846 847 /* 848 * Set PIM assert processing global 849 */ 850 static int 851 set_assert(int i) 852 { 853 if ((i != 1) && (i != 0)) 854 return EINVAL; 855 856 V_pim_assert_enabled = i; 857 858 return 0; 859 } 860 861 /* 862 * Configure API capabilities 863 */ 864 int 865 set_api_config(uint32_t *apival) 866 { 867 u_long i; 868 869 /* 870 * We can set the API capabilities only if it is the first operation 871 * after MRT_INIT. I.e.: 872 * - there are no vifs installed 873 * - pim_assert is not enabled 874 * - the MFC table is empty 875 */ 876 if (V_numvifs > 0) { 877 *apival = 0; 878 return EPERM; 879 } 880 if (V_pim_assert_enabled) { 881 *apival = 0; 882 return EPERM; 883 } 884 885 MRW_RLOCK(); 886 887 for (i = 0; i < mfchashsize; i++) { 888 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 889 MRW_RUNLOCK(); 890 *apival = 0; 891 return EPERM; 892 } 893 } 894 895 MRW_RUNLOCK(); 896 897 V_mrt_api_config = *apival & mrt_api_support; 898 *apival = V_mrt_api_config; 899 900 return 0; 901 } 902 903 /* 904 * Add a vif to the vif table 905 */ 906 static int 907 add_vif(struct vifctl *vifcp) 908 { 909 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 910 struct sockaddr_in sin = {sizeof sin, AF_INET}; 911 struct ifaddr *ifa; 912 struct ifnet *ifp; 913 int error; 914 915 if (vifcp->vifc_vifi >= MAXVIFS) 916 return EINVAL; 917 /* rate limiting is no longer supported by this code */ 918 if (vifcp->vifc_rate_limit != 0) { 919 log(LOG_ERR, "rate limiting is no longer supported\n"); 920 return EINVAL; 921 } 922 923 if (in_nullhost(vifcp->vifc_lcl_addr)) 924 return EADDRNOTAVAIL; 925 926 /* Find the interface with an address in AF_INET family */ 927 if (vifcp->vifc_flags & VIFF_REGISTER) { 928 /* 929 * XXX: Because VIFF_REGISTER does not really need a valid 930 * local interface (e.g. it could be 127.0.0.2), we don't 931 * check its address. 932 */ 933 ifp = NULL; 934 } else { 935 struct epoch_tracker et; 936 937 sin.sin_addr = vifcp->vifc_lcl_addr; 938 NET_EPOCH_ENTER(et); 939 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 940 if (ifa == NULL) { 941 NET_EPOCH_EXIT(et); 942 return EADDRNOTAVAIL; 943 } 944 ifp = ifa->ifa_ifp; 945 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 946 NET_EPOCH_EXIT(et); 947 } 948 949 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 950 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 951 return EOPNOTSUPP; 952 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 953 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 954 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 955 if (V_reg_vif_num == VIFI_INVALID) { 956 if_initname(V_multicast_register_if, "register_vif", 0); 957 V_reg_vif_num = vifcp->vifc_vifi; 958 } 959 } else { /* Make sure the interface supports multicast */ 960 if ((ifp->if_flags & IFF_MULTICAST) == 0) 961 return EOPNOTSUPP; 962 963 /* Enable promiscuous reception of all IP multicasts from the if */ 964 error = if_allmulti(ifp, 1); 965 if (error) 966 return error; 967 } 968 969 MRW_WLOCK(); 970 971 if (!in_nullhost(vifp->v_lcl_addr)) { 972 if (ifp) 973 V_multicast_register_if = NULL; 974 MRW_WUNLOCK(); 975 if (ifp) 976 if_free(ifp); 977 return EADDRINUSE; 978 } 979 980 vifp->v_flags = vifcp->vifc_flags; 981 vifp->v_threshold = vifcp->vifc_threshold; 982 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 983 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 984 vifp->v_ifp = ifp; 985 /* initialize per vif pkt counters */ 986 vifp->v_pkt_in = 0; 987 vifp->v_pkt_out = 0; 988 vifp->v_bytes_in = 0; 989 vifp->v_bytes_out = 0; 990 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 991 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 992 993 /* Adjust numvifs up if the vifi is higher than numvifs */ 994 if (V_numvifs <= vifcp->vifc_vifi) 995 V_numvifs = vifcp->vifc_vifi + 1; 996 997 MRW_WUNLOCK(); 998 999 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 1000 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 1001 (int)vifcp->vifc_threshold); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Delete a vif from the vif table 1008 */ 1009 static int 1010 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free) 1011 { 1012 struct vif *vifp; 1013 1014 *ifp_free = NULL; 1015 *ifp_multi_leave = NULL; 1016 1017 MRW_WLOCK_ASSERT(); 1018 1019 if (vifi >= V_numvifs) { 1020 return EINVAL; 1021 } 1022 vifp = &V_viftable[vifi]; 1023 if (in_nullhost(vifp->v_lcl_addr)) { 1024 return EADDRNOTAVAIL; 1025 } 1026 1027 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1028 *ifp_multi_leave = vifp->v_ifp; 1029 1030 if (vifp->v_flags & VIFF_REGISTER) { 1031 V_reg_vif_num = VIFI_INVALID; 1032 if (vifp->v_ifp) { 1033 if (vifp->v_ifp == V_multicast_register_if) 1034 V_multicast_register_if = NULL; 1035 *ifp_free = vifp->v_ifp; 1036 } 1037 } 1038 1039 mtx_destroy(&vifp->v_spin); 1040 1041 bzero((caddr_t)vifp, sizeof (*vifp)); 1042 1043 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1044 1045 /* Adjust numvifs down */ 1046 for (vifi = V_numvifs; vifi > 0; vifi--) 1047 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1048 break; 1049 V_numvifs = vifi; 1050 1051 return 0; 1052 } 1053 1054 static int 1055 del_vif(vifi_t vifi) 1056 { 1057 int cc; 1058 struct ifnet *free_ptr, *multi_leave; 1059 1060 MRW_WLOCK(); 1061 cc = del_vif_locked(vifi, &multi_leave, &free_ptr); 1062 MRW_WUNLOCK(); 1063 1064 if (multi_leave) 1065 if_allmulti(multi_leave, 0); 1066 if (free_ptr) { 1067 if_free(free_ptr); 1068 } 1069 1070 return cc; 1071 } 1072 1073 /* 1074 * update an mfc entry without resetting counters and S,G addresses. 1075 */ 1076 static void 1077 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1078 { 1079 int i; 1080 1081 rt->mfc_parent = mfccp->mfcc_parent; 1082 for (i = 0; i < V_numvifs; i++) { 1083 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1084 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1085 MRT_MFC_FLAGS_ALL; 1086 } 1087 /* set the RP address */ 1088 if (V_mrt_api_config & MRT_MFC_RP) 1089 rt->mfc_rp = mfccp->mfcc_rp; 1090 else 1091 rt->mfc_rp.s_addr = INADDR_ANY; 1092 } 1093 1094 /* 1095 * fully initialize an mfc entry from the parameter. 1096 */ 1097 static void 1098 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1099 { 1100 rt->mfc_origin = mfccp->mfcc_origin; 1101 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1102 1103 update_mfc_params(rt, mfccp); 1104 1105 /* initialize pkt counters per src-grp */ 1106 rt->mfc_pkt_cnt = 0; 1107 rt->mfc_byte_cnt = 0; 1108 rt->mfc_wrong_if = 0; 1109 timevalclear(&rt->mfc_last_assert); 1110 } 1111 1112 static void 1113 expire_mfc(struct mfc *rt) 1114 { 1115 struct rtdetq *rte; 1116 1117 MRW_WLOCK_ASSERT(); 1118 1119 free_bw_list(rt->mfc_bw_meter_leq); 1120 free_bw_list(rt->mfc_bw_meter_geq); 1121 1122 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1123 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1124 if (rte) { 1125 m_freem(rte->m); 1126 free(rte, M_MRTABLE); 1127 } 1128 } 1129 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1130 1131 LIST_REMOVE(rt, mfc_hash); 1132 free(rt, M_MRTABLE); 1133 } 1134 1135 /* 1136 * Add an mfc entry 1137 */ 1138 static int 1139 add_mfc(struct mfcctl2 *mfccp) 1140 { 1141 struct mfc *rt; 1142 struct rtdetq *rte; 1143 u_long hash = 0; 1144 u_short nstl; 1145 struct epoch_tracker et; 1146 1147 MRW_WLOCK(); 1148 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1149 1150 /* If an entry already exists, just update the fields */ 1151 if (rt) { 1152 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1153 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1154 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1155 mfccp->mfcc_parent); 1156 update_mfc_params(rt, mfccp); 1157 MRW_WUNLOCK(); 1158 return (0); 1159 } 1160 1161 /* 1162 * Find the entry for which the upcall was made and update 1163 */ 1164 nstl = 0; 1165 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1166 NET_EPOCH_ENTER(et); 1167 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1168 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1169 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1170 !buf_ring_empty(rt->mfc_stall_ring)) { 1171 CTR5(KTR_IPMF, 1172 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1173 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1174 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1175 mfccp->mfcc_parent, 1176 rt->mfc_stall_ring); 1177 if (nstl++) 1178 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1179 1180 init_mfc_params(rt, mfccp); 1181 rt->mfc_expire = 0; /* Don't clean this guy up */ 1182 V_nexpire[hash]--; 1183 1184 /* Free queued packets, but attempt to forward them first. */ 1185 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1186 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1187 if (rte->ifp != NULL) 1188 ip_mdq(rte->m, rte->ifp, rt, -1); 1189 m_freem(rte->m); 1190 free(rte, M_MRTABLE); 1191 } 1192 } 1193 } 1194 NET_EPOCH_EXIT(et); 1195 1196 /* 1197 * It is possible that an entry is being inserted without an upcall 1198 */ 1199 if (nstl == 0) { 1200 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1201 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1202 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1203 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1204 init_mfc_params(rt, mfccp); 1205 if (rt->mfc_expire) 1206 V_nexpire[hash]--; 1207 rt->mfc_expire = 0; 1208 break; /* XXX */ 1209 } 1210 } 1211 1212 if (rt == NULL) { /* no upcall, so make a new entry */ 1213 rt = mfc_alloc(); 1214 if (rt == NULL) { 1215 MRW_WUNLOCK(); 1216 return (ENOBUFS); 1217 } 1218 1219 init_mfc_params(rt, mfccp); 1220 1221 rt->mfc_expire = 0; 1222 rt->mfc_bw_meter_leq = NULL; 1223 rt->mfc_bw_meter_geq = NULL; 1224 1225 /* insert new entry at head of hash chain */ 1226 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1227 } 1228 } 1229 1230 MRW_WUNLOCK(); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Delete an mfc entry 1237 */ 1238 static int 1239 del_mfc(struct mfcctl2 *mfccp) 1240 { 1241 struct in_addr origin; 1242 struct in_addr mcastgrp; 1243 struct mfc *rt; 1244 1245 origin = mfccp->mfcc_origin; 1246 mcastgrp = mfccp->mfcc_mcastgrp; 1247 1248 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1249 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1250 1251 MRW_WLOCK(); 1252 1253 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(origin, mcastgrp)], mfc_hash) { 1254 if (in_hosteq(rt->mfc_origin, origin) && 1255 in_hosteq(rt->mfc_mcastgrp, mcastgrp)) 1256 break; 1257 } 1258 if (rt == NULL) { 1259 MRW_WUNLOCK(); 1260 return EADDRNOTAVAIL; 1261 } 1262 1263 expire_mfc(rt); 1264 1265 MRW_WUNLOCK(); 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * Send a message to the routing daemon on the multicast routing socket. 1272 */ 1273 static int 1274 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1275 { 1276 if (s) { 1277 SOCKBUF_LOCK(&s->so_rcv); 1278 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1279 NULL) != 0) { 1280 sorwakeup_locked(s); 1281 return 0; 1282 } 1283 soroverflow_locked(s); 1284 } 1285 m_freem(mm); 1286 return -1; 1287 } 1288 1289 /* 1290 * IP multicast forwarding function. This function assumes that the packet 1291 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1292 * pointed to by "ifp", and the packet is to be relayed to other networks 1293 * that have members of the packet's destination IP multicast group. 1294 * 1295 * The packet is returned unscathed to the caller, unless it is 1296 * erroneous, in which case a non-zero return value tells the caller to 1297 * discard it. 1298 */ 1299 1300 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1301 1302 static int 1303 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1304 struct ip_moptions *imo) 1305 { 1306 struct mfc *rt; 1307 int error; 1308 vifi_t vifi; 1309 struct mbuf *mb0; 1310 struct rtdetq *rte; 1311 u_long hash; 1312 int hlen; 1313 1314 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1315 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1316 1317 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1318 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1319 /* 1320 * Packet arrived via a physical interface or 1321 * an encapsulated tunnel or a register_vif. 1322 */ 1323 } else { 1324 /* 1325 * Packet arrived through a source-route tunnel. 1326 * Source-route tunnels are no longer supported. 1327 */ 1328 return (1); 1329 } 1330 1331 /* 1332 * BEGIN: MCAST ROUTING HOT PATH 1333 */ 1334 MRW_RLOCK(); 1335 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1336 if (ip->ip_ttl < MAXTTL) 1337 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1338 error = ip_mdq(m, ifp, NULL, vifi); 1339 MRW_RUNLOCK(); 1340 return error; 1341 } 1342 1343 /* 1344 * Don't forward a packet with time-to-live of zero or one, 1345 * or a packet destined to a local-only group. 1346 */ 1347 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1348 MRW_RUNLOCK(); 1349 return 0; 1350 } 1351 1352 mfc_find_retry: 1353 /* 1354 * Determine forwarding vifs from the forwarding cache table 1355 */ 1356 MRTSTAT_INC(mrts_mfc_lookups); 1357 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1358 1359 /* Entry exists, so forward if necessary */ 1360 if (rt != NULL) { 1361 error = ip_mdq(m, ifp, rt, -1); 1362 /* Generic unlock here as we might release R or W lock */ 1363 MRW_UNLOCK(); 1364 return error; 1365 } 1366 1367 /* 1368 * END: MCAST ROUTING HOT PATH 1369 */ 1370 1371 /* Further processing must be done with WLOCK taken */ 1372 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1373 MRW_RUNLOCK(); 1374 MRW_WLOCK(); 1375 goto mfc_find_retry; 1376 } 1377 1378 /* 1379 * If we don't have a route for packet's origin, 1380 * Make a copy of the packet & send message to routing daemon 1381 */ 1382 hlen = ip->ip_hl << 2; 1383 1384 MRTSTAT_INC(mrts_mfc_misses); 1385 MRTSTAT_INC(mrts_no_route); 1386 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1387 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1388 1389 /* 1390 * Allocate mbufs early so that we don't do extra work if we are 1391 * just going to fail anyway. Make sure to pullup the header so 1392 * that other people can't step on it. 1393 */ 1394 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); 1395 if (rte == NULL) { 1396 MRW_WUNLOCK(); 1397 return ENOBUFS; 1398 } 1399 1400 mb0 = m_copypacket(m, M_NOWAIT); 1401 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1402 mb0 = m_pullup(mb0, hlen); 1403 if (mb0 == NULL) { 1404 free(rte, M_MRTABLE); 1405 MRW_WUNLOCK(); 1406 return ENOBUFS; 1407 } 1408 1409 /* is there an upcall waiting for this flow ? */ 1410 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1411 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1412 { 1413 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1414 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1415 !buf_ring_empty(rt->mfc_stall_ring)) 1416 break; 1417 } 1418 1419 if (rt == NULL) { 1420 int i; 1421 struct igmpmsg *im; 1422 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1423 struct mbuf *mm; 1424 1425 /* 1426 * Locate the vifi for the incoming interface for this packet. 1427 * If none found, drop packet. 1428 */ 1429 for (vifi = 0; vifi < V_numvifs && 1430 V_viftable[vifi].v_ifp != ifp; vifi++) 1431 ; 1432 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1433 goto non_fatal; 1434 1435 /* no upcall, so make a new entry */ 1436 rt = mfc_alloc(); 1437 if (rt == NULL) 1438 goto fail; 1439 1440 /* Make a copy of the header to send to the user level process */ 1441 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1442 if (mm == NULL) 1443 goto fail1; 1444 1445 /* 1446 * Send message to routing daemon to install 1447 * a route into the kernel table 1448 */ 1449 1450 im = mtod(mm, struct igmpmsg*); 1451 im->im_msgtype = IGMPMSG_NOCACHE; 1452 im->im_mbz = 0; 1453 im->im_vif = vifi; 1454 1455 MRTSTAT_INC(mrts_upcalls); 1456 1457 k_igmpsrc.sin_addr = ip->ip_src; 1458 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1459 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1460 MRTSTAT_INC(mrts_upq_sockfull); 1461 fail1: free(rt, M_MRTABLE); 1462 fail: free(rte, M_MRTABLE); 1463 m_freem(mb0); 1464 MRW_WUNLOCK(); 1465 return ENOBUFS; 1466 } 1467 1468 /* insert new entry at head of hash chain */ 1469 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1470 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1471 rt->mfc_expire = UPCALL_EXPIRE; 1472 V_nexpire[hash]++; 1473 for (i = 0; i < V_numvifs; i++) { 1474 rt->mfc_ttls[i] = 0; 1475 rt->mfc_flags[i] = 0; 1476 } 1477 rt->mfc_parent = -1; 1478 1479 /* clear the RP address */ 1480 rt->mfc_rp.s_addr = INADDR_ANY; 1481 rt->mfc_bw_meter_leq = NULL; 1482 rt->mfc_bw_meter_geq = NULL; 1483 1484 /* initialize pkt counters per src-grp */ 1485 rt->mfc_pkt_cnt = 0; 1486 rt->mfc_byte_cnt = 0; 1487 rt->mfc_wrong_if = 0; 1488 timevalclear(&rt->mfc_last_assert); 1489 1490 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1491 1492 /* Add RT to hashtable as it didn't exist before */ 1493 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1494 } else { 1495 /* determine if queue has overflowed */ 1496 if (buf_ring_full(rt->mfc_stall_ring)) { 1497 MRTSTAT_INC(mrts_upq_ovflw); 1498 non_fatal: free(rte, M_MRTABLE); 1499 m_freem(mb0); 1500 MRW_WUNLOCK(); 1501 return (0); 1502 } 1503 1504 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1505 } 1506 1507 rte->m = mb0; 1508 rte->ifp = ifp; 1509 1510 MRW_WUNLOCK(); 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * Clean up the cache entry if upcall is not serviced 1517 */ 1518 static void 1519 expire_upcalls(void *arg) 1520 { 1521 u_long i; 1522 1523 CURVNET_SET((struct vnet *) arg); 1524 1525 /*This callout is always run with MRW_WLOCK taken. */ 1526 1527 for (i = 0; i < mfchashsize; i++) { 1528 struct mfc *rt, *nrt; 1529 1530 if (V_nexpire[i] == 0) 1531 continue; 1532 1533 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1534 if (buf_ring_empty(rt->mfc_stall_ring)) 1535 continue; 1536 1537 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1538 continue; 1539 1540 MRTSTAT_INC(mrts_cache_cleanups); 1541 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1542 (u_long)ntohl(rt->mfc_origin.s_addr), 1543 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1544 1545 expire_mfc(rt); 1546 } 1547 } 1548 1549 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1550 curvnet); 1551 1552 CURVNET_RESTORE(); 1553 } 1554 1555 /* 1556 * Packet forwarding routine once entry in the cache is made 1557 */ 1558 static int 1559 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1560 { 1561 struct ip *ip = mtod(m, struct ip *); 1562 vifi_t vifi; 1563 int plen = ntohs(ip->ip_len); 1564 1565 MRW_LOCK_ASSERT(); 1566 NET_EPOCH_ASSERT(); 1567 1568 /* 1569 * If xmt_vif is not -1, send on only the requested vif. 1570 * 1571 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1572 */ 1573 if (xmt_vif < V_numvifs) { 1574 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1575 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1576 else 1577 phyint_send(ip, V_viftable + xmt_vif, m); 1578 return 1; 1579 } 1580 1581 /* 1582 * Don't forward if it didn't arrive from the parent vif for its origin. 1583 */ 1584 vifi = rt->mfc_parent; 1585 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1586 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1587 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1588 MRTSTAT_INC(mrts_wrong_if); 1589 ++rt->mfc_wrong_if; 1590 /* 1591 * If we are doing PIM assert processing, send a message 1592 * to the routing daemon. 1593 * 1594 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1595 * can complete the SPT switch, regardless of the type 1596 * of the iif (broadcast media, GRE tunnel, etc). 1597 */ 1598 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1599 V_viftable[vifi].v_ifp) { 1600 if (ifp == V_multicast_register_if) 1601 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1602 1603 /* Get vifi for the incoming packet */ 1604 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) 1605 ; 1606 if (vifi >= V_numvifs) 1607 return 0; /* The iif is not found: ignore the packet. */ 1608 1609 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1610 return 0; /* WRONGVIF disabled: ignore the packet */ 1611 1612 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1613 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1614 struct igmpmsg *im; 1615 int hlen = ip->ip_hl << 2; 1616 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1617 1618 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1619 mm = m_pullup(mm, hlen); 1620 if (mm == NULL) 1621 return ENOBUFS; 1622 1623 im = mtod(mm, struct igmpmsg *); 1624 im->im_msgtype = IGMPMSG_WRONGVIF; 1625 im->im_mbz = 0; 1626 im->im_vif = vifi; 1627 1628 MRTSTAT_INC(mrts_upcalls); 1629 1630 k_igmpsrc.sin_addr = im->im_src; 1631 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1632 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1633 MRTSTAT_INC(mrts_upq_sockfull); 1634 return ENOBUFS; 1635 } 1636 } 1637 } 1638 return 0; 1639 } 1640 1641 /* If I sourced this packet, it counts as output, else it was input. */ 1642 mtx_lock_spin(&V_viftable[vifi].v_spin); 1643 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1644 V_viftable[vifi].v_pkt_out++; 1645 V_viftable[vifi].v_bytes_out += plen; 1646 } else { 1647 V_viftable[vifi].v_pkt_in++; 1648 V_viftable[vifi].v_bytes_in += plen; 1649 } 1650 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1651 1652 rt->mfc_pkt_cnt++; 1653 rt->mfc_byte_cnt += plen; 1654 1655 /* 1656 * For each vif, decide if a copy of the packet should be forwarded. 1657 * Forward if: 1658 * - the ttl exceeds the vif's threshold 1659 * - there are group members downstream on interface 1660 */ 1661 for (vifi = 0; vifi < V_numvifs; vifi++) 1662 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1663 V_viftable[vifi].v_pkt_out++; 1664 V_viftable[vifi].v_bytes_out += plen; 1665 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1666 pim_register_send(ip, V_viftable + vifi, m, rt); 1667 else 1668 phyint_send(ip, V_viftable + vifi, m); 1669 } 1670 1671 /* 1672 * Perform upcall-related bw measuring. 1673 */ 1674 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1675 struct bw_meter *x; 1676 struct timeval now; 1677 1678 microtime(&now); 1679 /* Process meters for Greater-or-EQual case */ 1680 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1681 bw_meter_geq_receive_packet(x, plen, &now); 1682 1683 /* Process meters for Lower-or-EQual case */ 1684 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1685 /* 1686 * Record that a packet is received. 1687 * Spin lock has to be taken as callout context 1688 * (expire_bw_meter_leq) might modify these fields 1689 * as well 1690 */ 1691 mtx_lock_spin(&x->bm_spin); 1692 x->bm_measured.b_packets++; 1693 x->bm_measured.b_bytes += plen; 1694 mtx_unlock_spin(&x->bm_spin); 1695 } 1696 } 1697 1698 return 0; 1699 } 1700 1701 /* 1702 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1703 */ 1704 static int 1705 X_legal_vif_num(int vif) 1706 { 1707 int ret; 1708 1709 ret = 0; 1710 if (vif < 0) 1711 return (ret); 1712 1713 MRW_RLOCK(); 1714 if (vif < V_numvifs) 1715 ret = 1; 1716 MRW_RUNLOCK(); 1717 1718 return (ret); 1719 } 1720 1721 /* 1722 * Return the local address used by this vif 1723 */ 1724 static u_long 1725 X_ip_mcast_src(int vifi) 1726 { 1727 in_addr_t addr; 1728 1729 addr = INADDR_ANY; 1730 if (vifi < 0) 1731 return (addr); 1732 1733 MRW_RLOCK(); 1734 if (vifi < V_numvifs) 1735 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1736 MRW_RUNLOCK(); 1737 1738 return (addr); 1739 } 1740 1741 static void 1742 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1743 { 1744 struct mbuf *mb_copy; 1745 int hlen = ip->ip_hl << 2; 1746 1747 MRW_LOCK_ASSERT(); 1748 1749 /* 1750 * Make a new reference to the packet; make sure that 1751 * the IP header is actually copied, not just referenced, 1752 * so that ip_output() only scribbles on the copy. 1753 */ 1754 mb_copy = m_copypacket(m, M_NOWAIT); 1755 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1756 mb_copy = m_pullup(mb_copy, hlen); 1757 if (mb_copy == NULL) 1758 return; 1759 1760 send_packet(vifp, mb_copy); 1761 } 1762 1763 static void 1764 send_packet(struct vif *vifp, struct mbuf *m) 1765 { 1766 struct ip_moptions imo; 1767 int error __unused; 1768 1769 MRW_LOCK_ASSERT(); 1770 NET_EPOCH_ASSERT(); 1771 1772 imo.imo_multicast_ifp = vifp->v_ifp; 1773 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1774 imo.imo_multicast_loop = !!in_mcast_loop; 1775 imo.imo_multicast_vif = -1; 1776 STAILQ_INIT(&imo.imo_head); 1777 1778 /* 1779 * Re-entrancy should not be a problem here, because 1780 * the packets that we send out and are looped back at us 1781 * should get rejected because they appear to come from 1782 * the loopback interface, thus preventing looping. 1783 */ 1784 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1785 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1786 (ptrdiff_t)(vifp - V_viftable), error); 1787 } 1788 1789 /* 1790 * Stubs for old RSVP socket shim implementation. 1791 */ 1792 1793 static int 1794 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1795 { 1796 1797 return (EOPNOTSUPP); 1798 } 1799 1800 static void 1801 X_ip_rsvp_force_done(struct socket *so __unused) 1802 { 1803 1804 } 1805 1806 static int 1807 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1808 { 1809 struct mbuf *m; 1810 1811 m = *mp; 1812 *mp = NULL; 1813 if (!V_rsvp_on) 1814 m_freem(m); 1815 return (IPPROTO_DONE); 1816 } 1817 1818 /* 1819 * Code for bandwidth monitors 1820 */ 1821 1822 /* 1823 * Define common interface for timeval-related methods 1824 */ 1825 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1826 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1827 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1828 1829 static uint32_t 1830 compute_bw_meter_flags(struct bw_upcall *req) 1831 { 1832 uint32_t flags = 0; 1833 1834 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1835 flags |= BW_METER_UNIT_PACKETS; 1836 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1837 flags |= BW_METER_UNIT_BYTES; 1838 if (req->bu_flags & BW_UPCALL_GEQ) 1839 flags |= BW_METER_GEQ; 1840 if (req->bu_flags & BW_UPCALL_LEQ) 1841 flags |= BW_METER_LEQ; 1842 1843 return flags; 1844 } 1845 1846 static void 1847 expire_bw_meter_leq(void *arg) 1848 { 1849 struct bw_meter *x = arg; 1850 struct timeval now; 1851 /* 1852 * INFO: 1853 * callout is always executed with MRW_WLOCK taken 1854 */ 1855 1856 CURVNET_SET((struct vnet *)x->arg); 1857 1858 microtime(&now); 1859 1860 /* 1861 * Test if we should deliver an upcall 1862 */ 1863 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1864 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1865 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1866 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1867 /* Prepare an upcall for delivery */ 1868 bw_meter_prepare_upcall(x, &now); 1869 } 1870 1871 /* Send all upcalls that are pending delivery */ 1872 taskqueue_enqueue(V_task_queue, &V_task); 1873 1874 /* Reset counters */ 1875 x->bm_start_time = now; 1876 /* Spin lock has to be taken as ip_forward context 1877 * might modify these fields as well 1878 */ 1879 mtx_lock_spin(&x->bm_spin); 1880 x->bm_measured.b_bytes = 0; 1881 x->bm_measured.b_packets = 0; 1882 mtx_unlock_spin(&x->bm_spin); 1883 1884 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1885 1886 CURVNET_RESTORE(); 1887 } 1888 1889 /* 1890 * Add a bw_meter entry 1891 */ 1892 static int 1893 add_bw_upcall(struct bw_upcall *req) 1894 { 1895 struct mfc *mfc; 1896 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1897 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1898 struct timeval now; 1899 struct bw_meter *x, **bwm_ptr; 1900 uint32_t flags; 1901 1902 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1903 return EOPNOTSUPP; 1904 1905 /* Test if the flags are valid */ 1906 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1907 return EINVAL; 1908 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1909 return EINVAL; 1910 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1911 return EINVAL; 1912 1913 /* Test if the threshold time interval is valid */ 1914 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1915 return EINVAL; 1916 1917 flags = compute_bw_meter_flags(req); 1918 1919 /* 1920 * Find if we have already same bw_meter entry 1921 */ 1922 MRW_WLOCK(); 1923 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1924 if (mfc == NULL) { 1925 MRW_WUNLOCK(); 1926 return EADDRNOTAVAIL; 1927 } 1928 1929 /* Choose an appropriate bw_meter list */ 1930 if (req->bu_flags & BW_UPCALL_GEQ) 1931 bwm_ptr = &mfc->mfc_bw_meter_geq; 1932 else 1933 bwm_ptr = &mfc->mfc_bw_meter_leq; 1934 1935 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1936 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1937 &req->bu_threshold.b_time, ==)) 1938 && (x->bm_threshold.b_packets 1939 == req->bu_threshold.b_packets) 1940 && (x->bm_threshold.b_bytes 1941 == req->bu_threshold.b_bytes) 1942 && (x->bm_flags & BW_METER_USER_FLAGS) 1943 == flags) { 1944 MRW_WUNLOCK(); 1945 return 0; /* XXX Already installed */ 1946 } 1947 } 1948 1949 /* Allocate the new bw_meter entry */ 1950 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); 1951 if (x == NULL) { 1952 MRW_WUNLOCK(); 1953 return ENOBUFS; 1954 } 1955 1956 /* Set the new bw_meter entry */ 1957 x->bm_threshold.b_time = req->bu_threshold.b_time; 1958 microtime(&now); 1959 x->bm_start_time = now; 1960 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1961 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1962 x->bm_measured.b_packets = 0; 1963 x->bm_measured.b_bytes = 0; 1964 x->bm_flags = flags; 1965 x->bm_time_next = NULL; 1966 x->bm_mfc = mfc; 1967 x->arg = curvnet; 1968 sprintf(x->bm_spin_name, "BM spin %p", x); 1969 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1970 1971 /* For LEQ case create periodic callout */ 1972 if (req->bu_flags & BW_UPCALL_LEQ) { 1973 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); 1974 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1975 expire_bw_meter_leq, x); 1976 } 1977 1978 /* Add the new bw_meter entry to the front of entries for this MFC */ 1979 x->bm_mfc_next = *bwm_ptr; 1980 *bwm_ptr = x; 1981 1982 MRW_WUNLOCK(); 1983 1984 return 0; 1985 } 1986 1987 static void 1988 free_bw_list(struct bw_meter *list) 1989 { 1990 while (list != NULL) { 1991 struct bw_meter *x = list; 1992 1993 /* MRW_WLOCK must be held here */ 1994 if (x->bm_flags & BW_METER_LEQ) { 1995 callout_drain(&x->bm_meter_callout); 1996 mtx_destroy(&x->bm_spin); 1997 } 1998 1999 list = list->bm_mfc_next; 2000 free(x, M_BWMETER); 2001 } 2002 } 2003 2004 /* 2005 * Delete one or multiple bw_meter entries 2006 */ 2007 static int 2008 del_bw_upcall(struct bw_upcall *req) 2009 { 2010 struct mfc *mfc; 2011 struct bw_meter *x, **bwm_ptr; 2012 2013 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2014 return EOPNOTSUPP; 2015 2016 MRW_WLOCK(); 2017 2018 /* Find the corresponding MFC entry */ 2019 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2020 if (mfc == NULL) { 2021 MRW_WUNLOCK(); 2022 return EADDRNOTAVAIL; 2023 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2024 /* 2025 * Delete all bw_meter entries for this mfc 2026 */ 2027 struct bw_meter *list; 2028 2029 /* Free LEQ list */ 2030 list = mfc->mfc_bw_meter_leq; 2031 mfc->mfc_bw_meter_leq = NULL; 2032 free_bw_list(list); 2033 2034 /* Free GEQ list */ 2035 list = mfc->mfc_bw_meter_geq; 2036 mfc->mfc_bw_meter_geq = NULL; 2037 free_bw_list(list); 2038 MRW_WUNLOCK(); 2039 return 0; 2040 } else { /* Delete a single bw_meter entry */ 2041 struct bw_meter *prev; 2042 uint32_t flags = 0; 2043 2044 flags = compute_bw_meter_flags(req); 2045 2046 /* Choose an appropriate bw_meter list */ 2047 if (req->bu_flags & BW_UPCALL_GEQ) 2048 bwm_ptr = &mfc->mfc_bw_meter_geq; 2049 else 2050 bwm_ptr = &mfc->mfc_bw_meter_leq; 2051 2052 /* Find the bw_meter entry to delete */ 2053 for (prev = NULL, x = *bwm_ptr; x != NULL; 2054 prev = x, x = x->bm_mfc_next) { 2055 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && 2056 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2057 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2058 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2059 break; 2060 } 2061 if (x != NULL) { /* Delete entry from the list for this MFC */ 2062 if (prev != NULL) 2063 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2064 else 2065 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2066 2067 if (req->bu_flags & BW_UPCALL_LEQ) 2068 callout_stop(&x->bm_meter_callout); 2069 2070 MRW_WUNLOCK(); 2071 /* Free the bw_meter entry */ 2072 free(x, M_BWMETER); 2073 return 0; 2074 } else { 2075 MRW_WUNLOCK(); 2076 return EINVAL; 2077 } 2078 } 2079 __assert_unreachable(); 2080 } 2081 2082 /* 2083 * Perform bandwidth measurement processing that may result in an upcall 2084 */ 2085 static void 2086 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2087 { 2088 struct timeval delta; 2089 2090 MRW_LOCK_ASSERT(); 2091 2092 delta = *nowp; 2093 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2094 2095 /* 2096 * Processing for ">=" type of bw_meter entry. 2097 * bm_spin does not have to be hold here as in GEQ 2098 * case this is the only context accessing bm_measured. 2099 */ 2100 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2101 /* Reset the bw_meter entry */ 2102 x->bm_start_time = *nowp; 2103 x->bm_measured.b_packets = 0; 2104 x->bm_measured.b_bytes = 0; 2105 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2106 } 2107 2108 /* Record that a packet is received */ 2109 x->bm_measured.b_packets++; 2110 x->bm_measured.b_bytes += plen; 2111 2112 /* 2113 * Test if we should deliver an upcall 2114 */ 2115 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2116 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2117 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2118 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2119 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2120 /* Prepare an upcall for delivery */ 2121 bw_meter_prepare_upcall(x, nowp); 2122 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2123 } 2124 } 2125 } 2126 2127 /* 2128 * Prepare a bandwidth-related upcall 2129 */ 2130 static void 2131 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2132 { 2133 struct timeval delta; 2134 struct bw_upcall *u; 2135 2136 MRW_LOCK_ASSERT(); 2137 2138 /* 2139 * Compute the measured time interval 2140 */ 2141 delta = *nowp; 2142 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2143 2144 /* 2145 * Set the bw_upcall entry 2146 */ 2147 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2148 if (!u) { 2149 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2150 return; 2151 } 2152 u->bu_src = x->bm_mfc->mfc_origin; 2153 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2154 u->bu_threshold.b_time = x->bm_threshold.b_time; 2155 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2156 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2157 u->bu_measured.b_time = delta; 2158 u->bu_measured.b_packets = x->bm_measured.b_packets; 2159 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2160 u->bu_flags = 0; 2161 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2162 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2163 if (x->bm_flags & BW_METER_UNIT_BYTES) 2164 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2165 if (x->bm_flags & BW_METER_GEQ) 2166 u->bu_flags |= BW_UPCALL_GEQ; 2167 if (x->bm_flags & BW_METER_LEQ) 2168 u->bu_flags |= BW_UPCALL_LEQ; 2169 2170 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2171 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2172 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2173 taskqueue_enqueue(V_task_queue, &V_task); 2174 } 2175 } 2176 /* 2177 * Send the pending bandwidth-related upcalls 2178 */ 2179 static void 2180 bw_upcalls_send(void) 2181 { 2182 struct mbuf *m; 2183 int len = 0; 2184 struct bw_upcall *bu; 2185 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2186 static struct igmpmsg igmpmsg = { 2187 0, /* unused1 */ 2188 0, /* unused2 */ 2189 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2190 0, /* im_mbz */ 2191 0, /* im_vif */ 2192 0, /* unused3 */ 2193 { 0 }, /* im_src */ 2194 { 0 } /* im_dst */ 2195 }; 2196 2197 MRW_LOCK_ASSERT(); 2198 2199 if (buf_ring_empty(V_bw_upcalls_ring)) 2200 return; 2201 2202 /* 2203 * Allocate a new mbuf, initialize it with the header and 2204 * the payload for the pending calls. 2205 */ 2206 m = m_gethdr(M_NOWAIT, MT_DATA); 2207 if (m == NULL) { 2208 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2209 return; 2210 } 2211 2212 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2213 len += sizeof(struct igmpmsg); 2214 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2215 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2216 len += sizeof(struct bw_upcall); 2217 free(bu, M_MRTABLE); 2218 } 2219 2220 /* 2221 * Send the upcalls 2222 * XXX do we need to set the address in k_igmpsrc ? 2223 */ 2224 MRTSTAT_INC(mrts_upcalls); 2225 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2226 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2227 MRTSTAT_INC(mrts_upq_sockfull); 2228 } 2229 } 2230 2231 /* 2232 * A periodic function for sending all upcalls that are pending delivery 2233 */ 2234 static void 2235 expire_bw_upcalls_send(void *arg) 2236 { 2237 CURVNET_SET((struct vnet *) arg); 2238 2239 /* This callout is run with MRW_RLOCK taken */ 2240 2241 bw_upcalls_send(); 2242 2243 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2244 curvnet); 2245 CURVNET_RESTORE(); 2246 } 2247 2248 /* 2249 * End of bandwidth monitoring code 2250 */ 2251 2252 /* 2253 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2254 * 2255 */ 2256 static int 2257 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2258 struct mfc *rt) 2259 { 2260 struct mbuf *mb_copy, *mm; 2261 2262 /* 2263 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2264 * rendezvous point was unspecified, and we were told not to. 2265 */ 2266 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2267 in_nullhost(rt->mfc_rp)) 2268 return 0; 2269 2270 mb_copy = pim_register_prepare(ip, m); 2271 if (mb_copy == NULL) 2272 return ENOBUFS; 2273 2274 /* 2275 * Send all the fragments. Note that the mbuf for each fragment 2276 * is freed by the sending machinery. 2277 */ 2278 for (mm = mb_copy; mm; mm = mb_copy) { 2279 mb_copy = mm->m_nextpkt; 2280 mm->m_nextpkt = 0; 2281 mm = m_pullup(mm, sizeof(struct ip)); 2282 if (mm != NULL) { 2283 ip = mtod(mm, struct ip *); 2284 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2285 pim_register_send_rp(ip, vifp, mm, rt); 2286 } else { 2287 pim_register_send_upcall(ip, vifp, mm, rt); 2288 } 2289 } 2290 } 2291 2292 return 0; 2293 } 2294 2295 /* 2296 * Return a copy of the data packet that is ready for PIM Register 2297 * encapsulation. 2298 * XXX: Note that in the returned copy the IP header is a valid one. 2299 */ 2300 static struct mbuf * 2301 pim_register_prepare(struct ip *ip, struct mbuf *m) 2302 { 2303 struct mbuf *mb_copy = NULL; 2304 int mtu; 2305 2306 /* Take care of delayed checksums */ 2307 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2308 in_delayed_cksum(m); 2309 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2310 } 2311 2312 /* 2313 * Copy the old packet & pullup its IP header into the 2314 * new mbuf so we can modify it. 2315 */ 2316 mb_copy = m_copypacket(m, M_NOWAIT); 2317 if (mb_copy == NULL) 2318 return NULL; 2319 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2320 if (mb_copy == NULL) 2321 return NULL; 2322 2323 /* take care of the TTL */ 2324 ip = mtod(mb_copy, struct ip *); 2325 --ip->ip_ttl; 2326 2327 /* Compute the MTU after the PIM Register encapsulation */ 2328 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2329 2330 if (ntohs(ip->ip_len) <= mtu) { 2331 /* Turn the IP header into a valid one */ 2332 ip->ip_sum = 0; 2333 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2334 } else { 2335 /* Fragment the packet */ 2336 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2337 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2338 m_freem(mb_copy); 2339 return NULL; 2340 } 2341 } 2342 return mb_copy; 2343 } 2344 2345 /* 2346 * Send an upcall with the data packet to the user-level process. 2347 */ 2348 static int 2349 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2350 struct mbuf *mb_copy, struct mfc *rt) 2351 { 2352 struct mbuf *mb_first; 2353 int len = ntohs(ip->ip_len); 2354 struct igmpmsg *im; 2355 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2356 2357 MRW_LOCK_ASSERT(); 2358 2359 /* 2360 * Add a new mbuf with an upcall header 2361 */ 2362 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2363 if (mb_first == NULL) { 2364 m_freem(mb_copy); 2365 return ENOBUFS; 2366 } 2367 mb_first->m_data += max_linkhdr; 2368 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2369 mb_first->m_len = sizeof(struct igmpmsg); 2370 mb_first->m_next = mb_copy; 2371 2372 /* Send message to routing daemon */ 2373 im = mtod(mb_first, struct igmpmsg *); 2374 im->im_msgtype = IGMPMSG_WHOLEPKT; 2375 im->im_mbz = 0; 2376 im->im_vif = vifp - V_viftable; 2377 im->im_src = ip->ip_src; 2378 im->im_dst = ip->ip_dst; 2379 2380 k_igmpsrc.sin_addr = ip->ip_src; 2381 2382 MRTSTAT_INC(mrts_upcalls); 2383 2384 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2385 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2386 MRTSTAT_INC(mrts_upq_sockfull); 2387 return ENOBUFS; 2388 } 2389 2390 /* Keep statistics */ 2391 PIMSTAT_INC(pims_snd_registers_msgs); 2392 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2393 2394 return 0; 2395 } 2396 2397 /* 2398 * Encapsulate the data packet in PIM Register message and send it to the RP. 2399 */ 2400 static int 2401 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2402 struct mfc *rt) 2403 { 2404 struct mbuf *mb_first; 2405 struct ip *ip_outer; 2406 struct pim_encap_pimhdr *pimhdr; 2407 int len = ntohs(ip->ip_len); 2408 vifi_t vifi = rt->mfc_parent; 2409 2410 MRW_LOCK_ASSERT(); 2411 2412 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2413 m_freem(mb_copy); 2414 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2415 } 2416 2417 /* 2418 * Add a new mbuf with the encapsulating header 2419 */ 2420 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2421 if (mb_first == NULL) { 2422 m_freem(mb_copy); 2423 return ENOBUFS; 2424 } 2425 mb_first->m_data += max_linkhdr; 2426 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2427 mb_first->m_next = mb_copy; 2428 2429 mb_first->m_pkthdr.len = len + mb_first->m_len; 2430 2431 /* 2432 * Fill in the encapsulating IP and PIM header 2433 */ 2434 ip_outer = mtod(mb_first, struct ip *); 2435 *ip_outer = pim_encap_iphdr; 2436 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2437 sizeof(pim_encap_pimhdr)); 2438 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2439 ip_outer->ip_dst = rt->mfc_rp; 2440 /* 2441 * Copy the inner header TOS to the outer header, and take care of the 2442 * IP_DF bit. 2443 */ 2444 ip_outer->ip_tos = ip->ip_tos; 2445 if (ip->ip_off & htons(IP_DF)) 2446 ip_outer->ip_off |= htons(IP_DF); 2447 ip_fillid(ip_outer); 2448 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2449 + sizeof(pim_encap_iphdr)); 2450 *pimhdr = pim_encap_pimhdr; 2451 /* If the iif crosses a border, set the Border-bit */ 2452 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2453 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2454 2455 mb_first->m_data += sizeof(pim_encap_iphdr); 2456 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2457 mb_first->m_data -= sizeof(pim_encap_iphdr); 2458 2459 send_packet(vifp, mb_first); 2460 2461 /* Keep statistics */ 2462 PIMSTAT_INC(pims_snd_registers_msgs); 2463 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2464 2465 return 0; 2466 } 2467 2468 /* 2469 * pim_encapcheck() is called by the encap4_input() path at runtime to 2470 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2471 * into the kernel. 2472 */ 2473 static int 2474 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2475 int proto __unused, void *arg __unused) 2476 { 2477 2478 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2479 return (8); /* claim the datagram. */ 2480 } 2481 2482 /* 2483 * PIM-SMv2 and PIM-DM messages processing. 2484 * Receives and verifies the PIM control messages, and passes them 2485 * up to the listening socket, using rip_input(). 2486 * The only message with special processing is the PIM_REGISTER message 2487 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2488 * is passed to if_simloop(). 2489 */ 2490 static int 2491 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2492 { 2493 struct ip *ip = mtod(m, struct ip *); 2494 struct pim *pim; 2495 int iphlen = off; 2496 int minlen; 2497 int datalen = ntohs(ip->ip_len) - iphlen; 2498 int ip_tos; 2499 2500 /* Keep statistics */ 2501 PIMSTAT_INC(pims_rcv_total_msgs); 2502 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2503 2504 /* 2505 * Validate lengths 2506 */ 2507 if (datalen < PIM_MINLEN) { 2508 PIMSTAT_INC(pims_rcv_tooshort); 2509 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2510 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2511 m_freem(m); 2512 return (IPPROTO_DONE); 2513 } 2514 2515 /* 2516 * If the packet is at least as big as a REGISTER, go agead 2517 * and grab the PIM REGISTER header size, to avoid another 2518 * possible m_pullup() later. 2519 * 2520 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2521 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2522 */ 2523 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2524 /* 2525 * Get the IP and PIM headers in contiguous memory, and 2526 * possibly the PIM REGISTER header. 2527 */ 2528 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2529 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2530 return (IPPROTO_DONE); 2531 } 2532 2533 /* m_pullup() may have given us a new mbuf so reset ip. */ 2534 ip = mtod(m, struct ip *); 2535 ip_tos = ip->ip_tos; 2536 2537 /* adjust mbuf to point to the PIM header */ 2538 m->m_data += iphlen; 2539 m->m_len -= iphlen; 2540 pim = mtod(m, struct pim *); 2541 2542 /* 2543 * Validate checksum. If PIM REGISTER, exclude the data packet. 2544 * 2545 * XXX: some older PIMv2 implementations don't make this distinction, 2546 * so for compatibility reason perform the checksum over part of the 2547 * message, and if error, then over the whole message. 2548 */ 2549 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2550 /* do nothing, checksum okay */ 2551 } else if (in_cksum(m, datalen)) { 2552 PIMSTAT_INC(pims_rcv_badsum); 2553 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2554 m_freem(m); 2555 return (IPPROTO_DONE); 2556 } 2557 2558 /* PIM version check */ 2559 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2560 PIMSTAT_INC(pims_rcv_badversion); 2561 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2562 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2563 m_freem(m); 2564 return (IPPROTO_DONE); 2565 } 2566 2567 /* restore mbuf back to the outer IP */ 2568 m->m_data -= iphlen; 2569 m->m_len += iphlen; 2570 2571 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2572 /* 2573 * Since this is a REGISTER, we'll make a copy of the register 2574 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2575 * routing daemon. 2576 */ 2577 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2578 struct mbuf *mcp; 2579 struct ip *encap_ip; 2580 u_int32_t *reghdr; 2581 struct ifnet *vifp; 2582 2583 MRW_RLOCK(); 2584 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2585 MRW_RUNLOCK(); 2586 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2587 (int)V_reg_vif_num); 2588 m_freem(m); 2589 return (IPPROTO_DONE); 2590 } 2591 /* XXX need refcnt? */ 2592 vifp = V_viftable[V_reg_vif_num].v_ifp; 2593 MRW_RUNLOCK(); 2594 2595 /* 2596 * Validate length 2597 */ 2598 if (datalen < PIM_REG_MINLEN) { 2599 PIMSTAT_INC(pims_rcv_tooshort); 2600 PIMSTAT_INC(pims_rcv_badregisters); 2601 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2602 m_freem(m); 2603 return (IPPROTO_DONE); 2604 } 2605 2606 reghdr = (u_int32_t *)(pim + 1); 2607 encap_ip = (struct ip *)(reghdr + 1); 2608 2609 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2610 __func__, ntohl(encap_ip->ip_src.s_addr), 2611 ntohs(encap_ip->ip_len)); 2612 2613 /* verify the version number of the inner packet */ 2614 if (encap_ip->ip_v != IPVERSION) { 2615 PIMSTAT_INC(pims_rcv_badregisters); 2616 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2617 m_freem(m); 2618 return (IPPROTO_DONE); 2619 } 2620 2621 /* verify the inner packet is destined to a mcast group */ 2622 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2623 PIMSTAT_INC(pims_rcv_badregisters); 2624 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2625 ntohl(encap_ip->ip_dst.s_addr)); 2626 m_freem(m); 2627 return (IPPROTO_DONE); 2628 } 2629 2630 /* If a NULL_REGISTER, pass it to the daemon */ 2631 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2632 goto pim_input_to_daemon; 2633 2634 /* 2635 * Copy the TOS from the outer IP header to the inner IP header. 2636 */ 2637 if (encap_ip->ip_tos != ip_tos) { 2638 /* Outer TOS -> inner TOS */ 2639 encap_ip->ip_tos = ip_tos; 2640 /* Recompute the inner header checksum. Sigh... */ 2641 2642 /* adjust mbuf to point to the inner IP header */ 2643 m->m_data += (iphlen + PIM_MINLEN); 2644 m->m_len -= (iphlen + PIM_MINLEN); 2645 2646 encap_ip->ip_sum = 0; 2647 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2648 2649 /* restore mbuf to point back to the outer IP header */ 2650 m->m_data -= (iphlen + PIM_MINLEN); 2651 m->m_len += (iphlen + PIM_MINLEN); 2652 } 2653 2654 /* 2655 * Decapsulate the inner IP packet and loopback to forward it 2656 * as a normal multicast packet. Also, make a copy of the 2657 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2658 * to pass to the daemon later, so it can take the appropriate 2659 * actions (e.g., send back PIM_REGISTER_STOP). 2660 * XXX: here m->m_data points to the outer IP header. 2661 */ 2662 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2663 if (mcp == NULL) { 2664 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2665 m_freem(m); 2666 return (IPPROTO_DONE); 2667 } 2668 2669 /* Keep statistics */ 2670 /* XXX: registers_bytes include only the encap. mcast pkt */ 2671 PIMSTAT_INC(pims_rcv_registers_msgs); 2672 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2673 2674 /* 2675 * forward the inner ip packet; point m_data at the inner ip. 2676 */ 2677 m_adj(m, iphlen + PIM_MINLEN); 2678 2679 CTR4(KTR_IPMF, 2680 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2681 __func__, 2682 (u_long)ntohl(encap_ip->ip_src.s_addr), 2683 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2684 (int)V_reg_vif_num); 2685 2686 /* NB: vifp was collected above; can it change on us? */ 2687 if_simloop(vifp, m, dst.sin_family, 0); 2688 2689 /* prepare the register head to send to the mrouting daemon */ 2690 m = mcp; 2691 } 2692 2693 pim_input_to_daemon: 2694 /* 2695 * Pass the PIM message up to the daemon; if it is a Register message, 2696 * pass the 'head' only up to the daemon. This includes the 2697 * outer IP header, PIM header, PIM-Register header and the 2698 * inner IP header. 2699 * XXX: the outer IP header pkt size of a Register is not adjust to 2700 * reflect the fact that the inner multicast data is truncated. 2701 */ 2702 return (rip_input(&m, &off, proto)); 2703 } 2704 2705 static int 2706 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2707 { 2708 struct mfc *rt; 2709 int error, i; 2710 2711 if (req->newptr) 2712 return (EPERM); 2713 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2714 return (0); 2715 error = sysctl_wire_old_buffer(req, 0); 2716 if (error) 2717 return (error); 2718 2719 MRW_RLOCK(); 2720 for (i = 0; i < mfchashsize; i++) { 2721 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2722 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2723 if (error) 2724 goto out_locked; 2725 } 2726 } 2727 out_locked: 2728 MRW_RUNLOCK(); 2729 return (error); 2730 } 2731 2732 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2733 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2734 "IPv4 Multicast Forwarding Table " 2735 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2736 2737 static int 2738 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2739 { 2740 int error, i; 2741 2742 if (req->newptr) 2743 return (EPERM); 2744 if (V_viftable == NULL) /* XXX unlocked */ 2745 return (0); 2746 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2747 if (error) 2748 return (error); 2749 2750 MRW_RLOCK(); 2751 /* Copy out user-visible portion of vif entry. */ 2752 for (i = 0; i < MAXVIFS; i++) { 2753 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2754 if (error) 2755 break; 2756 } 2757 MRW_RUNLOCK(); 2758 return (error); 2759 } 2760 2761 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2762 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2763 sysctl_viflist, "S,vif[MAXVIFS]", 2764 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2765 2766 static void 2767 vnet_mroute_init(const void *unused __unused) 2768 { 2769 2770 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2771 2772 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2773 M_MRTABLE, M_WAITOK|M_ZERO); 2774 2775 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); 2776 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); 2777 2778 /* Prepare taskqueue */ 2779 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2780 taskqueue_thread_enqueue, &V_task_queue); 2781 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2782 } 2783 2784 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2785 NULL); 2786 2787 static void 2788 vnet_mroute_uninit(const void *unused __unused) 2789 { 2790 2791 /* Taskqueue should be cancelled and drained before freeing */ 2792 taskqueue_free(V_task_queue); 2793 2794 free(V_viftable, M_MRTABLE); 2795 free(V_nexpire, M_MRTABLE); 2796 V_nexpire = NULL; 2797 } 2798 2799 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2800 vnet_mroute_uninit, NULL); 2801 2802 static int 2803 ip_mroute_modevent(module_t mod, int type, void *unused) 2804 { 2805 2806 switch (type) { 2807 case MOD_LOAD: 2808 MRW_LOCK_INIT(); 2809 2810 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2811 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2812 if (if_detach_event_tag == NULL) { 2813 printf("ip_mroute: unable to register " 2814 "ifnet_departure_event handler\n"); 2815 MRW_LOCK_DESTROY(); 2816 return (EINVAL); 2817 } 2818 2819 if (!powerof2(mfchashsize)) { 2820 printf("WARNING: %s not a power of 2; using default\n", 2821 "net.inet.ip.mfchashsize"); 2822 mfchashsize = MFCHASHSIZE; 2823 } 2824 2825 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2826 2827 ip_mcast_src = X_ip_mcast_src; 2828 ip_mforward = X_ip_mforward; 2829 ip_mrouter_done = X_ip_mrouter_done; 2830 ip_mrouter_get = X_ip_mrouter_get; 2831 ip_mrouter_set = X_ip_mrouter_set; 2832 2833 ip_rsvp_force_done = X_ip_rsvp_force_done; 2834 ip_rsvp_vif = X_ip_rsvp_vif; 2835 2836 legal_vif_num = X_legal_vif_num; 2837 mrt_ioctl = X_mrt_ioctl; 2838 rsvp_input_p = X_rsvp_input; 2839 break; 2840 2841 case MOD_UNLOAD: 2842 /* 2843 * Typically module unload happens after the user-level 2844 * process has shutdown the kernel services (the check 2845 * below insures someone can't just yank the module out 2846 * from under a running process). But if the module is 2847 * just loaded and then unloaded w/o starting up a user 2848 * process we still need to cleanup. 2849 */ 2850 MRW_WLOCK(); 2851 if (ip_mrouter_cnt != 0) { 2852 MRW_WUNLOCK(); 2853 return (EINVAL); 2854 } 2855 ip_mrouter_unloading = 1; 2856 MRW_WUNLOCK(); 2857 2858 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2859 2860 if (pim_encap_cookie) { 2861 ip_encap_detach(pim_encap_cookie); 2862 pim_encap_cookie = NULL; 2863 } 2864 2865 ip_mcast_src = NULL; 2866 ip_mforward = NULL; 2867 ip_mrouter_done = NULL; 2868 ip_mrouter_get = NULL; 2869 ip_mrouter_set = NULL; 2870 2871 ip_rsvp_force_done = NULL; 2872 ip_rsvp_vif = NULL; 2873 2874 legal_vif_num = NULL; 2875 mrt_ioctl = NULL; 2876 rsvp_input_p = NULL; 2877 2878 MRW_LOCK_DESTROY(); 2879 break; 2880 2881 default: 2882 return EOPNOTSUPP; 2883 } 2884 return 0; 2885 } 2886 2887 static moduledata_t ip_mroutemod = { 2888 "ip_mroute", 2889 ip_mroute_modevent, 2890 0 2891 }; 2892 2893 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2894