xref: /freebsd/sys/netinet/ip_mroute.c (revision 77a0943ded95b9e6438f7db70c4a28e4d93946d4)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $FreeBSD$
13  */
14 
15 #include "opt_mrouting.h"
16 
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/malloc.h>
20 #include <sys/mbuf.h>
21 #include <sys/socket.h>
22 #include <sys/socketvar.h>
23 #include <sys/protosw.h>
24 #include <sys/time.h>
25 #include <sys/kernel.h>
26 #include <sys/sockio.h>
27 #include <sys/syslog.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <netinet/in.h>
31 #include <netinet/in_systm.h>
32 #include <netinet/ip.h>
33 #include <netinet/ip_var.h>
34 #include <netinet/in_var.h>
35 #include <netinet/igmp.h>
36 #include <netinet/ip_mroute.h>
37 #include <netinet/udp.h>
38 #include <machine/in_cksum.h>
39 
40 #ifndef NTOHL
41 #if BYTE_ORDER != BIG_ENDIAN
42 #define NTOHL(d) ((d) = ntohl((d)))
43 #define NTOHS(d) ((d) = ntohs((u_short)(d)))
44 #define HTONL(d) ((d) = htonl((d)))
45 #define HTONS(d) ((d) = htons((u_short)(d)))
46 #else
47 #define NTOHL(d)
48 #define NTOHS(d)
49 #define HTONL(d)
50 #define HTONS(d)
51 #endif
52 #endif
53 
54 #ifndef MROUTING
55 extern u_long	_ip_mcast_src __P((int vifi));
56 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
57 				  struct mbuf *m, struct ip_moptions *imo));
58 extern int	_ip_mrouter_done __P((void));
59 extern int	_ip_mrouter_get __P((struct socket *so, struct sockopt *sopt));
60 extern int	_ip_mrouter_set __P((struct socket *so, struct sockopt *sopt));
61 extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
62 
63 /*
64  * Dummy routines and globals used when multicast routing is not compiled in.
65  */
66 
67 struct socket  *ip_mrouter  = NULL;
68 u_int		rsvpdebug = 0;
69 
70 int
71 _ip_mrouter_set(so, sopt)
72 	struct socket *so;
73 	struct sockopt *sopt;
74 {
75 	return(EOPNOTSUPP);
76 }
77 
78 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
79 
80 
81 int
82 _ip_mrouter_get(so, sopt)
83 	struct socket *so;
84 	struct sockopt *sopt;
85 {
86 	return(EOPNOTSUPP);
87 }
88 
89 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
90 
91 int
92 _ip_mrouter_done()
93 {
94 	return(0);
95 }
96 
97 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
98 
99 int
100 _ip_mforward(ip, ifp, m, imo)
101 	struct ip *ip;
102 	struct ifnet *ifp;
103 	struct mbuf *m;
104 	struct ip_moptions *imo;
105 {
106 	return(0);
107 }
108 
109 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
110 		   struct ip_moptions *) = _ip_mforward;
111 
112 int
113 _mrt_ioctl(int req, caddr_t data, struct proc *p)
114 {
115 	return EOPNOTSUPP;
116 }
117 
118 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
119 
120 void
121 rsvp_input(m, off, proto)		/* XXX must fixup manually */
122 	struct mbuf *m;
123 	int off;
124 	int proto;
125 {
126     /* Can still get packets with rsvp_on = 0 if there is a local member
127      * of the group to which the RSVP packet is addressed.  But in this
128      * case we want to throw the packet away.
129      */
130     if (!rsvp_on) {
131 	m_freem(m);
132 	return;
133     }
134 
135     if (ip_rsvpd != NULL) {
136 	if (rsvpdebug)
137 	    printf("rsvp_input: Sending packet up old-style socket\n");
138 	rip_input(m, off, proto);
139 	return;
140     }
141     /* Drop the packet */
142     m_freem(m);
143 }
144 
145 void ipip_input(struct mbuf *m, int off, int proto) { /* XXX must fixup manually */
146 	rip_input(m, off, proto);
147 }
148 
149 int (*legal_vif_num)(int) = 0;
150 
151 /*
152  * This should never be called, since IP_MULTICAST_VIF should fail, but
153  * just in case it does get called, the code a little lower in ip_output
154  * will assign the packet a local address.
155  */
156 u_long
157 _ip_mcast_src(int vifi) { return INADDR_ANY; }
158 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
159 
160 int
161 ip_rsvp_vif_init(so, sopt)
162     struct socket *so;
163     struct sockopt *sopt;
164 {
165     return(EINVAL);
166 }
167 
168 int
169 ip_rsvp_vif_done(so, sopt)
170     struct socket *so;
171     struct sockopt *sopt;
172 {
173     return(EINVAL);
174 }
175 
176 void
177 ip_rsvp_force_done(so)
178     struct socket *so;
179 {
180     return;
181 }
182 
183 #else /* MROUTING */
184 
185 #define M_HASCL(m)	((m)->m_flags & M_EXT)
186 
187 #define INSIZ		sizeof(struct in_addr)
188 #define	same(a1, a2) \
189 	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
190 
191 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
192 
193 /*
194  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
195  * except for netstat or debugging purposes.
196  */
197 #ifndef MROUTE_LKM
198 struct socket  *ip_mrouter  = NULL;
199 static struct mrtstat	mrtstat;
200 #else /* MROUTE_LKM */
201 extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
202 extern struct mrtstat mrtstat;
203 static int ip_mrtproto;
204 #endif
205 
206 #define NO_RTE_FOUND 	0x1
207 #define RTE_FOUND	0x2
208 
209 static struct mfc	*mfctable[MFCTBLSIZ];
210 static u_char		nexpire[MFCTBLSIZ];
211 static struct vif	viftable[MAXVIFS];
212 static u_int	mrtdebug = 0;	  /* debug level 	*/
213 #define		DEBUG_MFC	0x02
214 #define		DEBUG_FORWARD	0x04
215 #define		DEBUG_EXPIRE	0x08
216 #define		DEBUG_XMIT	0x10
217 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
218 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
219 
220 static struct callout_handle expire_upcalls_ch;
221 
222 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
223 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
224 
225 /*
226  * Define the token bucket filter structures
227  * tbftable -> each vif has one of these for storing info
228  */
229 
230 static struct tbf tbftable[MAXVIFS];
231 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
232 
233 /*
234  * 'Interfaces' associated with decapsulator (so we can tell
235  * packets that went through it from ones that get reflected
236  * by a broken gateway).  These interfaces are never linked into
237  * the system ifnet list & no routes point to them.  I.e., packets
238  * can't be sent this way.  They only exist as a placeholder for
239  * multicast source verification.
240  */
241 static struct ifnet multicast_decap_if[MAXVIFS];
242 
243 #define ENCAP_TTL 64
244 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
245 
246 /* prototype IP hdr for encapsulated packets */
247 static struct ip multicast_encap_iphdr = {
248 #if BYTE_ORDER == LITTLE_ENDIAN
249 	sizeof(struct ip) >> 2, IPVERSION,
250 #else
251 	IPVERSION, sizeof(struct ip) >> 2,
252 #endif
253 	0,				/* tos */
254 	sizeof(struct ip),		/* total length */
255 	0,				/* id */
256 	0,				/* frag offset */
257 	ENCAP_TTL, ENCAP_PROTO,
258 	0,				/* checksum */
259 };
260 
261 /*
262  * Private variables.
263  */
264 static vifi_t	   numvifs = 0;
265 static int have_encap_tunnel = 0;
266 
267 /*
268  * one-back cache used by ipip_input to locate a tunnel's vif
269  * given a datagram's src ip address.
270  */
271 static u_long last_encap_src;
272 static struct vif *last_encap_vif;
273 
274 static u_long	X_ip_mcast_src __P((int vifi));
275 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
276 static int	X_ip_mrouter_done __P((void));
277 static int	X_ip_mrouter_get __P((struct socket *so, struct sockopt *m));
278 static int	X_ip_mrouter_set __P((struct socket *so, struct sockopt *m));
279 static int	X_legal_vif_num __P((int vif));
280 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
281 
282 static int get_sg_cnt(struct sioc_sg_req *);
283 static int get_vif_cnt(struct sioc_vif_req *);
284 static int ip_mrouter_init(struct socket *, int);
285 static int add_vif(struct vifctl *);
286 static int del_vif(vifi_t);
287 static int add_mfc(struct mfcctl *);
288 static int del_mfc(struct mfcctl *);
289 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
290 static int set_assert(int);
291 static void expire_upcalls(void *);
292 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
293 		  vifi_t);
294 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
295 static void encap_send(struct ip *, struct vif *, struct mbuf *);
296 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
297 static void tbf_queue(struct vif *, struct mbuf *);
298 static void tbf_process_q(struct vif *);
299 static void tbf_reprocess_q(void *);
300 static int tbf_dq_sel(struct vif *, struct ip *);
301 static void tbf_send_packet(struct vif *, struct mbuf *);
302 static void tbf_update_tokens(struct vif *);
303 static int priority(struct vif *, struct ip *);
304 void multiencap_decap(struct mbuf *);
305 
306 /*
307  * whether or not special PIM assert processing is enabled.
308  */
309 static int pim_assert;
310 /*
311  * Rate limit for assert notification messages, in usec
312  */
313 #define ASSERT_MSG_TIME		3000000
314 
315 /*
316  * Hash function for a source, group entry
317  */
318 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
319 			((g) >> 20) ^ ((g) >> 10) ^ (g))
320 
321 /*
322  * Find a route for a given origin IP address and Multicast group address
323  * Type of service parameter to be added in the future!!!
324  */
325 
326 #define MFCFIND(o, g, rt) { \
327 	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
328 	rt = NULL; \
329 	++mrtstat.mrts_mfc_lookups; \
330 	while (_rt) { \
331 		if ((_rt->mfc_origin.s_addr == o) && \
332 		    (_rt->mfc_mcastgrp.s_addr == g) && \
333 		    (_rt->mfc_stall == NULL)) { \
334 			rt = _rt; \
335 			break; \
336 		} \
337 		_rt = _rt->mfc_next; \
338 	} \
339 	if (rt == NULL) { \
340 		++mrtstat.mrts_mfc_misses; \
341 	} \
342 }
343 
344 
345 /*
346  * Macros to compute elapsed time efficiently
347  * Borrowed from Van Jacobson's scheduling code
348  */
349 #define TV_DELTA(a, b, delta) { \
350 	    register int xxs; \
351 		\
352 	    delta = (a).tv_usec - (b).tv_usec; \
353 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
354 	       switch (xxs) { \
355 		      case 2: \
356 			  delta += 1000000; \
357 			      /* fall through */ \
358 		      case 1: \
359 			  delta += 1000000; \
360 			  break; \
361 		      default: \
362 			  delta += (1000000 * xxs); \
363 	       } \
364 	    } \
365 }
366 
367 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
368 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
369 
370 #ifdef UPCALL_TIMING
371 u_long upcall_data[51];
372 static void collate(struct timeval *);
373 #endif /* UPCALL_TIMING */
374 
375 
376 /*
377  * Handle MRT setsockopt commands to modify the multicast routing tables.
378  */
379 static int
380 X_ip_mrouter_set(so, sopt)
381 	struct socket *so;
382 	struct sockopt *sopt;
383 {
384 	int	error, optval;
385 	vifi_t	vifi;
386 	struct	vifctl vifc;
387 	struct	mfcctl mfc;
388 
389 	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
390 		return (EPERM);
391 
392 	error = 0;
393 	switch (sopt->sopt_name) {
394 	case MRT_INIT:
395 		error = sooptcopyin(sopt, &optval, sizeof optval,
396 				    sizeof optval);
397 		if (error)
398 			break;
399 		error = ip_mrouter_init(so, optval);
400 		break;
401 
402 	case MRT_DONE:
403 		error = ip_mrouter_done();
404 		break;
405 
406 	case MRT_ADD_VIF:
407 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
408 		if (error)
409 			break;
410 		error = add_vif(&vifc);
411 		break;
412 
413 	case MRT_DEL_VIF:
414 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
415 		if (error)
416 			break;
417 		error = del_vif(vifi);
418 		break;
419 
420 	case MRT_ADD_MFC:
421 	case MRT_DEL_MFC:
422 		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
423 		if (error)
424 			break;
425 		if (sopt->sopt_name == MRT_ADD_MFC)
426 			error = add_mfc(&mfc);
427 		else
428 			error = del_mfc(&mfc);
429 		break;
430 
431 	case MRT_ASSERT:
432 		error = sooptcopyin(sopt, &optval, sizeof optval,
433 				    sizeof optval);
434 		if (error)
435 			break;
436 		set_assert(optval);
437 		break;
438 
439 	default:
440 		error = EOPNOTSUPP;
441 		break;
442 	}
443 	return (error);
444 }
445 
446 #ifndef MROUTE_LKM
447 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
448 #endif
449 
450 /*
451  * Handle MRT getsockopt commands
452  */
453 static int
454 X_ip_mrouter_get(so, sopt)
455 	struct socket *so;
456 	struct sockopt *sopt;
457 {
458 	int error;
459 	static int version = 0x0305; /* !!! why is this here? XXX */
460 
461 	switch (sopt->sopt_name) {
462 	case MRT_VERSION:
463 		error = sooptcopyout(sopt, &version, sizeof version);
464 		break;
465 
466 	case MRT_ASSERT:
467 		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
468 		break;
469 	default:
470 		error = EOPNOTSUPP;
471 		break;
472 	}
473 	return (error);
474 }
475 
476 #ifndef MROUTE_LKM
477 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
478 #endif
479 
480 /*
481  * Handle ioctl commands to obtain information from the cache
482  */
483 static int
484 X_mrt_ioctl(cmd, data)
485     int cmd;
486     caddr_t data;
487 {
488     int error = 0;
489 
490     switch (cmd) {
491 	case (SIOCGETVIFCNT):
492 	    return (get_vif_cnt((struct sioc_vif_req *)data));
493 	    break;
494 	case (SIOCGETSGCNT):
495 	    return (get_sg_cnt((struct sioc_sg_req *)data));
496 	    break;
497 	default:
498 	    return (EINVAL);
499 	    break;
500     }
501     return error;
502 }
503 
504 #ifndef MROUTE_LKM
505 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
506 #endif
507 
508 /*
509  * returns the packet, byte, rpf-failure count for the source group provided
510  */
511 static int
512 get_sg_cnt(req)
513     register struct sioc_sg_req *req;
514 {
515     register struct mfc *rt;
516     int s;
517 
518     s = splnet();
519     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
520     splx(s);
521     if (rt != NULL) {
522 	req->pktcnt = rt->mfc_pkt_cnt;
523 	req->bytecnt = rt->mfc_byte_cnt;
524 	req->wrong_if = rt->mfc_wrong_if;
525     } else
526 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
527 
528     return 0;
529 }
530 
531 /*
532  * returns the input and output packet and byte counts on the vif provided
533  */
534 static int
535 get_vif_cnt(req)
536     register struct sioc_vif_req *req;
537 {
538     register vifi_t vifi = req->vifi;
539 
540     if (vifi >= numvifs) return EINVAL;
541 
542     req->icount = viftable[vifi].v_pkt_in;
543     req->ocount = viftable[vifi].v_pkt_out;
544     req->ibytes = viftable[vifi].v_bytes_in;
545     req->obytes = viftable[vifi].v_bytes_out;
546 
547     return 0;
548 }
549 
550 /*
551  * Enable multicast routing
552  */
553 static int
554 ip_mrouter_init(so, version)
555 	struct socket *so;
556 	int version;
557 {
558     if (mrtdebug)
559 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
560 		so->so_type, so->so_proto->pr_protocol);
561 
562     if (so->so_type != SOCK_RAW ||
563 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
564 
565     if (version != 1)
566 	return ENOPROTOOPT;
567 
568     if (ip_mrouter != NULL) return EADDRINUSE;
569 
570     ip_mrouter = so;
571 
572     bzero((caddr_t)mfctable, sizeof(mfctable));
573     bzero((caddr_t)nexpire, sizeof(nexpire));
574 
575     pim_assert = 0;
576 
577     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
578 
579     if (mrtdebug)
580 	log(LOG_DEBUG, "ip_mrouter_init\n");
581 
582     return 0;
583 }
584 
585 /*
586  * Disable multicast routing
587  */
588 static int
589 X_ip_mrouter_done()
590 {
591     vifi_t vifi;
592     int i;
593     struct ifnet *ifp;
594     struct ifreq ifr;
595     struct mfc *rt;
596     struct rtdetq *rte;
597     int s;
598 
599     s = splnet();
600 
601     /*
602      * For each phyint in use, disable promiscuous reception of all IP
603      * multicasts.
604      */
605     for (vifi = 0; vifi < numvifs; vifi++) {
606 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
607 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
608 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
609 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
610 								= INADDR_ANY;
611 	    ifp = viftable[vifi].v_ifp;
612 	    if_allmulti(ifp, 0);
613 	}
614     }
615     bzero((caddr_t)tbftable, sizeof(tbftable));
616     bzero((caddr_t)viftable, sizeof(viftable));
617     numvifs = 0;
618     pim_assert = 0;
619 
620     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
621 
622     /*
623      * Free all multicast forwarding cache entries.
624      */
625     for (i = 0; i < MFCTBLSIZ; i++) {
626 	for (rt = mfctable[i]; rt != NULL; ) {
627 	    struct mfc *nr = rt->mfc_next;
628 
629 	    for (rte = rt->mfc_stall; rte != NULL; ) {
630 		struct rtdetq *n = rte->next;
631 
632 		m_freem(rte->m);
633 		free(rte, M_MRTABLE);
634 		rte = n;
635 	    }
636 	    free(rt, M_MRTABLE);
637 	    rt = nr;
638 	}
639     }
640 
641     bzero((caddr_t)mfctable, sizeof(mfctable));
642 
643     /*
644      * Reset de-encapsulation cache
645      */
646     last_encap_src = 0;
647     last_encap_vif = NULL;
648     have_encap_tunnel = 0;
649 
650     ip_mrouter = NULL;
651 
652     splx(s);
653 
654     if (mrtdebug)
655 	log(LOG_DEBUG, "ip_mrouter_done\n");
656 
657     return 0;
658 }
659 
660 #ifndef MROUTE_LKM
661 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
662 #endif
663 
664 /*
665  * Set PIM assert processing global
666  */
667 static int
668 set_assert(i)
669 	int i;
670 {
671     if ((i != 1) && (i != 0))
672 	return EINVAL;
673 
674     pim_assert = i;
675 
676     return 0;
677 }
678 
679 /*
680  * Add a vif to the vif table
681  */
682 static int
683 add_vif(vifcp)
684     register struct vifctl *vifcp;
685 {
686     register struct vif *vifp = viftable + vifcp->vifc_vifi;
687     static struct sockaddr_in sin = {sizeof sin, AF_INET};
688     struct ifaddr *ifa;
689     struct ifnet *ifp;
690     int error, s;
691     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
692 
693     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
694     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
695 
696     /* Find the interface with an address in AF_INET family */
697     sin.sin_addr = vifcp->vifc_lcl_addr;
698     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
699     if (ifa == 0) return EADDRNOTAVAIL;
700     ifp = ifa->ifa_ifp;
701 
702     if (vifcp->vifc_flags & VIFF_TUNNEL) {
703 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
704 		/*
705 		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
706 		 * start paying attention to encapsulated packets.
707 		 */
708 		if (have_encap_tunnel == 0) {
709 			have_encap_tunnel = 1;
710 			for (s = 0; s < MAXVIFS; ++s) {
711 				multicast_decap_if[s].if_name = "mdecap";
712 				multicast_decap_if[s].if_unit = s;
713 			}
714 		}
715 		/*
716 		 * Set interface to fake encapsulator interface
717 		 */
718 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
719 		/*
720 		 * Prepare cached route entry
721 		 */
722 		bzero(&vifp->v_route, sizeof(vifp->v_route));
723 	} else {
724 	    log(LOG_ERR, "source routed tunnels not supported\n");
725 	    return EOPNOTSUPP;
726 	}
727     } else {
728 	/* Make sure the interface supports multicast */
729 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
730 	    return EOPNOTSUPP;
731 
732 	/* Enable promiscuous reception of all IP multicasts from the if */
733 	s = splnet();
734 	error = if_allmulti(ifp, 1);
735 	splx(s);
736 	if (error)
737 	    return error;
738     }
739 
740     s = splnet();
741     /* define parameters for the tbf structure */
742     vifp->v_tbf = v_tbf;
743     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
744     vifp->v_tbf->tbf_n_tok = 0;
745     vifp->v_tbf->tbf_q_len = 0;
746     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
747     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
748 
749     vifp->v_flags     = vifcp->vifc_flags;
750     vifp->v_threshold = vifcp->vifc_threshold;
751     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
752     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
753     vifp->v_ifp       = ifp;
754     /* scaling up here allows division by 1024 in critical code */
755     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
756     vifp->v_rsvp_on   = 0;
757     vifp->v_rsvpd     = NULL;
758     /* initialize per vif pkt counters */
759     vifp->v_pkt_in    = 0;
760     vifp->v_pkt_out   = 0;
761     vifp->v_bytes_in  = 0;
762     vifp->v_bytes_out = 0;
763     splx(s);
764 
765     /* Adjust numvifs up if the vifi is higher than numvifs */
766     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
767 
768     if (mrtdebug)
769 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
770 	    vifcp->vifc_vifi,
771 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
772 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
773 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
774 	    vifcp->vifc_threshold,
775 	    vifcp->vifc_rate_limit);
776 
777     return 0;
778 }
779 
780 /*
781  * Delete a vif from the vif table
782  */
783 static int
784 del_vif(vifi)
785 	vifi_t vifi;
786 {
787     register struct vif *vifp = &viftable[vifi];
788     register struct mbuf *m;
789     struct ifnet *ifp;
790     struct ifreq ifr;
791     int s;
792 
793     if (vifi >= numvifs) return EINVAL;
794     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
795 
796     s = splnet();
797 
798     if (!(vifp->v_flags & VIFF_TUNNEL)) {
799 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
800 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
801 	ifp = vifp->v_ifp;
802 	if_allmulti(ifp, 0);
803     }
804 
805     if (vifp == last_encap_vif) {
806 	last_encap_vif = 0;
807 	last_encap_src = 0;
808     }
809 
810     /*
811      * Free packets queued at the interface
812      */
813     while (vifp->v_tbf->tbf_q) {
814 	m = vifp->v_tbf->tbf_q;
815 	vifp->v_tbf->tbf_q = m->m_act;
816 	m_freem(m);
817     }
818 
819     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
820     bzero((caddr_t)vifp, sizeof (*vifp));
821 
822     if (mrtdebug)
823       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
824 
825     /* Adjust numvifs down */
826     for (vifi = numvifs; vifi > 0; vifi--)
827 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
828     numvifs = vifi;
829 
830     splx(s);
831 
832     return 0;
833 }
834 
835 /*
836  * Add an mfc entry
837  */
838 static int
839 add_mfc(mfccp)
840     struct mfcctl *mfccp;
841 {
842     struct mfc *rt;
843     u_long hash;
844     struct rtdetq *rte;
845     register u_short nstl;
846     int s;
847     int i;
848 
849     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
850 
851     /* If an entry already exists, just update the fields */
852     if (rt) {
853 	if (mrtdebug & DEBUG_MFC)
854 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
855 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
856 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
857 		mfccp->mfcc_parent);
858 
859 	s = splnet();
860 	rt->mfc_parent = mfccp->mfcc_parent;
861 	for (i = 0; i < numvifs; i++)
862 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
863 	splx(s);
864 	return 0;
865     }
866 
867     /*
868      * Find the entry for which the upcall was made and update
869      */
870     s = splnet();
871     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
872     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
873 
874 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
875 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
876 	    (rt->mfc_stall != NULL)) {
877 
878 	    if (nstl++)
879 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
880 		    "multiple kernel entries",
881 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
882 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
883 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
884 
885 	    if (mrtdebug & DEBUG_MFC)
886 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
887 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
888 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
889 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
890 
891 	    rt->mfc_origin     = mfccp->mfcc_origin;
892 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
893 	    rt->mfc_parent     = mfccp->mfcc_parent;
894 	    for (i = 0; i < numvifs; i++)
895 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
896 	    /* initialize pkt counters per src-grp */
897 	    rt->mfc_pkt_cnt    = 0;
898 	    rt->mfc_byte_cnt   = 0;
899 	    rt->mfc_wrong_if   = 0;
900 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
901 
902 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
903 	    nexpire[hash]--;
904 
905 	    /* free packets Qed at the end of this entry */
906 	    for (rte = rt->mfc_stall; rte != NULL; ) {
907 		struct rtdetq *n = rte->next;
908 
909 		ip_mdq(rte->m, rte->ifp, rt, -1);
910 		m_freem(rte->m);
911 #ifdef UPCALL_TIMING
912 		collate(&(rte->t));
913 #endif /* UPCALL_TIMING */
914 		free(rte, M_MRTABLE);
915 		rte = n;
916 	    }
917 	    rt->mfc_stall = NULL;
918 	}
919     }
920 
921     /*
922      * It is possible that an entry is being inserted without an upcall
923      */
924     if (nstl == 0) {
925 	if (mrtdebug & DEBUG_MFC)
926 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
927 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
928 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
929 		mfccp->mfcc_parent);
930 
931 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
932 
933 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
934 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
935 
936 		rt->mfc_origin     = mfccp->mfcc_origin;
937 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
938 		rt->mfc_parent     = mfccp->mfcc_parent;
939 		for (i = 0; i < numvifs; i++)
940 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
941 		/* initialize pkt counters per src-grp */
942 		rt->mfc_pkt_cnt    = 0;
943 		rt->mfc_byte_cnt   = 0;
944 		rt->mfc_wrong_if   = 0;
945 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
946 		if (rt->mfc_expire)
947 		    nexpire[hash]--;
948 		rt->mfc_expire	   = 0;
949 	    }
950 	}
951 	if (rt == NULL) {
952 	    /* no upcall, so make a new entry */
953 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
954 	    if (rt == NULL) {
955 		splx(s);
956 		return ENOBUFS;
957 	    }
958 
959 	    /* insert new entry at head of hash chain */
960 	    rt->mfc_origin     = mfccp->mfcc_origin;
961 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
962 	    rt->mfc_parent     = mfccp->mfcc_parent;
963 	    for (i = 0; i < numvifs; i++)
964 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
965 	    /* initialize pkt counters per src-grp */
966 	    rt->mfc_pkt_cnt    = 0;
967 	    rt->mfc_byte_cnt   = 0;
968 	    rt->mfc_wrong_if   = 0;
969 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
970 	    rt->mfc_expire     = 0;
971 	    rt->mfc_stall      = NULL;
972 
973 	    /* link into table */
974 	    rt->mfc_next = mfctable[hash];
975 	    mfctable[hash] = rt;
976 	}
977     }
978     splx(s);
979     return 0;
980 }
981 
982 #ifdef UPCALL_TIMING
983 /*
984  * collect delay statistics on the upcalls
985  */
986 static void collate(t)
987 register struct timeval *t;
988 {
989     register u_long d;
990     register struct timeval tp;
991     register u_long delta;
992 
993     GET_TIME(tp);
994 
995     if (TV_LT(*t, tp))
996     {
997 	TV_DELTA(tp, *t, delta);
998 
999 	d = delta >> 10;
1000 	if (d > 50)
1001 	    d = 50;
1002 
1003 	++upcall_data[d];
1004     }
1005 }
1006 #endif /* UPCALL_TIMING */
1007 
1008 /*
1009  * Delete an mfc entry
1010  */
1011 static int
1012 del_mfc(mfccp)
1013     struct mfcctl *mfccp;
1014 {
1015     struct in_addr 	origin;
1016     struct in_addr 	mcastgrp;
1017     struct mfc 		*rt;
1018     struct mfc	 	**nptr;
1019     u_long 		hash;
1020     int s;
1021 
1022     origin = mfccp->mfcc_origin;
1023     mcastgrp = mfccp->mfcc_mcastgrp;
1024     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1025 
1026     if (mrtdebug & DEBUG_MFC)
1027 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1028 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1029 
1030     s = splnet();
1031 
1032     nptr = &mfctable[hash];
1033     while ((rt = *nptr) != NULL) {
1034 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1035 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1036 	    rt->mfc_stall == NULL)
1037 	    break;
1038 
1039 	nptr = &rt->mfc_next;
1040     }
1041     if (rt == NULL) {
1042 	splx(s);
1043 	return EADDRNOTAVAIL;
1044     }
1045 
1046     *nptr = rt->mfc_next;
1047     free(rt, M_MRTABLE);
1048 
1049     splx(s);
1050 
1051     return 0;
1052 }
1053 
1054 /*
1055  * Send a message to mrouted on the multicast routing socket
1056  */
1057 static int
1058 socket_send(s, mm, src)
1059 	struct socket *s;
1060 	struct mbuf *mm;
1061 	struct sockaddr_in *src;
1062 {
1063 	if (s) {
1064 		if (sbappendaddr(&s->so_rcv,
1065 				 (struct sockaddr *)src,
1066 				 mm, (struct mbuf *)0) != 0) {
1067 			sorwakeup(s);
1068 			return 0;
1069 		}
1070 	}
1071 	m_freem(mm);
1072 	return -1;
1073 }
1074 
1075 /*
1076  * IP multicast forwarding function. This function assumes that the packet
1077  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1078  * pointed to by "ifp", and the packet is to be relayed to other networks
1079  * that have members of the packet's destination IP multicast group.
1080  *
1081  * The packet is returned unscathed to the caller, unless it is
1082  * erroneous, in which case a non-zero return value tells the caller to
1083  * discard it.
1084  */
1085 
1086 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1087 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1088 
1089 static int
1090 X_ip_mforward(ip, ifp, m, imo)
1091     register struct ip *ip;
1092     struct ifnet *ifp;
1093     struct mbuf *m;
1094     struct ip_moptions *imo;
1095 {
1096     register struct mfc *rt;
1097     register u_char *ipoptions;
1098     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1099     static int srctun = 0;
1100     register struct mbuf *mm;
1101     int s;
1102     vifi_t vifi;
1103     struct vif *vifp;
1104 
1105     if (mrtdebug & DEBUG_FORWARD)
1106 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1107 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1108 	    (void *)ifp);
1109 
1110     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1111 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1112 	/*
1113 	 * Packet arrived via a physical interface or
1114 	 * an encapsulated tunnel.
1115 	 */
1116     } else {
1117 	/*
1118 	 * Packet arrived through a source-route tunnel.
1119 	 * Source-route tunnels are no longer supported.
1120 	 */
1121 	if ((srctun++ % 1000) == 0)
1122 	    log(LOG_ERR,
1123 		"ip_mforward: received source-routed packet from %lx\n",
1124 		(u_long)ntohl(ip->ip_src.s_addr));
1125 
1126 	return 1;
1127     }
1128 
1129     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1130 	if (ip->ip_ttl < 255)
1131 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1132 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1133 	    vifp = viftable + vifi;
1134 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1135 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1136 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1137 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1138 	}
1139 	return (ip_mdq(m, ifp, NULL, vifi));
1140     }
1141     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1142 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1143 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1144 	if(!imo)
1145 		printf("In fact, no options were specified at all\n");
1146     }
1147 
1148     /*
1149      * Don't forward a packet with time-to-live of zero or one,
1150      * or a packet destined to a local-only group.
1151      */
1152     if (ip->ip_ttl <= 1 ||
1153 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1154 	return 0;
1155 
1156     /*
1157      * Determine forwarding vifs from the forwarding cache table
1158      */
1159     s = splnet();
1160     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1161 
1162     /* Entry exists, so forward if necessary */
1163     if (rt != NULL) {
1164 	splx(s);
1165 	return (ip_mdq(m, ifp, rt, -1));
1166     } else {
1167 	/*
1168 	 * If we don't have a route for packet's origin,
1169 	 * Make a copy of the packet &
1170 	 * send message to routing daemon
1171 	 */
1172 
1173 	register struct mbuf *mb0;
1174 	register struct rtdetq *rte;
1175 	register u_long hash;
1176 	int hlen = ip->ip_hl << 2;
1177 #ifdef UPCALL_TIMING
1178 	struct timeval tp;
1179 
1180 	GET_TIME(tp);
1181 #endif
1182 
1183 	mrtstat.mrts_no_route++;
1184 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1185 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1186 		(u_long)ntohl(ip->ip_src.s_addr),
1187 		(u_long)ntohl(ip->ip_dst.s_addr));
1188 
1189 	/*
1190 	 * Allocate mbufs early so that we don't do extra work if we are
1191 	 * just going to fail anyway.  Make sure to pullup the header so
1192 	 * that other people can't step on it.
1193 	 */
1194 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1195 	if (rte == NULL) {
1196 	    splx(s);
1197 	    return ENOBUFS;
1198 	}
1199 	mb0 = m_copy(m, 0, M_COPYALL);
1200 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1201 	    mb0 = m_pullup(mb0, hlen);
1202 	if (mb0 == NULL) {
1203 	    free(rte, M_MRTABLE);
1204 	    splx(s);
1205 	    return ENOBUFS;
1206 	}
1207 
1208 	/* is there an upcall waiting for this packet? */
1209 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1210 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1211 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1212 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1213 		(rt->mfc_stall != NULL))
1214 		break;
1215 	}
1216 
1217 	if (rt == NULL) {
1218 	    int i;
1219 	    struct igmpmsg *im;
1220 
1221 	    /* no upcall, so make a new entry */
1222 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1223 	    if (rt == NULL) {
1224 		free(rte, M_MRTABLE);
1225 		m_freem(mb0);
1226 		splx(s);
1227 		return ENOBUFS;
1228 	    }
1229 	    /* Make a copy of the header to send to the user level process */
1230 	    mm = m_copy(mb0, 0, hlen);
1231 	    if (mm == NULL) {
1232 		free(rte, M_MRTABLE);
1233 		m_freem(mb0);
1234 		free(rt, M_MRTABLE);
1235 		splx(s);
1236 		return ENOBUFS;
1237 	    }
1238 
1239 	    /*
1240 	     * Send message to routing daemon to install
1241 	     * a route into the kernel table
1242 	     */
1243 	    k_igmpsrc.sin_addr = ip->ip_src;
1244 
1245 	    im = mtod(mm, struct igmpmsg *);
1246 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1247 	    im->im_mbz		= 0;
1248 
1249 	    mrtstat.mrts_upcalls++;
1250 
1251 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1252 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1253 		++mrtstat.mrts_upq_sockfull;
1254 		free(rte, M_MRTABLE);
1255 		m_freem(mb0);
1256 		free(rt, M_MRTABLE);
1257 		splx(s);
1258 		return ENOBUFS;
1259 	    }
1260 
1261 	    /* insert new entry at head of hash chain */
1262 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1263 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1264 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1265 	    nexpire[hash]++;
1266 	    for (i = 0; i < numvifs; i++)
1267 		rt->mfc_ttls[i] = 0;
1268 	    rt->mfc_parent = -1;
1269 
1270 	    /* link into table */
1271 	    rt->mfc_next   = mfctable[hash];
1272 	    mfctable[hash] = rt;
1273 	    rt->mfc_stall = rte;
1274 
1275 	} else {
1276 	    /* determine if q has overflowed */
1277 	    int npkts = 0;
1278 	    struct rtdetq **p;
1279 
1280 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1281 		npkts++;
1282 
1283 	    if (npkts > MAX_UPQ) {
1284 		mrtstat.mrts_upq_ovflw++;
1285 		free(rte, M_MRTABLE);
1286 		m_freem(mb0);
1287 		splx(s);
1288 		return 0;
1289 	    }
1290 
1291 	    /* Add this entry to the end of the queue */
1292 	    *p = rte;
1293 	}
1294 
1295 	rte->m 			= mb0;
1296 	rte->ifp 		= ifp;
1297 #ifdef UPCALL_TIMING
1298 	rte->t			= tp;
1299 #endif
1300 	rte->next		= NULL;
1301 
1302 	splx(s);
1303 
1304 	return 0;
1305     }
1306 }
1307 
1308 #ifndef MROUTE_LKM
1309 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1310 		   struct ip_moptions *) = X_ip_mforward;
1311 #endif
1312 
1313 /*
1314  * Clean up the cache entry if upcall is not serviced
1315  */
1316 static void
1317 expire_upcalls(void *unused)
1318 {
1319     struct rtdetq *rte;
1320     struct mfc *mfc, **nptr;
1321     int i;
1322     int s;
1323 
1324     s = splnet();
1325     for (i = 0; i < MFCTBLSIZ; i++) {
1326 	if (nexpire[i] == 0)
1327 	    continue;
1328 	nptr = &mfctable[i];
1329 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1330 	    /*
1331 	     * Skip real cache entries
1332 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1333 	     * If it expires now
1334 	     */
1335 	    if (mfc->mfc_stall != NULL &&
1336 	        mfc->mfc_expire != 0 &&
1337 		--mfc->mfc_expire == 0) {
1338 		if (mrtdebug & DEBUG_EXPIRE)
1339 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1340 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1341 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1342 		/*
1343 		 * drop all the packets
1344 		 * free the mbuf with the pkt, if, timing info
1345 		 */
1346 		for (rte = mfc->mfc_stall; rte; ) {
1347 		    struct rtdetq *n = rte->next;
1348 
1349 		    m_freem(rte->m);
1350 		    free(rte, M_MRTABLE);
1351 		    rte = n;
1352 		}
1353 		++mrtstat.mrts_cache_cleanups;
1354 		nexpire[i]--;
1355 
1356 		*nptr = mfc->mfc_next;
1357 		free(mfc, M_MRTABLE);
1358 	    } else {
1359 		nptr = &mfc->mfc_next;
1360 	    }
1361 	}
1362     }
1363     splx(s);
1364     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1365 }
1366 
1367 /*
1368  * Packet forwarding routine once entry in the cache is made
1369  */
1370 static int
1371 ip_mdq(m, ifp, rt, xmt_vif)
1372     register struct mbuf *m;
1373     register struct ifnet *ifp;
1374     register struct mfc *rt;
1375     register vifi_t xmt_vif;
1376 {
1377     register struct ip  *ip = mtod(m, struct ip *);
1378     register vifi_t vifi;
1379     register struct vif *vifp;
1380     register int plen = ip->ip_len;
1381 
1382 /*
1383  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1384  * input, they shouldn't get counted on output, so statistics keeping is
1385  * seperate.
1386  */
1387 #define MC_SEND(ip,vifp,m) {                             \
1388                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1389                     encap_send((ip), (vifp), (m));       \
1390                 else                                     \
1391                     phyint_send((ip), (vifp), (m));      \
1392 }
1393 
1394     /*
1395      * If xmt_vif is not -1, send on only the requested vif.
1396      *
1397      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1398      */
1399     if (xmt_vif < numvifs) {
1400 	MC_SEND(ip, viftable + xmt_vif, m);
1401 	return 1;
1402     }
1403 
1404     /*
1405      * Don't forward if it didn't arrive from the parent vif for its origin.
1406      */
1407     vifi = rt->mfc_parent;
1408     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1409 	/* came in the wrong interface */
1410 	if (mrtdebug & DEBUG_FORWARD)
1411 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1412 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1413 	++mrtstat.mrts_wrong_if;
1414 	++rt->mfc_wrong_if;
1415 	/*
1416 	 * If we are doing PIM assert processing, and we are forwarding
1417 	 * packets on this interface, and it is a broadcast medium
1418 	 * interface (and not a tunnel), send a message to the routing daemon.
1419 	 */
1420 	if (pim_assert && rt->mfc_ttls[vifi] &&
1421 		(ifp->if_flags & IFF_BROADCAST) &&
1422 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1423 	    struct sockaddr_in k_igmpsrc;
1424 	    struct mbuf *mm;
1425 	    struct igmpmsg *im;
1426 	    int hlen = ip->ip_hl << 2;
1427 	    struct timeval now;
1428 	    register u_long delta;
1429 
1430 	    GET_TIME(now);
1431 
1432 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1433 
1434 	    if (delta > ASSERT_MSG_TIME) {
1435 		mm = m_copy(m, 0, hlen);
1436 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1437 		    mm = m_pullup(mm, hlen);
1438 		if (mm == NULL) {
1439 		    return ENOBUFS;
1440 		}
1441 
1442 		rt->mfc_last_assert = now;
1443 
1444 		im = mtod(mm, struct igmpmsg *);
1445 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1446 		im->im_mbz		= 0;
1447 		im->im_vif		= vifi;
1448 
1449 		k_igmpsrc.sin_addr = im->im_src;
1450 
1451 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1452 	    }
1453 	}
1454 	return 0;
1455     }
1456 
1457     /* If I sourced this packet, it counts as output, else it was input. */
1458     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1459 	viftable[vifi].v_pkt_out++;
1460 	viftable[vifi].v_bytes_out += plen;
1461     } else {
1462 	viftable[vifi].v_pkt_in++;
1463 	viftable[vifi].v_bytes_in += plen;
1464     }
1465     rt->mfc_pkt_cnt++;
1466     rt->mfc_byte_cnt += plen;
1467 
1468     /*
1469      * For each vif, decide if a copy of the packet should be forwarded.
1470      * Forward if:
1471      *		- the ttl exceeds the vif's threshold
1472      *		- there are group members downstream on interface
1473      */
1474     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1475 	if ((rt->mfc_ttls[vifi] > 0) &&
1476 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1477 	    vifp->v_pkt_out++;
1478 	    vifp->v_bytes_out += plen;
1479 	    MC_SEND(ip, vifp, m);
1480 	}
1481 
1482     return 0;
1483 }
1484 
1485 /*
1486  * check if a vif number is legal/ok. This is used by ip_output, to export
1487  * numvifs there,
1488  */
1489 static int
1490 X_legal_vif_num(vif)
1491     int vif;
1492 {
1493     if (vif >= 0 && vif < numvifs)
1494        return(1);
1495     else
1496        return(0);
1497 }
1498 
1499 #ifndef MROUTE_LKM
1500 int (*legal_vif_num)(int) = X_legal_vif_num;
1501 #endif
1502 
1503 /*
1504  * Return the local address used by this vif
1505  */
1506 static u_long
1507 X_ip_mcast_src(vifi)
1508     int vifi;
1509 {
1510     if (vifi >= 0 && vifi < numvifs)
1511 	return viftable[vifi].v_lcl_addr.s_addr;
1512     else
1513 	return INADDR_ANY;
1514 }
1515 
1516 #ifndef MROUTE_LKM
1517 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1518 #endif
1519 
1520 static void
1521 phyint_send(ip, vifp, m)
1522     struct ip *ip;
1523     struct vif *vifp;
1524     struct mbuf *m;
1525 {
1526     register struct mbuf *mb_copy;
1527     register int hlen = ip->ip_hl << 2;
1528 
1529     /*
1530      * Make a new reference to the packet; make sure that
1531      * the IP header is actually copied, not just referenced,
1532      * so that ip_output() only scribbles on the copy.
1533      */
1534     mb_copy = m_copy(m, 0, M_COPYALL);
1535     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1536 	mb_copy = m_pullup(mb_copy, hlen);
1537     if (mb_copy == NULL)
1538 	return;
1539 
1540     if (vifp->v_rate_limit == 0)
1541 	tbf_send_packet(vifp, mb_copy);
1542     else
1543 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1544 }
1545 
1546 static void
1547 encap_send(ip, vifp, m)
1548     register struct ip *ip;
1549     register struct vif *vifp;
1550     register struct mbuf *m;
1551 {
1552     register struct mbuf *mb_copy;
1553     register struct ip *ip_copy;
1554     register int i, len = ip->ip_len;
1555 
1556     /*
1557      * copy the old packet & pullup its IP header into the
1558      * new mbuf so we can modify it.  Try to fill the new
1559      * mbuf since if we don't the ethernet driver will.
1560      */
1561     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1562     if (mb_copy == NULL)
1563 	return;
1564     mb_copy->m_data += max_linkhdr;
1565     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1566 
1567     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1568 	m_freem(mb_copy);
1569 	return;
1570     }
1571     i = MHLEN - M_LEADINGSPACE(mb_copy);
1572     if (i > len)
1573 	i = len;
1574     mb_copy = m_pullup(mb_copy, i);
1575     if (mb_copy == NULL)
1576 	return;
1577     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1578 
1579     /*
1580      * fill in the encapsulating IP header.
1581      */
1582     ip_copy = mtod(mb_copy, struct ip *);
1583     *ip_copy = multicast_encap_iphdr;
1584     ip_copy->ip_id = htons(ip_id++);
1585     ip_copy->ip_len += len;
1586     ip_copy->ip_src = vifp->v_lcl_addr;
1587     ip_copy->ip_dst = vifp->v_rmt_addr;
1588 
1589     /*
1590      * turn the encapsulated IP header back into a valid one.
1591      */
1592     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1593     --ip->ip_ttl;
1594     HTONS(ip->ip_len);
1595     HTONS(ip->ip_off);
1596     ip->ip_sum = 0;
1597     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1598     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1599     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1600 
1601     if (vifp->v_rate_limit == 0)
1602 	tbf_send_packet(vifp, mb_copy);
1603     else
1604 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1605 }
1606 
1607 /*
1608  * De-encapsulate a packet and feed it back through ip input (this
1609  * routine is called whenever IP gets a packet with proto type
1610  * ENCAP_PROTO and a local destination address).
1611  */
1612 void
1613 #ifdef MROUTE_LKM
1614 X_ipip_input(m, off, proto)
1615 #else
1616 ipip_input(m, off, proto)
1617 #endif
1618 	register struct mbuf *m;
1619 	int off;
1620 	int proto;
1621 {
1622     struct ifnet *ifp = m->m_pkthdr.rcvif;
1623     register struct ip *ip = mtod(m, struct ip *);
1624     register int hlen = ip->ip_hl << 2;
1625     register struct vif *vifp;
1626 
1627     if (!have_encap_tunnel) {
1628 	    rip_input(m, off, proto);
1629 	    return;
1630     }
1631     /*
1632      * dump the packet if it's not to a multicast destination or if
1633      * we don't have an encapsulating tunnel with the source.
1634      * Note:  This code assumes that the remote site IP address
1635      * uniquely identifies the tunnel (i.e., that this site has
1636      * at most one tunnel with the remote site).
1637      */
1638     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1639 	++mrtstat.mrts_bad_tunnel;
1640 	m_freem(m);
1641 	return;
1642     }
1643     if (ip->ip_src.s_addr != last_encap_src) {
1644 	register struct vif *vife;
1645 
1646 	vifp = viftable;
1647 	vife = vifp + numvifs;
1648 	last_encap_src = ip->ip_src.s_addr;
1649 	last_encap_vif = 0;
1650 	for ( ; vifp < vife; ++vifp)
1651 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1652 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1653 		    == VIFF_TUNNEL)
1654 		    last_encap_vif = vifp;
1655 		break;
1656 	    }
1657     }
1658     if ((vifp = last_encap_vif) == 0) {
1659 	last_encap_src = 0;
1660 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1661 	m_freem(m);
1662 	if (mrtdebug)
1663 	  log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1664 		(u_long)ntohl(ip->ip_src.s_addr));
1665 	return;
1666     }
1667     ifp = vifp->v_ifp;
1668 
1669     if (hlen > IP_HDR_LEN)
1670       ip_stripoptions(m, (struct mbuf *) 0);
1671     m->m_data += IP_HDR_LEN;
1672     m->m_len -= IP_HDR_LEN;
1673     m->m_pkthdr.len -= IP_HDR_LEN;
1674     m->m_pkthdr.rcvif = ifp;
1675 
1676     (void) IF_HANDOFF(&ipintrq, m, NULL);
1677 	/*
1678 	 * normally we would need a "schednetisr(NETISR_IP)"
1679 	 * here but we were called by ip_input and it is going
1680 	 * to loop back & try to dequeue the packet we just
1681 	 * queued as soon as we return so we avoid the
1682 	 * unnecessary software interrrupt.
1683 	 */
1684 }
1685 
1686 /*
1687  * Token bucket filter module
1688  */
1689 
1690 static void
1691 tbf_control(vifp, m, ip, p_len)
1692 	register struct vif *vifp;
1693 	register struct mbuf *m;
1694 	register struct ip *ip;
1695 	register u_long p_len;
1696 {
1697     register struct tbf *t = vifp->v_tbf;
1698 
1699     if (p_len > MAX_BKT_SIZE) {
1700 	/* drop if packet is too large */
1701 	mrtstat.mrts_pkt2large++;
1702 	m_freem(m);
1703 	return;
1704     }
1705 
1706     tbf_update_tokens(vifp);
1707 
1708     /* if there are enough tokens,
1709      * and the queue is empty,
1710      * send this packet out
1711      */
1712 
1713     if (t->tbf_q_len == 0) {
1714 	/* queue empty, send packet if enough tokens */
1715 	if (p_len <= t->tbf_n_tok) {
1716 	    t->tbf_n_tok -= p_len;
1717 	    tbf_send_packet(vifp, m);
1718 	} else {
1719 	    /* queue packet and timeout till later */
1720 	    tbf_queue(vifp, m);
1721 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1722 	}
1723     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1724 	/* finite queue length, so queue pkts and process queue */
1725 	tbf_queue(vifp, m);
1726 	tbf_process_q(vifp);
1727     } else {
1728 	/* queue length too much, try to dq and queue and process */
1729 	if (!tbf_dq_sel(vifp, ip)) {
1730 	    mrtstat.mrts_q_overflow++;
1731 	    m_freem(m);
1732 	    return;
1733 	} else {
1734 	    tbf_queue(vifp, m);
1735 	    tbf_process_q(vifp);
1736 	}
1737     }
1738     return;
1739 }
1740 
1741 /*
1742  * adds a packet to the queue at the interface
1743  */
1744 static void
1745 tbf_queue(vifp, m)
1746 	register struct vif *vifp;
1747 	register struct mbuf *m;
1748 {
1749     register int s = splnet();
1750     register struct tbf *t = vifp->v_tbf;
1751 
1752     if (t->tbf_t == NULL) {
1753 	/* Queue was empty */
1754 	t->tbf_q = m;
1755     } else {
1756 	/* Insert at tail */
1757 	t->tbf_t->m_act = m;
1758     }
1759 
1760     /* Set new tail pointer */
1761     t->tbf_t = m;
1762 
1763 #ifdef DIAGNOSTIC
1764     /* Make sure we didn't get fed a bogus mbuf */
1765     if (m->m_act)
1766 	panic("tbf_queue: m_act");
1767 #endif
1768     m->m_act = NULL;
1769 
1770     t->tbf_q_len++;
1771 
1772     splx(s);
1773 }
1774 
1775 
1776 /*
1777  * processes the queue at the interface
1778  */
1779 static void
1780 tbf_process_q(vifp)
1781     register struct vif *vifp;
1782 {
1783     register struct mbuf *m;
1784     register int len;
1785     register int s = splnet();
1786     register struct tbf *t = vifp->v_tbf;
1787 
1788     /* loop through the queue at the interface and send as many packets
1789      * as possible
1790      */
1791     while (t->tbf_q_len > 0) {
1792 	m = t->tbf_q;
1793 
1794 	len = mtod(m, struct ip *)->ip_len;
1795 
1796 	/* determine if the packet can be sent */
1797 	if (len <= t->tbf_n_tok) {
1798 	    /* if so,
1799 	     * reduce no of tokens, dequeue the packet,
1800 	     * send the packet.
1801 	     */
1802 	    t->tbf_n_tok -= len;
1803 
1804 	    t->tbf_q = m->m_act;
1805 	    if (--t->tbf_q_len == 0)
1806 		t->tbf_t = NULL;
1807 
1808 	    m->m_act = NULL;
1809 	    tbf_send_packet(vifp, m);
1810 
1811 	} else break;
1812     }
1813     splx(s);
1814 }
1815 
1816 static void
1817 tbf_reprocess_q(xvifp)
1818 	void *xvifp;
1819 {
1820     register struct vif *vifp = xvifp;
1821     if (ip_mrouter == NULL)
1822 	return;
1823 
1824     tbf_update_tokens(vifp);
1825 
1826     tbf_process_q(vifp);
1827 
1828     if (vifp->v_tbf->tbf_q_len)
1829 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1830 }
1831 
1832 /* function that will selectively discard a member of the queue
1833  * based on the precedence value and the priority
1834  */
1835 static int
1836 tbf_dq_sel(vifp, ip)
1837     register struct vif *vifp;
1838     register struct ip *ip;
1839 {
1840     register int s = splnet();
1841     register u_int p;
1842     register struct mbuf *m, *last;
1843     register struct mbuf **np;
1844     register struct tbf *t = vifp->v_tbf;
1845 
1846     p = priority(vifp, ip);
1847 
1848     np = &t->tbf_q;
1849     last = NULL;
1850     while ((m = *np) != NULL) {
1851 	if (p > priority(vifp, mtod(m, struct ip *))) {
1852 	    *np = m->m_act;
1853 	    /* If we're removing the last packet, fix the tail pointer */
1854 	    if (m == t->tbf_t)
1855 		t->tbf_t = last;
1856 	    m_freem(m);
1857 	    /* it's impossible for the queue to be empty, but
1858 	     * we check anyway. */
1859 	    if (--t->tbf_q_len == 0)
1860 		t->tbf_t = NULL;
1861 	    splx(s);
1862 	    mrtstat.mrts_drop_sel++;
1863 	    return(1);
1864 	}
1865 	np = &m->m_act;
1866 	last = m;
1867     }
1868     splx(s);
1869     return(0);
1870 }
1871 
1872 static void
1873 tbf_send_packet(vifp, m)
1874     register struct vif *vifp;
1875     register struct mbuf *m;
1876 {
1877     struct ip_moptions imo;
1878     int error;
1879     static struct route ro;
1880     int s = splnet();
1881 
1882     if (vifp->v_flags & VIFF_TUNNEL) {
1883 	/* If tunnel options */
1884 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1885 		  IP_FORWARDING, (struct ip_moptions *)0);
1886     } else {
1887 	imo.imo_multicast_ifp  = vifp->v_ifp;
1888 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1889 	imo.imo_multicast_loop = 1;
1890 	imo.imo_multicast_vif  = -1;
1891 
1892 	/*
1893 	 * Re-entrancy should not be a problem here, because
1894 	 * the packets that we send out and are looped back at us
1895 	 * should get rejected because they appear to come from
1896 	 * the loopback interface, thus preventing looping.
1897 	 */
1898 	error = ip_output(m, (struct mbuf *)0, &ro,
1899 			  IP_FORWARDING, &imo);
1900 
1901 	if (mrtdebug & DEBUG_XMIT)
1902 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1903 		vifp - viftable, error);
1904     }
1905     splx(s);
1906 }
1907 
1908 /* determine the current time and then
1909  * the elapsed time (between the last time and time now)
1910  * in milliseconds & update the no. of tokens in the bucket
1911  */
1912 static void
1913 tbf_update_tokens(vifp)
1914     register struct vif *vifp;
1915 {
1916     struct timeval tp;
1917     register u_long tm;
1918     register int s = splnet();
1919     register struct tbf *t = vifp->v_tbf;
1920 
1921     GET_TIME(tp);
1922 
1923     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1924 
1925     /*
1926      * This formula is actually
1927      * "time in seconds" * "bytes/second".
1928      *
1929      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1930      *
1931      * The (1000/1024) was introduced in add_vif to optimize
1932      * this divide into a shift.
1933      */
1934     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1935     t->tbf_last_pkt_t = tp;
1936 
1937     if (t->tbf_n_tok > MAX_BKT_SIZE)
1938 	t->tbf_n_tok = MAX_BKT_SIZE;
1939 
1940     splx(s);
1941 }
1942 
1943 static int
1944 priority(vifp, ip)
1945     register struct vif *vifp;
1946     register struct ip *ip;
1947 {
1948     register int prio;
1949 
1950     /* temporary hack; may add general packet classifier some day */
1951 
1952     /*
1953      * The UDP port space is divided up into four priority ranges:
1954      * [0, 16384)     : unclassified - lowest priority
1955      * [16384, 32768) : audio - highest priority
1956      * [32768, 49152) : whiteboard - medium priority
1957      * [49152, 65536) : video - low priority
1958      */
1959     if (ip->ip_p == IPPROTO_UDP) {
1960 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1961 	switch (ntohs(udp->uh_dport) & 0xc000) {
1962 	    case 0x4000:
1963 		prio = 70;
1964 		break;
1965 	    case 0x8000:
1966 		prio = 60;
1967 		break;
1968 	    case 0xc000:
1969 		prio = 55;
1970 		break;
1971 	    default:
1972 		prio = 50;
1973 		break;
1974 	}
1975 	if (tbfdebug > 1)
1976 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1977     } else {
1978 	    prio = 50;
1979     }
1980     return prio;
1981 }
1982 
1983 /*
1984  * End of token bucket filter modifications
1985  */
1986 
1987 int
1988 ip_rsvp_vif_init(so, sopt)
1989 	struct socket *so;
1990 	struct sockopt *sopt;
1991 {
1992     int error, i, s;
1993 
1994     if (rsvpdebug)
1995 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1996 	       so->so_type, so->so_proto->pr_protocol);
1997 
1998     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1999 	return EOPNOTSUPP;
2000 
2001     /* Check mbuf. */
2002     error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2003     if (error)
2004 	    return (error);
2005 
2006     if (rsvpdebug)
2007 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2008 
2009     s = splnet();
2010 
2011     /* Check vif. */
2012     if (!legal_vif_num(i)) {
2013 	splx(s);
2014 	return EADDRNOTAVAIL;
2015     }
2016 
2017     /* Check if socket is available. */
2018     if (viftable[i].v_rsvpd != NULL) {
2019 	splx(s);
2020 	return EADDRINUSE;
2021     }
2022 
2023     viftable[i].v_rsvpd = so;
2024     /* This may seem silly, but we need to be sure we don't over-increment
2025      * the RSVP counter, in case something slips up.
2026      */
2027     if (!viftable[i].v_rsvp_on) {
2028 	viftable[i].v_rsvp_on = 1;
2029 	rsvp_on++;
2030     }
2031 
2032     splx(s);
2033     return 0;
2034 }
2035 
2036 int
2037 ip_rsvp_vif_done(so, sopt)
2038 	struct socket *so;
2039 	struct sockopt *sopt;
2040 {
2041 	int error, i, s;
2042 
2043 	if (rsvpdebug)
2044 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2045 		       so->so_type, so->so_proto->pr_protocol);
2046 
2047 	if (so->so_type != SOCK_RAW ||
2048 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2049 		return EOPNOTSUPP;
2050 
2051 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2052 	if (error)
2053 		return (error);
2054 
2055 	s = splnet();
2056 
2057 	/* Check vif. */
2058 	if (!legal_vif_num(i)) {
2059 		splx(s);
2060 		return EADDRNOTAVAIL;
2061 	}
2062 
2063 	if (rsvpdebug)
2064 		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2065 		       viftable[i].v_rsvpd, so);
2066 
2067 	viftable[i].v_rsvpd = NULL;
2068 	/*
2069 	 * This may seem silly, but we need to be sure we don't over-decrement
2070 	 * the RSVP counter, in case something slips up.
2071 	 */
2072 	if (viftable[i].v_rsvp_on) {
2073 		viftable[i].v_rsvp_on = 0;
2074 		rsvp_on--;
2075 	}
2076 
2077 	splx(s);
2078 	return 0;
2079 }
2080 
2081 void
2082 ip_rsvp_force_done(so)
2083     struct socket *so;
2084 {
2085     int vifi;
2086     register int s;
2087 
2088     /* Don't bother if it is not the right type of socket. */
2089     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2090 	return;
2091 
2092     s = splnet();
2093 
2094     /* The socket may be attached to more than one vif...this
2095      * is perfectly legal.
2096      */
2097     for (vifi = 0; vifi < numvifs; vifi++) {
2098 	if (viftable[vifi].v_rsvpd == so) {
2099 	    viftable[vifi].v_rsvpd = NULL;
2100 	    /* This may seem silly, but we need to be sure we don't
2101 	     * over-decrement the RSVP counter, in case something slips up.
2102 	     */
2103 	    if (viftable[vifi].v_rsvp_on) {
2104 		viftable[vifi].v_rsvp_on = 0;
2105 		rsvp_on--;
2106 	    }
2107 	}
2108     }
2109 
2110     splx(s);
2111     return;
2112 }
2113 
2114 void
2115 rsvp_input(m, off, proto)
2116 	struct mbuf *m;
2117 	int off;
2118 	int proto;
2119 {
2120     int vifi;
2121     register struct ip *ip = mtod(m, struct ip *);
2122     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2123     register int s;
2124     struct ifnet *ifp;
2125 
2126     if (rsvpdebug)
2127 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2128 
2129     /* Can still get packets with rsvp_on = 0 if there is a local member
2130      * of the group to which the RSVP packet is addressed.  But in this
2131      * case we want to throw the packet away.
2132      */
2133     if (!rsvp_on) {
2134 	m_freem(m);
2135 	return;
2136     }
2137 
2138     s = splnet();
2139 
2140     if (rsvpdebug)
2141 	printf("rsvp_input: check vifs\n");
2142 
2143 #ifdef DIAGNOSTIC
2144     if (!(m->m_flags & M_PKTHDR))
2145 	    panic("rsvp_input no hdr");
2146 #endif
2147 
2148     ifp = m->m_pkthdr.rcvif;
2149     /* Find which vif the packet arrived on. */
2150     for (vifi = 0; vifi < numvifs; vifi++)
2151 	if (viftable[vifi].v_ifp == ifp)
2152 	    break;
2153 
2154     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2155 	/*
2156 	 * If the old-style non-vif-associated socket is set,
2157 	 * then use it.  Otherwise, drop packet since there
2158 	 * is no specific socket for this vif.
2159 	 */
2160 	if (ip_rsvpd != NULL) {
2161 	    if (rsvpdebug)
2162 		printf("rsvp_input: Sending packet up old-style socket\n");
2163 	    rip_input(m, off, proto);  /* xxx */
2164 	} else {
2165 	    if (rsvpdebug && vifi == numvifs)
2166 		printf("rsvp_input: Can't find vif for packet.\n");
2167 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2168 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2169 	    m_freem(m);
2170 	}
2171 	splx(s);
2172 	return;
2173     }
2174     rsvp_src.sin_addr = ip->ip_src;
2175 
2176     if (rsvpdebug && m)
2177 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2178 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2179 
2180     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2181 	if (rsvpdebug)
2182 	    printf("rsvp_input: Failed to append to socket\n");
2183     } else {
2184 	if (rsvpdebug)
2185 	    printf("rsvp_input: send packet up\n");
2186     }
2187 
2188     splx(s);
2189 }
2190 
2191 #ifdef MROUTE_LKM
2192 #include <sys/conf.h>
2193 #include <sys/exec.h>
2194 #include <sys/sysent.h>
2195 #include <sys/lkm.h>
2196 
2197 MOD_MISC("ip_mroute_mod")
2198 
2199 static int
2200 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2201 {
2202 	int i;
2203 	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2204 	int err = 0;
2205 
2206 	switch(cmd) {
2207 		static int (*old_ip_mrouter_cmd)();
2208 		static int (*old_ip_mrouter_done)();
2209 		static int (*old_ip_mforward)();
2210 		static int (*old_mrt_ioctl)();
2211 		static void (*old_proto4_input)();
2212 		static int (*old_legal_vif_num)();
2213 		extern struct protosw inetsw[];
2214 
2215 	case LKM_E_LOAD:
2216 		if(lkmexists(lkmtp) || ip_mrtproto)
2217 		  return(EEXIST);
2218 		old_ip_mrouter_cmd = ip_mrouter_cmd;
2219 		ip_mrouter_cmd = X_ip_mrouter_cmd;
2220 		old_ip_mrouter_done = ip_mrouter_done;
2221 		ip_mrouter_done = X_ip_mrouter_done;
2222 		old_ip_mforward = ip_mforward;
2223 		ip_mforward = X_ip_mforward;
2224 		old_mrt_ioctl = mrt_ioctl;
2225 		mrt_ioctl = X_mrt_ioctl;
2226               old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2227               inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2228 		old_legal_vif_num = legal_vif_num;
2229 		legal_vif_num = X_legal_vif_num;
2230 		ip_mrtproto = IGMP_DVMRP;
2231 
2232 		printf("\nIP multicast routing loaded\n");
2233 		break;
2234 
2235 	case LKM_E_UNLOAD:
2236 		if (ip_mrouter)
2237 		  return EINVAL;
2238 
2239 		ip_mrouter_cmd = old_ip_mrouter_cmd;
2240 		ip_mrouter_done = old_ip_mrouter_done;
2241 		ip_mforward = old_ip_mforward;
2242 		mrt_ioctl = old_mrt_ioctl;
2243               inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2244 		legal_vif_num = old_legal_vif_num;
2245 		ip_mrtproto = 0;
2246 		break;
2247 
2248 	default:
2249 		err = EINVAL;
2250 		break;
2251 	}
2252 
2253 	return(err);
2254 }
2255 
2256 int
2257 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2258 	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2259 		 nosys);
2260 }
2261 
2262 #endif /* MROUTE_LKM */
2263 #endif /* MROUTING */
2264