1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/lock.h> 81 #include <sys/ktr.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/module.h> 85 #include <sys/priv.h> 86 #include <sys/protosw.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/sockio.h> 91 #include <sys/sx.h> 92 #include <sys/sysctl.h> 93 #include <sys/syslog.h> 94 #include <sys/systm.h> 95 #include <sys/time.h> 96 97 #include <net/if.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/igmp.h> 104 #include <netinet/in_systm.h> 105 #include <netinet/in_var.h> 106 #include <netinet/ip.h> 107 #include <netinet/ip_encap.h> 108 #include <netinet/ip_mroute.h> 109 #include <netinet/ip_var.h> 110 #include <netinet/ip_options.h> 111 #include <netinet/pim.h> 112 #include <netinet/pim_var.h> 113 #include <netinet/udp.h> 114 115 #include <machine/in_cksum.h> 116 117 #ifndef KTR_IPMF 118 #define KTR_IPMF KTR_INET 119 #endif 120 121 #define VIFI_INVALID ((vifi_t) -1) 122 #define M_HASCL(m) ((m)->m_flags & M_EXT) 123 124 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 125 #define V_last_tv_sec VNET(last_tv_sec) 126 127 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 128 129 /* 130 * Locking. We use two locks: one for the virtual interface table and 131 * one for the forwarding table. These locks may be nested in which case 132 * the VIF lock must always be taken first. Note that each lock is used 133 * to cover not only the specific data structure but also related data 134 * structures. 135 */ 136 137 static struct mtx mrouter_mtx; 138 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 139 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 140 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 141 #define MROUTER_LOCK_INIT() \ 142 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 143 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 144 145 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 146 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 147 148 static VNET_DEFINE(struct mrtstat, mrtstat); 149 #define V_mrtstat VNET(mrtstat) 150 SYSCTL_VNET_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 151 &VNET_NAME(mrtstat), mrtstat, 152 "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 153 "netinet/ip_mroute.h)"); 154 155 static VNET_DEFINE(u_long, mfchash); 156 #define V_mfchash VNET(mfchash) 157 #define MFCHASH(a, g) \ 158 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 159 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 160 #define MFCHASHSIZE 256 161 162 static u_long mfchashsize; /* Hash size */ 163 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 164 #define V_nexpire VNET(nexpire) 165 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 166 #define V_mfchashtbl VNET(mfchashtbl) 167 168 static struct mtx mfc_mtx; 169 #define MFC_LOCK() mtx_lock(&mfc_mtx) 170 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 171 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 172 #define MFC_LOCK_INIT() \ 173 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 174 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 175 176 static VNET_DEFINE(vifi_t, numvifs); 177 #define V_numvifs VNET(numvifs) 178 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 179 #define V_viftable VNET(viftable) 180 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 181 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 182 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 183 184 static struct mtx vif_mtx; 185 #define VIF_LOCK() mtx_lock(&vif_mtx) 186 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 187 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 188 #define VIF_LOCK_INIT() \ 189 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 190 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 191 192 static eventhandler_tag if_detach_event_tag = NULL; 193 194 static VNET_DEFINE(struct callout, expire_upcalls_ch); 195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 196 197 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 198 #define UPCALL_EXPIRE 6 /* number of timeouts */ 199 200 /* 201 * Bandwidth meter variables and constants 202 */ 203 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 204 /* 205 * Pending timeouts are stored in a hash table, the key being the 206 * expiration time. Periodically, the entries are analysed and processed. 207 */ 208 #define BW_METER_BUCKETS 1024 209 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 210 #define V_bw_meter_timers VNET(bw_meter_timers) 211 static VNET_DEFINE(struct callout, bw_meter_ch); 212 #define V_bw_meter_ch VNET(bw_meter_ch) 213 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 214 215 /* 216 * Pending upcalls are stored in a vector which is flushed when 217 * full, or periodically 218 */ 219 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 220 #define V_bw_upcalls VNET(bw_upcalls) 221 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 222 #define V_bw_upcalls_n VNET(bw_upcalls_n) 223 static VNET_DEFINE(struct callout, bw_upcalls_ch); 224 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 225 226 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 227 228 static VNET_DEFINE(struct pimstat, pimstat); 229 #define V_pimstat VNET(pimstat) 230 231 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 232 SYSCTL_VNET_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 233 &VNET_NAME(pimstat), pimstat, 234 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 235 236 static u_long pim_squelch_wholepkt = 0; 237 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 238 &pim_squelch_wholepkt, 0, 239 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 240 241 extern struct domain inetdomain; 242 static const struct protosw in_pim_protosw = { 243 .pr_type = SOCK_RAW, 244 .pr_domain = &inetdomain, 245 .pr_protocol = IPPROTO_PIM, 246 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 247 .pr_input = pim_input, 248 .pr_output = (pr_output_t*)rip_output, 249 .pr_ctloutput = rip_ctloutput, 250 .pr_usrreqs = &rip_usrreqs 251 }; 252 static const struct encaptab *pim_encap_cookie; 253 254 static int pim_encapcheck(const struct mbuf *, int, int, void *); 255 256 /* 257 * Note: the PIM Register encapsulation adds the following in front of a 258 * data packet: 259 * 260 * struct pim_encap_hdr { 261 * struct ip ip; 262 * struct pim_encap_pimhdr pim; 263 * } 264 * 265 */ 266 267 struct pim_encap_pimhdr { 268 struct pim pim; 269 uint32_t flags; 270 }; 271 #define PIM_ENCAP_TTL 64 272 273 static struct ip pim_encap_iphdr = { 274 #if BYTE_ORDER == LITTLE_ENDIAN 275 sizeof(struct ip) >> 2, 276 IPVERSION, 277 #else 278 IPVERSION, 279 sizeof(struct ip) >> 2, 280 #endif 281 0, /* tos */ 282 sizeof(struct ip), /* total length */ 283 0, /* id */ 284 0, /* frag offset */ 285 PIM_ENCAP_TTL, 286 IPPROTO_PIM, 287 0, /* checksum */ 288 }; 289 290 static struct pim_encap_pimhdr pim_encap_pimhdr = { 291 { 292 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 293 0, /* reserved */ 294 0, /* checksum */ 295 }, 296 0 /* flags */ 297 }; 298 299 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 300 #define V_reg_vif_num VNET(reg_vif_num) 301 static VNET_DEFINE(struct ifnet, multicast_register_if); 302 #define V_multicast_register_if VNET(multicast_register_if) 303 304 /* 305 * Private variables. 306 */ 307 308 static u_long X_ip_mcast_src(int); 309 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 310 struct ip_moptions *); 311 static int X_ip_mrouter_done(void); 312 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 313 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 314 static int X_legal_vif_num(int); 315 static int X_mrt_ioctl(u_long, caddr_t, int); 316 317 static int add_bw_upcall(struct bw_upcall *); 318 static int add_mfc(struct mfcctl2 *); 319 static int add_vif(struct vifctl *); 320 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 321 static void bw_meter_process(void); 322 static void bw_meter_receive_packet(struct bw_meter *, int, 323 struct timeval *); 324 static void bw_upcalls_send(void); 325 static int del_bw_upcall(struct bw_upcall *); 326 static int del_mfc(struct mfcctl2 *); 327 static int del_vif(vifi_t); 328 static int del_vif_locked(vifi_t); 329 static void expire_bw_meter_process(void *); 330 static void expire_bw_upcalls_send(void *); 331 static void expire_mfc(struct mfc *); 332 static void expire_upcalls(void *); 333 static void free_bw_list(struct bw_meter *); 334 static int get_sg_cnt(struct sioc_sg_req *); 335 static int get_vif_cnt(struct sioc_vif_req *); 336 static void if_detached_event(void *, struct ifnet *); 337 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 338 static int ip_mrouter_init(struct socket *, int); 339 static __inline struct mfc * 340 mfc_find(struct in_addr *, struct in_addr *); 341 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 342 static struct mbuf * 343 pim_register_prepare(struct ip *, struct mbuf *); 344 static int pim_register_send(struct ip *, struct vif *, 345 struct mbuf *, struct mfc *); 346 static int pim_register_send_rp(struct ip *, struct vif *, 347 struct mbuf *, struct mfc *); 348 static int pim_register_send_upcall(struct ip *, struct vif *, 349 struct mbuf *, struct mfc *); 350 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 351 static void send_packet(struct vif *, struct mbuf *); 352 static int set_api_config(uint32_t *); 353 static int set_assert(int); 354 static int socket_send(struct socket *, struct mbuf *, 355 struct sockaddr_in *); 356 static void unschedule_bw_meter(struct bw_meter *); 357 358 /* 359 * Kernel multicast forwarding API capabilities and setup. 360 * If more API capabilities are added to the kernel, they should be 361 * recorded in `mrt_api_support'. 362 */ 363 #define MRT_API_VERSION 0x0305 364 365 static const int mrt_api_version = MRT_API_VERSION; 366 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 367 MRT_MFC_FLAGS_BORDER_VIF | 368 MRT_MFC_RP | 369 MRT_MFC_BW_UPCALL); 370 static VNET_DEFINE(uint32_t, mrt_api_config); 371 #define V_mrt_api_config VNET(mrt_api_config) 372 static VNET_DEFINE(int, pim_assert_enabled); 373 #define V_pim_assert_enabled VNET(pim_assert_enabled) 374 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 375 376 /* 377 * Find a route for a given origin IP address and multicast group address. 378 * Statistics must be updated by the caller. 379 */ 380 static __inline struct mfc * 381 mfc_find(struct in_addr *o, struct in_addr *g) 382 { 383 struct mfc *rt; 384 385 MFC_LOCK_ASSERT(); 386 387 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 388 if (in_hosteq(rt->mfc_origin, *o) && 389 in_hosteq(rt->mfc_mcastgrp, *g) && 390 TAILQ_EMPTY(&rt->mfc_stall)) 391 break; 392 } 393 394 return (rt); 395 } 396 397 /* 398 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 399 */ 400 static int 401 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 402 { 403 int error, optval; 404 vifi_t vifi; 405 struct vifctl vifc; 406 struct mfcctl2 mfc; 407 struct bw_upcall bw_upcall; 408 uint32_t i; 409 410 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 411 return EPERM; 412 413 error = 0; 414 switch (sopt->sopt_name) { 415 case MRT_INIT: 416 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 417 if (error) 418 break; 419 error = ip_mrouter_init(so, optval); 420 break; 421 422 case MRT_DONE: 423 error = ip_mrouter_done(); 424 break; 425 426 case MRT_ADD_VIF: 427 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 428 if (error) 429 break; 430 error = add_vif(&vifc); 431 break; 432 433 case MRT_DEL_VIF: 434 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 435 if (error) 436 break; 437 error = del_vif(vifi); 438 break; 439 440 case MRT_ADD_MFC: 441 case MRT_DEL_MFC: 442 /* 443 * select data size depending on API version. 444 */ 445 if (sopt->sopt_name == MRT_ADD_MFC && 446 V_mrt_api_config & MRT_API_FLAGS_ALL) { 447 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 448 sizeof(struct mfcctl2)); 449 } else { 450 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 451 sizeof(struct mfcctl)); 452 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 453 sizeof(mfc) - sizeof(struct mfcctl)); 454 } 455 if (error) 456 break; 457 if (sopt->sopt_name == MRT_ADD_MFC) 458 error = add_mfc(&mfc); 459 else 460 error = del_mfc(&mfc); 461 break; 462 463 case MRT_ASSERT: 464 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 465 if (error) 466 break; 467 set_assert(optval); 468 break; 469 470 case MRT_API_CONFIG: 471 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 472 if (!error) 473 error = set_api_config(&i); 474 if (!error) 475 error = sooptcopyout(sopt, &i, sizeof i); 476 break; 477 478 case MRT_ADD_BW_UPCALL: 479 case MRT_DEL_BW_UPCALL: 480 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 481 sizeof bw_upcall); 482 if (error) 483 break; 484 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 485 error = add_bw_upcall(&bw_upcall); 486 else 487 error = del_bw_upcall(&bw_upcall); 488 break; 489 490 default: 491 error = EOPNOTSUPP; 492 break; 493 } 494 return error; 495 } 496 497 /* 498 * Handle MRT getsockopt commands 499 */ 500 static int 501 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 502 { 503 int error; 504 505 switch (sopt->sopt_name) { 506 case MRT_VERSION: 507 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 508 break; 509 510 case MRT_ASSERT: 511 error = sooptcopyout(sopt, &V_pim_assert_enabled, 512 sizeof V_pim_assert_enabled); 513 break; 514 515 case MRT_API_SUPPORT: 516 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 517 break; 518 519 case MRT_API_CONFIG: 520 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 521 break; 522 523 default: 524 error = EOPNOTSUPP; 525 break; 526 } 527 return error; 528 } 529 530 /* 531 * Handle ioctl commands to obtain information from the cache 532 */ 533 static int 534 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 535 { 536 int error = 0; 537 538 /* 539 * Currently the only function calling this ioctl routine is rtioctl(). 540 * Typically, only root can create the raw socket in order to execute 541 * this ioctl method, however the request might be coming from a prison 542 */ 543 error = priv_check(curthread, PRIV_NETINET_MROUTE); 544 if (error) 545 return (error); 546 switch (cmd) { 547 case (SIOCGETVIFCNT): 548 error = get_vif_cnt((struct sioc_vif_req *)data); 549 break; 550 551 case (SIOCGETSGCNT): 552 error = get_sg_cnt((struct sioc_sg_req *)data); 553 break; 554 555 default: 556 error = EINVAL; 557 break; 558 } 559 return error; 560 } 561 562 /* 563 * returns the packet, byte, rpf-failure count for the source group provided 564 */ 565 static int 566 get_sg_cnt(struct sioc_sg_req *req) 567 { 568 struct mfc *rt; 569 570 MFC_LOCK(); 571 rt = mfc_find(&req->src, &req->grp); 572 if (rt == NULL) { 573 MFC_UNLOCK(); 574 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 575 return EADDRNOTAVAIL; 576 } 577 req->pktcnt = rt->mfc_pkt_cnt; 578 req->bytecnt = rt->mfc_byte_cnt; 579 req->wrong_if = rt->mfc_wrong_if; 580 MFC_UNLOCK(); 581 return 0; 582 } 583 584 /* 585 * returns the input and output packet and byte counts on the vif provided 586 */ 587 static int 588 get_vif_cnt(struct sioc_vif_req *req) 589 { 590 vifi_t vifi = req->vifi; 591 592 VIF_LOCK(); 593 if (vifi >= V_numvifs) { 594 VIF_UNLOCK(); 595 return EINVAL; 596 } 597 598 req->icount = V_viftable[vifi].v_pkt_in; 599 req->ocount = V_viftable[vifi].v_pkt_out; 600 req->ibytes = V_viftable[vifi].v_bytes_in; 601 req->obytes = V_viftable[vifi].v_bytes_out; 602 VIF_UNLOCK(); 603 604 return 0; 605 } 606 607 static void 608 if_detached_event(void *arg __unused, struct ifnet *ifp) 609 { 610 vifi_t vifi; 611 int i; 612 613 MROUTER_LOCK(); 614 615 if (V_ip_mrouter == NULL) { 616 MROUTER_UNLOCK(); 617 return; 618 } 619 620 VIF_LOCK(); 621 MFC_LOCK(); 622 623 /* 624 * Tear down multicast forwarder state associated with this ifnet. 625 * 1. Walk the vif list, matching vifs against this ifnet. 626 * 2. Walk the multicast forwarding cache (mfc) looking for 627 * inner matches with this vif's index. 628 * 3. Expire any matching multicast forwarding cache entries. 629 * 4. Free vif state. This should disable ALLMULTI on the interface. 630 */ 631 for (vifi = 0; vifi < V_numvifs; vifi++) { 632 if (V_viftable[vifi].v_ifp != ifp) 633 continue; 634 for (i = 0; i < mfchashsize; i++) { 635 struct mfc *rt, *nrt; 636 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 637 nrt = LIST_NEXT(rt, mfc_hash); 638 if (rt->mfc_parent == vifi) { 639 expire_mfc(rt); 640 } 641 } 642 } 643 del_vif_locked(vifi); 644 } 645 646 MFC_UNLOCK(); 647 VIF_UNLOCK(); 648 649 MROUTER_UNLOCK(); 650 } 651 652 /* 653 * Enable multicast forwarding. 654 */ 655 static int 656 ip_mrouter_init(struct socket *so, int version) 657 { 658 659 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 660 so->so_type, so->so_proto->pr_protocol); 661 662 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 663 return EOPNOTSUPP; 664 665 if (version != 1) 666 return ENOPROTOOPT; 667 668 MROUTER_LOCK(); 669 670 if (ip_mrouter_unloading) { 671 MROUTER_UNLOCK(); 672 return ENOPROTOOPT; 673 } 674 675 if (V_ip_mrouter != NULL) { 676 MROUTER_UNLOCK(); 677 return EADDRINUSE; 678 } 679 680 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 681 HASH_NOWAIT); 682 683 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 684 curvnet); 685 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 686 curvnet); 687 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 688 curvnet); 689 690 V_ip_mrouter = so; 691 ip_mrouter_cnt++; 692 693 MROUTER_UNLOCK(); 694 695 CTR1(KTR_IPMF, "%s: done", __func__); 696 697 return 0; 698 } 699 700 /* 701 * Disable multicast forwarding. 702 */ 703 static int 704 X_ip_mrouter_done(void) 705 { 706 vifi_t vifi; 707 int i; 708 struct ifnet *ifp; 709 struct ifreq ifr; 710 711 MROUTER_LOCK(); 712 713 if (V_ip_mrouter == NULL) { 714 MROUTER_UNLOCK(); 715 return EINVAL; 716 } 717 718 /* 719 * Detach/disable hooks to the reset of the system. 720 */ 721 V_ip_mrouter = NULL; 722 ip_mrouter_cnt--; 723 V_mrt_api_config = 0; 724 725 VIF_LOCK(); 726 727 /* 728 * For each phyint in use, disable promiscuous reception of all IP 729 * multicasts. 730 */ 731 for (vifi = 0; vifi < V_numvifs; vifi++) { 732 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 733 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 734 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 735 736 so->sin_len = sizeof(struct sockaddr_in); 737 so->sin_family = AF_INET; 738 so->sin_addr.s_addr = INADDR_ANY; 739 ifp = V_viftable[vifi].v_ifp; 740 if_allmulti(ifp, 0); 741 } 742 } 743 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 744 V_numvifs = 0; 745 V_pim_assert_enabled = 0; 746 747 VIF_UNLOCK(); 748 749 callout_stop(&V_expire_upcalls_ch); 750 callout_stop(&V_bw_upcalls_ch); 751 callout_stop(&V_bw_meter_ch); 752 753 MFC_LOCK(); 754 755 /* 756 * Free all multicast forwarding cache entries. 757 * Do not use hashdestroy(), as we must perform other cleanup. 758 */ 759 for (i = 0; i < mfchashsize; i++) { 760 struct mfc *rt, *nrt; 761 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 762 nrt = LIST_NEXT(rt, mfc_hash); 763 expire_mfc(rt); 764 } 765 } 766 free(V_mfchashtbl, M_MRTABLE); 767 V_mfchashtbl = NULL; 768 769 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 770 771 V_bw_upcalls_n = 0; 772 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 773 774 MFC_UNLOCK(); 775 776 V_reg_vif_num = VIFI_INVALID; 777 778 MROUTER_UNLOCK(); 779 780 CTR1(KTR_IPMF, "%s: done", __func__); 781 782 return 0; 783 } 784 785 /* 786 * Set PIM assert processing global 787 */ 788 static int 789 set_assert(int i) 790 { 791 if ((i != 1) && (i != 0)) 792 return EINVAL; 793 794 V_pim_assert_enabled = i; 795 796 return 0; 797 } 798 799 /* 800 * Configure API capabilities 801 */ 802 int 803 set_api_config(uint32_t *apival) 804 { 805 int i; 806 807 /* 808 * We can set the API capabilities only if it is the first operation 809 * after MRT_INIT. I.e.: 810 * - there are no vifs installed 811 * - pim_assert is not enabled 812 * - the MFC table is empty 813 */ 814 if (V_numvifs > 0) { 815 *apival = 0; 816 return EPERM; 817 } 818 if (V_pim_assert_enabled) { 819 *apival = 0; 820 return EPERM; 821 } 822 823 MFC_LOCK(); 824 825 for (i = 0; i < mfchashsize; i++) { 826 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 827 *apival = 0; 828 return EPERM; 829 } 830 } 831 832 MFC_UNLOCK(); 833 834 V_mrt_api_config = *apival & mrt_api_support; 835 *apival = V_mrt_api_config; 836 837 return 0; 838 } 839 840 /* 841 * Add a vif to the vif table 842 */ 843 static int 844 add_vif(struct vifctl *vifcp) 845 { 846 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 847 struct sockaddr_in sin = {sizeof sin, AF_INET}; 848 struct ifaddr *ifa; 849 struct ifnet *ifp; 850 int error; 851 852 VIF_LOCK(); 853 if (vifcp->vifc_vifi >= MAXVIFS) { 854 VIF_UNLOCK(); 855 return EINVAL; 856 } 857 /* rate limiting is no longer supported by this code */ 858 if (vifcp->vifc_rate_limit != 0) { 859 log(LOG_ERR, "rate limiting is no longer supported\n"); 860 VIF_UNLOCK(); 861 return EINVAL; 862 } 863 if (!in_nullhost(vifp->v_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRINUSE; 866 } 867 if (in_nullhost(vifcp->vifc_lcl_addr)) { 868 VIF_UNLOCK(); 869 return EADDRNOTAVAIL; 870 } 871 872 /* Find the interface with an address in AF_INET family */ 873 if (vifcp->vifc_flags & VIFF_REGISTER) { 874 /* 875 * XXX: Because VIFF_REGISTER does not really need a valid 876 * local interface (e.g. it could be 127.0.0.2), we don't 877 * check its address. 878 */ 879 ifp = NULL; 880 } else { 881 sin.sin_addr = vifcp->vifc_lcl_addr; 882 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 883 if (ifa == NULL) { 884 VIF_UNLOCK(); 885 return EADDRNOTAVAIL; 886 } 887 ifp = ifa->ifa_ifp; 888 ifa_free(ifa); 889 } 890 891 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 892 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 893 VIF_UNLOCK(); 894 return EOPNOTSUPP; 895 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 896 ifp = &V_multicast_register_if; 897 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 898 if (V_reg_vif_num == VIFI_INVALID) { 899 if_initname(&V_multicast_register_if, "register_vif", 0); 900 V_multicast_register_if.if_flags = IFF_LOOPBACK; 901 V_reg_vif_num = vifcp->vifc_vifi; 902 } 903 } else { /* Make sure the interface supports multicast */ 904 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 905 VIF_UNLOCK(); 906 return EOPNOTSUPP; 907 } 908 909 /* Enable promiscuous reception of all IP multicasts from the if */ 910 error = if_allmulti(ifp, 1); 911 if (error) { 912 VIF_UNLOCK(); 913 return error; 914 } 915 } 916 917 vifp->v_flags = vifcp->vifc_flags; 918 vifp->v_threshold = vifcp->vifc_threshold; 919 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 920 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 921 vifp->v_ifp = ifp; 922 /* initialize per vif pkt counters */ 923 vifp->v_pkt_in = 0; 924 vifp->v_pkt_out = 0; 925 vifp->v_bytes_in = 0; 926 vifp->v_bytes_out = 0; 927 bzero(&vifp->v_route, sizeof(vifp->v_route)); 928 929 /* Adjust numvifs up if the vifi is higher than numvifs */ 930 if (V_numvifs <= vifcp->vifc_vifi) 931 V_numvifs = vifcp->vifc_vifi + 1; 932 933 VIF_UNLOCK(); 934 935 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 936 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr), 937 (int)vifcp->vifc_threshold); 938 939 return 0; 940 } 941 942 /* 943 * Delete a vif from the vif table 944 */ 945 static int 946 del_vif_locked(vifi_t vifi) 947 { 948 struct vif *vifp; 949 950 VIF_LOCK_ASSERT(); 951 952 if (vifi >= V_numvifs) { 953 return EINVAL; 954 } 955 vifp = &V_viftable[vifi]; 956 if (in_nullhost(vifp->v_lcl_addr)) { 957 return EADDRNOTAVAIL; 958 } 959 960 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 961 if_allmulti(vifp->v_ifp, 0); 962 963 if (vifp->v_flags & VIFF_REGISTER) 964 V_reg_vif_num = VIFI_INVALID; 965 966 bzero((caddr_t)vifp, sizeof (*vifp)); 967 968 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 969 970 /* Adjust numvifs down */ 971 for (vifi = V_numvifs; vifi > 0; vifi--) 972 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 973 break; 974 V_numvifs = vifi; 975 976 return 0; 977 } 978 979 static int 980 del_vif(vifi_t vifi) 981 { 982 int cc; 983 984 VIF_LOCK(); 985 cc = del_vif_locked(vifi); 986 VIF_UNLOCK(); 987 988 return cc; 989 } 990 991 /* 992 * update an mfc entry without resetting counters and S,G addresses. 993 */ 994 static void 995 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 996 { 997 int i; 998 999 rt->mfc_parent = mfccp->mfcc_parent; 1000 for (i = 0; i < V_numvifs; i++) { 1001 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1002 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1003 MRT_MFC_FLAGS_ALL; 1004 } 1005 /* set the RP address */ 1006 if (V_mrt_api_config & MRT_MFC_RP) 1007 rt->mfc_rp = mfccp->mfcc_rp; 1008 else 1009 rt->mfc_rp.s_addr = INADDR_ANY; 1010 } 1011 1012 /* 1013 * fully initialize an mfc entry from the parameter. 1014 */ 1015 static void 1016 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1017 { 1018 rt->mfc_origin = mfccp->mfcc_origin; 1019 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1020 1021 update_mfc_params(rt, mfccp); 1022 1023 /* initialize pkt counters per src-grp */ 1024 rt->mfc_pkt_cnt = 0; 1025 rt->mfc_byte_cnt = 0; 1026 rt->mfc_wrong_if = 0; 1027 timevalclear(&rt->mfc_last_assert); 1028 } 1029 1030 static void 1031 expire_mfc(struct mfc *rt) 1032 { 1033 struct rtdetq *rte, *nrte; 1034 1035 MFC_LOCK_ASSERT(); 1036 1037 free_bw_list(rt->mfc_bw_meter); 1038 1039 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1040 m_freem(rte->m); 1041 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1042 free(rte, M_MRTABLE); 1043 } 1044 1045 LIST_REMOVE(rt, mfc_hash); 1046 free(rt, M_MRTABLE); 1047 } 1048 1049 /* 1050 * Add an mfc entry 1051 */ 1052 static int 1053 add_mfc(struct mfcctl2 *mfccp) 1054 { 1055 struct mfc *rt; 1056 struct rtdetq *rte, *nrte; 1057 u_long hash = 0; 1058 u_short nstl; 1059 1060 VIF_LOCK(); 1061 MFC_LOCK(); 1062 1063 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1064 1065 /* If an entry already exists, just update the fields */ 1066 if (rt) { 1067 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1068 __func__, inet_ntoa(mfccp->mfcc_origin), 1069 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1070 mfccp->mfcc_parent); 1071 update_mfc_params(rt, mfccp); 1072 MFC_UNLOCK(); 1073 VIF_UNLOCK(); 1074 return (0); 1075 } 1076 1077 /* 1078 * Find the entry for which the upcall was made and update 1079 */ 1080 nstl = 0; 1081 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1082 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1083 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1084 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1085 !TAILQ_EMPTY(&rt->mfc_stall)) { 1086 CTR5(KTR_IPMF, 1087 "%s: add mfc orig %s group %lx parent %x qh %p", 1088 __func__, inet_ntoa(mfccp->mfcc_origin), 1089 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1090 mfccp->mfcc_parent, 1091 TAILQ_FIRST(&rt->mfc_stall)); 1092 if (nstl++) 1093 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1094 1095 init_mfc_params(rt, mfccp); 1096 rt->mfc_expire = 0; /* Don't clean this guy up */ 1097 V_nexpire[hash]--; 1098 1099 /* Free queued packets, but attempt to forward them first. */ 1100 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1101 if (rte->ifp != NULL) 1102 ip_mdq(rte->m, rte->ifp, rt, -1); 1103 m_freem(rte->m); 1104 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1105 rt->mfc_nstall--; 1106 free(rte, M_MRTABLE); 1107 } 1108 } 1109 } 1110 1111 /* 1112 * It is possible that an entry is being inserted without an upcall 1113 */ 1114 if (nstl == 0) { 1115 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1116 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1117 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1118 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1119 init_mfc_params(rt, mfccp); 1120 if (rt->mfc_expire) 1121 V_nexpire[hash]--; 1122 rt->mfc_expire = 0; 1123 break; /* XXX */ 1124 } 1125 } 1126 1127 if (rt == NULL) { /* no upcall, so make a new entry */ 1128 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1129 if (rt == NULL) { 1130 MFC_UNLOCK(); 1131 VIF_UNLOCK(); 1132 return (ENOBUFS); 1133 } 1134 1135 init_mfc_params(rt, mfccp); 1136 TAILQ_INIT(&rt->mfc_stall); 1137 rt->mfc_nstall = 0; 1138 1139 rt->mfc_expire = 0; 1140 rt->mfc_bw_meter = NULL; 1141 1142 /* insert new entry at head of hash chain */ 1143 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1144 } 1145 } 1146 1147 MFC_UNLOCK(); 1148 VIF_UNLOCK(); 1149 1150 return (0); 1151 } 1152 1153 /* 1154 * Delete an mfc entry 1155 */ 1156 static int 1157 del_mfc(struct mfcctl2 *mfccp) 1158 { 1159 struct in_addr origin; 1160 struct in_addr mcastgrp; 1161 struct mfc *rt; 1162 1163 origin = mfccp->mfcc_origin; 1164 mcastgrp = mfccp->mfcc_mcastgrp; 1165 1166 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1167 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr)); 1168 1169 MFC_LOCK(); 1170 1171 rt = mfc_find(&origin, &mcastgrp); 1172 if (rt == NULL) { 1173 MFC_UNLOCK(); 1174 return EADDRNOTAVAIL; 1175 } 1176 1177 /* 1178 * free the bw_meter entries 1179 */ 1180 free_bw_list(rt->mfc_bw_meter); 1181 rt->mfc_bw_meter = NULL; 1182 1183 LIST_REMOVE(rt, mfc_hash); 1184 free(rt, M_MRTABLE); 1185 1186 MFC_UNLOCK(); 1187 1188 return (0); 1189 } 1190 1191 /* 1192 * Send a message to the routing daemon on the multicast routing socket. 1193 */ 1194 static int 1195 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1196 { 1197 if (s) { 1198 SOCKBUF_LOCK(&s->so_rcv); 1199 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1200 NULL) != 0) { 1201 sorwakeup_locked(s); 1202 return 0; 1203 } 1204 SOCKBUF_UNLOCK(&s->so_rcv); 1205 } 1206 m_freem(mm); 1207 return -1; 1208 } 1209 1210 /* 1211 * IP multicast forwarding function. This function assumes that the packet 1212 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1213 * pointed to by "ifp", and the packet is to be relayed to other networks 1214 * that have members of the packet's destination IP multicast group. 1215 * 1216 * The packet is returned unscathed to the caller, unless it is 1217 * erroneous, in which case a non-zero return value tells the caller to 1218 * discard it. 1219 */ 1220 1221 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1222 1223 static int 1224 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1225 struct ip_moptions *imo) 1226 { 1227 struct mfc *rt; 1228 int error; 1229 vifi_t vifi; 1230 1231 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1232 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1233 1234 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1235 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1236 /* 1237 * Packet arrived via a physical interface or 1238 * an encapsulated tunnel or a register_vif. 1239 */ 1240 } else { 1241 /* 1242 * Packet arrived through a source-route tunnel. 1243 * Source-route tunnels are no longer supported. 1244 */ 1245 return (1); 1246 } 1247 1248 VIF_LOCK(); 1249 MFC_LOCK(); 1250 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1251 if (ip->ip_ttl < MAXTTL) 1252 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1253 error = ip_mdq(m, ifp, NULL, vifi); 1254 MFC_UNLOCK(); 1255 VIF_UNLOCK(); 1256 return error; 1257 } 1258 1259 /* 1260 * Don't forward a packet with time-to-live of zero or one, 1261 * or a packet destined to a local-only group. 1262 */ 1263 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1264 MFC_UNLOCK(); 1265 VIF_UNLOCK(); 1266 return 0; 1267 } 1268 1269 /* 1270 * Determine forwarding vifs from the forwarding cache table 1271 */ 1272 MRTSTAT_INC(mrts_mfc_lookups); 1273 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1274 1275 /* Entry exists, so forward if necessary */ 1276 if (rt != NULL) { 1277 error = ip_mdq(m, ifp, rt, -1); 1278 MFC_UNLOCK(); 1279 VIF_UNLOCK(); 1280 return error; 1281 } else { 1282 /* 1283 * If we don't have a route for packet's origin, 1284 * Make a copy of the packet & send message to routing daemon 1285 */ 1286 1287 struct mbuf *mb0; 1288 struct rtdetq *rte; 1289 u_long hash; 1290 int hlen = ip->ip_hl << 2; 1291 1292 MRTSTAT_INC(mrts_mfc_misses); 1293 MRTSTAT_INC(mrts_no_route); 1294 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1295 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr)); 1296 1297 /* 1298 * Allocate mbufs early so that we don't do extra work if we are 1299 * just going to fail anyway. Make sure to pullup the header so 1300 * that other people can't step on it. 1301 */ 1302 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1303 M_NOWAIT|M_ZERO); 1304 if (rte == NULL) { 1305 MFC_UNLOCK(); 1306 VIF_UNLOCK(); 1307 return ENOBUFS; 1308 } 1309 1310 mb0 = m_copypacket(m, M_DONTWAIT); 1311 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1312 mb0 = m_pullup(mb0, hlen); 1313 if (mb0 == NULL) { 1314 free(rte, M_MRTABLE); 1315 MFC_UNLOCK(); 1316 VIF_UNLOCK(); 1317 return ENOBUFS; 1318 } 1319 1320 /* is there an upcall waiting for this flow ? */ 1321 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1322 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1323 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1324 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1325 !TAILQ_EMPTY(&rt->mfc_stall)) 1326 break; 1327 } 1328 1329 if (rt == NULL) { 1330 int i; 1331 struct igmpmsg *im; 1332 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1333 struct mbuf *mm; 1334 1335 /* 1336 * Locate the vifi for the incoming interface for this packet. 1337 * If none found, drop packet. 1338 */ 1339 for (vifi = 0; vifi < V_numvifs && 1340 V_viftable[vifi].v_ifp != ifp; vifi++) 1341 ; 1342 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1343 goto non_fatal; 1344 1345 /* no upcall, so make a new entry */ 1346 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1347 if (rt == NULL) 1348 goto fail; 1349 1350 /* Make a copy of the header to send to the user level process */ 1351 mm = m_copy(mb0, 0, hlen); 1352 if (mm == NULL) 1353 goto fail1; 1354 1355 /* 1356 * Send message to routing daemon to install 1357 * a route into the kernel table 1358 */ 1359 1360 im = mtod(mm, struct igmpmsg *); 1361 im->im_msgtype = IGMPMSG_NOCACHE; 1362 im->im_mbz = 0; 1363 im->im_vif = vifi; 1364 1365 MRTSTAT_INC(mrts_upcalls); 1366 1367 k_igmpsrc.sin_addr = ip->ip_src; 1368 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1369 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1370 MRTSTAT_INC(mrts_upq_sockfull); 1371 fail1: 1372 free(rt, M_MRTABLE); 1373 fail: 1374 free(rte, M_MRTABLE); 1375 m_freem(mb0); 1376 MFC_UNLOCK(); 1377 VIF_UNLOCK(); 1378 return ENOBUFS; 1379 } 1380 1381 /* insert new entry at head of hash chain */ 1382 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1383 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1384 rt->mfc_expire = UPCALL_EXPIRE; 1385 V_nexpire[hash]++; 1386 for (i = 0; i < V_numvifs; i++) { 1387 rt->mfc_ttls[i] = 0; 1388 rt->mfc_flags[i] = 0; 1389 } 1390 rt->mfc_parent = -1; 1391 1392 /* clear the RP address */ 1393 rt->mfc_rp.s_addr = INADDR_ANY; 1394 rt->mfc_bw_meter = NULL; 1395 1396 /* initialize pkt counters per src-grp */ 1397 rt->mfc_pkt_cnt = 0; 1398 rt->mfc_byte_cnt = 0; 1399 rt->mfc_wrong_if = 0; 1400 timevalclear(&rt->mfc_last_assert); 1401 1402 TAILQ_INIT(&rt->mfc_stall); 1403 rt->mfc_nstall = 0; 1404 1405 /* link into table */ 1406 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1407 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1408 rt->mfc_nstall++; 1409 1410 } else { 1411 /* determine if queue has overflowed */ 1412 if (rt->mfc_nstall > MAX_UPQ) { 1413 MRTSTAT_INC(mrts_upq_ovflw); 1414 non_fatal: 1415 free(rte, M_MRTABLE); 1416 m_freem(mb0); 1417 MFC_UNLOCK(); 1418 VIF_UNLOCK(); 1419 return (0); 1420 } 1421 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1422 rt->mfc_nstall++; 1423 } 1424 1425 rte->m = mb0; 1426 rte->ifp = ifp; 1427 1428 MFC_UNLOCK(); 1429 VIF_UNLOCK(); 1430 1431 return 0; 1432 } 1433 } 1434 1435 /* 1436 * Clean up the cache entry if upcall is not serviced 1437 */ 1438 static void 1439 expire_upcalls(void *arg) 1440 { 1441 int i; 1442 1443 CURVNET_SET((struct vnet *) arg); 1444 1445 MFC_LOCK(); 1446 1447 for (i = 0; i < mfchashsize; i++) { 1448 struct mfc *rt, *nrt; 1449 1450 if (V_nexpire[i] == 0) 1451 continue; 1452 1453 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) { 1454 nrt = LIST_NEXT(rt, mfc_hash); 1455 1456 if (TAILQ_EMPTY(&rt->mfc_stall)) 1457 continue; 1458 1459 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1460 continue; 1461 1462 /* 1463 * free the bw_meter entries 1464 */ 1465 while (rt->mfc_bw_meter != NULL) { 1466 struct bw_meter *x = rt->mfc_bw_meter; 1467 1468 rt->mfc_bw_meter = x->bm_mfc_next; 1469 free(x, M_BWMETER); 1470 } 1471 1472 MRTSTAT_INC(mrts_cache_cleanups); 1473 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1474 (u_long)ntohl(rt->mfc_origin.s_addr), 1475 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1476 1477 expire_mfc(rt); 1478 } 1479 } 1480 1481 MFC_UNLOCK(); 1482 1483 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1484 curvnet); 1485 1486 CURVNET_RESTORE(); 1487 } 1488 1489 /* 1490 * Packet forwarding routine once entry in the cache is made 1491 */ 1492 static int 1493 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1494 { 1495 struct ip *ip = mtod(m, struct ip *); 1496 vifi_t vifi; 1497 int plen = ip->ip_len; 1498 1499 VIF_LOCK_ASSERT(); 1500 1501 /* 1502 * If xmt_vif is not -1, send on only the requested vif. 1503 * 1504 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1505 */ 1506 if (xmt_vif < V_numvifs) { 1507 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1508 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1509 else 1510 phyint_send(ip, V_viftable + xmt_vif, m); 1511 return 1; 1512 } 1513 1514 /* 1515 * Don't forward if it didn't arrive from the parent vif for its origin. 1516 */ 1517 vifi = rt->mfc_parent; 1518 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1519 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1520 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1521 MRTSTAT_INC(mrts_wrong_if); 1522 ++rt->mfc_wrong_if; 1523 /* 1524 * If we are doing PIM assert processing, send a message 1525 * to the routing daemon. 1526 * 1527 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1528 * can complete the SPT switch, regardless of the type 1529 * of the iif (broadcast media, GRE tunnel, etc). 1530 */ 1531 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1532 V_viftable[vifi].v_ifp) { 1533 1534 if (ifp == &V_multicast_register_if) 1535 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1536 1537 /* Get vifi for the incoming packet */ 1538 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1539 vifi++) 1540 ; 1541 if (vifi >= V_numvifs) 1542 return 0; /* The iif is not found: ignore the packet. */ 1543 1544 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1545 return 0; /* WRONGVIF disabled: ignore the packet */ 1546 1547 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1548 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1549 struct igmpmsg *im; 1550 int hlen = ip->ip_hl << 2; 1551 struct mbuf *mm = m_copy(m, 0, hlen); 1552 1553 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1554 mm = m_pullup(mm, hlen); 1555 if (mm == NULL) 1556 return ENOBUFS; 1557 1558 im = mtod(mm, struct igmpmsg *); 1559 im->im_msgtype = IGMPMSG_WRONGVIF; 1560 im->im_mbz = 0; 1561 im->im_vif = vifi; 1562 1563 MRTSTAT_INC(mrts_upcalls); 1564 1565 k_igmpsrc.sin_addr = im->im_src; 1566 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1567 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1568 MRTSTAT_INC(mrts_upq_sockfull); 1569 return ENOBUFS; 1570 } 1571 } 1572 } 1573 return 0; 1574 } 1575 1576 1577 /* If I sourced this packet, it counts as output, else it was input. */ 1578 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1579 V_viftable[vifi].v_pkt_out++; 1580 V_viftable[vifi].v_bytes_out += plen; 1581 } else { 1582 V_viftable[vifi].v_pkt_in++; 1583 V_viftable[vifi].v_bytes_in += plen; 1584 } 1585 rt->mfc_pkt_cnt++; 1586 rt->mfc_byte_cnt += plen; 1587 1588 /* 1589 * For each vif, decide if a copy of the packet should be forwarded. 1590 * Forward if: 1591 * - the ttl exceeds the vif's threshold 1592 * - there are group members downstream on interface 1593 */ 1594 for (vifi = 0; vifi < V_numvifs; vifi++) 1595 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1596 V_viftable[vifi].v_pkt_out++; 1597 V_viftable[vifi].v_bytes_out += plen; 1598 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1599 pim_register_send(ip, V_viftable + vifi, m, rt); 1600 else 1601 phyint_send(ip, V_viftable + vifi, m); 1602 } 1603 1604 /* 1605 * Perform upcall-related bw measuring. 1606 */ 1607 if (rt->mfc_bw_meter != NULL) { 1608 struct bw_meter *x; 1609 struct timeval now; 1610 1611 microtime(&now); 1612 MFC_LOCK_ASSERT(); 1613 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1614 bw_meter_receive_packet(x, plen, &now); 1615 } 1616 1617 return 0; 1618 } 1619 1620 /* 1621 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1622 */ 1623 static int 1624 X_legal_vif_num(int vif) 1625 { 1626 int ret; 1627 1628 ret = 0; 1629 if (vif < 0) 1630 return (ret); 1631 1632 VIF_LOCK(); 1633 if (vif < V_numvifs) 1634 ret = 1; 1635 VIF_UNLOCK(); 1636 1637 return (ret); 1638 } 1639 1640 /* 1641 * Return the local address used by this vif 1642 */ 1643 static u_long 1644 X_ip_mcast_src(int vifi) 1645 { 1646 in_addr_t addr; 1647 1648 addr = INADDR_ANY; 1649 if (vifi < 0) 1650 return (addr); 1651 1652 VIF_LOCK(); 1653 if (vifi < V_numvifs) 1654 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1655 VIF_UNLOCK(); 1656 1657 return (addr); 1658 } 1659 1660 static void 1661 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1662 { 1663 struct mbuf *mb_copy; 1664 int hlen = ip->ip_hl << 2; 1665 1666 VIF_LOCK_ASSERT(); 1667 1668 /* 1669 * Make a new reference to the packet; make sure that 1670 * the IP header is actually copied, not just referenced, 1671 * so that ip_output() only scribbles on the copy. 1672 */ 1673 mb_copy = m_copypacket(m, M_DONTWAIT); 1674 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1675 mb_copy = m_pullup(mb_copy, hlen); 1676 if (mb_copy == NULL) 1677 return; 1678 1679 send_packet(vifp, mb_copy); 1680 } 1681 1682 static void 1683 send_packet(struct vif *vifp, struct mbuf *m) 1684 { 1685 struct ip_moptions imo; 1686 struct in_multi *imm[2]; 1687 int error; 1688 1689 VIF_LOCK_ASSERT(); 1690 1691 imo.imo_multicast_ifp = vifp->v_ifp; 1692 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1693 imo.imo_multicast_loop = 1; 1694 imo.imo_multicast_vif = -1; 1695 imo.imo_num_memberships = 0; 1696 imo.imo_max_memberships = 2; 1697 imo.imo_membership = &imm[0]; 1698 1699 /* 1700 * Re-entrancy should not be a problem here, because 1701 * the packets that we send out and are looped back at us 1702 * should get rejected because they appear to come from 1703 * the loopback interface, thus preventing looping. 1704 */ 1705 error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL); 1706 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1707 (ptrdiff_t)(vifp - V_viftable), error); 1708 } 1709 1710 /* 1711 * Stubs for old RSVP socket shim implementation. 1712 */ 1713 1714 static int 1715 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1716 { 1717 1718 return (EOPNOTSUPP); 1719 } 1720 1721 static void 1722 X_ip_rsvp_force_done(struct socket *so __unused) 1723 { 1724 1725 } 1726 1727 static void 1728 X_rsvp_input(struct mbuf *m, int off __unused) 1729 { 1730 1731 if (!V_rsvp_on) 1732 m_freem(m); 1733 } 1734 1735 /* 1736 * Code for bandwidth monitors 1737 */ 1738 1739 /* 1740 * Define common interface for timeval-related methods 1741 */ 1742 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1743 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1744 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1745 1746 static uint32_t 1747 compute_bw_meter_flags(struct bw_upcall *req) 1748 { 1749 uint32_t flags = 0; 1750 1751 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1752 flags |= BW_METER_UNIT_PACKETS; 1753 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1754 flags |= BW_METER_UNIT_BYTES; 1755 if (req->bu_flags & BW_UPCALL_GEQ) 1756 flags |= BW_METER_GEQ; 1757 if (req->bu_flags & BW_UPCALL_LEQ) 1758 flags |= BW_METER_LEQ; 1759 1760 return flags; 1761 } 1762 1763 /* 1764 * Add a bw_meter entry 1765 */ 1766 static int 1767 add_bw_upcall(struct bw_upcall *req) 1768 { 1769 struct mfc *mfc; 1770 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1771 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1772 struct timeval now; 1773 struct bw_meter *x; 1774 uint32_t flags; 1775 1776 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1777 return EOPNOTSUPP; 1778 1779 /* Test if the flags are valid */ 1780 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1781 return EINVAL; 1782 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1783 return EINVAL; 1784 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1785 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1786 return EINVAL; 1787 1788 /* Test if the threshold time interval is valid */ 1789 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1790 return EINVAL; 1791 1792 flags = compute_bw_meter_flags(req); 1793 1794 /* 1795 * Find if we have already same bw_meter entry 1796 */ 1797 MFC_LOCK(); 1798 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1799 if (mfc == NULL) { 1800 MFC_UNLOCK(); 1801 return EADDRNOTAVAIL; 1802 } 1803 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1804 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1805 &req->bu_threshold.b_time, ==)) && 1806 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1807 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1808 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1809 MFC_UNLOCK(); 1810 return 0; /* XXX Already installed */ 1811 } 1812 } 1813 1814 /* Allocate the new bw_meter entry */ 1815 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1816 if (x == NULL) { 1817 MFC_UNLOCK(); 1818 return ENOBUFS; 1819 } 1820 1821 /* Set the new bw_meter entry */ 1822 x->bm_threshold.b_time = req->bu_threshold.b_time; 1823 microtime(&now); 1824 x->bm_start_time = now; 1825 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1826 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1827 x->bm_measured.b_packets = 0; 1828 x->bm_measured.b_bytes = 0; 1829 x->bm_flags = flags; 1830 x->bm_time_next = NULL; 1831 x->bm_time_hash = BW_METER_BUCKETS; 1832 1833 /* Add the new bw_meter entry to the front of entries for this MFC */ 1834 x->bm_mfc = mfc; 1835 x->bm_mfc_next = mfc->mfc_bw_meter; 1836 mfc->mfc_bw_meter = x; 1837 schedule_bw_meter(x, &now); 1838 MFC_UNLOCK(); 1839 1840 return 0; 1841 } 1842 1843 static void 1844 free_bw_list(struct bw_meter *list) 1845 { 1846 while (list != NULL) { 1847 struct bw_meter *x = list; 1848 1849 list = list->bm_mfc_next; 1850 unschedule_bw_meter(x); 1851 free(x, M_BWMETER); 1852 } 1853 } 1854 1855 /* 1856 * Delete one or multiple bw_meter entries 1857 */ 1858 static int 1859 del_bw_upcall(struct bw_upcall *req) 1860 { 1861 struct mfc *mfc; 1862 struct bw_meter *x; 1863 1864 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1865 return EOPNOTSUPP; 1866 1867 MFC_LOCK(); 1868 1869 /* Find the corresponding MFC entry */ 1870 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1871 if (mfc == NULL) { 1872 MFC_UNLOCK(); 1873 return EADDRNOTAVAIL; 1874 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1875 /* 1876 * Delete all bw_meter entries for this mfc 1877 */ 1878 struct bw_meter *list; 1879 1880 list = mfc->mfc_bw_meter; 1881 mfc->mfc_bw_meter = NULL; 1882 free_bw_list(list); 1883 MFC_UNLOCK(); 1884 return 0; 1885 } else { /* Delete a single bw_meter entry */ 1886 struct bw_meter *prev; 1887 uint32_t flags = 0; 1888 1889 flags = compute_bw_meter_flags(req); 1890 1891 /* Find the bw_meter entry to delete */ 1892 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1893 prev = x, x = x->bm_mfc_next) { 1894 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1895 &req->bu_threshold.b_time, ==)) && 1896 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1897 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1898 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1899 break; 1900 } 1901 if (x != NULL) { /* Delete entry from the list for this MFC */ 1902 if (prev != NULL) 1903 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1904 else 1905 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1906 1907 unschedule_bw_meter(x); 1908 MFC_UNLOCK(); 1909 /* Free the bw_meter entry */ 1910 free(x, M_BWMETER); 1911 return 0; 1912 } else { 1913 MFC_UNLOCK(); 1914 return EINVAL; 1915 } 1916 } 1917 /* NOTREACHED */ 1918 } 1919 1920 /* 1921 * Perform bandwidth measurement processing that may result in an upcall 1922 */ 1923 static void 1924 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1925 { 1926 struct timeval delta; 1927 1928 MFC_LOCK_ASSERT(); 1929 1930 delta = *nowp; 1931 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1932 1933 if (x->bm_flags & BW_METER_GEQ) { 1934 /* 1935 * Processing for ">=" type of bw_meter entry 1936 */ 1937 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1938 /* Reset the bw_meter entry */ 1939 x->bm_start_time = *nowp; 1940 x->bm_measured.b_packets = 0; 1941 x->bm_measured.b_bytes = 0; 1942 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1943 } 1944 1945 /* Record that a packet is received */ 1946 x->bm_measured.b_packets++; 1947 x->bm_measured.b_bytes += plen; 1948 1949 /* 1950 * Test if we should deliver an upcall 1951 */ 1952 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1953 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1954 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1955 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1956 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1957 /* Prepare an upcall for delivery */ 1958 bw_meter_prepare_upcall(x, nowp); 1959 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1960 } 1961 } 1962 } else if (x->bm_flags & BW_METER_LEQ) { 1963 /* 1964 * Processing for "<=" type of bw_meter entry 1965 */ 1966 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1967 /* 1968 * We are behind time with the multicast forwarding table 1969 * scanning for "<=" type of bw_meter entries, so test now 1970 * if we should deliver an upcall. 1971 */ 1972 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1973 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1974 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1975 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1976 /* Prepare an upcall for delivery */ 1977 bw_meter_prepare_upcall(x, nowp); 1978 } 1979 /* Reschedule the bw_meter entry */ 1980 unschedule_bw_meter(x); 1981 schedule_bw_meter(x, nowp); 1982 } 1983 1984 /* Record that a packet is received */ 1985 x->bm_measured.b_packets++; 1986 x->bm_measured.b_bytes += plen; 1987 1988 /* 1989 * Test if we should restart the measuring interval 1990 */ 1991 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1992 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1993 (x->bm_flags & BW_METER_UNIT_BYTES && 1994 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1995 /* Don't restart the measuring interval */ 1996 } else { 1997 /* Do restart the measuring interval */ 1998 /* 1999 * XXX: note that we don't unschedule and schedule, because this 2000 * might be too much overhead per packet. Instead, when we process 2001 * all entries for a given timer hash bin, we check whether it is 2002 * really a timeout. If not, we reschedule at that time. 2003 */ 2004 x->bm_start_time = *nowp; 2005 x->bm_measured.b_packets = 0; 2006 x->bm_measured.b_bytes = 0; 2007 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2008 } 2009 } 2010 } 2011 2012 /* 2013 * Prepare a bandwidth-related upcall 2014 */ 2015 static void 2016 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2017 { 2018 struct timeval delta; 2019 struct bw_upcall *u; 2020 2021 MFC_LOCK_ASSERT(); 2022 2023 /* 2024 * Compute the measured time interval 2025 */ 2026 delta = *nowp; 2027 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2028 2029 /* 2030 * If there are too many pending upcalls, deliver them now 2031 */ 2032 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2033 bw_upcalls_send(); 2034 2035 /* 2036 * Set the bw_upcall entry 2037 */ 2038 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2039 u->bu_src = x->bm_mfc->mfc_origin; 2040 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2041 u->bu_threshold.b_time = x->bm_threshold.b_time; 2042 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2043 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2044 u->bu_measured.b_time = delta; 2045 u->bu_measured.b_packets = x->bm_measured.b_packets; 2046 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2047 u->bu_flags = 0; 2048 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2049 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2050 if (x->bm_flags & BW_METER_UNIT_BYTES) 2051 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2052 if (x->bm_flags & BW_METER_GEQ) 2053 u->bu_flags |= BW_UPCALL_GEQ; 2054 if (x->bm_flags & BW_METER_LEQ) 2055 u->bu_flags |= BW_UPCALL_LEQ; 2056 } 2057 2058 /* 2059 * Send the pending bandwidth-related upcalls 2060 */ 2061 static void 2062 bw_upcalls_send(void) 2063 { 2064 struct mbuf *m; 2065 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2066 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2067 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2068 0, /* unused2 */ 2069 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2070 0, /* im_mbz */ 2071 0, /* im_vif */ 2072 0, /* unused3 */ 2073 { 0 }, /* im_src */ 2074 { 0 } }; /* im_dst */ 2075 2076 MFC_LOCK_ASSERT(); 2077 2078 if (V_bw_upcalls_n == 0) 2079 return; /* No pending upcalls */ 2080 2081 V_bw_upcalls_n = 0; 2082 2083 /* 2084 * Allocate a new mbuf, initialize it with the header and 2085 * the payload for the pending calls. 2086 */ 2087 MGETHDR(m, M_DONTWAIT, MT_DATA); 2088 if (m == NULL) { 2089 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2090 return; 2091 } 2092 2093 m->m_len = m->m_pkthdr.len = 0; 2094 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2095 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2096 2097 /* 2098 * Send the upcalls 2099 * XXX do we need to set the address in k_igmpsrc ? 2100 */ 2101 MRTSTAT_INC(mrts_upcalls); 2102 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2103 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2104 MRTSTAT_INC(mrts_upq_sockfull); 2105 } 2106 } 2107 2108 /* 2109 * Compute the timeout hash value for the bw_meter entries 2110 */ 2111 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2112 do { \ 2113 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2114 \ 2115 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2116 (hash) = next_timeval.tv_sec; \ 2117 if (next_timeval.tv_usec) \ 2118 (hash)++; /* XXX: make sure we don't timeout early */ \ 2119 (hash) %= BW_METER_BUCKETS; \ 2120 } while (0) 2121 2122 /* 2123 * Schedule a timer to process periodically bw_meter entry of type "<=" 2124 * by linking the entry in the proper hash bucket. 2125 */ 2126 static void 2127 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2128 { 2129 int time_hash; 2130 2131 MFC_LOCK_ASSERT(); 2132 2133 if (!(x->bm_flags & BW_METER_LEQ)) 2134 return; /* XXX: we schedule timers only for "<=" entries */ 2135 2136 /* 2137 * Reset the bw_meter entry 2138 */ 2139 x->bm_start_time = *nowp; 2140 x->bm_measured.b_packets = 0; 2141 x->bm_measured.b_bytes = 0; 2142 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2143 2144 /* 2145 * Compute the timeout hash value and insert the entry 2146 */ 2147 BW_METER_TIMEHASH(x, time_hash); 2148 x->bm_time_next = V_bw_meter_timers[time_hash]; 2149 V_bw_meter_timers[time_hash] = x; 2150 x->bm_time_hash = time_hash; 2151 } 2152 2153 /* 2154 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2155 * by removing the entry from the proper hash bucket. 2156 */ 2157 static void 2158 unschedule_bw_meter(struct bw_meter *x) 2159 { 2160 int time_hash; 2161 struct bw_meter *prev, *tmp; 2162 2163 MFC_LOCK_ASSERT(); 2164 2165 if (!(x->bm_flags & BW_METER_LEQ)) 2166 return; /* XXX: we schedule timers only for "<=" entries */ 2167 2168 /* 2169 * Compute the timeout hash value and delete the entry 2170 */ 2171 time_hash = x->bm_time_hash; 2172 if (time_hash >= BW_METER_BUCKETS) 2173 return; /* Entry was not scheduled */ 2174 2175 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2176 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2177 if (tmp == x) 2178 break; 2179 2180 if (tmp == NULL) 2181 panic("unschedule_bw_meter: bw_meter entry not found"); 2182 2183 if (prev != NULL) 2184 prev->bm_time_next = x->bm_time_next; 2185 else 2186 V_bw_meter_timers[time_hash] = x->bm_time_next; 2187 2188 x->bm_time_next = NULL; 2189 x->bm_time_hash = BW_METER_BUCKETS; 2190 } 2191 2192 2193 /* 2194 * Process all "<=" type of bw_meter that should be processed now, 2195 * and for each entry prepare an upcall if necessary. Each processed 2196 * entry is rescheduled again for the (periodic) processing. 2197 * 2198 * This is run periodically (once per second normally). On each round, 2199 * all the potentially matching entries are in the hash slot that we are 2200 * looking at. 2201 */ 2202 static void 2203 bw_meter_process() 2204 { 2205 uint32_t loops; 2206 int i; 2207 struct timeval now, process_endtime; 2208 2209 microtime(&now); 2210 if (V_last_tv_sec == now.tv_sec) 2211 return; /* nothing to do */ 2212 2213 loops = now.tv_sec - V_last_tv_sec; 2214 V_last_tv_sec = now.tv_sec; 2215 if (loops > BW_METER_BUCKETS) 2216 loops = BW_METER_BUCKETS; 2217 2218 MFC_LOCK(); 2219 /* 2220 * Process all bins of bw_meter entries from the one after the last 2221 * processed to the current one. On entry, i points to the last bucket 2222 * visited, so we need to increment i at the beginning of the loop. 2223 */ 2224 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2225 struct bw_meter *x, *tmp_list; 2226 2227 if (++i >= BW_METER_BUCKETS) 2228 i = 0; 2229 2230 /* Disconnect the list of bw_meter entries from the bin */ 2231 tmp_list = V_bw_meter_timers[i]; 2232 V_bw_meter_timers[i] = NULL; 2233 2234 /* Process the list of bw_meter entries */ 2235 while (tmp_list != NULL) { 2236 x = tmp_list; 2237 tmp_list = tmp_list->bm_time_next; 2238 2239 /* Test if the time interval is over */ 2240 process_endtime = x->bm_start_time; 2241 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2242 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2243 /* Not yet: reschedule, but don't reset */ 2244 int time_hash; 2245 2246 BW_METER_TIMEHASH(x, time_hash); 2247 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2248 /* 2249 * XXX: somehow the bin processing is a bit ahead of time. 2250 * Put the entry in the next bin. 2251 */ 2252 if (++time_hash >= BW_METER_BUCKETS) 2253 time_hash = 0; 2254 } 2255 x->bm_time_next = V_bw_meter_timers[time_hash]; 2256 V_bw_meter_timers[time_hash] = x; 2257 x->bm_time_hash = time_hash; 2258 2259 continue; 2260 } 2261 2262 /* 2263 * Test if we should deliver an upcall 2264 */ 2265 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2266 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2267 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2268 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2269 /* Prepare an upcall for delivery */ 2270 bw_meter_prepare_upcall(x, &now); 2271 } 2272 2273 /* 2274 * Reschedule for next processing 2275 */ 2276 schedule_bw_meter(x, &now); 2277 } 2278 } 2279 2280 /* Send all upcalls that are pending delivery */ 2281 bw_upcalls_send(); 2282 2283 MFC_UNLOCK(); 2284 } 2285 2286 /* 2287 * A periodic function for sending all upcalls that are pending delivery 2288 */ 2289 static void 2290 expire_bw_upcalls_send(void *arg) 2291 { 2292 CURVNET_SET((struct vnet *) arg); 2293 2294 MFC_LOCK(); 2295 bw_upcalls_send(); 2296 MFC_UNLOCK(); 2297 2298 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2299 curvnet); 2300 CURVNET_RESTORE(); 2301 } 2302 2303 /* 2304 * A periodic function for periodic scanning of the multicast forwarding 2305 * table for processing all "<=" bw_meter entries. 2306 */ 2307 static void 2308 expire_bw_meter_process(void *arg) 2309 { 2310 CURVNET_SET((struct vnet *) arg); 2311 2312 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2313 bw_meter_process(); 2314 2315 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2316 curvnet); 2317 CURVNET_RESTORE(); 2318 } 2319 2320 /* 2321 * End of bandwidth monitoring code 2322 */ 2323 2324 /* 2325 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2326 * 2327 */ 2328 static int 2329 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2330 struct mfc *rt) 2331 { 2332 struct mbuf *mb_copy, *mm; 2333 2334 /* 2335 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2336 * rendezvous point was unspecified, and we were told not to. 2337 */ 2338 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2339 in_nullhost(rt->mfc_rp)) 2340 return 0; 2341 2342 mb_copy = pim_register_prepare(ip, m); 2343 if (mb_copy == NULL) 2344 return ENOBUFS; 2345 2346 /* 2347 * Send all the fragments. Note that the mbuf for each fragment 2348 * is freed by the sending machinery. 2349 */ 2350 for (mm = mb_copy; mm; mm = mb_copy) { 2351 mb_copy = mm->m_nextpkt; 2352 mm->m_nextpkt = 0; 2353 mm = m_pullup(mm, sizeof(struct ip)); 2354 if (mm != NULL) { 2355 ip = mtod(mm, struct ip *); 2356 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2357 pim_register_send_rp(ip, vifp, mm, rt); 2358 } else { 2359 pim_register_send_upcall(ip, vifp, mm, rt); 2360 } 2361 } 2362 } 2363 2364 return 0; 2365 } 2366 2367 /* 2368 * Return a copy of the data packet that is ready for PIM Register 2369 * encapsulation. 2370 * XXX: Note that in the returned copy the IP header is a valid one. 2371 */ 2372 static struct mbuf * 2373 pim_register_prepare(struct ip *ip, struct mbuf *m) 2374 { 2375 struct mbuf *mb_copy = NULL; 2376 int mtu; 2377 2378 /* Take care of delayed checksums */ 2379 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2380 in_delayed_cksum(m); 2381 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2382 } 2383 2384 /* 2385 * Copy the old packet & pullup its IP header into the 2386 * new mbuf so we can modify it. 2387 */ 2388 mb_copy = m_copypacket(m, M_DONTWAIT); 2389 if (mb_copy == NULL) 2390 return NULL; 2391 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2392 if (mb_copy == NULL) 2393 return NULL; 2394 2395 /* take care of the TTL */ 2396 ip = mtod(mb_copy, struct ip *); 2397 --ip->ip_ttl; 2398 2399 /* Compute the MTU after the PIM Register encapsulation */ 2400 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2401 2402 if (ip->ip_len <= mtu) { 2403 /* Turn the IP header into a valid one */ 2404 ip->ip_len = htons(ip->ip_len); 2405 ip->ip_off = htons(ip->ip_off); 2406 ip->ip_sum = 0; 2407 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2408 } else { 2409 /* Fragment the packet */ 2410 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2411 m_freem(mb_copy); 2412 return NULL; 2413 } 2414 } 2415 return mb_copy; 2416 } 2417 2418 /* 2419 * Send an upcall with the data packet to the user-level process. 2420 */ 2421 static int 2422 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2423 struct mbuf *mb_copy, struct mfc *rt) 2424 { 2425 struct mbuf *mb_first; 2426 int len = ntohs(ip->ip_len); 2427 struct igmpmsg *im; 2428 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2429 2430 VIF_LOCK_ASSERT(); 2431 2432 /* 2433 * Add a new mbuf with an upcall header 2434 */ 2435 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2436 if (mb_first == NULL) { 2437 m_freem(mb_copy); 2438 return ENOBUFS; 2439 } 2440 mb_first->m_data += max_linkhdr; 2441 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2442 mb_first->m_len = sizeof(struct igmpmsg); 2443 mb_first->m_next = mb_copy; 2444 2445 /* Send message to routing daemon */ 2446 im = mtod(mb_first, struct igmpmsg *); 2447 im->im_msgtype = IGMPMSG_WHOLEPKT; 2448 im->im_mbz = 0; 2449 im->im_vif = vifp - V_viftable; 2450 im->im_src = ip->ip_src; 2451 im->im_dst = ip->ip_dst; 2452 2453 k_igmpsrc.sin_addr = ip->ip_src; 2454 2455 MRTSTAT_INC(mrts_upcalls); 2456 2457 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2458 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2459 MRTSTAT_INC(mrts_upq_sockfull); 2460 return ENOBUFS; 2461 } 2462 2463 /* Keep statistics */ 2464 PIMSTAT_INC(pims_snd_registers_msgs); 2465 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2466 2467 return 0; 2468 } 2469 2470 /* 2471 * Encapsulate the data packet in PIM Register message and send it to the RP. 2472 */ 2473 static int 2474 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2475 struct mfc *rt) 2476 { 2477 struct mbuf *mb_first; 2478 struct ip *ip_outer; 2479 struct pim_encap_pimhdr *pimhdr; 2480 int len = ntohs(ip->ip_len); 2481 vifi_t vifi = rt->mfc_parent; 2482 2483 VIF_LOCK_ASSERT(); 2484 2485 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2486 m_freem(mb_copy); 2487 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2488 } 2489 2490 /* 2491 * Add a new mbuf with the encapsulating header 2492 */ 2493 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2494 if (mb_first == NULL) { 2495 m_freem(mb_copy); 2496 return ENOBUFS; 2497 } 2498 mb_first->m_data += max_linkhdr; 2499 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2500 mb_first->m_next = mb_copy; 2501 2502 mb_first->m_pkthdr.len = len + mb_first->m_len; 2503 2504 /* 2505 * Fill in the encapsulating IP and PIM header 2506 */ 2507 ip_outer = mtod(mb_first, struct ip *); 2508 *ip_outer = pim_encap_iphdr; 2509 ip_outer->ip_id = ip_newid(); 2510 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2511 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2512 ip_outer->ip_dst = rt->mfc_rp; 2513 /* 2514 * Copy the inner header TOS to the outer header, and take care of the 2515 * IP_DF bit. 2516 */ 2517 ip_outer->ip_tos = ip->ip_tos; 2518 if (ntohs(ip->ip_off) & IP_DF) 2519 ip_outer->ip_off |= IP_DF; 2520 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2521 + sizeof(pim_encap_iphdr)); 2522 *pimhdr = pim_encap_pimhdr; 2523 /* If the iif crosses a border, set the Border-bit */ 2524 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2525 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2526 2527 mb_first->m_data += sizeof(pim_encap_iphdr); 2528 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2529 mb_first->m_data -= sizeof(pim_encap_iphdr); 2530 2531 send_packet(vifp, mb_first); 2532 2533 /* Keep statistics */ 2534 PIMSTAT_INC(pims_snd_registers_msgs); 2535 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * pim_encapcheck() is called by the encap4_input() path at runtime to 2542 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2543 * into the kernel. 2544 */ 2545 static int 2546 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2547 { 2548 2549 #ifdef DIAGNOSTIC 2550 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2551 #endif 2552 if (proto != IPPROTO_PIM) 2553 return 0; /* not for us; reject the datagram. */ 2554 2555 return 64; /* claim the datagram. */ 2556 } 2557 2558 /* 2559 * PIM-SMv2 and PIM-DM messages processing. 2560 * Receives and verifies the PIM control messages, and passes them 2561 * up to the listening socket, using rip_input(). 2562 * The only message with special processing is the PIM_REGISTER message 2563 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2564 * is passed to if_simloop(). 2565 */ 2566 void 2567 pim_input(struct mbuf *m, int off) 2568 { 2569 struct ip *ip = mtod(m, struct ip *); 2570 struct pim *pim; 2571 int minlen; 2572 int datalen = ip->ip_len; 2573 int ip_tos; 2574 int iphlen = off; 2575 2576 /* Keep statistics */ 2577 PIMSTAT_INC(pims_rcv_total_msgs); 2578 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2579 2580 /* 2581 * Validate lengths 2582 */ 2583 if (datalen < PIM_MINLEN) { 2584 PIMSTAT_INC(pims_rcv_tooshort); 2585 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2586 __func__, datalen, inet_ntoa(ip->ip_src)); 2587 m_freem(m); 2588 return; 2589 } 2590 2591 /* 2592 * If the packet is at least as big as a REGISTER, go agead 2593 * and grab the PIM REGISTER header size, to avoid another 2594 * possible m_pullup() later. 2595 * 2596 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2597 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2598 */ 2599 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2600 /* 2601 * Get the IP and PIM headers in contiguous memory, and 2602 * possibly the PIM REGISTER header. 2603 */ 2604 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2605 (m = m_pullup(m, minlen)) == 0) { 2606 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2607 return; 2608 } 2609 2610 /* m_pullup() may have given us a new mbuf so reset ip. */ 2611 ip = mtod(m, struct ip *); 2612 ip_tos = ip->ip_tos; 2613 2614 /* adjust mbuf to point to the PIM header */ 2615 m->m_data += iphlen; 2616 m->m_len -= iphlen; 2617 pim = mtod(m, struct pim *); 2618 2619 /* 2620 * Validate checksum. If PIM REGISTER, exclude the data packet. 2621 * 2622 * XXX: some older PIMv2 implementations don't make this distinction, 2623 * so for compatibility reason perform the checksum over part of the 2624 * message, and if error, then over the whole message. 2625 */ 2626 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2627 /* do nothing, checksum okay */ 2628 } else if (in_cksum(m, datalen)) { 2629 PIMSTAT_INC(pims_rcv_badsum); 2630 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2631 m_freem(m); 2632 return; 2633 } 2634 2635 /* PIM version check */ 2636 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2637 PIMSTAT_INC(pims_rcv_badversion); 2638 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2639 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2640 m_freem(m); 2641 return; 2642 } 2643 2644 /* restore mbuf back to the outer IP */ 2645 m->m_data -= iphlen; 2646 m->m_len += iphlen; 2647 2648 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2649 /* 2650 * Since this is a REGISTER, we'll make a copy of the register 2651 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2652 * routing daemon. 2653 */ 2654 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2655 struct mbuf *mcp; 2656 struct ip *encap_ip; 2657 u_int32_t *reghdr; 2658 struct ifnet *vifp; 2659 2660 VIF_LOCK(); 2661 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2662 VIF_UNLOCK(); 2663 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2664 (int)V_reg_vif_num); 2665 m_freem(m); 2666 return; 2667 } 2668 /* XXX need refcnt? */ 2669 vifp = V_viftable[V_reg_vif_num].v_ifp; 2670 VIF_UNLOCK(); 2671 2672 /* 2673 * Validate length 2674 */ 2675 if (datalen < PIM_REG_MINLEN) { 2676 PIMSTAT_INC(pims_rcv_tooshort); 2677 PIMSTAT_INC(pims_rcv_badregisters); 2678 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2679 m_freem(m); 2680 return; 2681 } 2682 2683 reghdr = (u_int32_t *)(pim + 1); 2684 encap_ip = (struct ip *)(reghdr + 1); 2685 2686 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2687 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len)); 2688 2689 /* verify the version number of the inner packet */ 2690 if (encap_ip->ip_v != IPVERSION) { 2691 PIMSTAT_INC(pims_rcv_badregisters); 2692 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2693 m_freem(m); 2694 return; 2695 } 2696 2697 /* verify the inner packet is destined to a mcast group */ 2698 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2699 PIMSTAT_INC(pims_rcv_badregisters); 2700 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2701 inet_ntoa(encap_ip->ip_dst)); 2702 m_freem(m); 2703 return; 2704 } 2705 2706 /* If a NULL_REGISTER, pass it to the daemon */ 2707 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2708 goto pim_input_to_daemon; 2709 2710 /* 2711 * Copy the TOS from the outer IP header to the inner IP header. 2712 */ 2713 if (encap_ip->ip_tos != ip_tos) { 2714 /* Outer TOS -> inner TOS */ 2715 encap_ip->ip_tos = ip_tos; 2716 /* Recompute the inner header checksum. Sigh... */ 2717 2718 /* adjust mbuf to point to the inner IP header */ 2719 m->m_data += (iphlen + PIM_MINLEN); 2720 m->m_len -= (iphlen + PIM_MINLEN); 2721 2722 encap_ip->ip_sum = 0; 2723 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2724 2725 /* restore mbuf to point back to the outer IP header */ 2726 m->m_data -= (iphlen + PIM_MINLEN); 2727 m->m_len += (iphlen + PIM_MINLEN); 2728 } 2729 2730 /* 2731 * Decapsulate the inner IP packet and loopback to forward it 2732 * as a normal multicast packet. Also, make a copy of the 2733 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2734 * to pass to the daemon later, so it can take the appropriate 2735 * actions (e.g., send back PIM_REGISTER_STOP). 2736 * XXX: here m->m_data points to the outer IP header. 2737 */ 2738 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2739 if (mcp == NULL) { 2740 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__); 2741 m_freem(m); 2742 return; 2743 } 2744 2745 /* Keep statistics */ 2746 /* XXX: registers_bytes include only the encap. mcast pkt */ 2747 PIMSTAT_INC(pims_rcv_registers_msgs); 2748 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2749 2750 /* 2751 * forward the inner ip packet; point m_data at the inner ip. 2752 */ 2753 m_adj(m, iphlen + PIM_MINLEN); 2754 2755 CTR4(KTR_IPMF, 2756 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2757 __func__, 2758 (u_long)ntohl(encap_ip->ip_src.s_addr), 2759 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2760 (int)V_reg_vif_num); 2761 2762 /* NB: vifp was collected above; can it change on us? */ 2763 if_simloop(vifp, m, dst.sin_family, 0); 2764 2765 /* prepare the register head to send to the mrouting daemon */ 2766 m = mcp; 2767 } 2768 2769 pim_input_to_daemon: 2770 /* 2771 * Pass the PIM message up to the daemon; if it is a Register message, 2772 * pass the 'head' only up to the daemon. This includes the 2773 * outer IP header, PIM header, PIM-Register header and the 2774 * inner IP header. 2775 * XXX: the outer IP header pkt size of a Register is not adjust to 2776 * reflect the fact that the inner multicast data is truncated. 2777 */ 2778 rip_input(m, iphlen); 2779 2780 return; 2781 } 2782 2783 static int 2784 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2785 { 2786 struct mfc *rt; 2787 int error, i; 2788 2789 if (req->newptr) 2790 return (EPERM); 2791 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2792 return (0); 2793 error = sysctl_wire_old_buffer(req, 0); 2794 if (error) 2795 return (error); 2796 2797 MFC_LOCK(); 2798 for (i = 0; i < mfchashsize; i++) { 2799 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2800 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2801 if (error) 2802 goto out_locked; 2803 } 2804 } 2805 out_locked: 2806 MFC_UNLOCK(); 2807 return (error); 2808 } 2809 2810 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2811 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2812 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2813 2814 static void 2815 vnet_mroute_init(const void *unused __unused) 2816 { 2817 2818 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2819 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2820 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE); 2821 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE); 2822 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE); 2823 } 2824 2825 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init, 2826 NULL); 2827 2828 static void 2829 vnet_mroute_uninit(const void *unused __unused) 2830 { 2831 2832 FREE(V_nexpire, M_MRTABLE); 2833 V_nexpire = NULL; 2834 } 2835 2836 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 2837 vnet_mroute_uninit, NULL); 2838 2839 static int 2840 ip_mroute_modevent(module_t mod, int type, void *unused) 2841 { 2842 2843 switch (type) { 2844 case MOD_LOAD: 2845 MROUTER_LOCK_INIT(); 2846 2847 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2848 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2849 if (if_detach_event_tag == NULL) { 2850 printf("ip_mroute: unable to ifnet_deperture_even handler\n"); 2851 MROUTER_LOCK_DESTROY(); 2852 return (EINVAL); 2853 } 2854 2855 MFC_LOCK_INIT(); 2856 VIF_LOCK_INIT(); 2857 2858 mfchashsize = MFCHASHSIZE; 2859 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2860 !powerof2(mfchashsize)) { 2861 printf("WARNING: %s not a power of 2; using default\n", 2862 "net.inet.ip.mfchashsize"); 2863 mfchashsize = MFCHASHSIZE; 2864 } 2865 2866 pim_squelch_wholepkt = 0; 2867 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2868 &pim_squelch_wholepkt); 2869 2870 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2871 pim_encapcheck, &in_pim_protosw, NULL); 2872 if (pim_encap_cookie == NULL) { 2873 printf("ip_mroute: unable to attach pim encap\n"); 2874 VIF_LOCK_DESTROY(); 2875 MFC_LOCK_DESTROY(); 2876 MROUTER_LOCK_DESTROY(); 2877 return (EINVAL); 2878 } 2879 2880 ip_mcast_src = X_ip_mcast_src; 2881 ip_mforward = X_ip_mforward; 2882 ip_mrouter_done = X_ip_mrouter_done; 2883 ip_mrouter_get = X_ip_mrouter_get; 2884 ip_mrouter_set = X_ip_mrouter_set; 2885 2886 ip_rsvp_force_done = X_ip_rsvp_force_done; 2887 ip_rsvp_vif = X_ip_rsvp_vif; 2888 2889 legal_vif_num = X_legal_vif_num; 2890 mrt_ioctl = X_mrt_ioctl; 2891 rsvp_input_p = X_rsvp_input; 2892 break; 2893 2894 case MOD_UNLOAD: 2895 /* 2896 * Typically module unload happens after the user-level 2897 * process has shutdown the kernel services (the check 2898 * below insures someone can't just yank the module out 2899 * from under a running process). But if the module is 2900 * just loaded and then unloaded w/o starting up a user 2901 * process we still need to cleanup. 2902 */ 2903 MROUTER_LOCK(); 2904 if (ip_mrouter_cnt != 0) { 2905 MROUTER_UNLOCK(); 2906 return (EINVAL); 2907 } 2908 ip_mrouter_unloading = 1; 2909 MROUTER_UNLOCK(); 2910 2911 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2912 2913 if (pim_encap_cookie) { 2914 encap_detach(pim_encap_cookie); 2915 pim_encap_cookie = NULL; 2916 } 2917 2918 ip_mcast_src = NULL; 2919 ip_mforward = NULL; 2920 ip_mrouter_done = NULL; 2921 ip_mrouter_get = NULL; 2922 ip_mrouter_set = NULL; 2923 2924 ip_rsvp_force_done = NULL; 2925 ip_rsvp_vif = NULL; 2926 2927 legal_vif_num = NULL; 2928 mrt_ioctl = NULL; 2929 rsvp_input_p = NULL; 2930 2931 VIF_LOCK_DESTROY(); 2932 MFC_LOCK_DESTROY(); 2933 MROUTER_LOCK_DESTROY(); 2934 break; 2935 2936 default: 2937 return EOPNOTSUPP; 2938 } 2939 return 0; 2940 } 2941 2942 static moduledata_t ip_mroutemod = { 2943 "ip_mroute", 2944 ip_mroute_modevent, 2945 0 2946 }; 2947 2948 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE); 2949