1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 /* 57 * TODO: Prefix functions with ipmf_. 58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 59 * domain attachment (if_afdata) so we can track consumers of that service. 60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 61 * move it to socket options. 62 * TODO: Cleanup LSRR removal further. 63 * TODO: Push RSVP stubs into raw_ip.c. 64 * TODO: Use bitstring.h for vif set. 65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 66 * TODO: Sync ip6_mroute.c with this file. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_inet.h" 73 #include "opt_mrouting.h" 74 75 #define _PIM_VT 1 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/stddef.h> 80 #include <sys/eventhandler.h> 81 #include <sys/lock.h> 82 #include <sys/ktr.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/module.h> 86 #include <sys/priv.h> 87 #include <sys/protosw.h> 88 #include <sys/signalvar.h> 89 #include <sys/socket.h> 90 #include <sys/socketvar.h> 91 #include <sys/sockio.h> 92 #include <sys/sx.h> 93 #include <sys/sysctl.h> 94 #include <sys/syslog.h> 95 #include <sys/systm.h> 96 #include <sys/time.h> 97 #include <sys/counter.h> 98 99 #include <net/if.h> 100 #include <net/if_var.h> 101 #include <net/netisr.h> 102 #include <net/route.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/igmp.h> 107 #include <netinet/in_systm.h> 108 #include <netinet/in_var.h> 109 #include <netinet/ip.h> 110 #include <netinet/ip_encap.h> 111 #include <netinet/ip_mroute.h> 112 #include <netinet/ip_var.h> 113 #include <netinet/ip_options.h> 114 #include <netinet/pim.h> 115 #include <netinet/pim_var.h> 116 #include <netinet/udp.h> 117 118 #include <machine/in_cksum.h> 119 120 #ifndef KTR_IPMF 121 #define KTR_IPMF KTR_INET 122 #endif 123 124 #define VIFI_INVALID ((vifi_t) -1) 125 126 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */ 127 #define V_last_tv_sec VNET(last_tv_sec) 128 129 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 130 131 /* 132 * Locking. We use two locks: one for the virtual interface table and 133 * one for the forwarding table. These locks may be nested in which case 134 * the VIF lock must always be taken first. Note that each lock is used 135 * to cover not only the specific data structure but also related data 136 * structures. 137 */ 138 139 static struct mtx mrouter_mtx; 140 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 141 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 142 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 143 #define MROUTER_LOCK_INIT() \ 144 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 145 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 146 147 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 148 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 149 150 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat); 151 VNET_PCPUSTAT_SYSINIT(mrtstat); 152 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 153 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 154 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 155 "netinet/ip_mroute.h)"); 156 157 static VNET_DEFINE(u_long, mfchash); 158 #define V_mfchash VNET(mfchash) 159 #define MFCHASH(a, g) \ 160 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 161 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 162 #define MFCHASHSIZE 256 163 164 static u_long mfchashsize; /* Hash size */ 165 static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */ 166 #define V_nexpire VNET(nexpire) 167 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 168 #define V_mfchashtbl VNET(mfchashtbl) 169 170 static struct mtx mfc_mtx; 171 #define MFC_LOCK() mtx_lock(&mfc_mtx) 172 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 173 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 174 #define MFC_LOCK_INIT() \ 175 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 176 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 177 178 static VNET_DEFINE(vifi_t, numvifs); 179 #define V_numvifs VNET(numvifs) 180 static VNET_DEFINE(struct vif, viftable[MAXVIFS]); 181 #define V_viftable VNET(viftable) 182 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 183 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 184 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 185 186 static struct mtx vif_mtx; 187 #define VIF_LOCK() mtx_lock(&vif_mtx) 188 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 189 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 190 #define VIF_LOCK_INIT() \ 191 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 192 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 193 194 static eventhandler_tag if_detach_event_tag = NULL; 195 196 static VNET_DEFINE(struct callout, expire_upcalls_ch); 197 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 198 199 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 200 #define UPCALL_EXPIRE 6 /* number of timeouts */ 201 202 /* 203 * Bandwidth meter variables and constants 204 */ 205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 206 /* 207 * Pending timeouts are stored in a hash table, the key being the 208 * expiration time. Periodically, the entries are analysed and processed. 209 */ 210 #define BW_METER_BUCKETS 1024 211 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 212 #define V_bw_meter_timers VNET(bw_meter_timers) 213 static VNET_DEFINE(struct callout, bw_meter_ch); 214 #define V_bw_meter_ch VNET(bw_meter_ch) 215 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 216 217 /* 218 * Pending upcalls are stored in a vector which is flushed when 219 * full, or periodically 220 */ 221 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 222 #define V_bw_upcalls VNET(bw_upcalls) 223 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */ 224 #define V_bw_upcalls_n VNET(bw_upcalls_n) 225 static VNET_DEFINE(struct callout, bw_upcalls_ch); 226 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 227 228 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 229 230 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat); 231 VNET_PCPUSTAT_SYSINIT(pimstat); 232 VNET_PCPUSTAT_SYSUNINIT(pimstat); 233 234 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 235 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 236 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 237 238 static u_long pim_squelch_wholepkt = 0; 239 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 240 &pim_squelch_wholepkt, 0, 241 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 242 243 extern struct domain inetdomain; 244 static const struct protosw in_pim_protosw = { 245 .pr_type = SOCK_RAW, 246 .pr_domain = &inetdomain, 247 .pr_protocol = IPPROTO_PIM, 248 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 249 .pr_input = pim_input, 250 .pr_output = rip_output, 251 .pr_ctloutput = rip_ctloutput, 252 .pr_usrreqs = &rip_usrreqs 253 }; 254 static const struct encaptab *pim_encap_cookie; 255 256 static int pim_encapcheck(const struct mbuf *, int, int, void *); 257 258 /* 259 * Note: the PIM Register encapsulation adds the following in front of a 260 * data packet: 261 * 262 * struct pim_encap_hdr { 263 * struct ip ip; 264 * struct pim_encap_pimhdr pim; 265 * } 266 * 267 */ 268 269 struct pim_encap_pimhdr { 270 struct pim pim; 271 uint32_t flags; 272 }; 273 #define PIM_ENCAP_TTL 64 274 275 static struct ip pim_encap_iphdr = { 276 #if BYTE_ORDER == LITTLE_ENDIAN 277 sizeof(struct ip) >> 2, 278 IPVERSION, 279 #else 280 IPVERSION, 281 sizeof(struct ip) >> 2, 282 #endif 283 0, /* tos */ 284 sizeof(struct ip), /* total length */ 285 0, /* id */ 286 0, /* frag offset */ 287 PIM_ENCAP_TTL, 288 IPPROTO_PIM, 289 0, /* checksum */ 290 }; 291 292 static struct pim_encap_pimhdr pim_encap_pimhdr = { 293 { 294 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 295 0, /* reserved */ 296 0, /* checksum */ 297 }, 298 0 /* flags */ 299 }; 300 301 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID; 302 #define V_reg_vif_num VNET(reg_vif_num) 303 static VNET_DEFINE(struct ifnet, multicast_register_if); 304 #define V_multicast_register_if VNET(multicast_register_if) 305 306 /* 307 * Private variables. 308 */ 309 310 static u_long X_ip_mcast_src(int); 311 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 312 struct ip_moptions *); 313 static int X_ip_mrouter_done(void); 314 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 315 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 316 static int X_legal_vif_num(int); 317 static int X_mrt_ioctl(u_long, caddr_t, int); 318 319 static int add_bw_upcall(struct bw_upcall *); 320 static int add_mfc(struct mfcctl2 *); 321 static int add_vif(struct vifctl *); 322 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 323 static void bw_meter_process(void); 324 static void bw_meter_receive_packet(struct bw_meter *, int, 325 struct timeval *); 326 static void bw_upcalls_send(void); 327 static int del_bw_upcall(struct bw_upcall *); 328 static int del_mfc(struct mfcctl2 *); 329 static int del_vif(vifi_t); 330 static int del_vif_locked(vifi_t); 331 static void expire_bw_meter_process(void *); 332 static void expire_bw_upcalls_send(void *); 333 static void expire_mfc(struct mfc *); 334 static void expire_upcalls(void *); 335 static void free_bw_list(struct bw_meter *); 336 static int get_sg_cnt(struct sioc_sg_req *); 337 static int get_vif_cnt(struct sioc_vif_req *); 338 static void if_detached_event(void *, struct ifnet *); 339 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 340 static int ip_mrouter_init(struct socket *, int); 341 static __inline struct mfc * 342 mfc_find(struct in_addr *, struct in_addr *); 343 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 344 static struct mbuf * 345 pim_register_prepare(struct ip *, struct mbuf *); 346 static int pim_register_send(struct ip *, struct vif *, 347 struct mbuf *, struct mfc *); 348 static int pim_register_send_rp(struct ip *, struct vif *, 349 struct mbuf *, struct mfc *); 350 static int pim_register_send_upcall(struct ip *, struct vif *, 351 struct mbuf *, struct mfc *); 352 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 353 static void send_packet(struct vif *, struct mbuf *); 354 static int set_api_config(uint32_t *); 355 static int set_assert(int); 356 static int socket_send(struct socket *, struct mbuf *, 357 struct sockaddr_in *); 358 static void unschedule_bw_meter(struct bw_meter *); 359 360 /* 361 * Kernel multicast forwarding API capabilities and setup. 362 * If more API capabilities are added to the kernel, they should be 363 * recorded in `mrt_api_support'. 364 */ 365 #define MRT_API_VERSION 0x0305 366 367 static const int mrt_api_version = MRT_API_VERSION; 368 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 369 MRT_MFC_FLAGS_BORDER_VIF | 370 MRT_MFC_RP | 371 MRT_MFC_BW_UPCALL); 372 static VNET_DEFINE(uint32_t, mrt_api_config); 373 #define V_mrt_api_config VNET(mrt_api_config) 374 static VNET_DEFINE(int, pim_assert_enabled); 375 #define V_pim_assert_enabled VNET(pim_assert_enabled) 376 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 377 378 /* 379 * Find a route for a given origin IP address and multicast group address. 380 * Statistics must be updated by the caller. 381 */ 382 static __inline struct mfc * 383 mfc_find(struct in_addr *o, struct in_addr *g) 384 { 385 struct mfc *rt; 386 387 MFC_LOCK_ASSERT(); 388 389 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 390 if (in_hosteq(rt->mfc_origin, *o) && 391 in_hosteq(rt->mfc_mcastgrp, *g) && 392 TAILQ_EMPTY(&rt->mfc_stall)) 393 break; 394 } 395 396 return (rt); 397 } 398 399 /* 400 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 401 */ 402 static int 403 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 404 { 405 int error, optval; 406 vifi_t vifi; 407 struct vifctl vifc; 408 struct mfcctl2 mfc; 409 struct bw_upcall bw_upcall; 410 uint32_t i; 411 412 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 413 return EPERM; 414 415 error = 0; 416 switch (sopt->sopt_name) { 417 case MRT_INIT: 418 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 419 if (error) 420 break; 421 error = ip_mrouter_init(so, optval); 422 break; 423 424 case MRT_DONE: 425 error = ip_mrouter_done(); 426 break; 427 428 case MRT_ADD_VIF: 429 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 430 if (error) 431 break; 432 error = add_vif(&vifc); 433 break; 434 435 case MRT_DEL_VIF: 436 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 437 if (error) 438 break; 439 error = del_vif(vifi); 440 break; 441 442 case MRT_ADD_MFC: 443 case MRT_DEL_MFC: 444 /* 445 * select data size depending on API version. 446 */ 447 if (sopt->sopt_name == MRT_ADD_MFC && 448 V_mrt_api_config & MRT_API_FLAGS_ALL) { 449 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 450 sizeof(struct mfcctl2)); 451 } else { 452 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 453 sizeof(struct mfcctl)); 454 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 455 sizeof(mfc) - sizeof(struct mfcctl)); 456 } 457 if (error) 458 break; 459 if (sopt->sopt_name == MRT_ADD_MFC) 460 error = add_mfc(&mfc); 461 else 462 error = del_mfc(&mfc); 463 break; 464 465 case MRT_ASSERT: 466 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 467 if (error) 468 break; 469 set_assert(optval); 470 break; 471 472 case MRT_API_CONFIG: 473 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 474 if (!error) 475 error = set_api_config(&i); 476 if (!error) 477 error = sooptcopyout(sopt, &i, sizeof i); 478 break; 479 480 case MRT_ADD_BW_UPCALL: 481 case MRT_DEL_BW_UPCALL: 482 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 483 sizeof bw_upcall); 484 if (error) 485 break; 486 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 487 error = add_bw_upcall(&bw_upcall); 488 else 489 error = del_bw_upcall(&bw_upcall); 490 break; 491 492 default: 493 error = EOPNOTSUPP; 494 break; 495 } 496 return error; 497 } 498 499 /* 500 * Handle MRT getsockopt commands 501 */ 502 static int 503 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 504 { 505 int error; 506 507 switch (sopt->sopt_name) { 508 case MRT_VERSION: 509 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 510 break; 511 512 case MRT_ASSERT: 513 error = sooptcopyout(sopt, &V_pim_assert_enabled, 514 sizeof V_pim_assert_enabled); 515 break; 516 517 case MRT_API_SUPPORT: 518 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 519 break; 520 521 case MRT_API_CONFIG: 522 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 523 break; 524 525 default: 526 error = EOPNOTSUPP; 527 break; 528 } 529 return error; 530 } 531 532 /* 533 * Handle ioctl commands to obtain information from the cache 534 */ 535 static int 536 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 537 { 538 int error = 0; 539 540 /* 541 * Currently the only function calling this ioctl routine is rtioctl_fib(). 542 * Typically, only root can create the raw socket in order to execute 543 * this ioctl method, however the request might be coming from a prison 544 */ 545 error = priv_check(curthread, PRIV_NETINET_MROUTE); 546 if (error) 547 return (error); 548 switch (cmd) { 549 case (SIOCGETVIFCNT): 550 error = get_vif_cnt((struct sioc_vif_req *)data); 551 break; 552 553 case (SIOCGETSGCNT): 554 error = get_sg_cnt((struct sioc_sg_req *)data); 555 break; 556 557 default: 558 error = EINVAL; 559 break; 560 } 561 return error; 562 } 563 564 /* 565 * returns the packet, byte, rpf-failure count for the source group provided 566 */ 567 static int 568 get_sg_cnt(struct sioc_sg_req *req) 569 { 570 struct mfc *rt; 571 572 MFC_LOCK(); 573 rt = mfc_find(&req->src, &req->grp); 574 if (rt == NULL) { 575 MFC_UNLOCK(); 576 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 577 return EADDRNOTAVAIL; 578 } 579 req->pktcnt = rt->mfc_pkt_cnt; 580 req->bytecnt = rt->mfc_byte_cnt; 581 req->wrong_if = rt->mfc_wrong_if; 582 MFC_UNLOCK(); 583 return 0; 584 } 585 586 /* 587 * returns the input and output packet and byte counts on the vif provided 588 */ 589 static int 590 get_vif_cnt(struct sioc_vif_req *req) 591 { 592 vifi_t vifi = req->vifi; 593 594 VIF_LOCK(); 595 if (vifi >= V_numvifs) { 596 VIF_UNLOCK(); 597 return EINVAL; 598 } 599 600 req->icount = V_viftable[vifi].v_pkt_in; 601 req->ocount = V_viftable[vifi].v_pkt_out; 602 req->ibytes = V_viftable[vifi].v_bytes_in; 603 req->obytes = V_viftable[vifi].v_bytes_out; 604 VIF_UNLOCK(); 605 606 return 0; 607 } 608 609 static void 610 if_detached_event(void *arg __unused, struct ifnet *ifp) 611 { 612 vifi_t vifi; 613 u_long i; 614 615 MROUTER_LOCK(); 616 617 if (V_ip_mrouter == NULL) { 618 MROUTER_UNLOCK(); 619 return; 620 } 621 622 VIF_LOCK(); 623 MFC_LOCK(); 624 625 /* 626 * Tear down multicast forwarder state associated with this ifnet. 627 * 1. Walk the vif list, matching vifs against this ifnet. 628 * 2. Walk the multicast forwarding cache (mfc) looking for 629 * inner matches with this vif's index. 630 * 3. Expire any matching multicast forwarding cache entries. 631 * 4. Free vif state. This should disable ALLMULTI on the interface. 632 */ 633 for (vifi = 0; vifi < V_numvifs; vifi++) { 634 if (V_viftable[vifi].v_ifp != ifp) 635 continue; 636 for (i = 0; i < mfchashsize; i++) { 637 struct mfc *rt, *nrt; 638 639 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 640 if (rt->mfc_parent == vifi) { 641 expire_mfc(rt); 642 } 643 } 644 } 645 del_vif_locked(vifi); 646 } 647 648 MFC_UNLOCK(); 649 VIF_UNLOCK(); 650 651 MROUTER_UNLOCK(); 652 } 653 654 /* 655 * Enable multicast forwarding. 656 */ 657 static int 658 ip_mrouter_init(struct socket *so, int version) 659 { 660 661 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 662 so->so_type, so->so_proto->pr_protocol); 663 664 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 665 return EOPNOTSUPP; 666 667 if (version != 1) 668 return ENOPROTOOPT; 669 670 MROUTER_LOCK(); 671 672 if (ip_mrouter_unloading) { 673 MROUTER_UNLOCK(); 674 return ENOPROTOOPT; 675 } 676 677 if (V_ip_mrouter != NULL) { 678 MROUTER_UNLOCK(); 679 return EADDRINUSE; 680 } 681 682 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 683 HASH_NOWAIT); 684 685 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 686 curvnet); 687 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 688 curvnet); 689 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 690 curvnet); 691 692 V_ip_mrouter = so; 693 ip_mrouter_cnt++; 694 695 MROUTER_UNLOCK(); 696 697 CTR1(KTR_IPMF, "%s: done", __func__); 698 699 return 0; 700 } 701 702 /* 703 * Disable multicast forwarding. 704 */ 705 static int 706 X_ip_mrouter_done(void) 707 { 708 struct ifnet *ifp; 709 u_long i; 710 vifi_t vifi; 711 712 MROUTER_LOCK(); 713 714 if (V_ip_mrouter == NULL) { 715 MROUTER_UNLOCK(); 716 return EINVAL; 717 } 718 719 /* 720 * Detach/disable hooks to the reset of the system. 721 */ 722 V_ip_mrouter = NULL; 723 ip_mrouter_cnt--; 724 V_mrt_api_config = 0; 725 726 VIF_LOCK(); 727 728 /* 729 * For each phyint in use, disable promiscuous reception of all IP 730 * multicasts. 731 */ 732 for (vifi = 0; vifi < V_numvifs; vifi++) { 733 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 734 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 735 ifp = V_viftable[vifi].v_ifp; 736 if_allmulti(ifp, 0); 737 } 738 } 739 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 740 V_numvifs = 0; 741 V_pim_assert_enabled = 0; 742 743 VIF_UNLOCK(); 744 745 callout_stop(&V_expire_upcalls_ch); 746 callout_stop(&V_bw_upcalls_ch); 747 callout_stop(&V_bw_meter_ch); 748 749 MFC_LOCK(); 750 751 /* 752 * Free all multicast forwarding cache entries. 753 * Do not use hashdestroy(), as we must perform other cleanup. 754 */ 755 for (i = 0; i < mfchashsize; i++) { 756 struct mfc *rt, *nrt; 757 758 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 759 expire_mfc(rt); 760 } 761 } 762 free(V_mfchashtbl, M_MRTABLE); 763 V_mfchashtbl = NULL; 764 765 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 766 767 V_bw_upcalls_n = 0; 768 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 769 770 MFC_UNLOCK(); 771 772 V_reg_vif_num = VIFI_INVALID; 773 774 MROUTER_UNLOCK(); 775 776 CTR1(KTR_IPMF, "%s: done", __func__); 777 778 return 0; 779 } 780 781 /* 782 * Set PIM assert processing global 783 */ 784 static int 785 set_assert(int i) 786 { 787 if ((i != 1) && (i != 0)) 788 return EINVAL; 789 790 V_pim_assert_enabled = i; 791 792 return 0; 793 } 794 795 /* 796 * Configure API capabilities 797 */ 798 int 799 set_api_config(uint32_t *apival) 800 { 801 u_long i; 802 803 /* 804 * We can set the API capabilities only if it is the first operation 805 * after MRT_INIT. I.e.: 806 * - there are no vifs installed 807 * - pim_assert is not enabled 808 * - the MFC table is empty 809 */ 810 if (V_numvifs > 0) { 811 *apival = 0; 812 return EPERM; 813 } 814 if (V_pim_assert_enabled) { 815 *apival = 0; 816 return EPERM; 817 } 818 819 MFC_LOCK(); 820 821 for (i = 0; i < mfchashsize; i++) { 822 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 823 MFC_UNLOCK(); 824 *apival = 0; 825 return EPERM; 826 } 827 } 828 829 MFC_UNLOCK(); 830 831 V_mrt_api_config = *apival & mrt_api_support; 832 *apival = V_mrt_api_config; 833 834 return 0; 835 } 836 837 /* 838 * Add a vif to the vif table 839 */ 840 static int 841 add_vif(struct vifctl *vifcp) 842 { 843 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 844 struct sockaddr_in sin = {sizeof sin, AF_INET}; 845 struct ifaddr *ifa; 846 struct ifnet *ifp; 847 int error; 848 #ifdef KTR 849 char addrbuf[INET_ADDRSTRLEN]; 850 #endif 851 852 VIF_LOCK(); 853 if (vifcp->vifc_vifi >= MAXVIFS) { 854 VIF_UNLOCK(); 855 return EINVAL; 856 } 857 /* rate limiting is no longer supported by this code */ 858 if (vifcp->vifc_rate_limit != 0) { 859 log(LOG_ERR, "rate limiting is no longer supported\n"); 860 VIF_UNLOCK(); 861 return EINVAL; 862 } 863 if (!in_nullhost(vifp->v_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRINUSE; 866 } 867 if (in_nullhost(vifcp->vifc_lcl_addr)) { 868 VIF_UNLOCK(); 869 return EADDRNOTAVAIL; 870 } 871 872 /* Find the interface with an address in AF_INET family */ 873 if (vifcp->vifc_flags & VIFF_REGISTER) { 874 /* 875 * XXX: Because VIFF_REGISTER does not really need a valid 876 * local interface (e.g. it could be 127.0.0.2), we don't 877 * check its address. 878 */ 879 ifp = NULL; 880 } else { 881 sin.sin_addr = vifcp->vifc_lcl_addr; 882 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 883 if (ifa == NULL) { 884 VIF_UNLOCK(); 885 return EADDRNOTAVAIL; 886 } 887 ifp = ifa->ifa_ifp; 888 ifa_free(ifa); 889 } 890 891 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 892 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 893 VIF_UNLOCK(); 894 return EOPNOTSUPP; 895 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 896 ifp = &V_multicast_register_if; 897 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 898 if (V_reg_vif_num == VIFI_INVALID) { 899 if_initname(&V_multicast_register_if, "register_vif", 0); 900 V_multicast_register_if.if_flags = IFF_LOOPBACK; 901 V_reg_vif_num = vifcp->vifc_vifi; 902 } 903 } else { /* Make sure the interface supports multicast */ 904 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 905 VIF_UNLOCK(); 906 return EOPNOTSUPP; 907 } 908 909 /* Enable promiscuous reception of all IP multicasts from the if */ 910 error = if_allmulti(ifp, 1); 911 if (error) { 912 VIF_UNLOCK(); 913 return error; 914 } 915 } 916 917 vifp->v_flags = vifcp->vifc_flags; 918 vifp->v_threshold = vifcp->vifc_threshold; 919 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 920 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 921 vifp->v_ifp = ifp; 922 /* initialize per vif pkt counters */ 923 vifp->v_pkt_in = 0; 924 vifp->v_pkt_out = 0; 925 vifp->v_bytes_in = 0; 926 vifp->v_bytes_out = 0; 927 928 /* Adjust numvifs up if the vifi is higher than numvifs */ 929 if (V_numvifs <= vifcp->vifc_vifi) 930 V_numvifs = vifcp->vifc_vifi + 1; 931 932 VIF_UNLOCK(); 933 934 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__, 935 (int)vifcp->vifc_vifi, inet_ntoa_r(vifcp->vifc_lcl_addr, addrbuf), 936 (int)vifcp->vifc_threshold); 937 938 return 0; 939 } 940 941 /* 942 * Delete a vif from the vif table 943 */ 944 static int 945 del_vif_locked(vifi_t vifi) 946 { 947 struct vif *vifp; 948 949 VIF_LOCK_ASSERT(); 950 951 if (vifi >= V_numvifs) { 952 return EINVAL; 953 } 954 vifp = &V_viftable[vifi]; 955 if (in_nullhost(vifp->v_lcl_addr)) { 956 return EADDRNOTAVAIL; 957 } 958 959 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 960 if_allmulti(vifp->v_ifp, 0); 961 962 if (vifp->v_flags & VIFF_REGISTER) 963 V_reg_vif_num = VIFI_INVALID; 964 965 bzero((caddr_t)vifp, sizeof (*vifp)); 966 967 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 968 969 /* Adjust numvifs down */ 970 for (vifi = V_numvifs; vifi > 0; vifi--) 971 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 972 break; 973 V_numvifs = vifi; 974 975 return 0; 976 } 977 978 static int 979 del_vif(vifi_t vifi) 980 { 981 int cc; 982 983 VIF_LOCK(); 984 cc = del_vif_locked(vifi); 985 VIF_UNLOCK(); 986 987 return cc; 988 } 989 990 /* 991 * update an mfc entry without resetting counters and S,G addresses. 992 */ 993 static void 994 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 995 { 996 int i; 997 998 rt->mfc_parent = mfccp->mfcc_parent; 999 for (i = 0; i < V_numvifs; i++) { 1000 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1001 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1002 MRT_MFC_FLAGS_ALL; 1003 } 1004 /* set the RP address */ 1005 if (V_mrt_api_config & MRT_MFC_RP) 1006 rt->mfc_rp = mfccp->mfcc_rp; 1007 else 1008 rt->mfc_rp.s_addr = INADDR_ANY; 1009 } 1010 1011 /* 1012 * fully initialize an mfc entry from the parameter. 1013 */ 1014 static void 1015 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1016 { 1017 rt->mfc_origin = mfccp->mfcc_origin; 1018 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1019 1020 update_mfc_params(rt, mfccp); 1021 1022 /* initialize pkt counters per src-grp */ 1023 rt->mfc_pkt_cnt = 0; 1024 rt->mfc_byte_cnt = 0; 1025 rt->mfc_wrong_if = 0; 1026 timevalclear(&rt->mfc_last_assert); 1027 } 1028 1029 static void 1030 expire_mfc(struct mfc *rt) 1031 { 1032 struct rtdetq *rte, *nrte; 1033 1034 MFC_LOCK_ASSERT(); 1035 1036 free_bw_list(rt->mfc_bw_meter); 1037 1038 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1039 m_freem(rte->m); 1040 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1041 free(rte, M_MRTABLE); 1042 } 1043 1044 LIST_REMOVE(rt, mfc_hash); 1045 free(rt, M_MRTABLE); 1046 } 1047 1048 /* 1049 * Add an mfc entry 1050 */ 1051 static int 1052 add_mfc(struct mfcctl2 *mfccp) 1053 { 1054 struct mfc *rt; 1055 struct rtdetq *rte, *nrte; 1056 u_long hash = 0; 1057 u_short nstl; 1058 #ifdef KTR 1059 char addrbuf[INET_ADDRSTRLEN]; 1060 #endif 1061 1062 VIF_LOCK(); 1063 MFC_LOCK(); 1064 1065 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1066 1067 /* If an entry already exists, just update the fields */ 1068 if (rt) { 1069 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x", 1070 __func__, inet_ntoa_r(mfccp->mfcc_origin, addrbuf), 1071 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1072 mfccp->mfcc_parent); 1073 update_mfc_params(rt, mfccp); 1074 MFC_UNLOCK(); 1075 VIF_UNLOCK(); 1076 return (0); 1077 } 1078 1079 /* 1080 * Find the entry for which the upcall was made and update 1081 */ 1082 nstl = 0; 1083 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1084 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1085 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1086 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1087 !TAILQ_EMPTY(&rt->mfc_stall)) { 1088 CTR5(KTR_IPMF, 1089 "%s: add mfc orig %s group %lx parent %x qh %p", 1090 __func__, inet_ntoa_r(mfccp->mfcc_origin, addrbuf), 1091 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1092 mfccp->mfcc_parent, 1093 TAILQ_FIRST(&rt->mfc_stall)); 1094 if (nstl++) 1095 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1096 1097 init_mfc_params(rt, mfccp); 1098 rt->mfc_expire = 0; /* Don't clean this guy up */ 1099 V_nexpire[hash]--; 1100 1101 /* Free queued packets, but attempt to forward them first. */ 1102 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1103 if (rte->ifp != NULL) 1104 ip_mdq(rte->m, rte->ifp, rt, -1); 1105 m_freem(rte->m); 1106 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1107 rt->mfc_nstall--; 1108 free(rte, M_MRTABLE); 1109 } 1110 } 1111 } 1112 1113 /* 1114 * It is possible that an entry is being inserted without an upcall 1115 */ 1116 if (nstl == 0) { 1117 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1118 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1119 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1120 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1121 init_mfc_params(rt, mfccp); 1122 if (rt->mfc_expire) 1123 V_nexpire[hash]--; 1124 rt->mfc_expire = 0; 1125 break; /* XXX */ 1126 } 1127 } 1128 1129 if (rt == NULL) { /* no upcall, so make a new entry */ 1130 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1131 if (rt == NULL) { 1132 MFC_UNLOCK(); 1133 VIF_UNLOCK(); 1134 return (ENOBUFS); 1135 } 1136 1137 init_mfc_params(rt, mfccp); 1138 TAILQ_INIT(&rt->mfc_stall); 1139 rt->mfc_nstall = 0; 1140 1141 rt->mfc_expire = 0; 1142 rt->mfc_bw_meter = NULL; 1143 1144 /* insert new entry at head of hash chain */ 1145 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1146 } 1147 } 1148 1149 MFC_UNLOCK(); 1150 VIF_UNLOCK(); 1151 1152 return (0); 1153 } 1154 1155 /* 1156 * Delete an mfc entry 1157 */ 1158 static int 1159 del_mfc(struct mfcctl2 *mfccp) 1160 { 1161 struct in_addr origin; 1162 struct in_addr mcastgrp; 1163 struct mfc *rt; 1164 #ifdef KTR 1165 char addrbuf[INET_ADDRSTRLEN]; 1166 #endif 1167 1168 origin = mfccp->mfcc_origin; 1169 mcastgrp = mfccp->mfcc_mcastgrp; 1170 1171 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__, 1172 inet_ntoa_r(origin, addrbuf), (u_long)ntohl(mcastgrp.s_addr)); 1173 1174 MFC_LOCK(); 1175 1176 rt = mfc_find(&origin, &mcastgrp); 1177 if (rt == NULL) { 1178 MFC_UNLOCK(); 1179 return EADDRNOTAVAIL; 1180 } 1181 1182 /* 1183 * free the bw_meter entries 1184 */ 1185 free_bw_list(rt->mfc_bw_meter); 1186 rt->mfc_bw_meter = NULL; 1187 1188 LIST_REMOVE(rt, mfc_hash); 1189 free(rt, M_MRTABLE); 1190 1191 MFC_UNLOCK(); 1192 1193 return (0); 1194 } 1195 1196 /* 1197 * Send a message to the routing daemon on the multicast routing socket. 1198 */ 1199 static int 1200 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1201 { 1202 if (s) { 1203 SOCKBUF_LOCK(&s->so_rcv); 1204 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1205 NULL) != 0) { 1206 sorwakeup_locked(s); 1207 return 0; 1208 } 1209 SOCKBUF_UNLOCK(&s->so_rcv); 1210 } 1211 m_freem(mm); 1212 return -1; 1213 } 1214 1215 /* 1216 * IP multicast forwarding function. This function assumes that the packet 1217 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1218 * pointed to by "ifp", and the packet is to be relayed to other networks 1219 * that have members of the packet's destination IP multicast group. 1220 * 1221 * The packet is returned unscathed to the caller, unless it is 1222 * erroneous, in which case a non-zero return value tells the caller to 1223 * discard it. 1224 */ 1225 1226 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1227 1228 static int 1229 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1230 struct ip_moptions *imo) 1231 { 1232 struct mfc *rt; 1233 int error; 1234 vifi_t vifi; 1235 #ifdef KTR 1236 char addrbuf[INET_ADDRSTRLEN]; 1237 #endif 1238 1239 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p", 1240 inet_ntoa_r(ip->ip_src, addrbuf), (u_long)ntohl(ip->ip_dst.s_addr), 1241 ifp); 1242 1243 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1244 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1245 /* 1246 * Packet arrived via a physical interface or 1247 * an encapsulated tunnel or a register_vif. 1248 */ 1249 } else { 1250 /* 1251 * Packet arrived through a source-route tunnel. 1252 * Source-route tunnels are no longer supported. 1253 */ 1254 return (1); 1255 } 1256 1257 VIF_LOCK(); 1258 MFC_LOCK(); 1259 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1260 if (ip->ip_ttl < MAXTTL) 1261 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1262 error = ip_mdq(m, ifp, NULL, vifi); 1263 MFC_UNLOCK(); 1264 VIF_UNLOCK(); 1265 return error; 1266 } 1267 1268 /* 1269 * Don't forward a packet with time-to-live of zero or one, 1270 * or a packet destined to a local-only group. 1271 */ 1272 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1273 MFC_UNLOCK(); 1274 VIF_UNLOCK(); 1275 return 0; 1276 } 1277 1278 /* 1279 * Determine forwarding vifs from the forwarding cache table 1280 */ 1281 MRTSTAT_INC(mrts_mfc_lookups); 1282 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1283 1284 /* Entry exists, so forward if necessary */ 1285 if (rt != NULL) { 1286 error = ip_mdq(m, ifp, rt, -1); 1287 MFC_UNLOCK(); 1288 VIF_UNLOCK(); 1289 return error; 1290 } else { 1291 /* 1292 * If we don't have a route for packet's origin, 1293 * Make a copy of the packet & send message to routing daemon 1294 */ 1295 1296 struct mbuf *mb0; 1297 struct rtdetq *rte; 1298 u_long hash; 1299 int hlen = ip->ip_hl << 2; 1300 1301 MRTSTAT_INC(mrts_mfc_misses); 1302 MRTSTAT_INC(mrts_no_route); 1303 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)", 1304 inet_ntoa_r(ip->ip_src, addrbuf), (u_long)ntohl(ip->ip_dst.s_addr)); 1305 1306 /* 1307 * Allocate mbufs early so that we don't do extra work if we are 1308 * just going to fail anyway. Make sure to pullup the header so 1309 * that other people can't step on it. 1310 */ 1311 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1312 M_NOWAIT|M_ZERO); 1313 if (rte == NULL) { 1314 MFC_UNLOCK(); 1315 VIF_UNLOCK(); 1316 return ENOBUFS; 1317 } 1318 1319 mb0 = m_copypacket(m, M_NOWAIT); 1320 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1321 mb0 = m_pullup(mb0, hlen); 1322 if (mb0 == NULL) { 1323 free(rte, M_MRTABLE); 1324 MFC_UNLOCK(); 1325 VIF_UNLOCK(); 1326 return ENOBUFS; 1327 } 1328 1329 /* is there an upcall waiting for this flow ? */ 1330 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1331 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1332 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1333 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1334 !TAILQ_EMPTY(&rt->mfc_stall)) 1335 break; 1336 } 1337 1338 if (rt == NULL) { 1339 int i; 1340 struct igmpmsg *im; 1341 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1342 struct mbuf *mm; 1343 1344 /* 1345 * Locate the vifi for the incoming interface for this packet. 1346 * If none found, drop packet. 1347 */ 1348 for (vifi = 0; vifi < V_numvifs && 1349 V_viftable[vifi].v_ifp != ifp; vifi++) 1350 ; 1351 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1352 goto non_fatal; 1353 1354 /* no upcall, so make a new entry */ 1355 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1356 if (rt == NULL) 1357 goto fail; 1358 1359 /* Make a copy of the header to send to the user level process */ 1360 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1361 if (mm == NULL) 1362 goto fail1; 1363 1364 /* 1365 * Send message to routing daemon to install 1366 * a route into the kernel table 1367 */ 1368 1369 im = mtod(mm, struct igmpmsg *); 1370 im->im_msgtype = IGMPMSG_NOCACHE; 1371 im->im_mbz = 0; 1372 im->im_vif = vifi; 1373 1374 MRTSTAT_INC(mrts_upcalls); 1375 1376 k_igmpsrc.sin_addr = ip->ip_src; 1377 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1378 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1379 MRTSTAT_INC(mrts_upq_sockfull); 1380 fail1: 1381 free(rt, M_MRTABLE); 1382 fail: 1383 free(rte, M_MRTABLE); 1384 m_freem(mb0); 1385 MFC_UNLOCK(); 1386 VIF_UNLOCK(); 1387 return ENOBUFS; 1388 } 1389 1390 /* insert new entry at head of hash chain */ 1391 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1392 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1393 rt->mfc_expire = UPCALL_EXPIRE; 1394 V_nexpire[hash]++; 1395 for (i = 0; i < V_numvifs; i++) { 1396 rt->mfc_ttls[i] = 0; 1397 rt->mfc_flags[i] = 0; 1398 } 1399 rt->mfc_parent = -1; 1400 1401 /* clear the RP address */ 1402 rt->mfc_rp.s_addr = INADDR_ANY; 1403 rt->mfc_bw_meter = NULL; 1404 1405 /* initialize pkt counters per src-grp */ 1406 rt->mfc_pkt_cnt = 0; 1407 rt->mfc_byte_cnt = 0; 1408 rt->mfc_wrong_if = 0; 1409 timevalclear(&rt->mfc_last_assert); 1410 1411 TAILQ_INIT(&rt->mfc_stall); 1412 rt->mfc_nstall = 0; 1413 1414 /* link into table */ 1415 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1416 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1417 rt->mfc_nstall++; 1418 1419 } else { 1420 /* determine if queue has overflowed */ 1421 if (rt->mfc_nstall > MAX_UPQ) { 1422 MRTSTAT_INC(mrts_upq_ovflw); 1423 non_fatal: 1424 free(rte, M_MRTABLE); 1425 m_freem(mb0); 1426 MFC_UNLOCK(); 1427 VIF_UNLOCK(); 1428 return (0); 1429 } 1430 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1431 rt->mfc_nstall++; 1432 } 1433 1434 rte->m = mb0; 1435 rte->ifp = ifp; 1436 1437 MFC_UNLOCK(); 1438 VIF_UNLOCK(); 1439 1440 return 0; 1441 } 1442 } 1443 1444 /* 1445 * Clean up the cache entry if upcall is not serviced 1446 */ 1447 static void 1448 expire_upcalls(void *arg) 1449 { 1450 u_long i; 1451 1452 CURVNET_SET((struct vnet *) arg); 1453 1454 MFC_LOCK(); 1455 1456 for (i = 0; i < mfchashsize; i++) { 1457 struct mfc *rt, *nrt; 1458 1459 if (V_nexpire[i] == 0) 1460 continue; 1461 1462 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1463 if (TAILQ_EMPTY(&rt->mfc_stall)) 1464 continue; 1465 1466 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1467 continue; 1468 1469 /* 1470 * free the bw_meter entries 1471 */ 1472 while (rt->mfc_bw_meter != NULL) { 1473 struct bw_meter *x = rt->mfc_bw_meter; 1474 1475 rt->mfc_bw_meter = x->bm_mfc_next; 1476 free(x, M_BWMETER); 1477 } 1478 1479 MRTSTAT_INC(mrts_cache_cleanups); 1480 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1481 (u_long)ntohl(rt->mfc_origin.s_addr), 1482 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1483 1484 expire_mfc(rt); 1485 } 1486 } 1487 1488 MFC_UNLOCK(); 1489 1490 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1491 curvnet); 1492 1493 CURVNET_RESTORE(); 1494 } 1495 1496 /* 1497 * Packet forwarding routine once entry in the cache is made 1498 */ 1499 static int 1500 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1501 { 1502 struct ip *ip = mtod(m, struct ip *); 1503 vifi_t vifi; 1504 int plen = ntohs(ip->ip_len); 1505 1506 VIF_LOCK_ASSERT(); 1507 1508 /* 1509 * If xmt_vif is not -1, send on only the requested vif. 1510 * 1511 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1512 */ 1513 if (xmt_vif < V_numvifs) { 1514 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1515 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1516 else 1517 phyint_send(ip, V_viftable + xmt_vif, m); 1518 return 1; 1519 } 1520 1521 /* 1522 * Don't forward if it didn't arrive from the parent vif for its origin. 1523 */ 1524 vifi = rt->mfc_parent; 1525 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1526 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1527 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1528 MRTSTAT_INC(mrts_wrong_if); 1529 ++rt->mfc_wrong_if; 1530 /* 1531 * If we are doing PIM assert processing, send a message 1532 * to the routing daemon. 1533 * 1534 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1535 * can complete the SPT switch, regardless of the type 1536 * of the iif (broadcast media, GRE tunnel, etc). 1537 */ 1538 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1539 V_viftable[vifi].v_ifp) { 1540 1541 if (ifp == &V_multicast_register_if) 1542 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1543 1544 /* Get vifi for the incoming packet */ 1545 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1546 vifi++) 1547 ; 1548 if (vifi >= V_numvifs) 1549 return 0; /* The iif is not found: ignore the packet. */ 1550 1551 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1552 return 0; /* WRONGVIF disabled: ignore the packet */ 1553 1554 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1555 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1556 struct igmpmsg *im; 1557 int hlen = ip->ip_hl << 2; 1558 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1559 1560 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1561 mm = m_pullup(mm, hlen); 1562 if (mm == NULL) 1563 return ENOBUFS; 1564 1565 im = mtod(mm, struct igmpmsg *); 1566 im->im_msgtype = IGMPMSG_WRONGVIF; 1567 im->im_mbz = 0; 1568 im->im_vif = vifi; 1569 1570 MRTSTAT_INC(mrts_upcalls); 1571 1572 k_igmpsrc.sin_addr = im->im_src; 1573 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1574 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1575 MRTSTAT_INC(mrts_upq_sockfull); 1576 return ENOBUFS; 1577 } 1578 } 1579 } 1580 return 0; 1581 } 1582 1583 1584 /* If I sourced this packet, it counts as output, else it was input. */ 1585 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1586 V_viftable[vifi].v_pkt_out++; 1587 V_viftable[vifi].v_bytes_out += plen; 1588 } else { 1589 V_viftable[vifi].v_pkt_in++; 1590 V_viftable[vifi].v_bytes_in += plen; 1591 } 1592 rt->mfc_pkt_cnt++; 1593 rt->mfc_byte_cnt += plen; 1594 1595 /* 1596 * For each vif, decide if a copy of the packet should be forwarded. 1597 * Forward if: 1598 * - the ttl exceeds the vif's threshold 1599 * - there are group members downstream on interface 1600 */ 1601 for (vifi = 0; vifi < V_numvifs; vifi++) 1602 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1603 V_viftable[vifi].v_pkt_out++; 1604 V_viftable[vifi].v_bytes_out += plen; 1605 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1606 pim_register_send(ip, V_viftable + vifi, m, rt); 1607 else 1608 phyint_send(ip, V_viftable + vifi, m); 1609 } 1610 1611 /* 1612 * Perform upcall-related bw measuring. 1613 */ 1614 if (rt->mfc_bw_meter != NULL) { 1615 struct bw_meter *x; 1616 struct timeval now; 1617 1618 microtime(&now); 1619 MFC_LOCK_ASSERT(); 1620 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1621 bw_meter_receive_packet(x, plen, &now); 1622 } 1623 1624 return 0; 1625 } 1626 1627 /* 1628 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1629 */ 1630 static int 1631 X_legal_vif_num(int vif) 1632 { 1633 int ret; 1634 1635 ret = 0; 1636 if (vif < 0) 1637 return (ret); 1638 1639 VIF_LOCK(); 1640 if (vif < V_numvifs) 1641 ret = 1; 1642 VIF_UNLOCK(); 1643 1644 return (ret); 1645 } 1646 1647 /* 1648 * Return the local address used by this vif 1649 */ 1650 static u_long 1651 X_ip_mcast_src(int vifi) 1652 { 1653 in_addr_t addr; 1654 1655 addr = INADDR_ANY; 1656 if (vifi < 0) 1657 return (addr); 1658 1659 VIF_LOCK(); 1660 if (vifi < V_numvifs) 1661 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1662 VIF_UNLOCK(); 1663 1664 return (addr); 1665 } 1666 1667 static void 1668 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1669 { 1670 struct mbuf *mb_copy; 1671 int hlen = ip->ip_hl << 2; 1672 1673 VIF_LOCK_ASSERT(); 1674 1675 /* 1676 * Make a new reference to the packet; make sure that 1677 * the IP header is actually copied, not just referenced, 1678 * so that ip_output() only scribbles on the copy. 1679 */ 1680 mb_copy = m_copypacket(m, M_NOWAIT); 1681 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1682 mb_copy = m_pullup(mb_copy, hlen); 1683 if (mb_copy == NULL) 1684 return; 1685 1686 send_packet(vifp, mb_copy); 1687 } 1688 1689 static void 1690 send_packet(struct vif *vifp, struct mbuf *m) 1691 { 1692 struct ip_moptions imo; 1693 struct in_multi *imm[2]; 1694 int error; 1695 1696 VIF_LOCK_ASSERT(); 1697 1698 imo.imo_multicast_ifp = vifp->v_ifp; 1699 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1700 imo.imo_multicast_loop = 1; 1701 imo.imo_multicast_vif = -1; 1702 imo.imo_num_memberships = 0; 1703 imo.imo_max_memberships = 2; 1704 imo.imo_membership = &imm[0]; 1705 1706 /* 1707 * Re-entrancy should not be a problem here, because 1708 * the packets that we send out and are looped back at us 1709 * should get rejected because they appear to come from 1710 * the loopback interface, thus preventing looping. 1711 */ 1712 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1713 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1714 (ptrdiff_t)(vifp - V_viftable), error); 1715 } 1716 1717 /* 1718 * Stubs for old RSVP socket shim implementation. 1719 */ 1720 1721 static int 1722 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1723 { 1724 1725 return (EOPNOTSUPP); 1726 } 1727 1728 static void 1729 X_ip_rsvp_force_done(struct socket *so __unused) 1730 { 1731 1732 } 1733 1734 static int 1735 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1736 { 1737 struct mbuf *m; 1738 1739 m = *mp; 1740 *mp = NULL; 1741 if (!V_rsvp_on) 1742 m_freem(m); 1743 return (IPPROTO_DONE); 1744 } 1745 1746 /* 1747 * Code for bandwidth monitors 1748 */ 1749 1750 /* 1751 * Define common interface for timeval-related methods 1752 */ 1753 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1754 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1755 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1756 1757 static uint32_t 1758 compute_bw_meter_flags(struct bw_upcall *req) 1759 { 1760 uint32_t flags = 0; 1761 1762 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1763 flags |= BW_METER_UNIT_PACKETS; 1764 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1765 flags |= BW_METER_UNIT_BYTES; 1766 if (req->bu_flags & BW_UPCALL_GEQ) 1767 flags |= BW_METER_GEQ; 1768 if (req->bu_flags & BW_UPCALL_LEQ) 1769 flags |= BW_METER_LEQ; 1770 1771 return flags; 1772 } 1773 1774 /* 1775 * Add a bw_meter entry 1776 */ 1777 static int 1778 add_bw_upcall(struct bw_upcall *req) 1779 { 1780 struct mfc *mfc; 1781 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1782 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1783 struct timeval now; 1784 struct bw_meter *x; 1785 uint32_t flags; 1786 1787 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1788 return EOPNOTSUPP; 1789 1790 /* Test if the flags are valid */ 1791 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1792 return EINVAL; 1793 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1794 return EINVAL; 1795 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1796 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1797 return EINVAL; 1798 1799 /* Test if the threshold time interval is valid */ 1800 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1801 return EINVAL; 1802 1803 flags = compute_bw_meter_flags(req); 1804 1805 /* 1806 * Find if we have already same bw_meter entry 1807 */ 1808 MFC_LOCK(); 1809 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1810 if (mfc == NULL) { 1811 MFC_UNLOCK(); 1812 return EADDRNOTAVAIL; 1813 } 1814 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1815 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1816 &req->bu_threshold.b_time, ==)) && 1817 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1818 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1819 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1820 MFC_UNLOCK(); 1821 return 0; /* XXX Already installed */ 1822 } 1823 } 1824 1825 /* Allocate the new bw_meter entry */ 1826 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1827 if (x == NULL) { 1828 MFC_UNLOCK(); 1829 return ENOBUFS; 1830 } 1831 1832 /* Set the new bw_meter entry */ 1833 x->bm_threshold.b_time = req->bu_threshold.b_time; 1834 microtime(&now); 1835 x->bm_start_time = now; 1836 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1837 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1838 x->bm_measured.b_packets = 0; 1839 x->bm_measured.b_bytes = 0; 1840 x->bm_flags = flags; 1841 x->bm_time_next = NULL; 1842 x->bm_time_hash = BW_METER_BUCKETS; 1843 1844 /* Add the new bw_meter entry to the front of entries for this MFC */ 1845 x->bm_mfc = mfc; 1846 x->bm_mfc_next = mfc->mfc_bw_meter; 1847 mfc->mfc_bw_meter = x; 1848 schedule_bw_meter(x, &now); 1849 MFC_UNLOCK(); 1850 1851 return 0; 1852 } 1853 1854 static void 1855 free_bw_list(struct bw_meter *list) 1856 { 1857 while (list != NULL) { 1858 struct bw_meter *x = list; 1859 1860 list = list->bm_mfc_next; 1861 unschedule_bw_meter(x); 1862 free(x, M_BWMETER); 1863 } 1864 } 1865 1866 /* 1867 * Delete one or multiple bw_meter entries 1868 */ 1869 static int 1870 del_bw_upcall(struct bw_upcall *req) 1871 { 1872 struct mfc *mfc; 1873 struct bw_meter *x; 1874 1875 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1876 return EOPNOTSUPP; 1877 1878 MFC_LOCK(); 1879 1880 /* Find the corresponding MFC entry */ 1881 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1882 if (mfc == NULL) { 1883 MFC_UNLOCK(); 1884 return EADDRNOTAVAIL; 1885 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1886 /* 1887 * Delete all bw_meter entries for this mfc 1888 */ 1889 struct bw_meter *list; 1890 1891 list = mfc->mfc_bw_meter; 1892 mfc->mfc_bw_meter = NULL; 1893 free_bw_list(list); 1894 MFC_UNLOCK(); 1895 return 0; 1896 } else { /* Delete a single bw_meter entry */ 1897 struct bw_meter *prev; 1898 uint32_t flags = 0; 1899 1900 flags = compute_bw_meter_flags(req); 1901 1902 /* Find the bw_meter entry to delete */ 1903 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1904 prev = x, x = x->bm_mfc_next) { 1905 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1906 &req->bu_threshold.b_time, ==)) && 1907 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1908 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1909 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1910 break; 1911 } 1912 if (x != NULL) { /* Delete entry from the list for this MFC */ 1913 if (prev != NULL) 1914 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1915 else 1916 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1917 1918 unschedule_bw_meter(x); 1919 MFC_UNLOCK(); 1920 /* Free the bw_meter entry */ 1921 free(x, M_BWMETER); 1922 return 0; 1923 } else { 1924 MFC_UNLOCK(); 1925 return EINVAL; 1926 } 1927 } 1928 /* NOTREACHED */ 1929 } 1930 1931 /* 1932 * Perform bandwidth measurement processing that may result in an upcall 1933 */ 1934 static void 1935 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1936 { 1937 struct timeval delta; 1938 1939 MFC_LOCK_ASSERT(); 1940 1941 delta = *nowp; 1942 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1943 1944 if (x->bm_flags & BW_METER_GEQ) { 1945 /* 1946 * Processing for ">=" type of bw_meter entry 1947 */ 1948 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1949 /* Reset the bw_meter entry */ 1950 x->bm_start_time = *nowp; 1951 x->bm_measured.b_packets = 0; 1952 x->bm_measured.b_bytes = 0; 1953 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1954 } 1955 1956 /* Record that a packet is received */ 1957 x->bm_measured.b_packets++; 1958 x->bm_measured.b_bytes += plen; 1959 1960 /* 1961 * Test if we should deliver an upcall 1962 */ 1963 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1964 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1965 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1966 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1967 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1968 /* Prepare an upcall for delivery */ 1969 bw_meter_prepare_upcall(x, nowp); 1970 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1971 } 1972 } 1973 } else if (x->bm_flags & BW_METER_LEQ) { 1974 /* 1975 * Processing for "<=" type of bw_meter entry 1976 */ 1977 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1978 /* 1979 * We are behind time with the multicast forwarding table 1980 * scanning for "<=" type of bw_meter entries, so test now 1981 * if we should deliver an upcall. 1982 */ 1983 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1984 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1985 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1986 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1987 /* Prepare an upcall for delivery */ 1988 bw_meter_prepare_upcall(x, nowp); 1989 } 1990 /* Reschedule the bw_meter entry */ 1991 unschedule_bw_meter(x); 1992 schedule_bw_meter(x, nowp); 1993 } 1994 1995 /* Record that a packet is received */ 1996 x->bm_measured.b_packets++; 1997 x->bm_measured.b_bytes += plen; 1998 1999 /* 2000 * Test if we should restart the measuring interval 2001 */ 2002 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2003 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2004 (x->bm_flags & BW_METER_UNIT_BYTES && 2005 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2006 /* Don't restart the measuring interval */ 2007 } else { 2008 /* Do restart the measuring interval */ 2009 /* 2010 * XXX: note that we don't unschedule and schedule, because this 2011 * might be too much overhead per packet. Instead, when we process 2012 * all entries for a given timer hash bin, we check whether it is 2013 * really a timeout. If not, we reschedule at that time. 2014 */ 2015 x->bm_start_time = *nowp; 2016 x->bm_measured.b_packets = 0; 2017 x->bm_measured.b_bytes = 0; 2018 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2019 } 2020 } 2021 } 2022 2023 /* 2024 * Prepare a bandwidth-related upcall 2025 */ 2026 static void 2027 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2028 { 2029 struct timeval delta; 2030 struct bw_upcall *u; 2031 2032 MFC_LOCK_ASSERT(); 2033 2034 /* 2035 * Compute the measured time interval 2036 */ 2037 delta = *nowp; 2038 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2039 2040 /* 2041 * If there are too many pending upcalls, deliver them now 2042 */ 2043 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2044 bw_upcalls_send(); 2045 2046 /* 2047 * Set the bw_upcall entry 2048 */ 2049 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2050 u->bu_src = x->bm_mfc->mfc_origin; 2051 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2052 u->bu_threshold.b_time = x->bm_threshold.b_time; 2053 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2054 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2055 u->bu_measured.b_time = delta; 2056 u->bu_measured.b_packets = x->bm_measured.b_packets; 2057 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2058 u->bu_flags = 0; 2059 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2060 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2061 if (x->bm_flags & BW_METER_UNIT_BYTES) 2062 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2063 if (x->bm_flags & BW_METER_GEQ) 2064 u->bu_flags |= BW_UPCALL_GEQ; 2065 if (x->bm_flags & BW_METER_LEQ) 2066 u->bu_flags |= BW_UPCALL_LEQ; 2067 } 2068 2069 /* 2070 * Send the pending bandwidth-related upcalls 2071 */ 2072 static void 2073 bw_upcalls_send(void) 2074 { 2075 struct mbuf *m; 2076 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2077 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2078 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2079 0, /* unused2 */ 2080 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2081 0, /* im_mbz */ 2082 0, /* im_vif */ 2083 0, /* unused3 */ 2084 { 0 }, /* im_src */ 2085 { 0 } }; /* im_dst */ 2086 2087 MFC_LOCK_ASSERT(); 2088 2089 if (V_bw_upcalls_n == 0) 2090 return; /* No pending upcalls */ 2091 2092 V_bw_upcalls_n = 0; 2093 2094 /* 2095 * Allocate a new mbuf, initialize it with the header and 2096 * the payload for the pending calls. 2097 */ 2098 m = m_gethdr(M_NOWAIT, MT_DATA); 2099 if (m == NULL) { 2100 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2101 return; 2102 } 2103 2104 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2105 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2106 2107 /* 2108 * Send the upcalls 2109 * XXX do we need to set the address in k_igmpsrc ? 2110 */ 2111 MRTSTAT_INC(mrts_upcalls); 2112 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2113 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2114 MRTSTAT_INC(mrts_upq_sockfull); 2115 } 2116 } 2117 2118 /* 2119 * Compute the timeout hash value for the bw_meter entries 2120 */ 2121 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2122 do { \ 2123 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2124 \ 2125 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2126 (hash) = next_timeval.tv_sec; \ 2127 if (next_timeval.tv_usec) \ 2128 (hash)++; /* XXX: make sure we don't timeout early */ \ 2129 (hash) %= BW_METER_BUCKETS; \ 2130 } while (0) 2131 2132 /* 2133 * Schedule a timer to process periodically bw_meter entry of type "<=" 2134 * by linking the entry in the proper hash bucket. 2135 */ 2136 static void 2137 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2138 { 2139 int time_hash; 2140 2141 MFC_LOCK_ASSERT(); 2142 2143 if (!(x->bm_flags & BW_METER_LEQ)) 2144 return; /* XXX: we schedule timers only for "<=" entries */ 2145 2146 /* 2147 * Reset the bw_meter entry 2148 */ 2149 x->bm_start_time = *nowp; 2150 x->bm_measured.b_packets = 0; 2151 x->bm_measured.b_bytes = 0; 2152 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2153 2154 /* 2155 * Compute the timeout hash value and insert the entry 2156 */ 2157 BW_METER_TIMEHASH(x, time_hash); 2158 x->bm_time_next = V_bw_meter_timers[time_hash]; 2159 V_bw_meter_timers[time_hash] = x; 2160 x->bm_time_hash = time_hash; 2161 } 2162 2163 /* 2164 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2165 * by removing the entry from the proper hash bucket. 2166 */ 2167 static void 2168 unschedule_bw_meter(struct bw_meter *x) 2169 { 2170 int time_hash; 2171 struct bw_meter *prev, *tmp; 2172 2173 MFC_LOCK_ASSERT(); 2174 2175 if (!(x->bm_flags & BW_METER_LEQ)) 2176 return; /* XXX: we schedule timers only for "<=" entries */ 2177 2178 /* 2179 * Compute the timeout hash value and delete the entry 2180 */ 2181 time_hash = x->bm_time_hash; 2182 if (time_hash >= BW_METER_BUCKETS) 2183 return; /* Entry was not scheduled */ 2184 2185 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2186 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2187 if (tmp == x) 2188 break; 2189 2190 if (tmp == NULL) 2191 panic("unschedule_bw_meter: bw_meter entry not found"); 2192 2193 if (prev != NULL) 2194 prev->bm_time_next = x->bm_time_next; 2195 else 2196 V_bw_meter_timers[time_hash] = x->bm_time_next; 2197 2198 x->bm_time_next = NULL; 2199 x->bm_time_hash = BW_METER_BUCKETS; 2200 } 2201 2202 2203 /* 2204 * Process all "<=" type of bw_meter that should be processed now, 2205 * and for each entry prepare an upcall if necessary. Each processed 2206 * entry is rescheduled again for the (periodic) processing. 2207 * 2208 * This is run periodically (once per second normally). On each round, 2209 * all the potentially matching entries are in the hash slot that we are 2210 * looking at. 2211 */ 2212 static void 2213 bw_meter_process() 2214 { 2215 uint32_t loops; 2216 int i; 2217 struct timeval now, process_endtime; 2218 2219 microtime(&now); 2220 if (V_last_tv_sec == now.tv_sec) 2221 return; /* nothing to do */ 2222 2223 loops = now.tv_sec - V_last_tv_sec; 2224 V_last_tv_sec = now.tv_sec; 2225 if (loops > BW_METER_BUCKETS) 2226 loops = BW_METER_BUCKETS; 2227 2228 MFC_LOCK(); 2229 /* 2230 * Process all bins of bw_meter entries from the one after the last 2231 * processed to the current one. On entry, i points to the last bucket 2232 * visited, so we need to increment i at the beginning of the loop. 2233 */ 2234 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2235 struct bw_meter *x, *tmp_list; 2236 2237 if (++i >= BW_METER_BUCKETS) 2238 i = 0; 2239 2240 /* Disconnect the list of bw_meter entries from the bin */ 2241 tmp_list = V_bw_meter_timers[i]; 2242 V_bw_meter_timers[i] = NULL; 2243 2244 /* Process the list of bw_meter entries */ 2245 while (tmp_list != NULL) { 2246 x = tmp_list; 2247 tmp_list = tmp_list->bm_time_next; 2248 2249 /* Test if the time interval is over */ 2250 process_endtime = x->bm_start_time; 2251 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2252 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2253 /* Not yet: reschedule, but don't reset */ 2254 int time_hash; 2255 2256 BW_METER_TIMEHASH(x, time_hash); 2257 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2258 /* 2259 * XXX: somehow the bin processing is a bit ahead of time. 2260 * Put the entry in the next bin. 2261 */ 2262 if (++time_hash >= BW_METER_BUCKETS) 2263 time_hash = 0; 2264 } 2265 x->bm_time_next = V_bw_meter_timers[time_hash]; 2266 V_bw_meter_timers[time_hash] = x; 2267 x->bm_time_hash = time_hash; 2268 2269 continue; 2270 } 2271 2272 /* 2273 * Test if we should deliver an upcall 2274 */ 2275 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2276 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2277 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2278 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2279 /* Prepare an upcall for delivery */ 2280 bw_meter_prepare_upcall(x, &now); 2281 } 2282 2283 /* 2284 * Reschedule for next processing 2285 */ 2286 schedule_bw_meter(x, &now); 2287 } 2288 } 2289 2290 /* Send all upcalls that are pending delivery */ 2291 bw_upcalls_send(); 2292 2293 MFC_UNLOCK(); 2294 } 2295 2296 /* 2297 * A periodic function for sending all upcalls that are pending delivery 2298 */ 2299 static void 2300 expire_bw_upcalls_send(void *arg) 2301 { 2302 CURVNET_SET((struct vnet *) arg); 2303 2304 MFC_LOCK(); 2305 bw_upcalls_send(); 2306 MFC_UNLOCK(); 2307 2308 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2309 curvnet); 2310 CURVNET_RESTORE(); 2311 } 2312 2313 /* 2314 * A periodic function for periodic scanning of the multicast forwarding 2315 * table for processing all "<=" bw_meter entries. 2316 */ 2317 static void 2318 expire_bw_meter_process(void *arg) 2319 { 2320 CURVNET_SET((struct vnet *) arg); 2321 2322 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2323 bw_meter_process(); 2324 2325 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2326 curvnet); 2327 CURVNET_RESTORE(); 2328 } 2329 2330 /* 2331 * End of bandwidth monitoring code 2332 */ 2333 2334 /* 2335 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2336 * 2337 */ 2338 static int 2339 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2340 struct mfc *rt) 2341 { 2342 struct mbuf *mb_copy, *mm; 2343 2344 /* 2345 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2346 * rendezvous point was unspecified, and we were told not to. 2347 */ 2348 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2349 in_nullhost(rt->mfc_rp)) 2350 return 0; 2351 2352 mb_copy = pim_register_prepare(ip, m); 2353 if (mb_copy == NULL) 2354 return ENOBUFS; 2355 2356 /* 2357 * Send all the fragments. Note that the mbuf for each fragment 2358 * is freed by the sending machinery. 2359 */ 2360 for (mm = mb_copy; mm; mm = mb_copy) { 2361 mb_copy = mm->m_nextpkt; 2362 mm->m_nextpkt = 0; 2363 mm = m_pullup(mm, sizeof(struct ip)); 2364 if (mm != NULL) { 2365 ip = mtod(mm, struct ip *); 2366 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2367 pim_register_send_rp(ip, vifp, mm, rt); 2368 } else { 2369 pim_register_send_upcall(ip, vifp, mm, rt); 2370 } 2371 } 2372 } 2373 2374 return 0; 2375 } 2376 2377 /* 2378 * Return a copy of the data packet that is ready for PIM Register 2379 * encapsulation. 2380 * XXX: Note that in the returned copy the IP header is a valid one. 2381 */ 2382 static struct mbuf * 2383 pim_register_prepare(struct ip *ip, struct mbuf *m) 2384 { 2385 struct mbuf *mb_copy = NULL; 2386 int mtu; 2387 2388 /* Take care of delayed checksums */ 2389 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2390 in_delayed_cksum(m); 2391 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2392 } 2393 2394 /* 2395 * Copy the old packet & pullup its IP header into the 2396 * new mbuf so we can modify it. 2397 */ 2398 mb_copy = m_copypacket(m, M_NOWAIT); 2399 if (mb_copy == NULL) 2400 return NULL; 2401 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2402 if (mb_copy == NULL) 2403 return NULL; 2404 2405 /* take care of the TTL */ 2406 ip = mtod(mb_copy, struct ip *); 2407 --ip->ip_ttl; 2408 2409 /* Compute the MTU after the PIM Register encapsulation */ 2410 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2411 2412 if (ntohs(ip->ip_len) <= mtu) { 2413 /* Turn the IP header into a valid one */ 2414 ip->ip_sum = 0; 2415 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2416 } else { 2417 /* Fragment the packet */ 2418 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2419 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2420 m_freem(mb_copy); 2421 return NULL; 2422 } 2423 } 2424 return mb_copy; 2425 } 2426 2427 /* 2428 * Send an upcall with the data packet to the user-level process. 2429 */ 2430 static int 2431 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2432 struct mbuf *mb_copy, struct mfc *rt) 2433 { 2434 struct mbuf *mb_first; 2435 int len = ntohs(ip->ip_len); 2436 struct igmpmsg *im; 2437 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2438 2439 VIF_LOCK_ASSERT(); 2440 2441 /* 2442 * Add a new mbuf with an upcall header 2443 */ 2444 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2445 if (mb_first == NULL) { 2446 m_freem(mb_copy); 2447 return ENOBUFS; 2448 } 2449 mb_first->m_data += max_linkhdr; 2450 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2451 mb_first->m_len = sizeof(struct igmpmsg); 2452 mb_first->m_next = mb_copy; 2453 2454 /* Send message to routing daemon */ 2455 im = mtod(mb_first, struct igmpmsg *); 2456 im->im_msgtype = IGMPMSG_WHOLEPKT; 2457 im->im_mbz = 0; 2458 im->im_vif = vifp - V_viftable; 2459 im->im_src = ip->ip_src; 2460 im->im_dst = ip->ip_dst; 2461 2462 k_igmpsrc.sin_addr = ip->ip_src; 2463 2464 MRTSTAT_INC(mrts_upcalls); 2465 2466 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2467 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2468 MRTSTAT_INC(mrts_upq_sockfull); 2469 return ENOBUFS; 2470 } 2471 2472 /* Keep statistics */ 2473 PIMSTAT_INC(pims_snd_registers_msgs); 2474 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2475 2476 return 0; 2477 } 2478 2479 /* 2480 * Encapsulate the data packet in PIM Register message and send it to the RP. 2481 */ 2482 static int 2483 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2484 struct mfc *rt) 2485 { 2486 struct mbuf *mb_first; 2487 struct ip *ip_outer; 2488 struct pim_encap_pimhdr *pimhdr; 2489 int len = ntohs(ip->ip_len); 2490 vifi_t vifi = rt->mfc_parent; 2491 2492 VIF_LOCK_ASSERT(); 2493 2494 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2495 m_freem(mb_copy); 2496 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2497 } 2498 2499 /* 2500 * Add a new mbuf with the encapsulating header 2501 */ 2502 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2503 if (mb_first == NULL) { 2504 m_freem(mb_copy); 2505 return ENOBUFS; 2506 } 2507 mb_first->m_data += max_linkhdr; 2508 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2509 mb_first->m_next = mb_copy; 2510 2511 mb_first->m_pkthdr.len = len + mb_first->m_len; 2512 2513 /* 2514 * Fill in the encapsulating IP and PIM header 2515 */ 2516 ip_outer = mtod(mb_first, struct ip *); 2517 *ip_outer = pim_encap_iphdr; 2518 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2519 sizeof(pim_encap_pimhdr)); 2520 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2521 ip_outer->ip_dst = rt->mfc_rp; 2522 /* 2523 * Copy the inner header TOS to the outer header, and take care of the 2524 * IP_DF bit. 2525 */ 2526 ip_outer->ip_tos = ip->ip_tos; 2527 if (ip->ip_off & htons(IP_DF)) 2528 ip_outer->ip_off |= htons(IP_DF); 2529 ip_fillid(ip_outer); 2530 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2531 + sizeof(pim_encap_iphdr)); 2532 *pimhdr = pim_encap_pimhdr; 2533 /* If the iif crosses a border, set the Border-bit */ 2534 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2535 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2536 2537 mb_first->m_data += sizeof(pim_encap_iphdr); 2538 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2539 mb_first->m_data -= sizeof(pim_encap_iphdr); 2540 2541 send_packet(vifp, mb_first); 2542 2543 /* Keep statistics */ 2544 PIMSTAT_INC(pims_snd_registers_msgs); 2545 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2546 2547 return 0; 2548 } 2549 2550 /* 2551 * pim_encapcheck() is called by the encap4_input() path at runtime to 2552 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2553 * into the kernel. 2554 */ 2555 static int 2556 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2557 { 2558 2559 #ifdef DIAGNOSTIC 2560 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2561 #endif 2562 if (proto != IPPROTO_PIM) 2563 return 0; /* not for us; reject the datagram. */ 2564 2565 return 64; /* claim the datagram. */ 2566 } 2567 2568 /* 2569 * PIM-SMv2 and PIM-DM messages processing. 2570 * Receives and verifies the PIM control messages, and passes them 2571 * up to the listening socket, using rip_input(). 2572 * The only message with special processing is the PIM_REGISTER message 2573 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2574 * is passed to if_simloop(). 2575 */ 2576 int 2577 pim_input(struct mbuf **mp, int *offp, int proto) 2578 { 2579 struct mbuf *m = *mp; 2580 struct ip *ip = mtod(m, struct ip *); 2581 struct pim *pim; 2582 int iphlen = *offp; 2583 int minlen; 2584 int datalen = ntohs(ip->ip_len) - iphlen; 2585 int ip_tos; 2586 #ifdef KTR 2587 char addrbuf[INET_ADDRSTRLEN]; 2588 #endif 2589 2590 *mp = NULL; 2591 2592 /* Keep statistics */ 2593 PIMSTAT_INC(pims_rcv_total_msgs); 2594 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2595 2596 /* 2597 * Validate lengths 2598 */ 2599 if (datalen < PIM_MINLEN) { 2600 PIMSTAT_INC(pims_rcv_tooshort); 2601 CTR3(KTR_IPMF, "%s: short packet (%d) from %s", 2602 __func__, datalen, inet_ntoa_r(ip->ip_src, addrbuf)); 2603 m_freem(m); 2604 return (IPPROTO_DONE); 2605 } 2606 2607 /* 2608 * If the packet is at least as big as a REGISTER, go agead 2609 * and grab the PIM REGISTER header size, to avoid another 2610 * possible m_pullup() later. 2611 * 2612 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2613 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2614 */ 2615 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2616 /* 2617 * Get the IP and PIM headers in contiguous memory, and 2618 * possibly the PIM REGISTER header. 2619 */ 2620 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2621 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2622 return (IPPROTO_DONE); 2623 } 2624 2625 /* m_pullup() may have given us a new mbuf so reset ip. */ 2626 ip = mtod(m, struct ip *); 2627 ip_tos = ip->ip_tos; 2628 2629 /* adjust mbuf to point to the PIM header */ 2630 m->m_data += iphlen; 2631 m->m_len -= iphlen; 2632 pim = mtod(m, struct pim *); 2633 2634 /* 2635 * Validate checksum. If PIM REGISTER, exclude the data packet. 2636 * 2637 * XXX: some older PIMv2 implementations don't make this distinction, 2638 * so for compatibility reason perform the checksum over part of the 2639 * message, and if error, then over the whole message. 2640 */ 2641 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2642 /* do nothing, checksum okay */ 2643 } else if (in_cksum(m, datalen)) { 2644 PIMSTAT_INC(pims_rcv_badsum); 2645 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2646 m_freem(m); 2647 return (IPPROTO_DONE); 2648 } 2649 2650 /* PIM version check */ 2651 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2652 PIMSTAT_INC(pims_rcv_badversion); 2653 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2654 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2655 m_freem(m); 2656 return (IPPROTO_DONE); 2657 } 2658 2659 /* restore mbuf back to the outer IP */ 2660 m->m_data -= iphlen; 2661 m->m_len += iphlen; 2662 2663 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2664 /* 2665 * Since this is a REGISTER, we'll make a copy of the register 2666 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2667 * routing daemon. 2668 */ 2669 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2670 struct mbuf *mcp; 2671 struct ip *encap_ip; 2672 u_int32_t *reghdr; 2673 struct ifnet *vifp; 2674 2675 VIF_LOCK(); 2676 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2677 VIF_UNLOCK(); 2678 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2679 (int)V_reg_vif_num); 2680 m_freem(m); 2681 return (IPPROTO_DONE); 2682 } 2683 /* XXX need refcnt? */ 2684 vifp = V_viftable[V_reg_vif_num].v_ifp; 2685 VIF_UNLOCK(); 2686 2687 /* 2688 * Validate length 2689 */ 2690 if (datalen < PIM_REG_MINLEN) { 2691 PIMSTAT_INC(pims_rcv_tooshort); 2692 PIMSTAT_INC(pims_rcv_badregisters); 2693 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2694 m_freem(m); 2695 return (IPPROTO_DONE); 2696 } 2697 2698 reghdr = (u_int32_t *)(pim + 1); 2699 encap_ip = (struct ip *)(reghdr + 1); 2700 2701 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d", 2702 __func__, inet_ntoa_r(encap_ip->ip_src, addrbuf), 2703 ntohs(encap_ip->ip_len)); 2704 2705 /* verify the version number of the inner packet */ 2706 if (encap_ip->ip_v != IPVERSION) { 2707 PIMSTAT_INC(pims_rcv_badregisters); 2708 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2709 m_freem(m); 2710 return (IPPROTO_DONE); 2711 } 2712 2713 /* verify the inner packet is destined to a mcast group */ 2714 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2715 PIMSTAT_INC(pims_rcv_badregisters); 2716 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__, 2717 inet_ntoa_r(encap_ip->ip_dst, addrbuf)); 2718 m_freem(m); 2719 return (IPPROTO_DONE); 2720 } 2721 2722 /* If a NULL_REGISTER, pass it to the daemon */ 2723 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2724 goto pim_input_to_daemon; 2725 2726 /* 2727 * Copy the TOS from the outer IP header to the inner IP header. 2728 */ 2729 if (encap_ip->ip_tos != ip_tos) { 2730 /* Outer TOS -> inner TOS */ 2731 encap_ip->ip_tos = ip_tos; 2732 /* Recompute the inner header checksum. Sigh... */ 2733 2734 /* adjust mbuf to point to the inner IP header */ 2735 m->m_data += (iphlen + PIM_MINLEN); 2736 m->m_len -= (iphlen + PIM_MINLEN); 2737 2738 encap_ip->ip_sum = 0; 2739 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2740 2741 /* restore mbuf to point back to the outer IP header */ 2742 m->m_data -= (iphlen + PIM_MINLEN); 2743 m->m_len += (iphlen + PIM_MINLEN); 2744 } 2745 2746 /* 2747 * Decapsulate the inner IP packet and loopback to forward it 2748 * as a normal multicast packet. Also, make a copy of the 2749 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2750 * to pass to the daemon later, so it can take the appropriate 2751 * actions (e.g., send back PIM_REGISTER_STOP). 2752 * XXX: here m->m_data points to the outer IP header. 2753 */ 2754 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2755 if (mcp == NULL) { 2756 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2757 m_freem(m); 2758 return (IPPROTO_DONE); 2759 } 2760 2761 /* Keep statistics */ 2762 /* XXX: registers_bytes include only the encap. mcast pkt */ 2763 PIMSTAT_INC(pims_rcv_registers_msgs); 2764 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2765 2766 /* 2767 * forward the inner ip packet; point m_data at the inner ip. 2768 */ 2769 m_adj(m, iphlen + PIM_MINLEN); 2770 2771 CTR4(KTR_IPMF, 2772 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2773 __func__, 2774 (u_long)ntohl(encap_ip->ip_src.s_addr), 2775 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2776 (int)V_reg_vif_num); 2777 2778 /* NB: vifp was collected above; can it change on us? */ 2779 if_simloop(vifp, m, dst.sin_family, 0); 2780 2781 /* prepare the register head to send to the mrouting daemon */ 2782 m = mcp; 2783 } 2784 2785 pim_input_to_daemon: 2786 /* 2787 * Pass the PIM message up to the daemon; if it is a Register message, 2788 * pass the 'head' only up to the daemon. This includes the 2789 * outer IP header, PIM header, PIM-Register header and the 2790 * inner IP header. 2791 * XXX: the outer IP header pkt size of a Register is not adjust to 2792 * reflect the fact that the inner multicast data is truncated. 2793 */ 2794 *mp = m; 2795 rip_input(mp, offp, proto); 2796 2797 return (IPPROTO_DONE); 2798 } 2799 2800 static int 2801 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2802 { 2803 struct mfc *rt; 2804 int error, i; 2805 2806 if (req->newptr) 2807 return (EPERM); 2808 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2809 return (0); 2810 error = sysctl_wire_old_buffer(req, 0); 2811 if (error) 2812 return (error); 2813 2814 MFC_LOCK(); 2815 for (i = 0; i < mfchashsize; i++) { 2816 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2817 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2818 if (error) 2819 goto out_locked; 2820 } 2821 } 2822 out_locked: 2823 MFC_UNLOCK(); 2824 return (error); 2825 } 2826 2827 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2828 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2829 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2830 2831 static void 2832 vnet_mroute_init(const void *unused __unused) 2833 { 2834 2835 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2836 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2837 callout_init(&V_expire_upcalls_ch, 1); 2838 callout_init(&V_bw_upcalls_ch, 1); 2839 callout_init(&V_bw_meter_ch, 1); 2840 } 2841 2842 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2843 NULL); 2844 2845 static void 2846 vnet_mroute_uninit(const void *unused __unused) 2847 { 2848 2849 FREE(V_nexpire, M_MRTABLE); 2850 V_nexpire = NULL; 2851 } 2852 2853 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2854 vnet_mroute_uninit, NULL); 2855 2856 static int 2857 ip_mroute_modevent(module_t mod, int type, void *unused) 2858 { 2859 2860 switch (type) { 2861 case MOD_LOAD: 2862 MROUTER_LOCK_INIT(); 2863 2864 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2865 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2866 if (if_detach_event_tag == NULL) { 2867 printf("ip_mroute: unable to register " 2868 "ifnet_departure_event handler\n"); 2869 MROUTER_LOCK_DESTROY(); 2870 return (EINVAL); 2871 } 2872 2873 MFC_LOCK_INIT(); 2874 VIF_LOCK_INIT(); 2875 2876 mfchashsize = MFCHASHSIZE; 2877 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2878 !powerof2(mfchashsize)) { 2879 printf("WARNING: %s not a power of 2; using default\n", 2880 "net.inet.ip.mfchashsize"); 2881 mfchashsize = MFCHASHSIZE; 2882 } 2883 2884 pim_squelch_wholepkt = 0; 2885 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2886 &pim_squelch_wholepkt); 2887 2888 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 2889 pim_encapcheck, &in_pim_protosw, NULL); 2890 if (pim_encap_cookie == NULL) { 2891 printf("ip_mroute: unable to attach pim encap\n"); 2892 VIF_LOCK_DESTROY(); 2893 MFC_LOCK_DESTROY(); 2894 MROUTER_LOCK_DESTROY(); 2895 return (EINVAL); 2896 } 2897 2898 ip_mcast_src = X_ip_mcast_src; 2899 ip_mforward = X_ip_mforward; 2900 ip_mrouter_done = X_ip_mrouter_done; 2901 ip_mrouter_get = X_ip_mrouter_get; 2902 ip_mrouter_set = X_ip_mrouter_set; 2903 2904 ip_rsvp_force_done = X_ip_rsvp_force_done; 2905 ip_rsvp_vif = X_ip_rsvp_vif; 2906 2907 legal_vif_num = X_legal_vif_num; 2908 mrt_ioctl = X_mrt_ioctl; 2909 rsvp_input_p = X_rsvp_input; 2910 break; 2911 2912 case MOD_UNLOAD: 2913 /* 2914 * Typically module unload happens after the user-level 2915 * process has shutdown the kernel services (the check 2916 * below insures someone can't just yank the module out 2917 * from under a running process). But if the module is 2918 * just loaded and then unloaded w/o starting up a user 2919 * process we still need to cleanup. 2920 */ 2921 MROUTER_LOCK(); 2922 if (ip_mrouter_cnt != 0) { 2923 MROUTER_UNLOCK(); 2924 return (EINVAL); 2925 } 2926 ip_mrouter_unloading = 1; 2927 MROUTER_UNLOCK(); 2928 2929 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2930 2931 if (pim_encap_cookie) { 2932 encap_detach(pim_encap_cookie); 2933 pim_encap_cookie = NULL; 2934 } 2935 2936 ip_mcast_src = NULL; 2937 ip_mforward = NULL; 2938 ip_mrouter_done = NULL; 2939 ip_mrouter_get = NULL; 2940 ip_mrouter_set = NULL; 2941 2942 ip_rsvp_force_done = NULL; 2943 ip_rsvp_vif = NULL; 2944 2945 legal_vif_num = NULL; 2946 mrt_ioctl = NULL; 2947 rsvp_input_p = NULL; 2948 2949 VIF_LOCK_DESTROY(); 2950 MFC_LOCK_DESTROY(); 2951 MROUTER_LOCK_DESTROY(); 2952 break; 2953 2954 default: 2955 return EOPNOTSUPP; 2956 } 2957 return 0; 2958 } 2959 2960 static moduledata_t ip_mroutemod = { 2961 "ip_mroute", 2962 ip_mroute_modevent, 2963 0 2964 }; 2965 2966 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2967