1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 __FBSDID("$FreeBSD$"); 74 75 #include "opt_inet.h" 76 #include "opt_mrouting.h" 77 78 #define _PIM_VT 1 79 80 #include <sys/types.h> 81 #include <sys/param.h> 82 #include <sys/kernel.h> 83 #include <sys/stddef.h> 84 #include <sys/condvar.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/malloc.h> 90 #include <sys/mbuf.h> 91 #include <sys/module.h> 92 #include <sys/priv.h> 93 #include <sys/protosw.h> 94 #include <sys/signalvar.h> 95 #include <sys/socket.h> 96 #include <sys/socketvar.h> 97 #include <sys/sockio.h> 98 #include <sys/sx.h> 99 #include <sys/sysctl.h> 100 #include <sys/syslog.h> 101 #include <sys/systm.h> 102 #include <sys/taskqueue.h> 103 #include <sys/time.h> 104 #include <sys/counter.h> 105 #include <machine/atomic.h> 106 107 #include <net/if.h> 108 #include <net/if_var.h> 109 #include <net/if_types.h> 110 #include <net/netisr.h> 111 #include <net/route.h> 112 #include <net/vnet.h> 113 114 #include <netinet/in.h> 115 #include <netinet/igmp.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/ip_encap.h> 120 #include <netinet/ip_mroute.h> 121 #include <netinet/ip_var.h> 122 #include <netinet/ip_options.h> 123 #include <netinet/pim.h> 124 #include <netinet/pim_var.h> 125 #include <netinet/udp.h> 126 127 #include <machine/in_cksum.h> 128 129 #ifndef KTR_IPMF 130 #define KTR_IPMF KTR_INET 131 #endif 132 133 #define VIFI_INVALID ((vifi_t) -1) 134 135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 136 137 /* 138 * Locking. We use two locks: one for the virtual interface table and 139 * one for the forwarding table. These locks may be nested in which case 140 * the VIF lock must always be taken first. Note that each lock is used 141 * to cover not only the specific data structure but also related data 142 * structures. 143 */ 144 145 static struct rwlock mrouter_mtx; 146 #define MRW_RLOCK() rw_rlock(&mrouter_mtx) 147 #define MRW_WLOCK() rw_wlock(&mrouter_mtx) 148 #define MRW_RUNLOCK() rw_runlock(&mrouter_mtx) 149 #define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx) 150 #define MRW_UNLOCK() rw_unlock(&mrouter_mtx) 151 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED) 152 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED) 153 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx) 154 #define MRW_WOWNED() rw_wowned(&mrouter_mtx) 155 #define MRW_LOCK_INIT() \ 156 rw_init(&mrouter_mtx, "IPv4 multicast forwarding") 157 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx) 158 159 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 161 162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 163 VNET_PCPUSTAT_SYSINIT(mrtstat); 164 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 166 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 167 "netinet/ip_mroute.h)"); 168 169 VNET_DEFINE_STATIC(u_long, mfchash); 170 #define V_mfchash VNET(mfchash) 171 #define MFCHASH(a, g) \ 172 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 173 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 174 #define MFCHASHSIZE 256 175 176 static u_long mfchashsize; /* Hash size */ 177 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 178 #define V_nexpire VNET(nexpire) 179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 180 #define V_mfchashtbl VNET(mfchashtbl) 181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 182 #define V_task_queue VNET(task_queue) 183 VNET_DEFINE_STATIC(struct task, task); 184 #define V_task VNET(task) 185 186 VNET_DEFINE_STATIC(vifi_t, numvifs); 187 #define V_numvifs VNET(numvifs) 188 VNET_DEFINE_STATIC(struct vif *, viftable); 189 #define V_viftable VNET(viftable) 190 191 static eventhandler_tag if_detach_event_tag = NULL; 192 193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 194 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 195 196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 197 #define V_buf_ring_mtx VNET(buf_ring_mtx) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 207 /* 208 * Pending upcalls are stored in a ring which is flushed when 209 * full, or periodically 210 */ 211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 212 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 214 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 216 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 217 218 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 219 220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 221 VNET_PCPUSTAT_SYSINIT(pimstat); 222 VNET_PCPUSTAT_SYSUNINIT(pimstat); 223 224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 225 "PIM"); 226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 227 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 228 229 static u_long pim_squelch_wholepkt = 0; 230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 231 &pim_squelch_wholepkt, 0, 232 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 233 234 static const struct encaptab *pim_encap_cookie; 235 static int pim_encapcheck(const struct mbuf *, int, int, void *); 236 static int pim_input(struct mbuf *, int, int, void *); 237 238 extern int in_mcast_loop; 239 240 static const struct encap_config ipv4_encap_cfg = { 241 .proto = IPPROTO_PIM, 242 .min_length = sizeof(struct ip) + PIM_MINLEN, 243 .exact_match = 8, 244 .check = pim_encapcheck, 245 .input = pim_input 246 }; 247 248 /* 249 * Note: the PIM Register encapsulation adds the following in front of a 250 * data packet: 251 * 252 * struct pim_encap_hdr { 253 * struct ip ip; 254 * struct pim_encap_pimhdr pim; 255 * } 256 * 257 */ 258 259 struct pim_encap_pimhdr { 260 struct pim pim; 261 uint32_t flags; 262 }; 263 #define PIM_ENCAP_TTL 64 264 265 static struct ip pim_encap_iphdr = { 266 #if BYTE_ORDER == LITTLE_ENDIAN 267 sizeof(struct ip) >> 2, 268 IPVERSION, 269 #else 270 IPVERSION, 271 sizeof(struct ip) >> 2, 272 #endif 273 0, /* tos */ 274 sizeof(struct ip), /* total length */ 275 0, /* id */ 276 0, /* frag offset */ 277 PIM_ENCAP_TTL, 278 IPPROTO_PIM, 279 0, /* checksum */ 280 }; 281 282 static struct pim_encap_pimhdr pim_encap_pimhdr = { 283 { 284 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 285 0, /* reserved */ 286 0, /* checksum */ 287 }, 288 0 /* flags */ 289 }; 290 291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 292 #define V_reg_vif_num VNET(reg_vif_num) 293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 294 #define V_multicast_register_if VNET(multicast_register_if) 295 296 /* 297 * Private variables. 298 */ 299 300 static u_long X_ip_mcast_src(int); 301 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 302 struct ip_moptions *); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 305 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 306 static int X_legal_vif_num(int); 307 static int X_mrt_ioctl(u_long, caddr_t, int); 308 309 static int add_bw_upcall(struct bw_upcall *); 310 static int add_mfc(struct mfcctl2 *); 311 static int add_vif(struct vifctl *); 312 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 313 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 314 struct timeval *); 315 static void bw_upcalls_send(void); 316 static int del_bw_upcall(struct bw_upcall *); 317 static int del_mfc(struct mfcctl2 *); 318 static int del_vif(vifi_t); 319 static int del_vif_locked(vifi_t); 320 static void expire_bw_upcalls_send(void *); 321 static void expire_mfc(struct mfc *); 322 static void expire_upcalls(void *); 323 static void free_bw_list(struct bw_meter *); 324 static int get_sg_cnt(struct sioc_sg_req *); 325 static int get_vif_cnt(struct sioc_vif_req *); 326 static void if_detached_event(void *, struct ifnet *); 327 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 328 static int ip_mrouter_init(struct socket *, int); 329 static __inline struct mfc * 330 mfc_find(struct in_addr *, struct in_addr *); 331 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 332 static struct mbuf * 333 pim_register_prepare(struct ip *, struct mbuf *); 334 static int pim_register_send(struct ip *, struct vif *, 335 struct mbuf *, struct mfc *); 336 static int pim_register_send_rp(struct ip *, struct vif *, 337 struct mbuf *, struct mfc *); 338 static int pim_register_send_upcall(struct ip *, struct vif *, 339 struct mbuf *, struct mfc *); 340 static void send_packet(struct vif *, struct mbuf *); 341 static int set_api_config(uint32_t *); 342 static int set_assert(int); 343 static int socket_send(struct socket *, struct mbuf *, 344 struct sockaddr_in *); 345 346 /* 347 * Kernel multicast forwarding API capabilities and setup. 348 * If more API capabilities are added to the kernel, they should be 349 * recorded in `mrt_api_support'. 350 */ 351 #define MRT_API_VERSION 0x0305 352 353 static const int mrt_api_version = MRT_API_VERSION; 354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 355 MRT_MFC_FLAGS_BORDER_VIF | 356 MRT_MFC_RP | 357 MRT_MFC_BW_UPCALL); 358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 359 #define V_mrt_api_config VNET(mrt_api_config) 360 VNET_DEFINE_STATIC(int, pim_assert_enabled); 361 #define V_pim_assert_enabled VNET(pim_assert_enabled) 362 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 363 364 /* 365 * Find a route for a given origin IP address and multicast group address. 366 * Statistics must be updated by the caller. 367 */ 368 static __inline struct mfc * 369 mfc_find(struct in_addr *o, struct in_addr *g) 370 { 371 struct mfc *rt; 372 373 /* 374 * Might be called both RLOCK and WLOCK. 375 * Check if any, it's caller responsibility 376 * to choose correct option. 377 */ 378 MRW_LOCK_ASSERT(); 379 380 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 381 if (in_hosteq(rt->mfc_origin, *o) && 382 in_hosteq(rt->mfc_mcastgrp, *g) && 383 buf_ring_empty(rt->mfc_stall_ring)) 384 break; 385 } 386 387 return (rt); 388 } 389 390 static __inline struct mfc * 391 mfc_alloc(void) 392 { 393 struct mfc *rt; 394 rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 395 if (rt == NULL) 396 return rt; 397 398 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 399 M_NOWAIT, &V_buf_ring_mtx); 400 if (rt->mfc_stall_ring == NULL) { 401 free(rt, M_MRTABLE); 402 return NULL; 403 } 404 405 return rt; 406 } 407 408 /* 409 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 410 */ 411 static int 412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 413 { 414 int error, optval; 415 vifi_t vifi; 416 struct vifctl vifc; 417 struct mfcctl2 mfc; 418 struct bw_upcall bw_upcall; 419 uint32_t i; 420 421 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 422 return EPERM; 423 424 error = 0; 425 switch (sopt->sopt_name) { 426 case MRT_INIT: 427 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 428 if (error) 429 break; 430 error = ip_mrouter_init(so, optval); 431 break; 432 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 437 case MRT_ADD_VIF: 438 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 439 if (error) 440 break; 441 error = add_vif(&vifc); 442 break; 443 444 case MRT_DEL_VIF: 445 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 446 if (error) 447 break; 448 error = del_vif(vifi); 449 break; 450 451 case MRT_ADD_MFC: 452 case MRT_DEL_MFC: 453 /* 454 * select data size depending on API version. 455 */ 456 if (sopt->sopt_name == MRT_ADD_MFC && 457 V_mrt_api_config & MRT_API_FLAGS_ALL) { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 459 sizeof(struct mfcctl2)); 460 } else { 461 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 462 sizeof(struct mfcctl)); 463 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 464 sizeof(mfc) - sizeof(struct mfcctl)); 465 } 466 if (error) 467 break; 468 if (sopt->sopt_name == MRT_ADD_MFC) 469 error = add_mfc(&mfc); 470 else 471 error = del_mfc(&mfc); 472 break; 473 474 case MRT_ASSERT: 475 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 476 if (error) 477 break; 478 set_assert(optval); 479 break; 480 481 case MRT_API_CONFIG: 482 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 483 if (!error) 484 error = set_api_config(&i); 485 if (!error) 486 error = sooptcopyout(sopt, &i, sizeof i); 487 break; 488 489 case MRT_ADD_BW_UPCALL: 490 case MRT_DEL_BW_UPCALL: 491 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 492 sizeof bw_upcall); 493 if (error) 494 break; 495 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 496 error = add_bw_upcall(&bw_upcall); 497 else 498 error = del_bw_upcall(&bw_upcall); 499 break; 500 501 default: 502 error = EOPNOTSUPP; 503 break; 504 } 505 return error; 506 } 507 508 /* 509 * Handle MRT getsockopt commands 510 */ 511 static int 512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 513 { 514 int error; 515 516 switch (sopt->sopt_name) { 517 case MRT_VERSION: 518 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 519 break; 520 521 case MRT_ASSERT: 522 error = sooptcopyout(sopt, &V_pim_assert_enabled, 523 sizeof V_pim_assert_enabled); 524 break; 525 526 case MRT_API_SUPPORT: 527 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 528 break; 529 530 case MRT_API_CONFIG: 531 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 532 break; 533 534 default: 535 error = EOPNOTSUPP; 536 break; 537 } 538 return error; 539 } 540 541 /* 542 * Handle ioctl commands to obtain information from the cache 543 */ 544 static int 545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 546 { 547 int error = 0; 548 549 /* 550 * Currently the only function calling this ioctl routine is rtioctl_fib(). 551 * Typically, only root can create the raw socket in order to execute 552 * this ioctl method, however the request might be coming from a prison 553 */ 554 error = priv_check(curthread, PRIV_NETINET_MROUTE); 555 if (error) 556 return (error); 557 switch (cmd) { 558 case (SIOCGETVIFCNT): 559 error = get_vif_cnt((struct sioc_vif_req *)data); 560 break; 561 562 case (SIOCGETSGCNT): 563 error = get_sg_cnt((struct sioc_sg_req *)data); 564 break; 565 566 default: 567 error = EINVAL; 568 break; 569 } 570 return error; 571 } 572 573 /* 574 * returns the packet, byte, rpf-failure count for the source group provided 575 */ 576 static int 577 get_sg_cnt(struct sioc_sg_req *req) 578 { 579 struct mfc *rt; 580 581 MRW_RLOCK(); 582 rt = mfc_find(&req->src, &req->grp); 583 if (rt == NULL) { 584 MRW_RUNLOCK(); 585 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 586 return EADDRNOTAVAIL; 587 } 588 req->pktcnt = rt->mfc_pkt_cnt; 589 req->bytecnt = rt->mfc_byte_cnt; 590 req->wrong_if = rt->mfc_wrong_if; 591 MRW_RUNLOCK(); 592 return 0; 593 } 594 595 /* 596 * returns the input and output packet and byte counts on the vif provided 597 */ 598 static int 599 get_vif_cnt(struct sioc_vif_req *req) 600 { 601 vifi_t vifi = req->vifi; 602 603 MRW_RLOCK(); 604 if (vifi >= V_numvifs) { 605 MRW_RUNLOCK(); 606 return EINVAL; 607 } 608 609 mtx_lock_spin(&V_viftable[vifi].v_spin); 610 req->icount = V_viftable[vifi].v_pkt_in; 611 req->ocount = V_viftable[vifi].v_pkt_out; 612 req->ibytes = V_viftable[vifi].v_bytes_in; 613 req->obytes = V_viftable[vifi].v_bytes_out; 614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 615 MRW_RUNLOCK(); 616 617 return 0; 618 } 619 620 static void 621 if_detached_event(void *arg __unused, struct ifnet *ifp) 622 { 623 vifi_t vifi; 624 u_long i; 625 626 MRW_WLOCK(); 627 628 if (V_ip_mrouter == NULL) { 629 MRW_WUNLOCK(); 630 return; 631 } 632 633 /* 634 * Tear down multicast forwarder state associated with this ifnet. 635 * 1. Walk the vif list, matching vifs against this ifnet. 636 * 2. Walk the multicast forwarding cache (mfc) looking for 637 * inner matches with this vif's index. 638 * 3. Expire any matching multicast forwarding cache entries. 639 * 4. Free vif state. This should disable ALLMULTI on the interface. 640 */ 641 for (vifi = 0; vifi < V_numvifs; vifi++) { 642 if (V_viftable[vifi].v_ifp != ifp) 643 continue; 644 for (i = 0; i < mfchashsize; i++) { 645 struct mfc *rt, *nrt; 646 647 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 648 if (rt->mfc_parent == vifi) { 649 expire_mfc(rt); 650 } 651 } 652 } 653 del_vif_locked(vifi); 654 } 655 656 MRW_WUNLOCK(); 657 } 658 659 static void 660 ip_mrouter_upcall_thread(void *arg, int pending __unused) 661 { 662 CURVNET_SET((struct vnet *) arg); 663 664 MRW_WLOCK(); 665 bw_upcalls_send(); 666 MRW_WUNLOCK(); 667 668 CURVNET_RESTORE(); 669 } 670 671 /* 672 * Enable multicast forwarding. 673 */ 674 static int 675 ip_mrouter_init(struct socket *so, int version) 676 { 677 678 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 679 so->so_type, so->so_proto->pr_protocol); 680 681 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 682 return EOPNOTSUPP; 683 684 if (version != 1) 685 return ENOPROTOOPT; 686 687 MRW_WLOCK(); 688 689 if (ip_mrouter_unloading) { 690 MRW_WUNLOCK(); 691 return ENOPROTOOPT; 692 } 693 694 if (V_ip_mrouter != NULL) { 695 MRW_WUNLOCK(); 696 return EADDRINUSE; 697 } 698 699 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 700 HASH_NOWAIT); 701 702 /* Create upcall ring */ 703 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 704 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 705 M_NOWAIT, &V_bw_upcalls_ring_mtx); 706 if (!V_bw_upcalls_ring) { 707 MRW_WUNLOCK(); 708 return (ENOMEM); 709 } 710 711 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 712 taskqueue_cancel(V_task_queue, &V_task, NULL); 713 taskqueue_unblock(V_task_queue); 714 715 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 716 curvnet); 717 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 718 curvnet); 719 720 V_ip_mrouter = so; 721 atomic_add_int(&ip_mrouter_cnt, 1); 722 723 /* This is a mutex required by buf_ring init, but not used internally */ 724 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 725 726 MRW_WUNLOCK(); 727 728 CTR1(KTR_IPMF, "%s: done", __func__); 729 730 return 0; 731 } 732 733 /* 734 * Disable multicast forwarding. 735 */ 736 static int 737 X_ip_mrouter_done(void) 738 { 739 struct ifnet *ifp; 740 u_long i; 741 vifi_t vifi; 742 struct bw_upcall *bu; 743 744 if (V_ip_mrouter == NULL) 745 return EINVAL; 746 747 /* 748 * Detach/disable hooks to the reset of the system. 749 */ 750 V_ip_mrouter = NULL; 751 atomic_subtract_int(&ip_mrouter_cnt, 1); 752 V_mrt_api_config = 0; 753 754 MROUTER_WAIT(); 755 756 /* Stop and drain task queue */ 757 taskqueue_block(V_task_queue); 758 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 759 taskqueue_drain(V_task_queue, &V_task); 760 } 761 762 MRW_WLOCK(); 763 taskqueue_cancel(V_task_queue, &V_task, NULL); 764 765 /* Destroy upcall ring */ 766 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 767 free(bu, M_MRTABLE); 768 } 769 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 770 mtx_destroy(&V_bw_upcalls_ring_mtx); 771 772 /* 773 * For each phyint in use, disable promiscuous reception of all IP 774 * multicasts. 775 */ 776 for (vifi = 0; vifi < V_numvifs; vifi++) { 777 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 778 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 779 ifp = V_viftable[vifi].v_ifp; 780 if_allmulti(ifp, 0); 781 } 782 } 783 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 784 V_numvifs = 0; 785 V_pim_assert_enabled = 0; 786 787 callout_stop(&V_expire_upcalls_ch); 788 callout_stop(&V_bw_upcalls_ch); 789 790 /* 791 * Free all multicast forwarding cache entries. 792 * Do not use hashdestroy(), as we must perform other cleanup. 793 */ 794 for (i = 0; i < mfchashsize; i++) { 795 struct mfc *rt, *nrt; 796 797 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 798 expire_mfc(rt); 799 } 800 } 801 free(V_mfchashtbl, M_MRTABLE); 802 V_mfchashtbl = NULL; 803 804 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 805 806 V_reg_vif_num = VIFI_INVALID; 807 808 mtx_destroy(&V_buf_ring_mtx); 809 810 MRW_WUNLOCK(); 811 812 CTR1(KTR_IPMF, "%s: done", __func__); 813 814 return 0; 815 } 816 817 /* 818 * Set PIM assert processing global 819 */ 820 static int 821 set_assert(int i) 822 { 823 if ((i != 1) && (i != 0)) 824 return EINVAL; 825 826 V_pim_assert_enabled = i; 827 828 return 0; 829 } 830 831 /* 832 * Configure API capabilities 833 */ 834 int 835 set_api_config(uint32_t *apival) 836 { 837 u_long i; 838 839 /* 840 * We can set the API capabilities only if it is the first operation 841 * after MRT_INIT. I.e.: 842 * - there are no vifs installed 843 * - pim_assert is not enabled 844 * - the MFC table is empty 845 */ 846 if (V_numvifs > 0) { 847 *apival = 0; 848 return EPERM; 849 } 850 if (V_pim_assert_enabled) { 851 *apival = 0; 852 return EPERM; 853 } 854 855 MRW_RLOCK(); 856 857 for (i = 0; i < mfchashsize; i++) { 858 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 859 MRW_RUNLOCK(); 860 *apival = 0; 861 return EPERM; 862 } 863 } 864 865 MRW_RUNLOCK(); 866 867 V_mrt_api_config = *apival & mrt_api_support; 868 *apival = V_mrt_api_config; 869 870 return 0; 871 } 872 873 /* 874 * Add a vif to the vif table 875 */ 876 static int 877 add_vif(struct vifctl *vifcp) 878 { 879 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 880 struct sockaddr_in sin = {sizeof sin, AF_INET}; 881 struct ifaddr *ifa; 882 struct ifnet *ifp; 883 int error; 884 885 886 if (vifcp->vifc_vifi >= MAXVIFS) 887 return EINVAL; 888 /* rate limiting is no longer supported by this code */ 889 if (vifcp->vifc_rate_limit != 0) { 890 log(LOG_ERR, "rate limiting is no longer supported\n"); 891 return EINVAL; 892 } 893 894 if (in_nullhost(vifcp->vifc_lcl_addr)) 895 return EADDRNOTAVAIL; 896 897 /* Find the interface with an address in AF_INET family */ 898 if (vifcp->vifc_flags & VIFF_REGISTER) { 899 /* 900 * XXX: Because VIFF_REGISTER does not really need a valid 901 * local interface (e.g. it could be 127.0.0.2), we don't 902 * check its address. 903 */ 904 ifp = NULL; 905 } else { 906 struct epoch_tracker et; 907 908 sin.sin_addr = vifcp->vifc_lcl_addr; 909 NET_EPOCH_ENTER(et); 910 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 911 if (ifa == NULL) { 912 NET_EPOCH_EXIT(et); 913 return EADDRNOTAVAIL; 914 } 915 ifp = ifa->ifa_ifp; 916 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 917 NET_EPOCH_EXIT(et); 918 } 919 920 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 921 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 922 return EOPNOTSUPP; 923 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 924 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 925 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 926 if (V_reg_vif_num == VIFI_INVALID) { 927 if_initname(V_multicast_register_if, "register_vif", 0); 928 V_reg_vif_num = vifcp->vifc_vifi; 929 } 930 } else { /* Make sure the interface supports multicast */ 931 if ((ifp->if_flags & IFF_MULTICAST) == 0) 932 return EOPNOTSUPP; 933 934 /* Enable promiscuous reception of all IP multicasts from the if */ 935 error = if_allmulti(ifp, 1); 936 if (error) 937 return error; 938 } 939 940 MRW_WLOCK(); 941 942 if (!in_nullhost(vifp->v_lcl_addr)) { 943 if (ifp) 944 V_multicast_register_if = NULL; 945 MRW_WUNLOCK(); 946 if (ifp) 947 if_free(ifp); 948 return EADDRINUSE; 949 } 950 951 vifp->v_flags = vifcp->vifc_flags; 952 vifp->v_threshold = vifcp->vifc_threshold; 953 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 954 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 955 vifp->v_ifp = ifp; 956 /* initialize per vif pkt counters */ 957 vifp->v_pkt_in = 0; 958 vifp->v_pkt_out = 0; 959 vifp->v_bytes_in = 0; 960 vifp->v_bytes_out = 0; 961 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 962 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 963 964 /* Adjust numvifs up if the vifi is higher than numvifs */ 965 if (V_numvifs <= vifcp->vifc_vifi) 966 V_numvifs = vifcp->vifc_vifi + 1; 967 968 MRW_WUNLOCK(); 969 970 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 971 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 972 (int)vifcp->vifc_threshold); 973 974 return 0; 975 } 976 977 /* 978 * Delete a vif from the vif table 979 */ 980 static int 981 del_vif_locked(vifi_t vifi) 982 { 983 struct vif *vifp; 984 985 MRW_WLOCK_ASSERT(); 986 987 if (vifi >= V_numvifs) { 988 return EINVAL; 989 } 990 vifp = &V_viftable[vifi]; 991 if (in_nullhost(vifp->v_lcl_addr)) { 992 return EADDRNOTAVAIL; 993 } 994 995 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 996 if_allmulti(vifp->v_ifp, 0); 997 998 if (vifp->v_flags & VIFF_REGISTER) { 999 V_reg_vif_num = VIFI_INVALID; 1000 if (vifp->v_ifp) { 1001 if (vifp->v_ifp == V_multicast_register_if) 1002 V_multicast_register_if = NULL; 1003 if_free(vifp->v_ifp); 1004 } 1005 } 1006 1007 mtx_destroy(&vifp->v_spin); 1008 1009 bzero((caddr_t)vifp, sizeof (*vifp)); 1010 1011 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1012 1013 /* Adjust numvifs down */ 1014 for (vifi = V_numvifs; vifi > 0; vifi--) 1015 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1016 break; 1017 V_numvifs = vifi; 1018 1019 return 0; 1020 } 1021 1022 static int 1023 del_vif(vifi_t vifi) 1024 { 1025 int cc; 1026 1027 MRW_WLOCK(); 1028 cc = del_vif_locked(vifi); 1029 MRW_WUNLOCK(); 1030 1031 return cc; 1032 } 1033 1034 /* 1035 * update an mfc entry without resetting counters and S,G addresses. 1036 */ 1037 static void 1038 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1039 { 1040 int i; 1041 1042 rt->mfc_parent = mfccp->mfcc_parent; 1043 for (i = 0; i < V_numvifs; i++) { 1044 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1045 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1046 MRT_MFC_FLAGS_ALL; 1047 } 1048 /* set the RP address */ 1049 if (V_mrt_api_config & MRT_MFC_RP) 1050 rt->mfc_rp = mfccp->mfcc_rp; 1051 else 1052 rt->mfc_rp.s_addr = INADDR_ANY; 1053 } 1054 1055 /* 1056 * fully initialize an mfc entry from the parameter. 1057 */ 1058 static void 1059 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1060 { 1061 rt->mfc_origin = mfccp->mfcc_origin; 1062 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1063 1064 update_mfc_params(rt, mfccp); 1065 1066 /* initialize pkt counters per src-grp */ 1067 rt->mfc_pkt_cnt = 0; 1068 rt->mfc_byte_cnt = 0; 1069 rt->mfc_wrong_if = 0; 1070 timevalclear(&rt->mfc_last_assert); 1071 } 1072 1073 static void 1074 expire_mfc(struct mfc *rt) 1075 { 1076 struct rtdetq *rte; 1077 1078 MRW_WLOCK_ASSERT(); 1079 1080 free_bw_list(rt->mfc_bw_meter_leq); 1081 free_bw_list(rt->mfc_bw_meter_geq); 1082 1083 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1084 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1085 if (rte) { 1086 m_freem(rte->m); 1087 free(rte, M_MRTABLE); 1088 } 1089 } 1090 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1091 1092 LIST_REMOVE(rt, mfc_hash); 1093 free(rt, M_MRTABLE); 1094 } 1095 1096 /* 1097 * Add an mfc entry 1098 */ 1099 static int 1100 add_mfc(struct mfcctl2 *mfccp) 1101 { 1102 struct mfc *rt; 1103 struct rtdetq *rte; 1104 u_long hash = 0; 1105 u_short nstl; 1106 1107 MRW_WLOCK(); 1108 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1109 1110 /* If an entry already exists, just update the fields */ 1111 if (rt) { 1112 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1113 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1114 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1115 mfccp->mfcc_parent); 1116 update_mfc_params(rt, mfccp); 1117 MRW_WUNLOCK(); 1118 return (0); 1119 } 1120 1121 /* 1122 * Find the entry for which the upcall was made and update 1123 */ 1124 nstl = 0; 1125 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1126 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1127 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1128 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1129 !buf_ring_empty(rt->mfc_stall_ring)) { 1130 CTR5(KTR_IPMF, 1131 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1132 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1133 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1134 mfccp->mfcc_parent, 1135 rt->mfc_stall_ring); 1136 if (nstl++) 1137 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1138 1139 init_mfc_params(rt, mfccp); 1140 rt->mfc_expire = 0; /* Don't clean this guy up */ 1141 V_nexpire[hash]--; 1142 1143 /* Free queued packets, but attempt to forward them first. */ 1144 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1145 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1146 if (rte->ifp != NULL) 1147 ip_mdq(rte->m, rte->ifp, rt, -1); 1148 m_freem(rte->m); 1149 free(rte, M_MRTABLE); 1150 } 1151 } 1152 } 1153 1154 /* 1155 * It is possible that an entry is being inserted without an upcall 1156 */ 1157 if (nstl == 0) { 1158 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1159 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1160 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1161 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1162 init_mfc_params(rt, mfccp); 1163 if (rt->mfc_expire) 1164 V_nexpire[hash]--; 1165 rt->mfc_expire = 0; 1166 break; /* XXX */ 1167 } 1168 } 1169 1170 if (rt == NULL) { /* no upcall, so make a new entry */ 1171 rt = mfc_alloc(); 1172 if (rt == NULL) { 1173 MRW_WUNLOCK(); 1174 return (ENOBUFS); 1175 } 1176 1177 init_mfc_params(rt, mfccp); 1178 1179 rt->mfc_expire = 0; 1180 rt->mfc_bw_meter_leq = NULL; 1181 rt->mfc_bw_meter_geq = NULL; 1182 1183 /* insert new entry at head of hash chain */ 1184 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1185 } 1186 } 1187 1188 MRW_WUNLOCK(); 1189 1190 return (0); 1191 } 1192 1193 /* 1194 * Delete an mfc entry 1195 */ 1196 static int 1197 del_mfc(struct mfcctl2 *mfccp) 1198 { 1199 struct in_addr origin; 1200 struct in_addr mcastgrp; 1201 struct mfc *rt; 1202 1203 origin = mfccp->mfcc_origin; 1204 mcastgrp = mfccp->mfcc_mcastgrp; 1205 1206 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1207 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1208 1209 MRW_WLOCK(); 1210 1211 rt = mfc_find(&origin, &mcastgrp); 1212 if (rt == NULL) { 1213 MRW_WUNLOCK(); 1214 return EADDRNOTAVAIL; 1215 } 1216 1217 /* 1218 * free the bw_meter entries 1219 */ 1220 free_bw_list(rt->mfc_bw_meter_leq); 1221 rt->mfc_bw_meter_leq = NULL; 1222 free_bw_list(rt->mfc_bw_meter_geq); 1223 rt->mfc_bw_meter_geq = NULL; 1224 1225 LIST_REMOVE(rt, mfc_hash); 1226 free(rt, M_MRTABLE); 1227 1228 MRW_WUNLOCK(); 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * Send a message to the routing daemon on the multicast routing socket. 1235 */ 1236 static int 1237 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1238 { 1239 if (s) { 1240 SOCKBUF_LOCK(&s->so_rcv); 1241 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1242 NULL) != 0) { 1243 sorwakeup_locked(s); 1244 return 0; 1245 } 1246 soroverflow_locked(s); 1247 } 1248 m_freem(mm); 1249 return -1; 1250 } 1251 1252 /* 1253 * IP multicast forwarding function. This function assumes that the packet 1254 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1255 * pointed to by "ifp", and the packet is to be relayed to other networks 1256 * that have members of the packet's destination IP multicast group. 1257 * 1258 * The packet is returned unscathed to the caller, unless it is 1259 * erroneous, in which case a non-zero return value tells the caller to 1260 * discard it. 1261 */ 1262 1263 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1264 1265 static int 1266 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1267 struct ip_moptions *imo) 1268 { 1269 struct mfc *rt; 1270 int error; 1271 vifi_t vifi; 1272 struct mbuf *mb0; 1273 struct rtdetq *rte; 1274 u_long hash; 1275 int hlen; 1276 1277 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1278 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1279 1280 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1281 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1282 /* 1283 * Packet arrived via a physical interface or 1284 * an encapsulated tunnel or a register_vif. 1285 */ 1286 } else { 1287 /* 1288 * Packet arrived through a source-route tunnel. 1289 * Source-route tunnels are no longer supported. 1290 */ 1291 return (1); 1292 } 1293 1294 /* 1295 * BEGIN: MCAST ROUTING HOT PATH 1296 */ 1297 MRW_RLOCK(); 1298 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1299 if (ip->ip_ttl < MAXTTL) 1300 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1301 error = ip_mdq(m, ifp, NULL, vifi); 1302 MRW_RUNLOCK(); 1303 return error; 1304 } 1305 1306 /* 1307 * Don't forward a packet with time-to-live of zero or one, 1308 * or a packet destined to a local-only group. 1309 */ 1310 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1311 MRW_RUNLOCK(); 1312 return 0; 1313 } 1314 1315 mfc_find_retry: 1316 /* 1317 * Determine forwarding vifs from the forwarding cache table 1318 */ 1319 MRTSTAT_INC(mrts_mfc_lookups); 1320 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1321 1322 /* Entry exists, so forward if necessary */ 1323 if (rt != NULL) { 1324 error = ip_mdq(m, ifp, rt, -1); 1325 /* Generic unlock here as we might release R or W lock */ 1326 MRW_UNLOCK(); 1327 return error; 1328 } 1329 1330 /* 1331 * END: MCAST ROUTING HOT PATH 1332 */ 1333 1334 /* Further processing must be done with WLOCK taken */ 1335 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1336 MRW_RUNLOCK(); 1337 MRW_WLOCK(); 1338 goto mfc_find_retry; 1339 } 1340 1341 /* 1342 * If we don't have a route for packet's origin, 1343 * Make a copy of the packet & send message to routing daemon 1344 */ 1345 hlen = ip->ip_hl << 2; 1346 1347 MRTSTAT_INC(mrts_mfc_misses); 1348 MRTSTAT_INC(mrts_no_route); 1349 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1350 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1351 1352 /* 1353 * Allocate mbufs early so that we don't do extra work if we are 1354 * just going to fail anyway. Make sure to pullup the header so 1355 * that other people can't step on it. 1356 */ 1357 rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE, 1358 M_NOWAIT|M_ZERO); 1359 if (rte == NULL) { 1360 MRW_WUNLOCK(); 1361 return ENOBUFS; 1362 } 1363 1364 mb0 = m_copypacket(m, M_NOWAIT); 1365 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1366 mb0 = m_pullup(mb0, hlen); 1367 if (mb0 == NULL) { 1368 free(rte, M_MRTABLE); 1369 MRW_WUNLOCK(); 1370 return ENOBUFS; 1371 } 1372 1373 /* is there an upcall waiting for this flow ? */ 1374 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1375 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1376 { 1377 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1378 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1379 !buf_ring_empty(rt->mfc_stall_ring)) 1380 break; 1381 } 1382 1383 if (rt == NULL) { 1384 int i; 1385 struct igmpmsg *im; 1386 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1387 struct mbuf *mm; 1388 1389 /* 1390 * Locate the vifi for the incoming interface for this packet. 1391 * If none found, drop packet. 1392 */ 1393 for (vifi = 0; vifi < V_numvifs && 1394 V_viftable[vifi].v_ifp != ifp; vifi++) 1395 ; 1396 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1397 goto non_fatal; 1398 1399 /* no upcall, so make a new entry */ 1400 rt = mfc_alloc(); 1401 if (rt == NULL) 1402 goto fail; 1403 1404 /* Make a copy of the header to send to the user level process */ 1405 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1406 if (mm == NULL) 1407 goto fail1; 1408 1409 /* 1410 * Send message to routing daemon to install 1411 * a route into the kernel table 1412 */ 1413 1414 im = mtod(mm, struct igmpmsg*); 1415 im->im_msgtype = IGMPMSG_NOCACHE; 1416 im->im_mbz = 0; 1417 im->im_vif = vifi; 1418 1419 MRTSTAT_INC(mrts_upcalls); 1420 1421 k_igmpsrc.sin_addr = ip->ip_src; 1422 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1423 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1424 MRTSTAT_INC(mrts_upq_sockfull); 1425 fail1: free(rt, M_MRTABLE); 1426 fail: free(rte, M_MRTABLE); 1427 m_freem(mb0); 1428 MRW_WUNLOCK(); 1429 return ENOBUFS; 1430 } 1431 1432 /* insert new entry at head of hash chain */ 1433 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1434 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1435 rt->mfc_expire = UPCALL_EXPIRE; 1436 V_nexpire[hash]++; 1437 for (i = 0; i < V_numvifs; i++) { 1438 rt->mfc_ttls[i] = 0; 1439 rt->mfc_flags[i] = 0; 1440 } 1441 rt->mfc_parent = -1; 1442 1443 /* clear the RP address */ 1444 rt->mfc_rp.s_addr = INADDR_ANY; 1445 rt->mfc_bw_meter_leq = NULL; 1446 rt->mfc_bw_meter_geq = NULL; 1447 1448 /* initialize pkt counters per src-grp */ 1449 rt->mfc_pkt_cnt = 0; 1450 rt->mfc_byte_cnt = 0; 1451 rt->mfc_wrong_if = 0; 1452 timevalclear(&rt->mfc_last_assert); 1453 1454 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1455 1456 /* Add RT to hashtable as it didn't exist before */ 1457 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1458 } else { 1459 /* determine if queue has overflowed */ 1460 if (buf_ring_full(rt->mfc_stall_ring)) { 1461 MRTSTAT_INC(mrts_upq_ovflw); 1462 non_fatal: free(rte, M_MRTABLE); 1463 m_freem(mb0); 1464 MRW_WUNLOCK(); 1465 return (0); 1466 } 1467 1468 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1469 } 1470 1471 rte->m = mb0; 1472 rte->ifp = ifp; 1473 1474 MRW_WUNLOCK(); 1475 1476 return 0; 1477 } 1478 1479 /* 1480 * Clean up the cache entry if upcall is not serviced 1481 */ 1482 static void 1483 expire_upcalls(void *arg) 1484 { 1485 u_long i; 1486 1487 CURVNET_SET((struct vnet *) arg); 1488 1489 /*This callout is always run with MRW_WLOCK taken. */ 1490 1491 for (i = 0; i < mfchashsize; i++) { 1492 struct mfc *rt, *nrt; 1493 1494 if (V_nexpire[i] == 0) 1495 continue; 1496 1497 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1498 if (buf_ring_empty(rt->mfc_stall_ring)) 1499 continue; 1500 1501 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1502 continue; 1503 1504 MRTSTAT_INC(mrts_cache_cleanups); 1505 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1506 (u_long)ntohl(rt->mfc_origin.s_addr), 1507 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1508 1509 expire_mfc(rt); 1510 } 1511 } 1512 1513 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1514 curvnet); 1515 1516 CURVNET_RESTORE(); 1517 } 1518 1519 /* 1520 * Packet forwarding routine once entry in the cache is made 1521 */ 1522 static int 1523 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1524 { 1525 struct ip *ip = mtod(m, struct ip *); 1526 vifi_t vifi; 1527 int plen = ntohs(ip->ip_len); 1528 1529 MRW_LOCK_ASSERT(); 1530 1531 /* 1532 * If xmt_vif is not -1, send on only the requested vif. 1533 * 1534 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1535 */ 1536 if (xmt_vif < V_numvifs) { 1537 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1538 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1539 else 1540 phyint_send(ip, V_viftable + xmt_vif, m); 1541 return 1; 1542 } 1543 1544 /* 1545 * Don't forward if it didn't arrive from the parent vif for its origin. 1546 */ 1547 vifi = rt->mfc_parent; 1548 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1549 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1550 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1551 MRTSTAT_INC(mrts_wrong_if); 1552 ++rt->mfc_wrong_if; 1553 /* 1554 * If we are doing PIM assert processing, send a message 1555 * to the routing daemon. 1556 * 1557 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1558 * can complete the SPT switch, regardless of the type 1559 * of the iif (broadcast media, GRE tunnel, etc). 1560 */ 1561 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1562 V_viftable[vifi].v_ifp) { 1563 if (ifp == V_multicast_register_if) 1564 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1565 1566 /* Get vifi for the incoming packet */ 1567 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1568 vifi++) 1569 ; 1570 if (vifi >= V_numvifs) 1571 return 0; /* The iif is not found: ignore the packet. */ 1572 1573 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1574 return 0; /* WRONGVIF disabled: ignore the packet */ 1575 1576 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1577 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1578 struct igmpmsg *im; 1579 int hlen = ip->ip_hl << 2; 1580 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1581 1582 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1583 mm = m_pullup(mm, hlen); 1584 if (mm == NULL) 1585 return ENOBUFS; 1586 1587 im = mtod(mm, struct igmpmsg *); 1588 im->im_msgtype = IGMPMSG_WRONGVIF; 1589 im->im_mbz = 0; 1590 im->im_vif = vifi; 1591 1592 MRTSTAT_INC(mrts_upcalls); 1593 1594 k_igmpsrc.sin_addr = im->im_src; 1595 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1596 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1597 MRTSTAT_INC(mrts_upq_sockfull); 1598 return ENOBUFS; 1599 } 1600 } 1601 } 1602 return 0; 1603 } 1604 1605 /* If I sourced this packet, it counts as output, else it was input. */ 1606 mtx_lock_spin(&V_viftable[vifi].v_spin); 1607 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1608 V_viftable[vifi].v_pkt_out++; 1609 V_viftable[vifi].v_bytes_out += plen; 1610 } else { 1611 V_viftable[vifi].v_pkt_in++; 1612 V_viftable[vifi].v_bytes_in += plen; 1613 } 1614 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1615 1616 rt->mfc_pkt_cnt++; 1617 rt->mfc_byte_cnt += plen; 1618 1619 /* 1620 * For each vif, decide if a copy of the packet should be forwarded. 1621 * Forward if: 1622 * - the ttl exceeds the vif's threshold 1623 * - there are group members downstream on interface 1624 */ 1625 for (vifi = 0; vifi < V_numvifs; vifi++) 1626 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1627 V_viftable[vifi].v_pkt_out++; 1628 V_viftable[vifi].v_bytes_out += plen; 1629 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1630 pim_register_send(ip, V_viftable + vifi, m, rt); 1631 else 1632 phyint_send(ip, V_viftable + vifi, m); 1633 } 1634 1635 /* 1636 * Perform upcall-related bw measuring. 1637 */ 1638 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1639 struct bw_meter *x; 1640 struct timeval now; 1641 1642 microtime(&now); 1643 /* Process meters for Greater-or-EQual case */ 1644 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1645 bw_meter_geq_receive_packet(x, plen, &now); 1646 1647 /* Process meters for Lower-or-EQual case */ 1648 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1649 /* 1650 * Record that a packet is received. 1651 * Spin lock has to be taken as callout context 1652 * (expire_bw_meter_leq) might modify these fields 1653 * as well 1654 */ 1655 mtx_lock_spin(&x->bm_spin); 1656 x->bm_measured.b_packets++; 1657 x->bm_measured.b_bytes += plen; 1658 mtx_unlock_spin(&x->bm_spin); 1659 } 1660 } 1661 1662 return 0; 1663 } 1664 1665 /* 1666 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1667 */ 1668 static int 1669 X_legal_vif_num(int vif) 1670 { 1671 int ret; 1672 1673 ret = 0; 1674 if (vif < 0) 1675 return (ret); 1676 1677 MRW_RLOCK(); 1678 if (vif < V_numvifs) 1679 ret = 1; 1680 MRW_RUNLOCK(); 1681 1682 return (ret); 1683 } 1684 1685 /* 1686 * Return the local address used by this vif 1687 */ 1688 static u_long 1689 X_ip_mcast_src(int vifi) 1690 { 1691 in_addr_t addr; 1692 1693 addr = INADDR_ANY; 1694 if (vifi < 0) 1695 return (addr); 1696 1697 MRW_RLOCK(); 1698 if (vifi < V_numvifs) 1699 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1700 MRW_RUNLOCK(); 1701 1702 return (addr); 1703 } 1704 1705 static void 1706 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1707 { 1708 struct mbuf *mb_copy; 1709 int hlen = ip->ip_hl << 2; 1710 1711 MRW_LOCK_ASSERT(); 1712 1713 /* 1714 * Make a new reference to the packet; make sure that 1715 * the IP header is actually copied, not just referenced, 1716 * so that ip_output() only scribbles on the copy. 1717 */ 1718 mb_copy = m_copypacket(m, M_NOWAIT); 1719 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1720 mb_copy = m_pullup(mb_copy, hlen); 1721 if (mb_copy == NULL) 1722 return; 1723 1724 send_packet(vifp, mb_copy); 1725 } 1726 1727 static void 1728 send_packet(struct vif *vifp, struct mbuf *m) 1729 { 1730 struct ip_moptions imo; 1731 int error __unused; 1732 1733 MRW_LOCK_ASSERT(); 1734 1735 imo.imo_multicast_ifp = vifp->v_ifp; 1736 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1737 imo.imo_multicast_loop = !!in_mcast_loop; 1738 imo.imo_multicast_vif = -1; 1739 STAILQ_INIT(&imo.imo_head); 1740 1741 /* 1742 * Re-entrancy should not be a problem here, because 1743 * the packets that we send out and are looped back at us 1744 * should get rejected because they appear to come from 1745 * the loopback interface, thus preventing looping. 1746 */ 1747 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1748 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1749 (ptrdiff_t)(vifp - V_viftable), error); 1750 } 1751 1752 /* 1753 * Stubs for old RSVP socket shim implementation. 1754 */ 1755 1756 static int 1757 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1758 { 1759 1760 return (EOPNOTSUPP); 1761 } 1762 1763 static void 1764 X_ip_rsvp_force_done(struct socket *so __unused) 1765 { 1766 1767 } 1768 1769 static int 1770 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1771 { 1772 struct mbuf *m; 1773 1774 m = *mp; 1775 *mp = NULL; 1776 if (!V_rsvp_on) 1777 m_freem(m); 1778 return (IPPROTO_DONE); 1779 } 1780 1781 /* 1782 * Code for bandwidth monitors 1783 */ 1784 1785 /* 1786 * Define common interface for timeval-related methods 1787 */ 1788 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1789 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1790 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1791 1792 static uint32_t 1793 compute_bw_meter_flags(struct bw_upcall *req) 1794 { 1795 uint32_t flags = 0; 1796 1797 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1798 flags |= BW_METER_UNIT_PACKETS; 1799 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1800 flags |= BW_METER_UNIT_BYTES; 1801 if (req->bu_flags & BW_UPCALL_GEQ) 1802 flags |= BW_METER_GEQ; 1803 if (req->bu_flags & BW_UPCALL_LEQ) 1804 flags |= BW_METER_LEQ; 1805 1806 return flags; 1807 } 1808 1809 static void 1810 expire_bw_meter_leq(void *arg) 1811 { 1812 struct bw_meter *x = arg; 1813 struct timeval now; 1814 /* 1815 * INFO: 1816 * callout is always executed with MRW_WLOCK taken 1817 */ 1818 1819 CURVNET_SET((struct vnet *)x->arg); 1820 1821 microtime(&now); 1822 1823 /* 1824 * Test if we should deliver an upcall 1825 */ 1826 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1827 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1828 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1829 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1830 /* Prepare an upcall for delivery */ 1831 bw_meter_prepare_upcall(x, &now); 1832 } 1833 1834 /* Send all upcalls that are pending delivery */ 1835 taskqueue_enqueue(V_task_queue, &V_task); 1836 1837 /* Reset counters */ 1838 x->bm_start_time = now; 1839 /* Spin lock has to be taken as ip_forward context 1840 * might modify these fields as well 1841 */ 1842 mtx_lock_spin(&x->bm_spin); 1843 x->bm_measured.b_bytes = 0; 1844 x->bm_measured.b_packets = 0; 1845 mtx_unlock_spin(&x->bm_spin); 1846 1847 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1848 1849 CURVNET_RESTORE(); 1850 } 1851 1852 /* 1853 * Add a bw_meter entry 1854 */ 1855 static int 1856 add_bw_upcall(struct bw_upcall *req) 1857 { 1858 struct mfc *mfc; 1859 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1860 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1861 struct timeval now; 1862 struct bw_meter *x, **bwm_ptr; 1863 uint32_t flags; 1864 1865 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1866 return EOPNOTSUPP; 1867 1868 /* Test if the flags are valid */ 1869 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1870 return EINVAL; 1871 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1872 return EINVAL; 1873 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1874 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1875 return EINVAL; 1876 1877 /* Test if the threshold time interval is valid */ 1878 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1879 return EINVAL; 1880 1881 flags = compute_bw_meter_flags(req); 1882 1883 /* 1884 * Find if we have already same bw_meter entry 1885 */ 1886 MRW_WLOCK(); 1887 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1888 if (mfc == NULL) { 1889 MRW_WUNLOCK(); 1890 return EADDRNOTAVAIL; 1891 } 1892 1893 /* Choose an appropriate bw_meter list */ 1894 if (req->bu_flags & BW_UPCALL_GEQ) 1895 bwm_ptr = &mfc->mfc_bw_meter_geq; 1896 else 1897 bwm_ptr = &mfc->mfc_bw_meter_leq; 1898 1899 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1900 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1901 &req->bu_threshold.b_time, ==)) 1902 && (x->bm_threshold.b_packets 1903 == req->bu_threshold.b_packets) 1904 && (x->bm_threshold.b_bytes 1905 == req->bu_threshold.b_bytes) 1906 && (x->bm_flags & BW_METER_USER_FLAGS) 1907 == flags) { 1908 MRW_WUNLOCK(); 1909 return 0; /* XXX Already installed */ 1910 } 1911 } 1912 1913 /* Allocate the new bw_meter entry */ 1914 x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER, 1915 M_ZERO | M_NOWAIT); 1916 if (x == NULL) { 1917 MRW_WUNLOCK(); 1918 return ENOBUFS; 1919 } 1920 1921 /* Set the new bw_meter entry */ 1922 x->bm_threshold.b_time = req->bu_threshold.b_time; 1923 microtime(&now); 1924 x->bm_start_time = now; 1925 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1926 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1927 x->bm_measured.b_packets = 0; 1928 x->bm_measured.b_bytes = 0; 1929 x->bm_flags = flags; 1930 x->bm_time_next = NULL; 1931 x->bm_mfc = mfc; 1932 x->arg = curvnet; 1933 sprintf(x->bm_spin_name, "BM spin %p", x); 1934 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1935 1936 /* For LEQ case create periodic callout */ 1937 if (req->bu_flags & BW_UPCALL_LEQ) { 1938 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK); 1939 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1940 expire_bw_meter_leq, x); 1941 } 1942 1943 /* Add the new bw_meter entry to the front of entries for this MFC */ 1944 x->bm_mfc_next = *bwm_ptr; 1945 *bwm_ptr = x; 1946 1947 MRW_WUNLOCK(); 1948 1949 return 0; 1950 } 1951 1952 static void 1953 free_bw_list(struct bw_meter *list) 1954 { 1955 while (list != NULL) { 1956 struct bw_meter *x = list; 1957 1958 /* MRW_WLOCK must be held here */ 1959 if (x->bm_flags & BW_METER_LEQ) { 1960 callout_drain(&x->bm_meter_callout); 1961 mtx_destroy(&x->bm_spin); 1962 } 1963 1964 list = list->bm_mfc_next; 1965 free(x, M_BWMETER); 1966 } 1967 } 1968 1969 /* 1970 * Delete one or multiple bw_meter entries 1971 */ 1972 static int 1973 del_bw_upcall(struct bw_upcall *req) 1974 { 1975 struct mfc *mfc; 1976 struct bw_meter *x, **bwm_ptr; 1977 1978 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1979 return EOPNOTSUPP; 1980 1981 MRW_WLOCK(); 1982 1983 /* Find the corresponding MFC entry */ 1984 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1985 if (mfc == NULL) { 1986 MRW_WUNLOCK(); 1987 return EADDRNOTAVAIL; 1988 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1989 /* 1990 * Delete all bw_meter entries for this mfc 1991 */ 1992 struct bw_meter *list; 1993 1994 /* Free LEQ list */ 1995 list = mfc->mfc_bw_meter_leq; 1996 mfc->mfc_bw_meter_leq = NULL; 1997 free_bw_list(list); 1998 1999 /* Free GEQ list */ 2000 list = mfc->mfc_bw_meter_geq; 2001 mfc->mfc_bw_meter_geq = NULL; 2002 free_bw_list(list); 2003 MRW_WUNLOCK(); 2004 return 0; 2005 } else { /* Delete a single bw_meter entry */ 2006 struct bw_meter *prev; 2007 uint32_t flags = 0; 2008 2009 flags = compute_bw_meter_flags(req); 2010 2011 /* Choose an appropriate bw_meter list */ 2012 if (req->bu_flags & BW_UPCALL_GEQ) 2013 bwm_ptr = &mfc->mfc_bw_meter_geq; 2014 else 2015 bwm_ptr = &mfc->mfc_bw_meter_leq; 2016 2017 /* Find the bw_meter entry to delete */ 2018 for (prev = NULL, x = *bwm_ptr; x != NULL; 2019 prev = x, x = x->bm_mfc_next) { 2020 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2021 &req->bu_threshold.b_time, ==)) && 2022 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2023 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2024 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2025 break; 2026 } 2027 if (x != NULL) { /* Delete entry from the list for this MFC */ 2028 if (prev != NULL) 2029 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2030 else 2031 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2032 2033 if (req->bu_flags & BW_UPCALL_LEQ) 2034 callout_stop(&x->bm_meter_callout); 2035 2036 MRW_WUNLOCK(); 2037 /* Free the bw_meter entry */ 2038 free(x, M_BWMETER); 2039 return 0; 2040 } else { 2041 MRW_WUNLOCK(); 2042 return EINVAL; 2043 } 2044 } 2045 /* NOTREACHED */ 2046 } 2047 2048 /* 2049 * Perform bandwidth measurement processing that may result in an upcall 2050 */ 2051 static void 2052 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2053 { 2054 struct timeval delta; 2055 2056 MRW_LOCK_ASSERT(); 2057 2058 delta = *nowp; 2059 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2060 2061 /* 2062 * Processing for ">=" type of bw_meter entry. 2063 * bm_spin does not have to be hold here as in GEQ 2064 * case this is the only context accessing bm_measured. 2065 */ 2066 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2067 /* Reset the bw_meter entry */ 2068 x->bm_start_time = *nowp; 2069 x->bm_measured.b_packets = 0; 2070 x->bm_measured.b_bytes = 0; 2071 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2072 } 2073 2074 /* Record that a packet is received */ 2075 x->bm_measured.b_packets++; 2076 x->bm_measured.b_bytes += plen; 2077 2078 /* 2079 * Test if we should deliver an upcall 2080 */ 2081 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2082 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2083 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2084 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2085 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2086 /* Prepare an upcall for delivery */ 2087 bw_meter_prepare_upcall(x, nowp); 2088 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2089 } 2090 } 2091 } 2092 2093 /* 2094 * Prepare a bandwidth-related upcall 2095 */ 2096 static void 2097 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2098 { 2099 struct timeval delta; 2100 struct bw_upcall *u; 2101 2102 MRW_LOCK_ASSERT(); 2103 2104 /* 2105 * Compute the measured time interval 2106 */ 2107 delta = *nowp; 2108 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2109 2110 /* 2111 * Set the bw_upcall entry 2112 */ 2113 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2114 if (!u) { 2115 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2116 return; 2117 } 2118 u->bu_src = x->bm_mfc->mfc_origin; 2119 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2120 u->bu_threshold.b_time = x->bm_threshold.b_time; 2121 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2122 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2123 u->bu_measured.b_time = delta; 2124 u->bu_measured.b_packets = x->bm_measured.b_packets; 2125 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2126 u->bu_flags = 0; 2127 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2128 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2129 if (x->bm_flags & BW_METER_UNIT_BYTES) 2130 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2131 if (x->bm_flags & BW_METER_GEQ) 2132 u->bu_flags |= BW_UPCALL_GEQ; 2133 if (x->bm_flags & BW_METER_LEQ) 2134 u->bu_flags |= BW_UPCALL_LEQ; 2135 2136 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2137 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2138 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2139 taskqueue_enqueue(V_task_queue, &V_task); 2140 } 2141 } 2142 /* 2143 * Send the pending bandwidth-related upcalls 2144 */ 2145 static void 2146 bw_upcalls_send(void) 2147 { 2148 struct mbuf *m; 2149 int len = 0; 2150 struct bw_upcall *bu; 2151 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2152 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2153 0, /* unused2 */ 2154 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2155 0, /* im_mbz */ 2156 0, /* im_vif */ 2157 0, /* unused3 */ 2158 { 0 }, /* im_src */ 2159 { 0 } }; /* im_dst */ 2160 2161 MRW_LOCK_ASSERT(); 2162 2163 if (buf_ring_empty(V_bw_upcalls_ring)) 2164 return; 2165 2166 /* 2167 * Allocate a new mbuf, initialize it with the header and 2168 * the payload for the pending calls. 2169 */ 2170 m = m_gethdr(M_NOWAIT, MT_DATA); 2171 if (m == NULL) { 2172 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2173 return; 2174 } 2175 2176 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2177 len += sizeof(struct igmpmsg); 2178 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2179 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2180 len += sizeof(struct bw_upcall); 2181 free(bu, M_MRTABLE); 2182 } 2183 2184 /* 2185 * Send the upcalls 2186 * XXX do we need to set the address in k_igmpsrc ? 2187 */ 2188 MRTSTAT_INC(mrts_upcalls); 2189 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2190 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2191 MRTSTAT_INC(mrts_upq_sockfull); 2192 } 2193 } 2194 2195 /* 2196 * A periodic function for sending all upcalls that are pending delivery 2197 */ 2198 static void 2199 expire_bw_upcalls_send(void *arg) 2200 { 2201 CURVNET_SET((struct vnet *) arg); 2202 2203 /* This callout is run with MRW_RLOCK taken */ 2204 2205 bw_upcalls_send(); 2206 2207 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2208 curvnet); 2209 CURVNET_RESTORE(); 2210 } 2211 2212 /* 2213 * End of bandwidth monitoring code 2214 */ 2215 2216 /* 2217 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2218 * 2219 */ 2220 static int 2221 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2222 struct mfc *rt) 2223 { 2224 struct mbuf *mb_copy, *mm; 2225 2226 /* 2227 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2228 * rendezvous point was unspecified, and we were told not to. 2229 */ 2230 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2231 in_nullhost(rt->mfc_rp)) 2232 return 0; 2233 2234 mb_copy = pim_register_prepare(ip, m); 2235 if (mb_copy == NULL) 2236 return ENOBUFS; 2237 2238 /* 2239 * Send all the fragments. Note that the mbuf for each fragment 2240 * is freed by the sending machinery. 2241 */ 2242 for (mm = mb_copy; mm; mm = mb_copy) { 2243 mb_copy = mm->m_nextpkt; 2244 mm->m_nextpkt = 0; 2245 mm = m_pullup(mm, sizeof(struct ip)); 2246 if (mm != NULL) { 2247 ip = mtod(mm, struct ip *); 2248 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2249 pim_register_send_rp(ip, vifp, mm, rt); 2250 } else { 2251 pim_register_send_upcall(ip, vifp, mm, rt); 2252 } 2253 } 2254 } 2255 2256 return 0; 2257 } 2258 2259 /* 2260 * Return a copy of the data packet that is ready for PIM Register 2261 * encapsulation. 2262 * XXX: Note that in the returned copy the IP header is a valid one. 2263 */ 2264 static struct mbuf * 2265 pim_register_prepare(struct ip *ip, struct mbuf *m) 2266 { 2267 struct mbuf *mb_copy = NULL; 2268 int mtu; 2269 2270 /* Take care of delayed checksums */ 2271 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2272 in_delayed_cksum(m); 2273 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2274 } 2275 2276 /* 2277 * Copy the old packet & pullup its IP header into the 2278 * new mbuf so we can modify it. 2279 */ 2280 mb_copy = m_copypacket(m, M_NOWAIT); 2281 if (mb_copy == NULL) 2282 return NULL; 2283 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2284 if (mb_copy == NULL) 2285 return NULL; 2286 2287 /* take care of the TTL */ 2288 ip = mtod(mb_copy, struct ip *); 2289 --ip->ip_ttl; 2290 2291 /* Compute the MTU after the PIM Register encapsulation */ 2292 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2293 2294 if (ntohs(ip->ip_len) <= mtu) { 2295 /* Turn the IP header into a valid one */ 2296 ip->ip_sum = 0; 2297 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2298 } else { 2299 /* Fragment the packet */ 2300 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2301 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2302 m_freem(mb_copy); 2303 return NULL; 2304 } 2305 } 2306 return mb_copy; 2307 } 2308 2309 /* 2310 * Send an upcall with the data packet to the user-level process. 2311 */ 2312 static int 2313 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2314 struct mbuf *mb_copy, struct mfc *rt) 2315 { 2316 struct mbuf *mb_first; 2317 int len = ntohs(ip->ip_len); 2318 struct igmpmsg *im; 2319 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2320 2321 MRW_LOCK_ASSERT(); 2322 2323 /* 2324 * Add a new mbuf with an upcall header 2325 */ 2326 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2327 if (mb_first == NULL) { 2328 m_freem(mb_copy); 2329 return ENOBUFS; 2330 } 2331 mb_first->m_data += max_linkhdr; 2332 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2333 mb_first->m_len = sizeof(struct igmpmsg); 2334 mb_first->m_next = mb_copy; 2335 2336 /* Send message to routing daemon */ 2337 im = mtod(mb_first, struct igmpmsg *); 2338 im->im_msgtype = IGMPMSG_WHOLEPKT; 2339 im->im_mbz = 0; 2340 im->im_vif = vifp - V_viftable; 2341 im->im_src = ip->ip_src; 2342 im->im_dst = ip->ip_dst; 2343 2344 k_igmpsrc.sin_addr = ip->ip_src; 2345 2346 MRTSTAT_INC(mrts_upcalls); 2347 2348 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2349 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2350 MRTSTAT_INC(mrts_upq_sockfull); 2351 return ENOBUFS; 2352 } 2353 2354 /* Keep statistics */ 2355 PIMSTAT_INC(pims_snd_registers_msgs); 2356 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2357 2358 return 0; 2359 } 2360 2361 /* 2362 * Encapsulate the data packet in PIM Register message and send it to the RP. 2363 */ 2364 static int 2365 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2366 struct mfc *rt) 2367 { 2368 struct mbuf *mb_first; 2369 struct ip *ip_outer; 2370 struct pim_encap_pimhdr *pimhdr; 2371 int len = ntohs(ip->ip_len); 2372 vifi_t vifi = rt->mfc_parent; 2373 2374 MRW_LOCK_ASSERT(); 2375 2376 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2377 m_freem(mb_copy); 2378 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2379 } 2380 2381 /* 2382 * Add a new mbuf with the encapsulating header 2383 */ 2384 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2385 if (mb_first == NULL) { 2386 m_freem(mb_copy); 2387 return ENOBUFS; 2388 } 2389 mb_first->m_data += max_linkhdr; 2390 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2391 mb_first->m_next = mb_copy; 2392 2393 mb_first->m_pkthdr.len = len + mb_first->m_len; 2394 2395 /* 2396 * Fill in the encapsulating IP and PIM header 2397 */ 2398 ip_outer = mtod(mb_first, struct ip *); 2399 *ip_outer = pim_encap_iphdr; 2400 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2401 sizeof(pim_encap_pimhdr)); 2402 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2403 ip_outer->ip_dst = rt->mfc_rp; 2404 /* 2405 * Copy the inner header TOS to the outer header, and take care of the 2406 * IP_DF bit. 2407 */ 2408 ip_outer->ip_tos = ip->ip_tos; 2409 if (ip->ip_off & htons(IP_DF)) 2410 ip_outer->ip_off |= htons(IP_DF); 2411 ip_fillid(ip_outer); 2412 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2413 + sizeof(pim_encap_iphdr)); 2414 *pimhdr = pim_encap_pimhdr; 2415 /* If the iif crosses a border, set the Border-bit */ 2416 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2417 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2418 2419 mb_first->m_data += sizeof(pim_encap_iphdr); 2420 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2421 mb_first->m_data -= sizeof(pim_encap_iphdr); 2422 2423 send_packet(vifp, mb_first); 2424 2425 /* Keep statistics */ 2426 PIMSTAT_INC(pims_snd_registers_msgs); 2427 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2428 2429 return 0; 2430 } 2431 2432 /* 2433 * pim_encapcheck() is called by the encap4_input() path at runtime to 2434 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2435 * into the kernel. 2436 */ 2437 static int 2438 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2439 int proto __unused, void *arg __unused) 2440 { 2441 2442 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2443 return (8); /* claim the datagram. */ 2444 } 2445 2446 /* 2447 * PIM-SMv2 and PIM-DM messages processing. 2448 * Receives and verifies the PIM control messages, and passes them 2449 * up to the listening socket, using rip_input(). 2450 * The only message with special processing is the PIM_REGISTER message 2451 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2452 * is passed to if_simloop(). 2453 */ 2454 static int 2455 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2456 { 2457 struct ip *ip = mtod(m, struct ip *); 2458 struct pim *pim; 2459 int iphlen = off; 2460 int minlen; 2461 int datalen = ntohs(ip->ip_len) - iphlen; 2462 int ip_tos; 2463 2464 /* Keep statistics */ 2465 PIMSTAT_INC(pims_rcv_total_msgs); 2466 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2467 2468 /* 2469 * Validate lengths 2470 */ 2471 if (datalen < PIM_MINLEN) { 2472 PIMSTAT_INC(pims_rcv_tooshort); 2473 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2474 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2475 m_freem(m); 2476 return (IPPROTO_DONE); 2477 } 2478 2479 /* 2480 * If the packet is at least as big as a REGISTER, go agead 2481 * and grab the PIM REGISTER header size, to avoid another 2482 * possible m_pullup() later. 2483 * 2484 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2485 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2486 */ 2487 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2488 /* 2489 * Get the IP and PIM headers in contiguous memory, and 2490 * possibly the PIM REGISTER header. 2491 */ 2492 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2493 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2494 return (IPPROTO_DONE); 2495 } 2496 2497 /* m_pullup() may have given us a new mbuf so reset ip. */ 2498 ip = mtod(m, struct ip *); 2499 ip_tos = ip->ip_tos; 2500 2501 /* adjust mbuf to point to the PIM header */ 2502 m->m_data += iphlen; 2503 m->m_len -= iphlen; 2504 pim = mtod(m, struct pim *); 2505 2506 /* 2507 * Validate checksum. If PIM REGISTER, exclude the data packet. 2508 * 2509 * XXX: some older PIMv2 implementations don't make this distinction, 2510 * so for compatibility reason perform the checksum over part of the 2511 * message, and if error, then over the whole message. 2512 */ 2513 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2514 /* do nothing, checksum okay */ 2515 } else if (in_cksum(m, datalen)) { 2516 PIMSTAT_INC(pims_rcv_badsum); 2517 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2518 m_freem(m); 2519 return (IPPROTO_DONE); 2520 } 2521 2522 /* PIM version check */ 2523 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2524 PIMSTAT_INC(pims_rcv_badversion); 2525 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2526 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2527 m_freem(m); 2528 return (IPPROTO_DONE); 2529 } 2530 2531 /* restore mbuf back to the outer IP */ 2532 m->m_data -= iphlen; 2533 m->m_len += iphlen; 2534 2535 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2536 /* 2537 * Since this is a REGISTER, we'll make a copy of the register 2538 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2539 * routing daemon. 2540 */ 2541 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2542 struct mbuf *mcp; 2543 struct ip *encap_ip; 2544 u_int32_t *reghdr; 2545 struct ifnet *vifp; 2546 2547 MRW_RLOCK(); 2548 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2549 MRW_RUNLOCK(); 2550 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2551 (int)V_reg_vif_num); 2552 m_freem(m); 2553 return (IPPROTO_DONE); 2554 } 2555 /* XXX need refcnt? */ 2556 vifp = V_viftable[V_reg_vif_num].v_ifp; 2557 MRW_RUNLOCK(); 2558 2559 /* 2560 * Validate length 2561 */ 2562 if (datalen < PIM_REG_MINLEN) { 2563 PIMSTAT_INC(pims_rcv_tooshort); 2564 PIMSTAT_INC(pims_rcv_badregisters); 2565 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2566 m_freem(m); 2567 return (IPPROTO_DONE); 2568 } 2569 2570 reghdr = (u_int32_t *)(pim + 1); 2571 encap_ip = (struct ip *)(reghdr + 1); 2572 2573 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2574 __func__, ntohl(encap_ip->ip_src.s_addr), 2575 ntohs(encap_ip->ip_len)); 2576 2577 /* verify the version number of the inner packet */ 2578 if (encap_ip->ip_v != IPVERSION) { 2579 PIMSTAT_INC(pims_rcv_badregisters); 2580 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2581 m_freem(m); 2582 return (IPPROTO_DONE); 2583 } 2584 2585 /* verify the inner packet is destined to a mcast group */ 2586 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2587 PIMSTAT_INC(pims_rcv_badregisters); 2588 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2589 ntohl(encap_ip->ip_dst.s_addr)); 2590 m_freem(m); 2591 return (IPPROTO_DONE); 2592 } 2593 2594 /* If a NULL_REGISTER, pass it to the daemon */ 2595 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2596 goto pim_input_to_daemon; 2597 2598 /* 2599 * Copy the TOS from the outer IP header to the inner IP header. 2600 */ 2601 if (encap_ip->ip_tos != ip_tos) { 2602 /* Outer TOS -> inner TOS */ 2603 encap_ip->ip_tos = ip_tos; 2604 /* Recompute the inner header checksum. Sigh... */ 2605 2606 /* adjust mbuf to point to the inner IP header */ 2607 m->m_data += (iphlen + PIM_MINLEN); 2608 m->m_len -= (iphlen + PIM_MINLEN); 2609 2610 encap_ip->ip_sum = 0; 2611 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2612 2613 /* restore mbuf to point back to the outer IP header */ 2614 m->m_data -= (iphlen + PIM_MINLEN); 2615 m->m_len += (iphlen + PIM_MINLEN); 2616 } 2617 2618 /* 2619 * Decapsulate the inner IP packet and loopback to forward it 2620 * as a normal multicast packet. Also, make a copy of the 2621 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2622 * to pass to the daemon later, so it can take the appropriate 2623 * actions (e.g., send back PIM_REGISTER_STOP). 2624 * XXX: here m->m_data points to the outer IP header. 2625 */ 2626 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2627 if (mcp == NULL) { 2628 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2629 m_freem(m); 2630 return (IPPROTO_DONE); 2631 } 2632 2633 /* Keep statistics */ 2634 /* XXX: registers_bytes include only the encap. mcast pkt */ 2635 PIMSTAT_INC(pims_rcv_registers_msgs); 2636 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2637 2638 /* 2639 * forward the inner ip packet; point m_data at the inner ip. 2640 */ 2641 m_adj(m, iphlen + PIM_MINLEN); 2642 2643 CTR4(KTR_IPMF, 2644 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2645 __func__, 2646 (u_long)ntohl(encap_ip->ip_src.s_addr), 2647 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2648 (int)V_reg_vif_num); 2649 2650 /* NB: vifp was collected above; can it change on us? */ 2651 if_simloop(vifp, m, dst.sin_family, 0); 2652 2653 /* prepare the register head to send to the mrouting daemon */ 2654 m = mcp; 2655 } 2656 2657 pim_input_to_daemon: 2658 /* 2659 * Pass the PIM message up to the daemon; if it is a Register message, 2660 * pass the 'head' only up to the daemon. This includes the 2661 * outer IP header, PIM header, PIM-Register header and the 2662 * inner IP header. 2663 * XXX: the outer IP header pkt size of a Register is not adjust to 2664 * reflect the fact that the inner multicast data is truncated. 2665 */ 2666 return (rip_input(&m, &off, proto)); 2667 } 2668 2669 static int 2670 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2671 { 2672 struct mfc *rt; 2673 int error, i; 2674 2675 if (req->newptr) 2676 return (EPERM); 2677 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2678 return (0); 2679 error = sysctl_wire_old_buffer(req, 0); 2680 if (error) 2681 return (error); 2682 2683 MRW_RLOCK(); 2684 for (i = 0; i < mfchashsize; i++) { 2685 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2686 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2687 if (error) 2688 goto out_locked; 2689 } 2690 } 2691 out_locked: 2692 MRW_RUNLOCK(); 2693 return (error); 2694 } 2695 2696 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2697 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2698 "IPv4 Multicast Forwarding Table " 2699 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2700 2701 static int 2702 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2703 { 2704 int error; 2705 2706 if (req->newptr) 2707 return (EPERM); 2708 if (V_viftable == NULL) /* XXX unlocked */ 2709 return (0); 2710 error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS); 2711 if (error) 2712 return (error); 2713 2714 MRW_RLOCK(); 2715 error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS); 2716 MRW_RUNLOCK(); 2717 return (error); 2718 } 2719 2720 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2721 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2722 sysctl_viflist, "S,vif[MAXVIFS]", 2723 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2724 2725 static void 2726 vnet_mroute_init(const void *unused __unused) 2727 { 2728 2729 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2730 2731 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2732 M_MRTABLE, M_WAITOK|M_ZERO); 2733 2734 callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0); 2735 callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0); 2736 2737 /* Prepare taskqueue */ 2738 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2739 taskqueue_thread_enqueue, &V_task_queue); 2740 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2741 } 2742 2743 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2744 NULL); 2745 2746 static void 2747 vnet_mroute_uninit(const void *unused __unused) 2748 { 2749 2750 /* Taskqueue should be cancelled and drained before freeing */ 2751 taskqueue_free(V_task_queue); 2752 2753 free(V_viftable, M_MRTABLE); 2754 free(V_nexpire, M_MRTABLE); 2755 V_nexpire = NULL; 2756 } 2757 2758 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2759 vnet_mroute_uninit, NULL); 2760 2761 static int 2762 ip_mroute_modevent(module_t mod, int type, void *unused) 2763 { 2764 2765 switch (type) { 2766 case MOD_LOAD: 2767 MRW_LOCK_INIT(); 2768 2769 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2770 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2771 if (if_detach_event_tag == NULL) { 2772 printf("ip_mroute: unable to register " 2773 "ifnet_departure_event handler\n"); 2774 MRW_LOCK_DESTROY(); 2775 return (EINVAL); 2776 } 2777 2778 mfchashsize = MFCHASHSIZE; 2779 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2780 !powerof2(mfchashsize)) { 2781 printf("WARNING: %s not a power of 2; using default\n", 2782 "net.inet.ip.mfchashsize"); 2783 mfchashsize = MFCHASHSIZE; 2784 } 2785 2786 pim_squelch_wholepkt = 0; 2787 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2788 &pim_squelch_wholepkt); 2789 2790 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2791 if (pim_encap_cookie == NULL) { 2792 printf("ip_mroute: unable to attach pim encap\n"); 2793 MRW_LOCK_DESTROY(); 2794 return (EINVAL); 2795 } 2796 2797 ip_mcast_src = X_ip_mcast_src; 2798 ip_mforward = X_ip_mforward; 2799 ip_mrouter_done = X_ip_mrouter_done; 2800 ip_mrouter_get = X_ip_mrouter_get; 2801 ip_mrouter_set = X_ip_mrouter_set; 2802 2803 ip_rsvp_force_done = X_ip_rsvp_force_done; 2804 ip_rsvp_vif = X_ip_rsvp_vif; 2805 2806 legal_vif_num = X_legal_vif_num; 2807 mrt_ioctl = X_mrt_ioctl; 2808 rsvp_input_p = X_rsvp_input; 2809 break; 2810 2811 case MOD_UNLOAD: 2812 /* 2813 * Typically module unload happens after the user-level 2814 * process has shutdown the kernel services (the check 2815 * below insures someone can't just yank the module out 2816 * from under a running process). But if the module is 2817 * just loaded and then unloaded w/o starting up a user 2818 * process we still need to cleanup. 2819 */ 2820 MRW_WLOCK(); 2821 if (ip_mrouter_cnt != 0) { 2822 MRW_WUNLOCK(); 2823 return (EINVAL); 2824 } 2825 ip_mrouter_unloading = 1; 2826 MRW_WUNLOCK(); 2827 2828 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2829 2830 if (pim_encap_cookie) { 2831 ip_encap_detach(pim_encap_cookie); 2832 pim_encap_cookie = NULL; 2833 } 2834 2835 ip_mcast_src = NULL; 2836 ip_mforward = NULL; 2837 ip_mrouter_done = NULL; 2838 ip_mrouter_get = NULL; 2839 ip_mrouter_set = NULL; 2840 2841 ip_rsvp_force_done = NULL; 2842 ip_rsvp_vif = NULL; 2843 2844 legal_vif_num = NULL; 2845 mrt_ioctl = NULL; 2846 rsvp_input_p = NULL; 2847 2848 MRW_LOCK_DESTROY(); 2849 break; 2850 2851 default: 2852 return EOPNOTSUPP; 2853 } 2854 return 0; 2855 } 2856 2857 static moduledata_t ip_mroutemod = { 2858 "ip_mroute", 2859 ip_mroute_modevent, 2860 0 2861 }; 2862 2863 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2864