xref: /freebsd/sys/netinet/ip_mroute.c (revision 734e82fe33aa764367791a7d603b383996c6b40b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36  */
37 
38 /*
39  * IP multicast forwarding procedures
40  *
41  * Written by David Waitzman, BBN Labs, August 1988.
42  * Modified by Steve Deering, Stanford, February 1989.
43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
44  * Modified by Van Jacobson, LBL, January 1993
45  * Modified by Ajit Thyagarajan, PARC, August 1993
46  * Modified by Bill Fenner, PARC, April 1995
47  * Modified by Ahmed Helmy, SGI, June 1996
48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50  * Modified by Hitoshi Asaeda, WIDE, August 2000
51  * Modified by Pavlin Radoslavov, ICSI, October 2002
52  * Modified by Wojciech Macek, Semihalf, May 2021
53  *
54  * MROUTING Revision: 3.5
55  * and PIM-SMv2 and PIM-DM support, advanced API support,
56  * bandwidth metering and signaling
57  */
58 
59 /*
60  * TODO: Prefix functions with ipmf_.
61  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
62  * domain attachment (if_afdata) so we can track consumers of that service.
63  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
64  * move it to socket options.
65  * TODO: Cleanup LSRR removal further.
66  * TODO: Push RSVP stubs into raw_ip.c.
67  * TODO: Use bitstring.h for vif set.
68  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
69  * TODO: Sync ip6_mroute.c with this file.
70  */
71 
72 #include <sys/cdefs.h>
73 #include "opt_inet.h"
74 #include "opt_mrouting.h"
75 
76 #define _PIM_VT 1
77 
78 #include <sys/types.h>
79 #include <sys/param.h>
80 #include <sys/kernel.h>
81 #include <sys/stddef.h>
82 #include <sys/condvar.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/kthread.h>
86 #include <sys/ktr.h>
87 #include <sys/malloc.h>
88 #include <sys/mbuf.h>
89 #include <sys/module.h>
90 #include <sys/priv.h>
91 #include <sys/protosw.h>
92 #include <sys/signalvar.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/sockio.h>
96 #include <sys/sx.h>
97 #include <sys/sysctl.h>
98 #include <sys/syslog.h>
99 #include <sys/systm.h>
100 #include <sys/taskqueue.h>
101 #include <sys/time.h>
102 #include <sys/counter.h>
103 #include <machine/atomic.h>
104 
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_private.h>
108 #include <net/if_types.h>
109 #include <net/netisr.h>
110 #include <net/route.h>
111 #include <net/vnet.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/igmp.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/in_var.h>
117 #include <netinet/ip.h>
118 #include <netinet/ip_encap.h>
119 #include <netinet/ip_mroute.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip_options.h>
122 #include <netinet/pim.h>
123 #include <netinet/pim_var.h>
124 #include <netinet/udp.h>
125 
126 #include <machine/in_cksum.h>
127 
128 #ifndef KTR_IPMF
129 #define KTR_IPMF KTR_INET
130 #endif
131 
132 #define		VIFI_INVALID	((vifi_t) -1)
133 
134 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
135 
136 /*
137  * Locking.  We use two locks: one for the virtual interface table and
138  * one for the forwarding table.  These locks may be nested in which case
139  * the VIF lock must always be taken first.  Note that each lock is used
140  * to cover not only the specific data structure but also related data
141  * structures.
142  */
143 
144 static struct rwlock mrouter_lock;
145 #define	MRW_RLOCK()		rw_rlock(&mrouter_lock)
146 #define	MRW_WLOCK()		rw_wlock(&mrouter_lock)
147 #define	MRW_RUNLOCK()		rw_runlock(&mrouter_lock)
148 #define	MRW_WUNLOCK()		rw_wunlock(&mrouter_lock)
149 #define	MRW_UNLOCK()		rw_unlock(&mrouter_lock)
150 #define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_lock, RA_LOCKED)
151 #define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_lock, RA_WLOCKED)
152 #define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_lock)
153 #define	MRW_WOWNED()		rw_wowned(&mrouter_lock)
154 #define	MRW_LOCK_INIT()						\
155 	rw_init(&mrouter_lock, "IPv4 multicast forwarding")
156 #define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_lock)
157 
158 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
159 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
160 
161 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
162 VNET_PCPUSTAT_SYSINIT(mrtstat);
163 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
164 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
165     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
166     "netinet/ip_mroute.h)");
167 
168 VNET_DEFINE_STATIC(u_long, mfchash);
169 #define	V_mfchash		VNET(mfchash)
170 #define	MFCHASH(a, g)							\
171 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
172 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
173 #define	MFCHASHSIZE	256
174 
175 static u_long mfchashsize;			/* Hash size */
176 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
177 #define	V_nexpire		VNET(nexpire)
178 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
179 #define	V_mfchashtbl		VNET(mfchashtbl)
180 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
181 #define	V_task_queue		VNET(task_queue)
182 VNET_DEFINE_STATIC(struct task, task);
183 #define	V_task		VNET(task)
184 
185 VNET_DEFINE_STATIC(vifi_t, numvifs);
186 #define	V_numvifs		VNET(numvifs)
187 VNET_DEFINE_STATIC(struct vif *, viftable);
188 #define	V_viftable		VNET(viftable)
189 
190 static eventhandler_tag if_detach_event_tag = NULL;
191 
192 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
193 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
194 
195 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
196 #define	V_buf_ring_mtx	VNET(buf_ring_mtx)
197 
198 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
199 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
200 
201 /*
202  * Bandwidth meter variables and constants
203  */
204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
205 
206 /*
207  * Pending upcalls are stored in a ring which is flushed when
208  * full, or periodically
209  */
210 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
211 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
212 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
213 #define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
214 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
215 #define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
216 
217 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
218 
219 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
220 VNET_PCPUSTAT_SYSINIT(pimstat);
221 VNET_PCPUSTAT_SYSUNINIT(pimstat);
222 
223 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
224     "PIM");
225 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
226     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
227 
228 static u_long	pim_squelch_wholepkt = 0;
229 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
230     &pim_squelch_wholepkt, 0,
231     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
232 
233 static const struct encaptab *pim_encap_cookie;
234 static int pim_encapcheck(const struct mbuf *, int, int, void *);
235 static int pim_input(struct mbuf *, int, int, void *);
236 
237 extern int in_mcast_loop;
238 
239 static const struct encap_config ipv4_encap_cfg = {
240 	.proto = IPPROTO_PIM,
241 	.min_length = sizeof(struct ip) + PIM_MINLEN,
242 	.exact_match = 8,
243 	.check = pim_encapcheck,
244 	.input = pim_input
245 };
246 
247 /*
248  * Note: the PIM Register encapsulation adds the following in front of a
249  * data packet:
250  *
251  * struct pim_encap_hdr {
252  *    struct ip ip;
253  *    struct pim_encap_pimhdr  pim;
254  * }
255  *
256  */
257 
258 struct pim_encap_pimhdr {
259 	struct pim pim;
260 	uint32_t   flags;
261 };
262 #define		PIM_ENCAP_TTL	64
263 
264 static struct ip pim_encap_iphdr = {
265 #if BYTE_ORDER == LITTLE_ENDIAN
266 	sizeof(struct ip) >> 2,
267 	IPVERSION,
268 #else
269 	IPVERSION,
270 	sizeof(struct ip) >> 2,
271 #endif
272 	0,			/* tos */
273 	sizeof(struct ip),	/* total length */
274 	0,			/* id */
275 	0,			/* frag offset */
276 	PIM_ENCAP_TTL,
277 	IPPROTO_PIM,
278 	0,			/* checksum */
279 };
280 
281 static struct pim_encap_pimhdr pim_encap_pimhdr = {
282     {
283 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
284 	0,			/* reserved */
285 	0,			/* checksum */
286     },
287     0				/* flags */
288 };
289 
290 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
291 #define	V_reg_vif_num		VNET(reg_vif_num)
292 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
293 #define	V_multicast_register_if	VNET(multicast_register_if)
294 
295 /*
296  * Private variables.
297  */
298 
299 static u_long	X_ip_mcast_src(int);
300 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
301 		    struct ip_moptions *);
302 static int	X_ip_mrouter_done(void);
303 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
304 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
305 static int	X_legal_vif_num(int);
306 static int	X_mrt_ioctl(u_long, caddr_t, int);
307 
308 static int	add_bw_upcall(struct bw_upcall *);
309 static int	add_mfc(struct mfcctl2 *);
310 static int	add_vif(struct vifctl *);
311 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
312 static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
313 		    struct timeval *);
314 static void	bw_upcalls_send(void);
315 static int	del_bw_upcall(struct bw_upcall *);
316 static int	del_mfc(struct mfcctl2 *);
317 static int	del_vif(vifi_t);
318 static int	del_vif_locked(vifi_t, struct ifnet **, struct ifnet **);
319 static void	expire_bw_upcalls_send(void *);
320 static void	expire_mfc(struct mfc *);
321 static void	expire_upcalls(void *);
322 static void	free_bw_list(struct bw_meter *);
323 static int	get_sg_cnt(struct sioc_sg_req *);
324 static int	get_vif_cnt(struct sioc_vif_req *);
325 static void	if_detached_event(void *, struct ifnet *);
326 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
327 static int	ip_mrouter_init(struct socket *, int);
328 static __inline struct mfc *
329 		mfc_find(struct in_addr *, struct in_addr *);
330 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
331 static struct mbuf *
332 		pim_register_prepare(struct ip *, struct mbuf *);
333 static int	pim_register_send(struct ip *, struct vif *,
334 		    struct mbuf *, struct mfc *);
335 static int	pim_register_send_rp(struct ip *, struct vif *,
336 		    struct mbuf *, struct mfc *);
337 static int	pim_register_send_upcall(struct ip *, struct vif *,
338 		    struct mbuf *, struct mfc *);
339 static void	send_packet(struct vif *, struct mbuf *);
340 static int	set_api_config(uint32_t *);
341 static int	set_assert(int);
342 static int	socket_send(struct socket *, struct mbuf *,
343 		    struct sockaddr_in *);
344 
345 /*
346  * Kernel multicast forwarding API capabilities and setup.
347  * If more API capabilities are added to the kernel, they should be
348  * recorded in `mrt_api_support'.
349  */
350 #define MRT_API_VERSION		0x0305
351 
352 static const int mrt_api_version = MRT_API_VERSION;
353 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
354 					 MRT_MFC_FLAGS_BORDER_VIF |
355 					 MRT_MFC_RP |
356 					 MRT_MFC_BW_UPCALL);
357 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
358 #define	V_mrt_api_config	VNET(mrt_api_config)
359 VNET_DEFINE_STATIC(int, pim_assert_enabled);
360 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
361 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
362 
363 /*
364  * Find a route for a given origin IP address and multicast group address.
365  * Statistics must be updated by the caller.
366  */
367 static __inline struct mfc *
368 mfc_find(struct in_addr *o, struct in_addr *g)
369 {
370 	struct mfc *rt;
371 
372 	/*
373 	 * Might be called both RLOCK and WLOCK.
374 	 * Check if any, it's caller responsibility
375 	 * to choose correct option.
376 	 */
377 	MRW_LOCK_ASSERT();
378 
379 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
380 		if (in_hosteq(rt->mfc_origin, *o) &&
381 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
382 		    buf_ring_empty(rt->mfc_stall_ring))
383 			break;
384 	}
385 
386 	return (rt);
387 }
388 
389 static __inline struct mfc *
390 mfc_alloc(void)
391 {
392 	struct mfc *rt;
393 	rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
394 	if (rt == NULL)
395 		return rt;
396 
397 	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
398 	    M_NOWAIT, &V_buf_ring_mtx);
399 	if (rt->mfc_stall_ring == NULL) {
400 		free(rt, M_MRTABLE);
401 		return NULL;
402 	}
403 
404 	return rt;
405 }
406 
407 /*
408  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
409  */
410 static int
411 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
412 {
413 	int error, optval;
414 	vifi_t vifi;
415 	struct vifctl vifc;
416 	struct mfcctl2 mfc;
417 	struct bw_upcall bw_upcall;
418 	uint32_t i;
419 
420 	if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
421 		return EPERM;
422 
423 	error = 0;
424 	switch (sopt->sopt_name) {
425 	case MRT_INIT:
426 		error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
427 		if (error)
428 			break;
429 		error = ip_mrouter_init(so, optval);
430 		break;
431 	case MRT_DONE:
432 		error = ip_mrouter_done();
433 		break;
434 	case MRT_ADD_VIF:
435 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
436 		if (error)
437 			break;
438 		error = add_vif(&vifc);
439 		break;
440 	case MRT_DEL_VIF:
441 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
442 		if (error)
443 			break;
444 		error = del_vif(vifi);
445 		break;
446 	case MRT_ADD_MFC:
447 	case MRT_DEL_MFC:
448 		/*
449 		 * select data size depending on API version.
450 		 */
451 		if (sopt->sopt_name == MRT_ADD_MFC &&
452 		    V_mrt_api_config & MRT_API_FLAGS_ALL) {
453 			error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
454 			    sizeof(struct mfcctl2));
455 		} else {
456 			error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
457 			    sizeof(struct mfcctl));
458 			bzero((caddr_t)&mfc + sizeof(struct mfcctl),
459 			    sizeof(mfc) - sizeof(struct mfcctl));
460 		}
461 		if (error)
462 			break;
463 		if (sopt->sopt_name == MRT_ADD_MFC)
464 			error = add_mfc(&mfc);
465 		else
466 			error = del_mfc(&mfc);
467 		break;
468 
469 	case MRT_ASSERT:
470 		error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
471 		if (error)
472 			break;
473 		set_assert(optval);
474 		break;
475 
476 	case MRT_API_CONFIG:
477 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
478 		if (!error)
479 			error = set_api_config(&i);
480 		if (!error)
481 			error = sooptcopyout(sopt, &i, sizeof i);
482 		break;
483 
484 	case MRT_ADD_BW_UPCALL:
485 	case MRT_DEL_BW_UPCALL:
486 		error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
487 		    sizeof bw_upcall);
488 		if (error)
489 			break;
490 		if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
491 			error = add_bw_upcall(&bw_upcall);
492 		else
493 			error = del_bw_upcall(&bw_upcall);
494 		break;
495 
496 	default:
497 		error = EOPNOTSUPP;
498 		break;
499 	}
500 	return error;
501 }
502 
503 /*
504  * Handle MRT getsockopt commands
505  */
506 static int
507 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
508 {
509 	int error;
510 
511 	switch (sopt->sopt_name) {
512 	case MRT_VERSION:
513 		error = sooptcopyout(sopt, &mrt_api_version,
514 		    sizeof mrt_api_version);
515 		break;
516 	case MRT_ASSERT:
517 		error = sooptcopyout(sopt, &V_pim_assert_enabled,
518 		    sizeof V_pim_assert_enabled);
519 		break;
520 	case MRT_API_SUPPORT:
521 		error = sooptcopyout(sopt, &mrt_api_support,
522 		    sizeof mrt_api_support);
523 		break;
524 	case MRT_API_CONFIG:
525 		error = sooptcopyout(sopt, &V_mrt_api_config,
526 		    sizeof V_mrt_api_config);
527 		break;
528 	default:
529 		error = EOPNOTSUPP;
530 		break;
531 	}
532 	return error;
533 }
534 
535 /*
536  * Handle ioctl commands to obtain information from the cache
537  */
538 static int
539 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
540 {
541 	int error;
542 
543 	/*
544 	 * Currently the only function calling this ioctl routine is rtioctl_fib().
545 	 * Typically, only root can create the raw socket in order to execute
546 	 * this ioctl method, however the request might be coming from a prison
547 	 */
548 	error = priv_check(curthread, PRIV_NETINET_MROUTE);
549 	if (error)
550 		return (error);
551 	switch (cmd) {
552 	case (SIOCGETVIFCNT):
553 		error = get_vif_cnt((struct sioc_vif_req *)data);
554 		break;
555 
556 	case (SIOCGETSGCNT):
557 		error = get_sg_cnt((struct sioc_sg_req *)data);
558 		break;
559 
560 	default:
561 		error = EINVAL;
562 		break;
563 	}
564 	return error;
565 }
566 
567 /*
568  * returns the packet, byte, rpf-failure count for the source group provided
569  */
570 static int
571 get_sg_cnt(struct sioc_sg_req *req)
572 {
573 	struct mfc *rt;
574 
575 	MRW_RLOCK();
576 	rt = mfc_find(&req->src, &req->grp);
577 	if (rt == NULL) {
578 		MRW_RUNLOCK();
579 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
580 		return EADDRNOTAVAIL;
581 	}
582 	req->pktcnt = rt->mfc_pkt_cnt;
583 	req->bytecnt = rt->mfc_byte_cnt;
584 	req->wrong_if = rt->mfc_wrong_if;
585 	MRW_RUNLOCK();
586 	return 0;
587 }
588 
589 /*
590  * returns the input and output packet and byte counts on the vif provided
591  */
592 static int
593 get_vif_cnt(struct sioc_vif_req *req)
594 {
595 	vifi_t vifi = req->vifi;
596 
597 	MRW_RLOCK();
598 	if (vifi >= V_numvifs) {
599 		MRW_RUNLOCK();
600 		return EINVAL;
601 	}
602 
603 	mtx_lock_spin(&V_viftable[vifi].v_spin);
604 	req->icount = V_viftable[vifi].v_pkt_in;
605 	req->ocount = V_viftable[vifi].v_pkt_out;
606 	req->ibytes = V_viftable[vifi].v_bytes_in;
607 	req->obytes = V_viftable[vifi].v_bytes_out;
608 	mtx_unlock_spin(&V_viftable[vifi].v_spin);
609 	MRW_RUNLOCK();
610 
611 	return 0;
612 }
613 
614 static void
615 if_detached_event(void *arg __unused, struct ifnet *ifp)
616 {
617 	vifi_t vifi;
618 	u_long i, vifi_cnt = 0;
619 	struct ifnet *free_ptr, *multi_leave;
620 
621 	MRW_WLOCK();
622 
623 	if (V_ip_mrouter == NULL) {
624 		MRW_WUNLOCK();
625 		return;
626 	}
627 
628 	/*
629 	 * Tear down multicast forwarder state associated with this ifnet.
630 	 * 1. Walk the vif list, matching vifs against this ifnet.
631 	 * 2. Walk the multicast forwarding cache (mfc) looking for
632 	 *    inner matches with this vif's index.
633 	 * 3. Expire any matching multicast forwarding cache entries.
634 	 * 4. Free vif state. This should disable ALLMULTI on the interface.
635 	 */
636 restart:
637 	for (vifi = 0; vifi < V_numvifs; vifi++) {
638 		if (V_viftable[vifi].v_ifp != ifp)
639 			continue;
640 		for (i = 0; i < mfchashsize; i++) {
641 			struct mfc *rt, *nrt;
642 
643 			LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
644 				if (rt->mfc_parent == vifi) {
645 					expire_mfc(rt);
646 				}
647 			}
648 		}
649 		del_vif_locked(vifi, &multi_leave, &free_ptr);
650 		if (free_ptr != NULL)
651 			vifi_cnt++;
652 		if (multi_leave) {
653 			MRW_WUNLOCK();
654 			if_allmulti(multi_leave, 0);
655 			MRW_WLOCK();
656 			goto restart;
657 		}
658 	}
659 
660 	MRW_WUNLOCK();
661 
662 	/*
663 	 * Free IFP. We don't have to use free_ptr here as it is the same
664 	 * that ifp. Perform free as many times as required in case
665 	 * refcount is greater than 1.
666 	 */
667 	for (i = 0; i < vifi_cnt; i++)
668 		if_free(ifp);
669 }
670 
671 static void
672 ip_mrouter_upcall_thread(void *arg, int pending __unused)
673 {
674 	CURVNET_SET((struct vnet *) arg);
675 
676 	MRW_WLOCK();
677 	bw_upcalls_send();
678 	MRW_WUNLOCK();
679 
680 	CURVNET_RESTORE();
681 }
682 
683 /*
684  * Enable multicast forwarding.
685  */
686 static int
687 ip_mrouter_init(struct socket *so, int version)
688 {
689 
690 	CTR2(KTR_IPMF, "%s: so %p", __func__, so);
691 
692 	if (version != 1)
693 		return ENOPROTOOPT;
694 
695 	MRW_WLOCK();
696 
697 	if (ip_mrouter_unloading) {
698 		MRW_WUNLOCK();
699 		return ENOPROTOOPT;
700 	}
701 
702 	if (V_ip_mrouter != NULL) {
703 		MRW_WUNLOCK();
704 		return EADDRINUSE;
705 	}
706 
707 	V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
708 	    HASH_NOWAIT);
709 
710 	/* Create upcall ring */
711 	mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
712 	V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
713 	    M_NOWAIT, &V_bw_upcalls_ring_mtx);
714 	if (!V_bw_upcalls_ring) {
715 		MRW_WUNLOCK();
716 		return (ENOMEM);
717 	}
718 
719 	TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
720 	taskqueue_cancel(V_task_queue, &V_task, NULL);
721 	taskqueue_unblock(V_task_queue);
722 
723 	callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
724 	    curvnet);
725 	callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
726 	    curvnet);
727 
728 	V_ip_mrouter = so;
729 	atomic_add_int(&ip_mrouter_cnt, 1);
730 
731 	/* This is a mutex required by buf_ring init, but not used internally */
732 	mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
733 
734 	MRW_WUNLOCK();
735 
736 	CTR1(KTR_IPMF, "%s: done", __func__);
737 
738 	return 0;
739 }
740 
741 /*
742  * Disable multicast forwarding.
743  */
744 static int
745 X_ip_mrouter_done(void)
746 {
747 	struct ifnet **ifps;
748 	int nifp;
749 	u_long i;
750 	vifi_t vifi;
751 	struct bw_upcall *bu;
752 
753 	if (V_ip_mrouter == NULL)
754 		return (EINVAL);
755 
756 	/*
757 	 * Detach/disable hooks to the reset of the system.
758 	 */
759 	V_ip_mrouter = NULL;
760 	atomic_subtract_int(&ip_mrouter_cnt, 1);
761 	V_mrt_api_config = 0;
762 
763 	/*
764 	 * Wait for all epoch sections to complete to ensure
765 	 * V_ip_mrouter = NULL is visible to others.
766 	 */
767 	epoch_wait_preempt(net_epoch_preempt);
768 
769 	/* Stop and drain task queue */
770 	taskqueue_block(V_task_queue);
771 	while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
772 		taskqueue_drain(V_task_queue, &V_task);
773 	}
774 
775 	ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
776 
777 	MRW_WLOCK();
778 	taskqueue_cancel(V_task_queue, &V_task, NULL);
779 
780 	/* Destroy upcall ring */
781 	while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
782 		free(bu, M_MRTABLE);
783 	}
784 	buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
785 	mtx_destroy(&V_bw_upcalls_ring_mtx);
786 
787 	/*
788 	 * For each phyint in use, prepare to disable promiscuous reception
789 	 * of all IP multicasts.  Defer the actual call until the lock is released;
790 	 * just record the list of interfaces while locked.  Some interfaces use
791 	 * sx locks in their ioctl routines, which is not allowed while holding
792 	 * a non-sleepable lock.
793 	 */
794 	KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
795 	for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
796 		if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
797 		    !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
798 			ifps[nifp++] = V_viftable[vifi].v_ifp;
799 		}
800 	}
801 	bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
802 	V_numvifs = 0;
803 	V_pim_assert_enabled = 0;
804 
805 	callout_stop(&V_expire_upcalls_ch);
806 	callout_stop(&V_bw_upcalls_ch);
807 
808 	/*
809 	 * Free all multicast forwarding cache entries.
810 	 * Do not use hashdestroy(), as we must perform other cleanup.
811 	 */
812 	for (i = 0; i < mfchashsize; i++) {
813 		struct mfc *rt, *nrt;
814 
815 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
816 			expire_mfc(rt);
817 		}
818 	}
819 	free(V_mfchashtbl, M_MRTABLE);
820 	V_mfchashtbl = NULL;
821 
822 	bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
823 
824 	V_reg_vif_num = VIFI_INVALID;
825 
826 	mtx_destroy(&V_buf_ring_mtx);
827 
828 	MRW_WUNLOCK();
829 
830 	/*
831 	 * Now drop our claim on promiscuous multicast on the interfaces recorded
832 	 * above.  This is safe to do now because ALLMULTI is reference counted.
833 	 */
834 	for (vifi = 0; vifi < nifp; vifi++)
835 		if_allmulti(ifps[vifi], 0);
836 	free(ifps, M_TEMP);
837 
838 	CTR1(KTR_IPMF, "%s: done", __func__);
839 
840 	return 0;
841 }
842 
843 /*
844  * Set PIM assert processing global
845  */
846 static int
847 set_assert(int i)
848 {
849 	if ((i != 1) && (i != 0))
850 		return EINVAL;
851 
852 	V_pim_assert_enabled = i;
853 
854 	return 0;
855 }
856 
857 /*
858  * Configure API capabilities
859  */
860 int
861 set_api_config(uint32_t *apival)
862 {
863 	u_long i;
864 
865 	/*
866 	 * We can set the API capabilities only if it is the first operation
867 	 * after MRT_INIT. I.e.:
868 	 *  - there are no vifs installed
869 	 *  - pim_assert is not enabled
870 	 *  - the MFC table is empty
871 	 */
872 	if (V_numvifs > 0) {
873 		*apival = 0;
874 		return EPERM;
875 	}
876 	if (V_pim_assert_enabled) {
877 		*apival = 0;
878 		return EPERM;
879 	}
880 
881 	MRW_RLOCK();
882 
883 	for (i = 0; i < mfchashsize; i++) {
884 		if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
885 			MRW_RUNLOCK();
886 			*apival = 0;
887 			return EPERM;
888 		}
889 	}
890 
891 	MRW_RUNLOCK();
892 
893 	V_mrt_api_config = *apival & mrt_api_support;
894 	*apival = V_mrt_api_config;
895 
896 	return 0;
897 }
898 
899 /*
900  * Add a vif to the vif table
901  */
902 static int
903 add_vif(struct vifctl *vifcp)
904 {
905 	struct vif *vifp = V_viftable + vifcp->vifc_vifi;
906 	struct sockaddr_in sin = {sizeof sin, AF_INET};
907 	struct ifaddr *ifa;
908 	struct ifnet *ifp;
909 	int error;
910 
911 	if (vifcp->vifc_vifi >= MAXVIFS)
912 		return EINVAL;
913 	/* rate limiting is no longer supported by this code */
914 	if (vifcp->vifc_rate_limit != 0) {
915 		log(LOG_ERR, "rate limiting is no longer supported\n");
916 		return EINVAL;
917 	}
918 
919 	if (in_nullhost(vifcp->vifc_lcl_addr))
920 		return EADDRNOTAVAIL;
921 
922 	/* Find the interface with an address in AF_INET family */
923 	if (vifcp->vifc_flags & VIFF_REGISTER) {
924 		/*
925 		 * XXX: Because VIFF_REGISTER does not really need a valid
926 		 * local interface (e.g. it could be 127.0.0.2), we don't
927 		 * check its address.
928 		 */
929 		ifp = NULL;
930 	} else {
931 		struct epoch_tracker et;
932 
933 		sin.sin_addr = vifcp->vifc_lcl_addr;
934 		NET_EPOCH_ENTER(et);
935 		ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
936 		if (ifa == NULL) {
937 			NET_EPOCH_EXIT(et);
938 			return EADDRNOTAVAIL;
939 		}
940 		ifp = ifa->ifa_ifp;
941 		/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
942 		NET_EPOCH_EXIT(et);
943 	}
944 
945 	if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
946 		CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
947 		return EOPNOTSUPP;
948 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
949 		ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
950 		CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
951 		if (V_reg_vif_num == VIFI_INVALID) {
952 			if_initname(V_multicast_register_if, "register_vif", 0);
953 			V_reg_vif_num = vifcp->vifc_vifi;
954 		}
955 	} else {		/* Make sure the interface supports multicast */
956 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
957 			return EOPNOTSUPP;
958 
959 		/* Enable promiscuous reception of all IP multicasts from the if */
960 		error = if_allmulti(ifp, 1);
961 		if (error)
962 			return error;
963 	}
964 
965 	MRW_WLOCK();
966 
967 	if (!in_nullhost(vifp->v_lcl_addr)) {
968 		if (ifp)
969 			V_multicast_register_if = NULL;
970 		MRW_WUNLOCK();
971 		if (ifp)
972 			if_free(ifp);
973 		return EADDRINUSE;
974 	}
975 
976 	vifp->v_flags     = vifcp->vifc_flags;
977 	vifp->v_threshold = vifcp->vifc_threshold;
978 	vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
979 	vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
980 	vifp->v_ifp       = ifp;
981 	/* initialize per vif pkt counters */
982 	vifp->v_pkt_in    = 0;
983 	vifp->v_pkt_out   = 0;
984 	vifp->v_bytes_in  = 0;
985 	vifp->v_bytes_out = 0;
986 	sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
987 	mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
988 
989 	/* Adjust numvifs up if the vifi is higher than numvifs */
990 	if (V_numvifs <= vifcp->vifc_vifi)
991 		V_numvifs = vifcp->vifc_vifi + 1;
992 
993 	MRW_WUNLOCK();
994 
995 	CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
996 	    (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
997 	    (int)vifcp->vifc_threshold);
998 
999 	return 0;
1000 }
1001 
1002 /*
1003  * Delete a vif from the vif table
1004  */
1005 static int
1006 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free)
1007 {
1008 	struct vif *vifp;
1009 
1010 	*ifp_free = NULL;
1011 	*ifp_multi_leave = NULL;
1012 
1013 	MRW_WLOCK_ASSERT();
1014 
1015 	if (vifi >= V_numvifs) {
1016 		return EINVAL;
1017 	}
1018 	vifp = &V_viftable[vifi];
1019 	if (in_nullhost(vifp->v_lcl_addr)) {
1020 		return EADDRNOTAVAIL;
1021 	}
1022 
1023 	if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1024 		*ifp_multi_leave = vifp->v_ifp;
1025 
1026 	if (vifp->v_flags & VIFF_REGISTER) {
1027 		V_reg_vif_num = VIFI_INVALID;
1028 		if (vifp->v_ifp) {
1029 			if (vifp->v_ifp == V_multicast_register_if)
1030 				V_multicast_register_if = NULL;
1031 			*ifp_free = vifp->v_ifp;
1032 		}
1033 	}
1034 
1035 	mtx_destroy(&vifp->v_spin);
1036 
1037 	bzero((caddr_t)vifp, sizeof (*vifp));
1038 
1039 	CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1040 
1041 	/* Adjust numvifs down */
1042 	for (vifi = V_numvifs; vifi > 0; vifi--)
1043 		if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1044 			break;
1045 	V_numvifs = vifi;
1046 
1047 	return 0;
1048 }
1049 
1050 static int
1051 del_vif(vifi_t vifi)
1052 {
1053 	int cc;
1054 	struct ifnet *free_ptr, *multi_leave;
1055 
1056 	MRW_WLOCK();
1057 	cc = del_vif_locked(vifi, &multi_leave, &free_ptr);
1058 	MRW_WUNLOCK();
1059 
1060 	if (multi_leave)
1061 		if_allmulti(multi_leave, 0);
1062 	if (free_ptr) {
1063 		if_free(free_ptr);
1064 	}
1065 
1066 	return cc;
1067 }
1068 
1069 /*
1070  * update an mfc entry without resetting counters and S,G addresses.
1071  */
1072 static void
1073 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1074 {
1075 	int i;
1076 
1077 	rt->mfc_parent = mfccp->mfcc_parent;
1078 	for (i = 0; i < V_numvifs; i++) {
1079 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1080 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1081 			MRT_MFC_FLAGS_ALL;
1082 	}
1083 	/* set the RP address */
1084 	if (V_mrt_api_config & MRT_MFC_RP)
1085 		rt->mfc_rp = mfccp->mfcc_rp;
1086 	else
1087 		rt->mfc_rp.s_addr = INADDR_ANY;
1088 }
1089 
1090 /*
1091  * fully initialize an mfc entry from the parameter.
1092  */
1093 static void
1094 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1095 {
1096 	rt->mfc_origin     = mfccp->mfcc_origin;
1097 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1098 
1099 	update_mfc_params(rt, mfccp);
1100 
1101 	/* initialize pkt counters per src-grp */
1102 	rt->mfc_pkt_cnt    = 0;
1103 	rt->mfc_byte_cnt   = 0;
1104 	rt->mfc_wrong_if   = 0;
1105 	timevalclear(&rt->mfc_last_assert);
1106 }
1107 
1108 static void
1109 expire_mfc(struct mfc *rt)
1110 {
1111 	struct rtdetq *rte;
1112 
1113 	MRW_WLOCK_ASSERT();
1114 
1115 	free_bw_list(rt->mfc_bw_meter_leq);
1116 	free_bw_list(rt->mfc_bw_meter_geq);
1117 
1118 	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1119 		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1120 		if (rte) {
1121 			m_freem(rte->m);
1122 			free(rte, M_MRTABLE);
1123 		}
1124 	}
1125 	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1126 
1127 	LIST_REMOVE(rt, mfc_hash);
1128 	free(rt, M_MRTABLE);
1129 }
1130 
1131 /*
1132  * Add an mfc entry
1133  */
1134 static int
1135 add_mfc(struct mfcctl2 *mfccp)
1136 {
1137 	struct mfc *rt;
1138 	struct rtdetq *rte;
1139 	u_long hash = 0;
1140 	u_short nstl;
1141 	struct epoch_tracker et;
1142 
1143 	MRW_WLOCK();
1144 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1145 
1146 	/* If an entry already exists, just update the fields */
1147 	if (rt) {
1148 		CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1149 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1150 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1151 		    mfccp->mfcc_parent);
1152 		update_mfc_params(rt, mfccp);
1153 		MRW_WUNLOCK();
1154 		return (0);
1155 	}
1156 
1157 	/*
1158 	 * Find the entry for which the upcall was made and update
1159 	 */
1160 	nstl = 0;
1161 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1162 	NET_EPOCH_ENTER(et);
1163 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1164 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1165 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1166 		    !buf_ring_empty(rt->mfc_stall_ring)) {
1167 			CTR5(KTR_IPMF,
1168 			   "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1169 			    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1170 			    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1171 			    mfccp->mfcc_parent,
1172 			    rt->mfc_stall_ring);
1173 			if (nstl++)
1174 				CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1175 
1176 			init_mfc_params(rt, mfccp);
1177 			rt->mfc_expire = 0;	/* Don't clean this guy up */
1178 			V_nexpire[hash]--;
1179 
1180 			/* Free queued packets, but attempt to forward them first. */
1181 			while (!buf_ring_empty(rt->mfc_stall_ring)) {
1182 				rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1183 				if (rte->ifp != NULL)
1184 					ip_mdq(rte->m, rte->ifp, rt, -1);
1185 				m_freem(rte->m);
1186 				free(rte, M_MRTABLE);
1187 			}
1188 		}
1189 	}
1190 	NET_EPOCH_EXIT(et);
1191 
1192 	/*
1193 	 * It is possible that an entry is being inserted without an upcall
1194 	 */
1195 	if (nstl == 0) {
1196 		CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1197 		LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1198 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1199 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1200 				init_mfc_params(rt, mfccp);
1201 				if (rt->mfc_expire)
1202 					V_nexpire[hash]--;
1203 				rt->mfc_expire = 0;
1204 				break; /* XXX */
1205 			}
1206 		}
1207 
1208 		if (rt == NULL) {		/* no upcall, so make a new entry */
1209 			rt = mfc_alloc();
1210 			if (rt == NULL) {
1211 				MRW_WUNLOCK();
1212 				return (ENOBUFS);
1213 			}
1214 
1215 			init_mfc_params(rt, mfccp);
1216 
1217 			rt->mfc_expire     = 0;
1218 			rt->mfc_bw_meter_leq = NULL;
1219 			rt->mfc_bw_meter_geq = NULL;
1220 
1221 			/* insert new entry at head of hash chain */
1222 			LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1223 		}
1224 	}
1225 
1226 	MRW_WUNLOCK();
1227 
1228 	return (0);
1229 }
1230 
1231 /*
1232  * Delete an mfc entry
1233  */
1234 static int
1235 del_mfc(struct mfcctl2 *mfccp)
1236 {
1237 	struct in_addr origin;
1238 	struct in_addr mcastgrp;
1239 	struct mfc *rt;
1240 
1241 	origin = mfccp->mfcc_origin;
1242 	mcastgrp = mfccp->mfcc_mcastgrp;
1243 
1244 	CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1245 			ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1246 
1247 	MRW_WLOCK();
1248 
1249 	rt = mfc_find(&origin, &mcastgrp);
1250 	if (rt == NULL) {
1251 		MRW_WUNLOCK();
1252 		return EADDRNOTAVAIL;
1253 	}
1254 
1255 	/*
1256 	 * free the bw_meter entries
1257 	 */
1258 	free_bw_list(rt->mfc_bw_meter_leq);
1259 	rt->mfc_bw_meter_leq = NULL;
1260 	free_bw_list(rt->mfc_bw_meter_geq);
1261 	rt->mfc_bw_meter_geq = NULL;
1262 
1263 	LIST_REMOVE(rt, mfc_hash);
1264 	free(rt, M_MRTABLE);
1265 
1266 	MRW_WUNLOCK();
1267 
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Send a message to the routing daemon on the multicast routing socket.
1273  */
1274 static int
1275 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1276 {
1277 	if (s) {
1278 		SOCKBUF_LOCK(&s->so_rcv);
1279 		if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1280 		    NULL) != 0) {
1281 			sorwakeup_locked(s);
1282 			return 0;
1283 		}
1284 		soroverflow_locked(s);
1285 	}
1286 	m_freem(mm);
1287 	return -1;
1288 }
1289 
1290 /*
1291  * IP multicast forwarding function. This function assumes that the packet
1292  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1293  * pointed to by "ifp", and the packet is to be relayed to other networks
1294  * that have members of the packet's destination IP multicast group.
1295  *
1296  * The packet is returned unscathed to the caller, unless it is
1297  * erroneous, in which case a non-zero return value tells the caller to
1298  * discard it.
1299  */
1300 
1301 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1302 
1303 static int
1304 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1305     struct ip_moptions *imo)
1306 {
1307 	struct mfc *rt;
1308 	int error;
1309 	vifi_t vifi;
1310 	struct mbuf *mb0;
1311 	struct rtdetq *rte;
1312 	u_long hash;
1313 	int hlen;
1314 
1315 	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1316 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1317 
1318 	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1319 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1320 		/*
1321 		 * Packet arrived via a physical interface or
1322 		 * an encapsulated tunnel or a register_vif.
1323 		 */
1324 	} else {
1325 		/*
1326 		 * Packet arrived through a source-route tunnel.
1327 		 * Source-route tunnels are no longer supported.
1328 		 */
1329 		return (1);
1330 	}
1331 
1332 	/*
1333 	 * BEGIN: MCAST ROUTING HOT PATH
1334 	 */
1335 	MRW_RLOCK();
1336 	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1337 		if (ip->ip_ttl < MAXTTL)
1338 			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1339 		error = ip_mdq(m, ifp, NULL, vifi);
1340 		MRW_RUNLOCK();
1341 		return error;
1342 	}
1343 
1344 	/*
1345 	 * Don't forward a packet with time-to-live of zero or one,
1346 	 * or a packet destined to a local-only group.
1347 	 */
1348 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1349 		MRW_RUNLOCK();
1350 		return 0;
1351 	}
1352 
1353 mfc_find_retry:
1354 	/*
1355 	 * Determine forwarding vifs from the forwarding cache table
1356 	 */
1357 	MRTSTAT_INC(mrts_mfc_lookups);
1358 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1359 
1360 	/* Entry exists, so forward if necessary */
1361 	if (rt != NULL) {
1362 		error = ip_mdq(m, ifp, rt, -1);
1363 		/* Generic unlock here as we might release R or W lock */
1364 		MRW_UNLOCK();
1365 		return error;
1366 	}
1367 
1368 	/*
1369 	 * END: MCAST ROUTING HOT PATH
1370 	 */
1371 
1372 	/* Further processing must be done with WLOCK taken */
1373 	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1374 		MRW_RUNLOCK();
1375 		MRW_WLOCK();
1376 		goto mfc_find_retry;
1377 	}
1378 
1379 	/*
1380 	 * If we don't have a route for packet's origin,
1381 	 * Make a copy of the packet & send message to routing daemon
1382 	 */
1383 	hlen = ip->ip_hl << 2;
1384 
1385 	MRTSTAT_INC(mrts_mfc_misses);
1386 	MRTSTAT_INC(mrts_no_route);
1387 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1388 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1389 
1390 	/*
1391 	 * Allocate mbufs early so that we don't do extra work if we are
1392 	 * just going to fail anyway.  Make sure to pullup the header so
1393 	 * that other people can't step on it.
1394 	 */
1395 	rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO);
1396 	if (rte == NULL) {
1397 		MRW_WUNLOCK();
1398 		return ENOBUFS;
1399 	}
1400 
1401 	mb0 = m_copypacket(m, M_NOWAIT);
1402 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1403 		mb0 = m_pullup(mb0, hlen);
1404 	if (mb0 == NULL) {
1405 		free(rte, M_MRTABLE);
1406 		MRW_WUNLOCK();
1407 		return ENOBUFS;
1408 	}
1409 
1410 	/* is there an upcall waiting for this flow ? */
1411 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1412 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1413 	{
1414 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1415 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1416 		    !buf_ring_empty(rt->mfc_stall_ring))
1417 			break;
1418 	}
1419 
1420 	if (rt == NULL) {
1421 		int i;
1422 		struct igmpmsg *im;
1423 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1424 		struct mbuf *mm;
1425 
1426 		/*
1427 		 * Locate the vifi for the incoming interface for this packet.
1428 		 * If none found, drop packet.
1429 		 */
1430 		for (vifi = 0; vifi < V_numvifs &&
1431 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1432 			;
1433 		if (vifi >= V_numvifs) /* vif not found, drop packet */
1434 			goto non_fatal;
1435 
1436 		/* no upcall, so make a new entry */
1437 		rt = mfc_alloc();
1438 		if (rt == NULL)
1439 			goto fail;
1440 
1441 		/* Make a copy of the header to send to the user level process */
1442 		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1443 		if (mm == NULL)
1444 			goto fail1;
1445 
1446 		/*
1447 		 * Send message to routing daemon to install
1448 		 * a route into the kernel table
1449 		 */
1450 
1451 		im = mtod(mm, struct igmpmsg*);
1452 		im->im_msgtype = IGMPMSG_NOCACHE;
1453 		im->im_mbz = 0;
1454 		im->im_vif = vifi;
1455 
1456 		MRTSTAT_INC(mrts_upcalls);
1457 
1458 		k_igmpsrc.sin_addr = ip->ip_src;
1459 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1460 			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1461 			MRTSTAT_INC(mrts_upq_sockfull);
1462 			fail1: free(rt, M_MRTABLE);
1463 			fail: free(rte, M_MRTABLE);
1464 			m_freem(mb0);
1465 			MRW_WUNLOCK();
1466 			return ENOBUFS;
1467 		}
1468 
1469 		/* insert new entry at head of hash chain */
1470 		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1471 		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1472 		rt->mfc_expire = UPCALL_EXPIRE;
1473 		V_nexpire[hash]++;
1474 		for (i = 0; i < V_numvifs; i++) {
1475 			rt->mfc_ttls[i] = 0;
1476 			rt->mfc_flags[i] = 0;
1477 		}
1478 		rt->mfc_parent = -1;
1479 
1480 		/* clear the RP address */
1481 		rt->mfc_rp.s_addr = INADDR_ANY;
1482 		rt->mfc_bw_meter_leq = NULL;
1483 		rt->mfc_bw_meter_geq = NULL;
1484 
1485 		/* initialize pkt counters per src-grp */
1486 		rt->mfc_pkt_cnt = 0;
1487 		rt->mfc_byte_cnt = 0;
1488 		rt->mfc_wrong_if = 0;
1489 		timevalclear(&rt->mfc_last_assert);
1490 
1491 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1492 
1493 		/* Add RT to hashtable as it didn't exist before */
1494 		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1495 	} else {
1496 		/* determine if queue has overflowed */
1497 		if (buf_ring_full(rt->mfc_stall_ring)) {
1498 			MRTSTAT_INC(mrts_upq_ovflw);
1499 			non_fatal: free(rte, M_MRTABLE);
1500 			m_freem(mb0);
1501 			MRW_WUNLOCK();
1502 			return (0);
1503 		}
1504 
1505 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1506 	}
1507 
1508 	rte->m = mb0;
1509 	rte->ifp = ifp;
1510 
1511 	MRW_WUNLOCK();
1512 
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Clean up the cache entry if upcall is not serviced
1518  */
1519 static void
1520 expire_upcalls(void *arg)
1521 {
1522 	u_long i;
1523 
1524 	CURVNET_SET((struct vnet *) arg);
1525 
1526 	/*This callout is always run with MRW_WLOCK taken. */
1527 
1528 	for (i = 0; i < mfchashsize; i++) {
1529 		struct mfc *rt, *nrt;
1530 
1531 		if (V_nexpire[i] == 0)
1532 			continue;
1533 
1534 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1535 			if (buf_ring_empty(rt->mfc_stall_ring))
1536 				continue;
1537 
1538 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1539 				continue;
1540 
1541 			MRTSTAT_INC(mrts_cache_cleanups);
1542 			CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1543 			    (u_long)ntohl(rt->mfc_origin.s_addr),
1544 			    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1545 
1546 			expire_mfc(rt);
1547 		}
1548 	}
1549 
1550 	callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1551 	    curvnet);
1552 
1553 	CURVNET_RESTORE();
1554 }
1555 
1556 /*
1557  * Packet forwarding routine once entry in the cache is made
1558  */
1559 static int
1560 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1561 {
1562 	struct ip *ip = mtod(m, struct ip *);
1563 	vifi_t vifi;
1564 	int plen = ntohs(ip->ip_len);
1565 
1566 	MRW_LOCK_ASSERT();
1567 	NET_EPOCH_ASSERT();
1568 
1569 	/*
1570 	 * If xmt_vif is not -1, send on only the requested vif.
1571 	 *
1572 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1573 	 */
1574 	if (xmt_vif < V_numvifs) {
1575 		if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1576 			pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1577 		else
1578 			phyint_send(ip, V_viftable + xmt_vif, m);
1579 		return 1;
1580 	}
1581 
1582 	/*
1583 	 * Don't forward if it didn't arrive from the parent vif for its origin.
1584 	 */
1585 	vifi = rt->mfc_parent;
1586 	if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1587 		CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1588 				__func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1589 		MRTSTAT_INC(mrts_wrong_if);
1590 		++rt->mfc_wrong_if;
1591 		/*
1592 		 * If we are doing PIM assert processing, send a message
1593 		 * to the routing daemon.
1594 		 *
1595 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1596 		 * can complete the SPT switch, regardless of the type
1597 		 * of the iif (broadcast media, GRE tunnel, etc).
1598 		 */
1599 		if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1600 		    V_viftable[vifi].v_ifp) {
1601 			if (ifp == V_multicast_register_if)
1602 				PIMSTAT_INC(pims_rcv_registers_wrongiif);
1603 
1604 			/* Get vifi for the incoming packet */
1605 			for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++)
1606 				;
1607 			if (vifi >= V_numvifs)
1608 				return 0;	/* The iif is not found: ignore the packet. */
1609 
1610 			if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1611 				return 0;	/* WRONGVIF disabled: ignore the packet */
1612 
1613 			if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1614 				struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1615 				struct igmpmsg *im;
1616 				int hlen = ip->ip_hl << 2;
1617 				struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1618 
1619 				if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1620 					mm = m_pullup(mm, hlen);
1621 				if (mm == NULL)
1622 					return ENOBUFS;
1623 
1624 				im = mtod(mm, struct igmpmsg *);
1625 				im->im_msgtype = IGMPMSG_WRONGVIF;
1626 				im->im_mbz = 0;
1627 				im->im_vif = vifi;
1628 
1629 				MRTSTAT_INC(mrts_upcalls);
1630 
1631 				k_igmpsrc.sin_addr = im->im_src;
1632 				if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1633 					CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1634 					MRTSTAT_INC(mrts_upq_sockfull);
1635 					return ENOBUFS;
1636 				}
1637 			}
1638 		}
1639 		return 0;
1640 	}
1641 
1642 	/* If I sourced this packet, it counts as output, else it was input. */
1643 	mtx_lock_spin(&V_viftable[vifi].v_spin);
1644 	if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1645 		V_viftable[vifi].v_pkt_out++;
1646 		V_viftable[vifi].v_bytes_out += plen;
1647 	} else {
1648 		V_viftable[vifi].v_pkt_in++;
1649 		V_viftable[vifi].v_bytes_in += plen;
1650 	}
1651 	mtx_unlock_spin(&V_viftable[vifi].v_spin);
1652 
1653 	rt->mfc_pkt_cnt++;
1654 	rt->mfc_byte_cnt += plen;
1655 
1656 	/*
1657 	 * For each vif, decide if a copy of the packet should be forwarded.
1658 	 * Forward if:
1659 	 *		- the ttl exceeds the vif's threshold
1660 	 *		- there are group members downstream on interface
1661 	 */
1662 	for (vifi = 0; vifi < V_numvifs; vifi++)
1663 		if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1664 			V_viftable[vifi].v_pkt_out++;
1665 			V_viftable[vifi].v_bytes_out += plen;
1666 			if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1667 				pim_register_send(ip, V_viftable + vifi, m, rt);
1668 			else
1669 				phyint_send(ip, V_viftable + vifi, m);
1670 		}
1671 
1672 	/*
1673 	 * Perform upcall-related bw measuring.
1674 	 */
1675 	if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1676 		struct bw_meter *x;
1677 		struct timeval now;
1678 
1679 		microtime(&now);
1680 		/* Process meters for Greater-or-EQual case */
1681 		for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1682 			bw_meter_geq_receive_packet(x, plen, &now);
1683 
1684 		/* Process meters for Lower-or-EQual case */
1685 		for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1686 			/*
1687 			 * Record that a packet is received.
1688 			 * Spin lock has to be taken as callout context
1689 			 * (expire_bw_meter_leq) might modify these fields
1690 			 * as well
1691 			 */
1692 			mtx_lock_spin(&x->bm_spin);
1693 			x->bm_measured.b_packets++;
1694 			x->bm_measured.b_bytes += plen;
1695 			mtx_unlock_spin(&x->bm_spin);
1696 		}
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 /*
1703  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1704  */
1705 static int
1706 X_legal_vif_num(int vif)
1707 {
1708 	int ret;
1709 
1710 	ret = 0;
1711 	if (vif < 0)
1712 		return (ret);
1713 
1714 	MRW_RLOCK();
1715 	if (vif < V_numvifs)
1716 		ret = 1;
1717 	MRW_RUNLOCK();
1718 
1719 	return (ret);
1720 }
1721 
1722 /*
1723  * Return the local address used by this vif
1724  */
1725 static u_long
1726 X_ip_mcast_src(int vifi)
1727 {
1728 	in_addr_t addr;
1729 
1730 	addr = INADDR_ANY;
1731 	if (vifi < 0)
1732 		return (addr);
1733 
1734 	MRW_RLOCK();
1735 	if (vifi < V_numvifs)
1736 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1737 	MRW_RUNLOCK();
1738 
1739 	return (addr);
1740 }
1741 
1742 static void
1743 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1744 {
1745 	struct mbuf *mb_copy;
1746 	int hlen = ip->ip_hl << 2;
1747 
1748 	MRW_LOCK_ASSERT();
1749 
1750 	/*
1751 	 * Make a new reference to the packet; make sure that
1752 	 * the IP header is actually copied, not just referenced,
1753 	 * so that ip_output() only scribbles on the copy.
1754 	 */
1755 	mb_copy = m_copypacket(m, M_NOWAIT);
1756 	if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1757 		mb_copy = m_pullup(mb_copy, hlen);
1758 	if (mb_copy == NULL)
1759 		return;
1760 
1761 	send_packet(vifp, mb_copy);
1762 }
1763 
1764 static void
1765 send_packet(struct vif *vifp, struct mbuf *m)
1766 {
1767 	struct ip_moptions imo;
1768 	int error __unused;
1769 
1770 	MRW_LOCK_ASSERT();
1771 	NET_EPOCH_ASSERT();
1772 
1773 	imo.imo_multicast_ifp  = vifp->v_ifp;
1774 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1775 	imo.imo_multicast_loop = !!in_mcast_loop;
1776 	imo.imo_multicast_vif  = -1;
1777 	STAILQ_INIT(&imo.imo_head);
1778 
1779 	/*
1780 	 * Re-entrancy should not be a problem here, because
1781 	 * the packets that we send out and are looped back at us
1782 	 * should get rejected because they appear to come from
1783 	 * the loopback interface, thus preventing looping.
1784 	 */
1785 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1786 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1787 	    (ptrdiff_t)(vifp - V_viftable), error);
1788 }
1789 
1790 /*
1791  * Stubs for old RSVP socket shim implementation.
1792  */
1793 
1794 static int
1795 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1796 {
1797 
1798 	return (EOPNOTSUPP);
1799 }
1800 
1801 static void
1802 X_ip_rsvp_force_done(struct socket *so __unused)
1803 {
1804 
1805 }
1806 
1807 static int
1808 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1809 {
1810 	struct mbuf *m;
1811 
1812 	m = *mp;
1813 	*mp = NULL;
1814 	if (!V_rsvp_on)
1815 		m_freem(m);
1816 	return (IPPROTO_DONE);
1817 }
1818 
1819 /*
1820  * Code for bandwidth monitors
1821  */
1822 
1823 /*
1824  * Define common interface for timeval-related methods
1825  */
1826 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1827 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1828 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1829 
1830 static uint32_t
1831 compute_bw_meter_flags(struct bw_upcall *req)
1832 {
1833 	uint32_t flags = 0;
1834 
1835 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1836 		flags |= BW_METER_UNIT_PACKETS;
1837 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1838 		flags |= BW_METER_UNIT_BYTES;
1839 	if (req->bu_flags & BW_UPCALL_GEQ)
1840 		flags |= BW_METER_GEQ;
1841 	if (req->bu_flags & BW_UPCALL_LEQ)
1842 		flags |= BW_METER_LEQ;
1843 
1844 	return flags;
1845 }
1846 
1847 static void
1848 expire_bw_meter_leq(void *arg)
1849 {
1850 	struct bw_meter *x = arg;
1851 	struct timeval now;
1852 	/*
1853 	 * INFO:
1854 	 * callout is always executed with MRW_WLOCK taken
1855 	 */
1856 
1857 	CURVNET_SET((struct vnet *)x->arg);
1858 
1859 	microtime(&now);
1860 
1861 	/*
1862 	 * Test if we should deliver an upcall
1863 	 */
1864 	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1865 	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1866 	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1867 	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1868 		/* Prepare an upcall for delivery */
1869 		bw_meter_prepare_upcall(x, &now);
1870 	}
1871 
1872 	/* Send all upcalls that are pending delivery */
1873 	taskqueue_enqueue(V_task_queue, &V_task);
1874 
1875 	/* Reset counters */
1876 	x->bm_start_time = now;
1877 	/* Spin lock has to be taken as ip_forward context
1878 	 * might modify these fields as well
1879 	 */
1880 	mtx_lock_spin(&x->bm_spin);
1881 	x->bm_measured.b_bytes = 0;
1882 	x->bm_measured.b_packets = 0;
1883 	mtx_unlock_spin(&x->bm_spin);
1884 
1885 	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1886 
1887 	CURVNET_RESTORE();
1888 }
1889 
1890 /*
1891  * Add a bw_meter entry
1892  */
1893 static int
1894 add_bw_upcall(struct bw_upcall *req)
1895 {
1896 	struct mfc *mfc;
1897 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1898 	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1899 	struct timeval now;
1900 	struct bw_meter *x, **bwm_ptr;
1901 	uint32_t flags;
1902 
1903 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1904 		return EOPNOTSUPP;
1905 
1906 	/* Test if the flags are valid */
1907 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1908 		return EINVAL;
1909 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1910 		return EINVAL;
1911 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1912 		return EINVAL;
1913 
1914 	/* Test if the threshold time interval is valid */
1915 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1916 		return EINVAL;
1917 
1918 	flags = compute_bw_meter_flags(req);
1919 
1920 	/*
1921 	 * Find if we have already same bw_meter entry
1922 	 */
1923 	MRW_WLOCK();
1924 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1925 	if (mfc == NULL) {
1926 		MRW_WUNLOCK();
1927 		return EADDRNOTAVAIL;
1928 	}
1929 
1930 	/* Choose an appropriate bw_meter list */
1931 	if (req->bu_flags & BW_UPCALL_GEQ)
1932 		bwm_ptr = &mfc->mfc_bw_meter_geq;
1933 	else
1934 		bwm_ptr = &mfc->mfc_bw_meter_leq;
1935 
1936 	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1937 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1938 		    &req->bu_threshold.b_time, ==))
1939 		    && (x->bm_threshold.b_packets
1940 		    == req->bu_threshold.b_packets)
1941 		    && (x->bm_threshold.b_bytes
1942 		    == req->bu_threshold.b_bytes)
1943 		    && (x->bm_flags & BW_METER_USER_FLAGS)
1944 		    == flags) {
1945 			MRW_WUNLOCK();
1946 			return 0; /* XXX Already installed */
1947 		}
1948 	}
1949 
1950 	/* Allocate the new bw_meter entry */
1951 	x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT);
1952 	if (x == NULL) {
1953 		MRW_WUNLOCK();
1954 		return ENOBUFS;
1955 	}
1956 
1957 	/* Set the new bw_meter entry */
1958 	x->bm_threshold.b_time = req->bu_threshold.b_time;
1959 	microtime(&now);
1960 	x->bm_start_time = now;
1961 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1962 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1963 	x->bm_measured.b_packets = 0;
1964 	x->bm_measured.b_bytes = 0;
1965 	x->bm_flags = flags;
1966 	x->bm_time_next = NULL;
1967 	x->bm_mfc = mfc;
1968 	x->arg = curvnet;
1969 	sprintf(x->bm_spin_name, "BM spin %p", x);
1970 	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1971 
1972 	/* For LEQ case create periodic callout */
1973 	if (req->bu_flags & BW_UPCALL_LEQ) {
1974 		callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK);
1975 		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1976 		    expire_bw_meter_leq, x);
1977 	}
1978 
1979 	/* Add the new bw_meter entry to the front of entries for this MFC */
1980 	x->bm_mfc_next = *bwm_ptr;
1981 	*bwm_ptr = x;
1982 
1983 	MRW_WUNLOCK();
1984 
1985 	return 0;
1986 }
1987 
1988 static void
1989 free_bw_list(struct bw_meter *list)
1990 {
1991 	while (list != NULL) {
1992 		struct bw_meter *x = list;
1993 
1994 		/* MRW_WLOCK must be held here */
1995 		if (x->bm_flags & BW_METER_LEQ) {
1996 			callout_drain(&x->bm_meter_callout);
1997 			mtx_destroy(&x->bm_spin);
1998 		}
1999 
2000 		list = list->bm_mfc_next;
2001 		free(x, M_BWMETER);
2002 	}
2003 }
2004 
2005 /*
2006  * Delete one or multiple bw_meter entries
2007  */
2008 static int
2009 del_bw_upcall(struct bw_upcall *req)
2010 {
2011 	struct mfc *mfc;
2012 	struct bw_meter *x, **bwm_ptr;
2013 
2014 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
2015 		return EOPNOTSUPP;
2016 
2017 	MRW_WLOCK();
2018 
2019 	/* Find the corresponding MFC entry */
2020 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2021 	if (mfc == NULL) {
2022 		MRW_WUNLOCK();
2023 		return EADDRNOTAVAIL;
2024 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2025 		/*
2026 		 * Delete all bw_meter entries for this mfc
2027 		 */
2028 		struct bw_meter *list;
2029 
2030 		/* Free LEQ list */
2031 		list = mfc->mfc_bw_meter_leq;
2032 		mfc->mfc_bw_meter_leq = NULL;
2033 		free_bw_list(list);
2034 
2035 		/* Free GEQ list */
2036 		list = mfc->mfc_bw_meter_geq;
2037 		mfc->mfc_bw_meter_geq = NULL;
2038 		free_bw_list(list);
2039 		MRW_WUNLOCK();
2040 		return 0;
2041 	} else {			/* Delete a single bw_meter entry */
2042 		struct bw_meter *prev;
2043 		uint32_t flags = 0;
2044 
2045 		flags = compute_bw_meter_flags(req);
2046 
2047 		/* Choose an appropriate bw_meter list */
2048 		if (req->bu_flags & BW_UPCALL_GEQ)
2049 			bwm_ptr = &mfc->mfc_bw_meter_geq;
2050 		else
2051 			bwm_ptr = &mfc->mfc_bw_meter_leq;
2052 
2053 		/* Find the bw_meter entry to delete */
2054 		for (prev = NULL, x = *bwm_ptr; x != NULL;
2055 				prev = x, x = x->bm_mfc_next) {
2056 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) &&
2057 			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2058 			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2059 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2060 				break;
2061 		}
2062 		if (x != NULL) { /* Delete entry from the list for this MFC */
2063 			if (prev != NULL)
2064 				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2065 			else
2066 				*bwm_ptr = x->bm_mfc_next;/* new head of list */
2067 
2068 			if (req->bu_flags & BW_UPCALL_LEQ)
2069 				callout_stop(&x->bm_meter_callout);
2070 
2071 			MRW_WUNLOCK();
2072 			/* Free the bw_meter entry */
2073 			free(x, M_BWMETER);
2074 			return 0;
2075 		} else {
2076 			MRW_WUNLOCK();
2077 			return EINVAL;
2078 		}
2079 	}
2080 	__assert_unreachable();
2081 }
2082 
2083 /*
2084  * Perform bandwidth measurement processing that may result in an upcall
2085  */
2086 static void
2087 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2088 {
2089 	struct timeval delta;
2090 
2091 	MRW_LOCK_ASSERT();
2092 
2093 	delta = *nowp;
2094 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2095 
2096 	/*
2097 	 * Processing for ">=" type of bw_meter entry.
2098 	 * bm_spin does not have to be hold here as in GEQ
2099 	 * case this is the only context accessing bm_measured.
2100 	 */
2101 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2102 	    /* Reset the bw_meter entry */
2103 	    x->bm_start_time = *nowp;
2104 	    x->bm_measured.b_packets = 0;
2105 	    x->bm_measured.b_bytes = 0;
2106 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2107 	}
2108 
2109 	/* Record that a packet is received */
2110 	x->bm_measured.b_packets++;
2111 	x->bm_measured.b_bytes += plen;
2112 
2113 	/*
2114 	 * Test if we should deliver an upcall
2115 	 */
2116 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2117 		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2118 		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2119 		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2120 		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2121 			/* Prepare an upcall for delivery */
2122 			bw_meter_prepare_upcall(x, nowp);
2123 			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2124 		}
2125 	}
2126 }
2127 
2128 /*
2129  * Prepare a bandwidth-related upcall
2130  */
2131 static void
2132 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2133 {
2134 	struct timeval delta;
2135 	struct bw_upcall *u;
2136 
2137 	MRW_LOCK_ASSERT();
2138 
2139 	/*
2140 	 * Compute the measured time interval
2141 	 */
2142 	delta = *nowp;
2143 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2144 
2145 	/*
2146 	 * Set the bw_upcall entry
2147 	 */
2148 	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2149 	if (!u) {
2150 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2151 		return;
2152 	}
2153 	u->bu_src = x->bm_mfc->mfc_origin;
2154 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2155 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2156 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2157 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2158 	u->bu_measured.b_time = delta;
2159 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2160 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2161 	u->bu_flags = 0;
2162 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2163 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2164 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2165 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2166 	if (x->bm_flags & BW_METER_GEQ)
2167 		u->bu_flags |= BW_UPCALL_GEQ;
2168 	if (x->bm_flags & BW_METER_LEQ)
2169 		u->bu_flags |= BW_UPCALL_LEQ;
2170 
2171 	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2172 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2173 	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2174 		taskqueue_enqueue(V_task_queue, &V_task);
2175 	}
2176 }
2177 /*
2178  * Send the pending bandwidth-related upcalls
2179  */
2180 static void
2181 bw_upcalls_send(void)
2182 {
2183 	struct mbuf *m;
2184 	int len = 0;
2185 	struct bw_upcall *bu;
2186 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2187 	static struct igmpmsg igmpmsg = {
2188 		0,		/* unused1 */
2189 		0,		/* unused2 */
2190 		IGMPMSG_BW_UPCALL,/* im_msgtype */
2191 		0,		/* im_mbz  */
2192 		0,		/* im_vif  */
2193 		0,		/* unused3 */
2194 		{ 0 },		/* im_src  */
2195 		{ 0 }		/* im_dst  */
2196 	};
2197 
2198 	MRW_LOCK_ASSERT();
2199 
2200 	if (buf_ring_empty(V_bw_upcalls_ring))
2201 		return;
2202 
2203 	/*
2204 	 * Allocate a new mbuf, initialize it with the header and
2205 	 * the payload for the pending calls.
2206 	 */
2207 	m = m_gethdr(M_NOWAIT, MT_DATA);
2208 	if (m == NULL) {
2209 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2210 		return;
2211 	}
2212 
2213 	m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2214 	len += sizeof(struct igmpmsg);
2215 	while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2216 		m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2217 		len += sizeof(struct bw_upcall);
2218 		free(bu, M_MRTABLE);
2219 	}
2220 
2221 	/*
2222 	 * Send the upcalls
2223 	 * XXX do we need to set the address in k_igmpsrc ?
2224 	 */
2225 	MRTSTAT_INC(mrts_upcalls);
2226 	if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2227 		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2228 		MRTSTAT_INC(mrts_upq_sockfull);
2229 	}
2230 }
2231 
2232 /*
2233  * A periodic function for sending all upcalls that are pending delivery
2234  */
2235 static void
2236 expire_bw_upcalls_send(void *arg)
2237 {
2238 	CURVNET_SET((struct vnet *) arg);
2239 
2240 	/* This callout is run with MRW_RLOCK taken */
2241 
2242 	bw_upcalls_send();
2243 
2244 	callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2245 	    curvnet);
2246 	CURVNET_RESTORE();
2247 }
2248 
2249 /*
2250  * End of bandwidth monitoring code
2251  */
2252 
2253 /*
2254  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2255  *
2256  */
2257 static int
2258 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2259     struct mfc *rt)
2260 {
2261 	struct mbuf *mb_copy, *mm;
2262 
2263 	/*
2264 	 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2265 	 * rendezvous point was unspecified, and we were told not to.
2266 	 */
2267 	if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2268 	    in_nullhost(rt->mfc_rp))
2269 		return 0;
2270 
2271 	mb_copy = pim_register_prepare(ip, m);
2272 	if (mb_copy == NULL)
2273 		return ENOBUFS;
2274 
2275 	/*
2276 	 * Send all the fragments. Note that the mbuf for each fragment
2277 	 * is freed by the sending machinery.
2278 	 */
2279 	for (mm = mb_copy; mm; mm = mb_copy) {
2280 		mb_copy = mm->m_nextpkt;
2281 		mm->m_nextpkt = 0;
2282 		mm = m_pullup(mm, sizeof(struct ip));
2283 		if (mm != NULL) {
2284 			ip = mtod(mm, struct ip *);
2285 			if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2286 				pim_register_send_rp(ip, vifp, mm, rt);
2287 			} else {
2288 				pim_register_send_upcall(ip, vifp, mm, rt);
2289 			}
2290 		}
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * Return a copy of the data packet that is ready for PIM Register
2298  * encapsulation.
2299  * XXX: Note that in the returned copy the IP header is a valid one.
2300  */
2301 static struct mbuf *
2302 pim_register_prepare(struct ip *ip, struct mbuf *m)
2303 {
2304 	struct mbuf *mb_copy = NULL;
2305 	int mtu;
2306 
2307 	/* Take care of delayed checksums */
2308 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2309 		in_delayed_cksum(m);
2310 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2311 	}
2312 
2313 	/*
2314 	 * Copy the old packet & pullup its IP header into the
2315 	 * new mbuf so we can modify it.
2316 	 */
2317 	mb_copy = m_copypacket(m, M_NOWAIT);
2318 	if (mb_copy == NULL)
2319 		return NULL;
2320 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2321 	if (mb_copy == NULL)
2322 		return NULL;
2323 
2324 	/* take care of the TTL */
2325 	ip = mtod(mb_copy, struct ip *);
2326 	--ip->ip_ttl;
2327 
2328 	/* Compute the MTU after the PIM Register encapsulation */
2329 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2330 
2331 	if (ntohs(ip->ip_len) <= mtu) {
2332 		/* Turn the IP header into a valid one */
2333 		ip->ip_sum = 0;
2334 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2335 	} else {
2336 		/* Fragment the packet */
2337 		mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2338 		if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2339 			m_freem(mb_copy);
2340 			return NULL;
2341 		}
2342 	}
2343 	return mb_copy;
2344 }
2345 
2346 /*
2347  * Send an upcall with the data packet to the user-level process.
2348  */
2349 static int
2350 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2351     struct mbuf *mb_copy, struct mfc *rt)
2352 {
2353 	struct mbuf *mb_first;
2354 	int len = ntohs(ip->ip_len);
2355 	struct igmpmsg *im;
2356 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2357 
2358 	MRW_LOCK_ASSERT();
2359 
2360 	/*
2361 	 * Add a new mbuf with an upcall header
2362 	 */
2363 	mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2364 	if (mb_first == NULL) {
2365 		m_freem(mb_copy);
2366 		return ENOBUFS;
2367 	}
2368 	mb_first->m_data += max_linkhdr;
2369 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2370 	mb_first->m_len = sizeof(struct igmpmsg);
2371 	mb_first->m_next = mb_copy;
2372 
2373 	/* Send message to routing daemon */
2374 	im = mtod(mb_first, struct igmpmsg *);
2375 	im->im_msgtype	= IGMPMSG_WHOLEPKT;
2376 	im->im_mbz		= 0;
2377 	im->im_vif		= vifp - V_viftable;
2378 	im->im_src		= ip->ip_src;
2379 	im->im_dst		= ip->ip_dst;
2380 
2381 	k_igmpsrc.sin_addr	= ip->ip_src;
2382 
2383 	MRTSTAT_INC(mrts_upcalls);
2384 
2385 	if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2386 		CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2387 		MRTSTAT_INC(mrts_upq_sockfull);
2388 		return ENOBUFS;
2389 	}
2390 
2391 	/* Keep statistics */
2392 	PIMSTAT_INC(pims_snd_registers_msgs);
2393 	PIMSTAT_ADD(pims_snd_registers_bytes, len);
2394 
2395 	return 0;
2396 }
2397 
2398 /*
2399  * Encapsulate the data packet in PIM Register message and send it to the RP.
2400  */
2401 static int
2402 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2403     struct mfc *rt)
2404 {
2405 	struct mbuf *mb_first;
2406 	struct ip *ip_outer;
2407 	struct pim_encap_pimhdr *pimhdr;
2408 	int len = ntohs(ip->ip_len);
2409 	vifi_t vifi = rt->mfc_parent;
2410 
2411 	MRW_LOCK_ASSERT();
2412 
2413 	if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2414 		m_freem(mb_copy);
2415 		return EADDRNOTAVAIL;		/* The iif vif is invalid */
2416 	}
2417 
2418 	/*
2419 	 * Add a new mbuf with the encapsulating header
2420 	 */
2421 	mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2422 	if (mb_first == NULL) {
2423 		m_freem(mb_copy);
2424 		return ENOBUFS;
2425 	}
2426 	mb_first->m_data += max_linkhdr;
2427 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2428 	mb_first->m_next = mb_copy;
2429 
2430 	mb_first->m_pkthdr.len = len + mb_first->m_len;
2431 
2432 	/*
2433 	 * Fill in the encapsulating IP and PIM header
2434 	 */
2435 	ip_outer = mtod(mb_first, struct ip *);
2436 	*ip_outer = pim_encap_iphdr;
2437 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2438 			sizeof(pim_encap_pimhdr));
2439 	ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2440 	ip_outer->ip_dst = rt->mfc_rp;
2441 	/*
2442 	 * Copy the inner header TOS to the outer header, and take care of the
2443 	 * IP_DF bit.
2444 	 */
2445 	ip_outer->ip_tos = ip->ip_tos;
2446 	if (ip->ip_off & htons(IP_DF))
2447 		ip_outer->ip_off |= htons(IP_DF);
2448 	ip_fillid(ip_outer);
2449 	pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2450 			+ sizeof(pim_encap_iphdr));
2451 	*pimhdr = pim_encap_pimhdr;
2452 	/* If the iif crosses a border, set the Border-bit */
2453 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2454 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2455 
2456 	mb_first->m_data += sizeof(pim_encap_iphdr);
2457 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2458 	mb_first->m_data -= sizeof(pim_encap_iphdr);
2459 
2460 	send_packet(vifp, mb_first);
2461 
2462 	/* Keep statistics */
2463 	PIMSTAT_INC(pims_snd_registers_msgs);
2464 	PIMSTAT_ADD(pims_snd_registers_bytes, len);
2465 
2466 	return 0;
2467 }
2468 
2469 /*
2470  * pim_encapcheck() is called by the encap4_input() path at runtime to
2471  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2472  * into the kernel.
2473  */
2474 static int
2475 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2476     int proto __unused, void *arg __unused)
2477 {
2478 
2479 	KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2480 	return (8);		/* claim the datagram. */
2481 }
2482 
2483 /*
2484  * PIM-SMv2 and PIM-DM messages processing.
2485  * Receives and verifies the PIM control messages, and passes them
2486  * up to the listening socket, using rip_input().
2487  * The only message with special processing is the PIM_REGISTER message
2488  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2489  * is passed to if_simloop().
2490  */
2491 static int
2492 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2493 {
2494 	struct ip *ip = mtod(m, struct ip *);
2495 	struct pim *pim;
2496 	int iphlen = off;
2497 	int minlen;
2498 	int datalen = ntohs(ip->ip_len) - iphlen;
2499 	int ip_tos;
2500 
2501 	/* Keep statistics */
2502 	PIMSTAT_INC(pims_rcv_total_msgs);
2503 	PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2504 
2505 	/*
2506 	 * Validate lengths
2507 	 */
2508 	if (datalen < PIM_MINLEN) {
2509 		PIMSTAT_INC(pims_rcv_tooshort);
2510 		CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2511 		    __func__, datalen, ntohl(ip->ip_src.s_addr));
2512 		m_freem(m);
2513 		return (IPPROTO_DONE);
2514 	}
2515 
2516 	/*
2517 	 * If the packet is at least as big as a REGISTER, go agead
2518 	 * and grab the PIM REGISTER header size, to avoid another
2519 	 * possible m_pullup() later.
2520 	 *
2521 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2522 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2523 	 */
2524 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2525 	/*
2526 	 * Get the IP and PIM headers in contiguous memory, and
2527 	 * possibly the PIM REGISTER header.
2528 	 */
2529 	if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2530 		CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2531 		return (IPPROTO_DONE);
2532 	}
2533 
2534 	/* m_pullup() may have given us a new mbuf so reset ip. */
2535 	ip = mtod(m, struct ip *);
2536 	ip_tos = ip->ip_tos;
2537 
2538 	/* adjust mbuf to point to the PIM header */
2539 	m->m_data += iphlen;
2540 	m->m_len  -= iphlen;
2541 	pim = mtod(m, struct pim *);
2542 
2543 	/*
2544 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
2545 	 *
2546 	 * XXX: some older PIMv2 implementations don't make this distinction,
2547 	 * so for compatibility reason perform the checksum over part of the
2548 	 * message, and if error, then over the whole message.
2549 	 */
2550 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2551 		/* do nothing, checksum okay */
2552 	} else if (in_cksum(m, datalen)) {
2553 		PIMSTAT_INC(pims_rcv_badsum);
2554 		CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2555 		m_freem(m);
2556 		return (IPPROTO_DONE);
2557 	}
2558 
2559 	/* PIM version check */
2560 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2561 		PIMSTAT_INC(pims_rcv_badversion);
2562 		CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2563 		    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2564 		m_freem(m);
2565 		return (IPPROTO_DONE);
2566 	}
2567 
2568 	/* restore mbuf back to the outer IP */
2569 	m->m_data -= iphlen;
2570 	m->m_len  += iphlen;
2571 
2572 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2573 		/*
2574 		 * Since this is a REGISTER, we'll make a copy of the register
2575 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2576 		 * routing daemon.
2577 		 */
2578 		struct sockaddr_in dst = { sizeof(dst), AF_INET };
2579 		struct mbuf *mcp;
2580 		struct ip *encap_ip;
2581 		u_int32_t *reghdr;
2582 		struct ifnet *vifp;
2583 
2584 		MRW_RLOCK();
2585 		if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2586 			MRW_RUNLOCK();
2587 			CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2588 			    (int)V_reg_vif_num);
2589 			m_freem(m);
2590 			return (IPPROTO_DONE);
2591 		}
2592 		/* XXX need refcnt? */
2593 		vifp = V_viftable[V_reg_vif_num].v_ifp;
2594 		MRW_RUNLOCK();
2595 
2596 		/*
2597 		 * Validate length
2598 		 */
2599 		if (datalen < PIM_REG_MINLEN) {
2600 			PIMSTAT_INC(pims_rcv_tooshort);
2601 			PIMSTAT_INC(pims_rcv_badregisters);
2602 			CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2603 			m_freem(m);
2604 			return (IPPROTO_DONE);
2605 		}
2606 
2607 		reghdr = (u_int32_t *)(pim + 1);
2608 		encap_ip = (struct ip *)(reghdr + 1);
2609 
2610 		CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2611 		    __func__, ntohl(encap_ip->ip_src.s_addr),
2612 		    ntohs(encap_ip->ip_len));
2613 
2614 		/* verify the version number of the inner packet */
2615 		if (encap_ip->ip_v != IPVERSION) {
2616 			PIMSTAT_INC(pims_rcv_badregisters);
2617 			CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2618 			m_freem(m);
2619 			return (IPPROTO_DONE);
2620 		}
2621 
2622 		/* verify the inner packet is destined to a mcast group */
2623 		if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2624 			PIMSTAT_INC(pims_rcv_badregisters);
2625 			CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2626 			    ntohl(encap_ip->ip_dst.s_addr));
2627 			m_freem(m);
2628 			return (IPPROTO_DONE);
2629 		}
2630 
2631 		/* If a NULL_REGISTER, pass it to the daemon */
2632 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2633 			goto pim_input_to_daemon;
2634 
2635 		/*
2636 		 * Copy the TOS from the outer IP header to the inner IP header.
2637 		 */
2638 		if (encap_ip->ip_tos != ip_tos) {
2639 			/* Outer TOS -> inner TOS */
2640 			encap_ip->ip_tos = ip_tos;
2641 			/* Recompute the inner header checksum. Sigh... */
2642 
2643 			/* adjust mbuf to point to the inner IP header */
2644 			m->m_data += (iphlen + PIM_MINLEN);
2645 			m->m_len  -= (iphlen + PIM_MINLEN);
2646 
2647 			encap_ip->ip_sum = 0;
2648 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2649 
2650 			/* restore mbuf to point back to the outer IP header */
2651 			m->m_data -= (iphlen + PIM_MINLEN);
2652 			m->m_len  += (iphlen + PIM_MINLEN);
2653 		}
2654 
2655 		/*
2656 		 * Decapsulate the inner IP packet and loopback to forward it
2657 		 * as a normal multicast packet. Also, make a copy of the
2658 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2659 		 * to pass to the daemon later, so it can take the appropriate
2660 		 * actions (e.g., send back PIM_REGISTER_STOP).
2661 		 * XXX: here m->m_data points to the outer IP header.
2662 		 */
2663 		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2664 		if (mcp == NULL) {
2665 			CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2666 			m_freem(m);
2667 			return (IPPROTO_DONE);
2668 		}
2669 
2670 		/* Keep statistics */
2671 		/* XXX: registers_bytes include only the encap. mcast pkt */
2672 		PIMSTAT_INC(pims_rcv_registers_msgs);
2673 		PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2674 
2675 		/*
2676 		 * forward the inner ip packet; point m_data at the inner ip.
2677 		 */
2678 		m_adj(m, iphlen + PIM_MINLEN);
2679 
2680 		CTR4(KTR_IPMF,
2681 		    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2682 		    __func__,
2683 		    (u_long)ntohl(encap_ip->ip_src.s_addr),
2684 		    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2685 		    (int)V_reg_vif_num);
2686 
2687 		/* NB: vifp was collected above; can it change on us? */
2688 		if_simloop(vifp, m, dst.sin_family, 0);
2689 
2690 		/* prepare the register head to send to the mrouting daemon */
2691 		m = mcp;
2692 	}
2693 
2694 pim_input_to_daemon:
2695 	/*
2696 	 * Pass the PIM message up to the daemon; if it is a Register message,
2697 	 * pass the 'head' only up to the daemon. This includes the
2698 	 * outer IP header, PIM header, PIM-Register header and the
2699 	 * inner IP header.
2700 	 * XXX: the outer IP header pkt size of a Register is not adjust to
2701 	 * reflect the fact that the inner multicast data is truncated.
2702 	 */
2703 	return (rip_input(&m, &off, proto));
2704 }
2705 
2706 static int
2707 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2708 {
2709 	struct mfc	*rt;
2710 	int		 error, i;
2711 
2712 	if (req->newptr)
2713 		return (EPERM);
2714 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2715 		return (0);
2716 	error = sysctl_wire_old_buffer(req, 0);
2717 	if (error)
2718 		return (error);
2719 
2720 	MRW_RLOCK();
2721 	for (i = 0; i < mfchashsize; i++) {
2722 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2723 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2724 			if (error)
2725 				goto out_locked;
2726 		}
2727 	}
2728 out_locked:
2729 	MRW_RUNLOCK();
2730 	return (error);
2731 }
2732 
2733 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2734     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2735     "IPv4 Multicast Forwarding Table "
2736     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2737 
2738 static int
2739 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2740 {
2741 	int error, i;
2742 
2743 	if (req->newptr)
2744 		return (EPERM);
2745 	if (V_viftable == NULL)		/* XXX unlocked */
2746 		return (0);
2747 	error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
2748 	if (error)
2749 		return (error);
2750 
2751 	MRW_RLOCK();
2752 	/* Copy out user-visible portion of vif entry. */
2753 	for (i = 0; i < MAXVIFS; i++) {
2754 		error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
2755 		if (error)
2756 			break;
2757 	}
2758 	MRW_RUNLOCK();
2759 	return (error);
2760 }
2761 
2762 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2763     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2764     sysctl_viflist, "S,vif[MAXVIFS]",
2765     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2766 
2767 static void
2768 vnet_mroute_init(const void *unused __unused)
2769 {
2770 
2771 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2772 
2773 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2774 	    M_MRTABLE, M_WAITOK|M_ZERO);
2775 
2776 	callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0);
2777 	callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0);
2778 
2779 	/* Prepare taskqueue */
2780 	V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2781 		    taskqueue_thread_enqueue, &V_task_queue);
2782 	taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2783 }
2784 
2785 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2786 	NULL);
2787 
2788 static void
2789 vnet_mroute_uninit(const void *unused __unused)
2790 {
2791 
2792 	/* Taskqueue should be cancelled and drained before freeing */
2793 	taskqueue_free(V_task_queue);
2794 
2795 	free(V_viftable, M_MRTABLE);
2796 	free(V_nexpire, M_MRTABLE);
2797 	V_nexpire = NULL;
2798 }
2799 
2800 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2801     vnet_mroute_uninit, NULL);
2802 
2803 static int
2804 ip_mroute_modevent(module_t mod, int type, void *unused)
2805 {
2806 
2807 	switch (type) {
2808 	case MOD_LOAD:
2809 		MRW_LOCK_INIT();
2810 
2811 		if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2812 		    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2813 		if (if_detach_event_tag == NULL) {
2814 			printf("ip_mroute: unable to register "
2815 					"ifnet_departure_event handler\n");
2816 			MRW_LOCK_DESTROY();
2817 			return (EINVAL);
2818 		}
2819 
2820 		mfchashsize = MFCHASHSIZE;
2821 		if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2822 				!powerof2(mfchashsize)) {
2823 			printf("WARNING: %s not a power of 2; using default\n",
2824 					"net.inet.ip.mfchashsize");
2825 			mfchashsize = MFCHASHSIZE;
2826 		}
2827 
2828 		pim_squelch_wholepkt = 0;
2829 		TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2830 				&pim_squelch_wholepkt);
2831 
2832 		pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2833 
2834 		ip_mcast_src = X_ip_mcast_src;
2835 		ip_mforward = X_ip_mforward;
2836 		ip_mrouter_done = X_ip_mrouter_done;
2837 		ip_mrouter_get = X_ip_mrouter_get;
2838 		ip_mrouter_set = X_ip_mrouter_set;
2839 
2840 		ip_rsvp_force_done = X_ip_rsvp_force_done;
2841 		ip_rsvp_vif = X_ip_rsvp_vif;
2842 
2843 		legal_vif_num = X_legal_vif_num;
2844 		mrt_ioctl = X_mrt_ioctl;
2845 		rsvp_input_p = X_rsvp_input;
2846 		break;
2847 
2848 	case MOD_UNLOAD:
2849 		/*
2850 		 * Typically module unload happens after the user-level
2851 		 * process has shutdown the kernel services (the check
2852 		 * below insures someone can't just yank the module out
2853 		 * from under a running process).  But if the module is
2854 		 * just loaded and then unloaded w/o starting up a user
2855 		 * process we still need to cleanup.
2856 		 */
2857 		MRW_WLOCK();
2858 		if (ip_mrouter_cnt != 0) {
2859 			MRW_WUNLOCK();
2860 			return (EINVAL);
2861 		}
2862 		ip_mrouter_unloading = 1;
2863 		MRW_WUNLOCK();
2864 
2865 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2866 
2867 		if (pim_encap_cookie) {
2868 			ip_encap_detach(pim_encap_cookie);
2869 			pim_encap_cookie = NULL;
2870 		}
2871 
2872 		ip_mcast_src = NULL;
2873 		ip_mforward = NULL;
2874 		ip_mrouter_done = NULL;
2875 		ip_mrouter_get = NULL;
2876 		ip_mrouter_set = NULL;
2877 
2878 		ip_rsvp_force_done = NULL;
2879 		ip_rsvp_vif = NULL;
2880 
2881 		legal_vif_num = NULL;
2882 		mrt_ioctl = NULL;
2883 		rsvp_input_p = NULL;
2884 
2885 		MRW_LOCK_DESTROY();
2886 		break;
2887 
2888 	default:
2889 		return EOPNOTSUPP;
2890 	}
2891 	return 0;
2892 }
2893 
2894 static moduledata_t ip_mroutemod = {
2895 	"ip_mroute",
2896 	ip_mroute_modevent,
2897 	0
2898 };
2899 
2900 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2901