1 /* 2 * IP multicast forwarding procedures 3 * 4 * Written by David Waitzman, BBN Labs, August 1988. 5 * Modified by Steve Deering, Stanford, February 1989. 6 * Modified by Mark J. Steiglitz, Stanford, May, 1991 7 * Modified by Van Jacobson, LBL, January 1993 8 * Modified by Ajit Thyagarajan, PARC, August 1993 9 * Modified by Bill Fenner, PARC, April 1995 10 * Modified by Ahmed Helmy, SGI, June 1996 11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 13 * Modified by Hitoshi Asaeda, WIDE, August 2000 14 * Modified by Pavlin Radoslavov, ICSI, October 2002 15 * 16 * MROUTING Revision: 3.5 17 * and PIM-SMv2 and PIM-DM support, advanced API support, 18 * bandwidth metering and signaling 19 * 20 * $FreeBSD$ 21 */ 22 23 #include "opt_mac.h" 24 #include "opt_mrouting.h" 25 26 #ifdef PIM 27 #define _PIM_VT 1 28 #endif 29 30 #include <sys/param.h> 31 #include <sys/kernel.h> 32 #include <sys/lock.h> 33 #include <sys/mac.h> 34 #include <sys/malloc.h> 35 #include <sys/mbuf.h> 36 #include <sys/module.h> 37 #include <sys/protosw.h> 38 #include <sys/signalvar.h> 39 #include <sys/socket.h> 40 #include <sys/socketvar.h> 41 #include <sys/sockio.h> 42 #include <sys/sx.h> 43 #include <sys/sysctl.h> 44 #include <sys/syslog.h> 45 #include <sys/systm.h> 46 #include <sys/time.h> 47 #include <net/if.h> 48 #include <net/netisr.h> 49 #include <net/route.h> 50 #include <netinet/in.h> 51 #include <netinet/igmp.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 #include <netinet/ip_encap.h> 56 #include <netinet/ip_mroute.h> 57 #include <netinet/ip_var.h> 58 #ifdef PIM 59 #include <netinet/pim.h> 60 #include <netinet/pim_var.h> 61 #endif 62 #include <netinet/udp.h> 63 #include <machine/in_cksum.h> 64 65 /* 66 * Control debugging code for rsvp and multicast routing code. 67 * Can only set them with the debugger. 68 */ 69 static u_int rsvpdebug; /* non-zero enables debugging */ 70 71 static u_int mrtdebug; /* any set of the flags below */ 72 #define DEBUG_MFC 0x02 73 #define DEBUG_FORWARD 0x04 74 #define DEBUG_EXPIRE 0x08 75 #define DEBUG_XMIT 0x10 76 #define DEBUG_PIM 0x20 77 78 #define VIFI_INVALID ((vifi_t) -1) 79 80 #define M_HASCL(m) ((m)->m_flags & M_EXT) 81 82 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); 83 84 /* 85 * Locking. We use two locks: one for the virtual interface table and 86 * one for the forwarding table. These locks may be nested in which case 87 * the VIF lock must always be taken first. Note that each lock is used 88 * to cover not only the specific data structure but also related data 89 * structures. It may be better to add more fine-grained locking later; 90 * it's not clear how performance-critical this code is. 91 */ 92 93 static struct mrtstat mrtstat; 94 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 95 &mrtstat, mrtstat, 96 "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)"); 97 98 static struct mfc *mfctable[MFCTBLSIZ]; 99 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 100 &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]", 101 "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)"); 102 103 static struct mtx mfc_mtx; 104 #define MFC_LOCK() mtx_lock(&mfc_mtx) 105 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 106 #define MFC_LOCK_ASSERT() do { \ 107 mtx_assert(&mfc_mtx, MA_OWNED); \ 108 NET_ASSERT_GIANT(); \ 109 } while (0) 110 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF) 111 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 112 113 static struct vif viftable[MAXVIFS]; 114 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 115 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 116 "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 117 118 static struct mtx vif_mtx; 119 #define VIF_LOCK() mtx_lock(&vif_mtx) 120 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 121 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 122 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF) 123 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 124 125 static u_char nexpire[MFCTBLSIZ]; 126 127 static struct callout expire_upcalls_ch; 128 129 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 130 #define UPCALL_EXPIRE 6 /* number of timeouts */ 131 132 /* 133 * Define the token bucket filter structures 134 * tbftable -> each vif has one of these for storing info 135 */ 136 137 static struct tbf tbftable[MAXVIFS]; 138 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 139 140 /* 141 * 'Interfaces' associated with decapsulator (so we can tell 142 * packets that went through it from ones that get reflected 143 * by a broken gateway). These interfaces are never linked into 144 * the system ifnet list & no routes point to them. I.e., packets 145 * can't be sent this way. They only exist as a placeholder for 146 * multicast source verification. 147 */ 148 static struct ifnet multicast_decap_if[MAXVIFS]; 149 150 #define ENCAP_TTL 64 151 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 152 153 /* prototype IP hdr for encapsulated packets */ 154 static struct ip multicast_encap_iphdr = { 155 #if BYTE_ORDER == LITTLE_ENDIAN 156 sizeof(struct ip) >> 2, IPVERSION, 157 #else 158 IPVERSION, sizeof(struct ip) >> 2, 159 #endif 160 0, /* tos */ 161 sizeof(struct ip), /* total length */ 162 0, /* id */ 163 0, /* frag offset */ 164 ENCAP_TTL, ENCAP_PROTO, 165 0, /* checksum */ 166 }; 167 168 /* 169 * Bandwidth meter variables and constants 170 */ 171 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 172 /* 173 * Pending timeouts are stored in a hash table, the key being the 174 * expiration time. Periodically, the entries are analysed and processed. 175 */ 176 #define BW_METER_BUCKETS 1024 177 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 178 static struct callout bw_meter_ch; 179 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 180 181 /* 182 * Pending upcalls are stored in a vector which is flushed when 183 * full, or periodically 184 */ 185 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 186 static u_int bw_upcalls_n; /* # of pending upcalls */ 187 static struct callout bw_upcalls_ch; 188 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 189 190 #ifdef PIM 191 static struct pimstat pimstat; 192 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 193 &pimstat, pimstat, 194 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 195 196 /* 197 * Note: the PIM Register encapsulation adds the following in front of a 198 * data packet: 199 * 200 * struct pim_encap_hdr { 201 * struct ip ip; 202 * struct pim_encap_pimhdr pim; 203 * } 204 * 205 */ 206 207 struct pim_encap_pimhdr { 208 struct pim pim; 209 uint32_t flags; 210 }; 211 212 static struct ip pim_encap_iphdr = { 213 #if BYTE_ORDER == LITTLE_ENDIAN 214 sizeof(struct ip) >> 2, 215 IPVERSION, 216 #else 217 IPVERSION, 218 sizeof(struct ip) >> 2, 219 #endif 220 0, /* tos */ 221 sizeof(struct ip), /* total length */ 222 0, /* id */ 223 0, /* frag offset */ 224 ENCAP_TTL, 225 IPPROTO_PIM, 226 0, /* checksum */ 227 }; 228 229 static struct pim_encap_pimhdr pim_encap_pimhdr = { 230 { 231 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 232 0, /* reserved */ 233 0, /* checksum */ 234 }, 235 0 /* flags */ 236 }; 237 238 static struct ifnet multicast_register_if; 239 static vifi_t reg_vif_num = VIFI_INVALID; 240 #endif /* PIM */ 241 242 /* 243 * Private variables. 244 */ 245 static vifi_t numvifs; 246 static const struct encaptab *encap_cookie; 247 248 /* 249 * one-back cache used by mroute_encapcheck to locate a tunnel's vif 250 * given a datagram's src ip address. 251 */ 252 static u_long last_encap_src; 253 static struct vif *last_encap_vif; 254 255 /* 256 * Callout for queue processing. 257 */ 258 static struct callout tbf_reprocess_ch; 259 260 static u_long X_ip_mcast_src(int vifi); 261 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, 262 struct mbuf *m, struct ip_moptions *imo); 263 static int X_ip_mrouter_done(void); 264 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m); 265 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m); 266 static int X_legal_vif_num(int vif); 267 static int X_mrt_ioctl(int cmd, caddr_t data); 268 269 static int get_sg_cnt(struct sioc_sg_req *); 270 static int get_vif_cnt(struct sioc_vif_req *); 271 static int ip_mrouter_init(struct socket *, int); 272 static int add_vif(struct vifctl *); 273 static int del_vif(vifi_t); 274 static int add_mfc(struct mfcctl2 *); 275 static int del_mfc(struct mfcctl2 *); 276 static int set_api_config(uint32_t *); /* chose API capabilities */ 277 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 278 static int set_assert(int); 279 static void expire_upcalls(void *); 280 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 281 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 282 static void encap_send(struct ip *, struct vif *, struct mbuf *); 283 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long); 284 static void tbf_queue(struct vif *, struct mbuf *); 285 static void tbf_process_q(struct vif *); 286 static void tbf_reprocess_q(void *); 287 static int tbf_dq_sel(struct vif *, struct ip *); 288 static void tbf_send_packet(struct vif *, struct mbuf *); 289 static void tbf_update_tokens(struct vif *); 290 static int priority(struct vif *, struct ip *); 291 292 /* 293 * Bandwidth monitoring 294 */ 295 static void free_bw_list(struct bw_meter *list); 296 static int add_bw_upcall(struct bw_upcall *); 297 static int del_bw_upcall(struct bw_upcall *); 298 static void bw_meter_receive_packet(struct bw_meter *x, int plen, 299 struct timeval *nowp); 300 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp); 301 static void bw_upcalls_send(void); 302 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp); 303 static void unschedule_bw_meter(struct bw_meter *x); 304 static void bw_meter_process(void); 305 static void expire_bw_upcalls_send(void *); 306 static void expire_bw_meter_process(void *); 307 308 #ifdef PIM 309 static int pim_register_send(struct ip *, struct vif *, 310 struct mbuf *, struct mfc *); 311 static int pim_register_send_rp(struct ip *, struct vif *, 312 struct mbuf *, struct mfc *); 313 static int pim_register_send_upcall(struct ip *, struct vif *, 314 struct mbuf *, struct mfc *); 315 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 316 #endif 317 318 /* 319 * whether or not special PIM assert processing is enabled. 320 */ 321 static int pim_assert; 322 /* 323 * Rate limit for assert notification messages, in usec 324 */ 325 #define ASSERT_MSG_TIME 3000000 326 327 /* 328 * Kernel multicast routing API capabilities and setup. 329 * If more API capabilities are added to the kernel, they should be 330 * recorded in `mrt_api_support'. 331 */ 332 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 333 MRT_MFC_FLAGS_BORDER_VIF | 334 MRT_MFC_RP | 335 MRT_MFC_BW_UPCALL); 336 static uint32_t mrt_api_config = 0; 337 338 /* 339 * Hash function for a source, group entry 340 */ 341 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ 342 ((g) >> 20) ^ ((g) >> 10) ^ (g)) 343 344 /* 345 * Find a route for a given origin IP address and Multicast group address 346 * Type of service parameter to be added in the future!!! 347 * Statistics are updated by the caller if needed 348 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 349 */ 350 static struct mfc * 351 mfc_find(in_addr_t o, in_addr_t g) 352 { 353 struct mfc *rt; 354 355 MFC_LOCK_ASSERT(); 356 357 for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next) 358 if ((rt->mfc_origin.s_addr == o) && 359 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL)) 360 break; 361 return rt; 362 } 363 364 /* 365 * Macros to compute elapsed time efficiently 366 * Borrowed from Van Jacobson's scheduling code 367 */ 368 #define TV_DELTA(a, b, delta) { \ 369 int xxs; \ 370 delta = (a).tv_usec - (b).tv_usec; \ 371 if ((xxs = (a).tv_sec - (b).tv_sec)) { \ 372 switch (xxs) { \ 373 case 2: \ 374 delta += 1000000; \ 375 /* FALLTHROUGH */ \ 376 case 1: \ 377 delta += 1000000; \ 378 break; \ 379 default: \ 380 delta += (1000000 * xxs); \ 381 } \ 382 } \ 383 } 384 385 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ 386 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) 387 388 /* 389 * Handle MRT setsockopt commands to modify the multicast routing tables. 390 */ 391 static int 392 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 393 { 394 int error, optval; 395 vifi_t vifi; 396 struct vifctl vifc; 397 struct mfcctl2 mfc; 398 struct bw_upcall bw_upcall; 399 uint32_t i; 400 401 if (so != ip_mrouter && sopt->sopt_name != MRT_INIT) 402 return EPERM; 403 404 error = 0; 405 switch (sopt->sopt_name) { 406 case MRT_INIT: 407 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 408 if (error) 409 break; 410 error = ip_mrouter_init(so, optval); 411 break; 412 413 case MRT_DONE: 414 error = ip_mrouter_done(); 415 break; 416 417 case MRT_ADD_VIF: 418 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 419 if (error) 420 break; 421 error = add_vif(&vifc); 422 break; 423 424 case MRT_DEL_VIF: 425 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 426 if (error) 427 break; 428 error = del_vif(vifi); 429 break; 430 431 case MRT_ADD_MFC: 432 case MRT_DEL_MFC: 433 /* 434 * select data size depending on API version. 435 */ 436 if (sopt->sopt_name == MRT_ADD_MFC && 437 mrt_api_config & MRT_API_FLAGS_ALL) { 438 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 439 sizeof(struct mfcctl2)); 440 } else { 441 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 442 sizeof(struct mfcctl)); 443 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 444 sizeof(mfc) - sizeof(struct mfcctl)); 445 } 446 if (error) 447 break; 448 if (sopt->sopt_name == MRT_ADD_MFC) 449 error = add_mfc(&mfc); 450 else 451 error = del_mfc(&mfc); 452 break; 453 454 case MRT_ASSERT: 455 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 456 if (error) 457 break; 458 set_assert(optval); 459 break; 460 461 case MRT_API_CONFIG: 462 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 463 if (!error) 464 error = set_api_config(&i); 465 if (!error) 466 error = sooptcopyout(sopt, &i, sizeof i); 467 break; 468 469 case MRT_ADD_BW_UPCALL: 470 case MRT_DEL_BW_UPCALL: 471 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 472 sizeof bw_upcall); 473 if (error) 474 break; 475 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 476 error = add_bw_upcall(&bw_upcall); 477 else 478 error = del_bw_upcall(&bw_upcall); 479 break; 480 481 default: 482 error = EOPNOTSUPP; 483 break; 484 } 485 return error; 486 } 487 488 /* 489 * Handle MRT getsockopt commands 490 */ 491 static int 492 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 493 { 494 int error; 495 static int version = 0x0305; /* !!! why is this here? XXX */ 496 497 switch (sopt->sopt_name) { 498 case MRT_VERSION: 499 error = sooptcopyout(sopt, &version, sizeof version); 500 break; 501 502 case MRT_ASSERT: 503 error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); 504 break; 505 506 case MRT_API_SUPPORT: 507 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 508 break; 509 510 case MRT_API_CONFIG: 511 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 512 break; 513 514 default: 515 error = EOPNOTSUPP; 516 break; 517 } 518 return error; 519 } 520 521 /* 522 * Handle ioctl commands to obtain information from the cache 523 */ 524 static int 525 X_mrt_ioctl(int cmd, caddr_t data) 526 { 527 int error = 0; 528 529 /* 530 * Currently the only function calling this ioctl routine is rtioctl(). 531 * Typically, only root can create the raw socket in order to execute 532 * this ioctl method, however the request might be coming from a prison 533 */ 534 error = suser(curthread); 535 if (error) 536 return (error); 537 switch (cmd) { 538 case (SIOCGETVIFCNT): 539 error = get_vif_cnt((struct sioc_vif_req *)data); 540 break; 541 542 case (SIOCGETSGCNT): 543 error = get_sg_cnt((struct sioc_sg_req *)data); 544 break; 545 546 default: 547 error = EINVAL; 548 break; 549 } 550 return error; 551 } 552 553 /* 554 * returns the packet, byte, rpf-failure count for the source group provided 555 */ 556 static int 557 get_sg_cnt(struct sioc_sg_req *req) 558 { 559 struct mfc *rt; 560 561 MFC_LOCK(); 562 rt = mfc_find(req->src.s_addr, req->grp.s_addr); 563 if (rt == NULL) { 564 MFC_UNLOCK(); 565 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 566 return EADDRNOTAVAIL; 567 } 568 req->pktcnt = rt->mfc_pkt_cnt; 569 req->bytecnt = rt->mfc_byte_cnt; 570 req->wrong_if = rt->mfc_wrong_if; 571 MFC_UNLOCK(); 572 return 0; 573 } 574 575 /* 576 * returns the input and output packet and byte counts on the vif provided 577 */ 578 static int 579 get_vif_cnt(struct sioc_vif_req *req) 580 { 581 vifi_t vifi = req->vifi; 582 583 VIF_LOCK(); 584 if (vifi >= numvifs) { 585 VIF_UNLOCK(); 586 return EINVAL; 587 } 588 589 req->icount = viftable[vifi].v_pkt_in; 590 req->ocount = viftable[vifi].v_pkt_out; 591 req->ibytes = viftable[vifi].v_bytes_in; 592 req->obytes = viftable[vifi].v_bytes_out; 593 VIF_UNLOCK(); 594 595 return 0; 596 } 597 598 static void 599 ip_mrouter_reset(void) 600 { 601 int callout_flag; 602 603 bzero((caddr_t)mfctable, sizeof(mfctable)); 604 bzero((caddr_t)nexpire, sizeof(nexpire)); 605 606 pim_assert = 0; 607 mrt_api_config = 0; 608 609 callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0; 610 callout_init(&expire_upcalls_ch, callout_flag); 611 612 bw_upcalls_n = 0; 613 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 614 callout_init(&bw_upcalls_ch, callout_flag); 615 callout_init(&bw_meter_ch, callout_flag); 616 617 callout_init(&tbf_reprocess_ch, callout_flag); 618 } 619 620 static struct mtx mrouter_mtx; /* used to synch init/done work */ 621 622 /* 623 * Enable multicast routing 624 */ 625 static int 626 ip_mrouter_init(struct socket *so, int version) 627 { 628 if (mrtdebug) 629 log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 630 so->so_type, so->so_proto->pr_protocol); 631 632 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 633 return EOPNOTSUPP; 634 635 if (version != 1) 636 return ENOPROTOOPT; 637 638 mtx_lock(&mrouter_mtx); 639 640 if (ip_mrouter != NULL) { 641 mtx_unlock(&mrouter_mtx); 642 return EADDRINUSE; 643 } 644 645 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 646 647 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 648 expire_bw_upcalls_send, NULL); 649 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 650 651 ip_mrouter = so; 652 653 mtx_unlock(&mrouter_mtx); 654 655 if (mrtdebug) 656 log(LOG_DEBUG, "ip_mrouter_init\n"); 657 658 return 0; 659 } 660 661 /* 662 * Disable multicast routing 663 */ 664 static int 665 X_ip_mrouter_done(void) 666 { 667 vifi_t vifi; 668 int i; 669 struct ifnet *ifp; 670 struct ifreq ifr; 671 struct mfc *rt; 672 struct rtdetq *rte; 673 674 mtx_lock(&mrouter_mtx); 675 676 if (ip_mrouter == NULL) { 677 mtx_unlock(&mrouter_mtx); 678 return EINVAL; 679 } 680 681 /* 682 * Detach/disable hooks to the reset of the system. 683 */ 684 ip_mrouter = NULL; 685 mrt_api_config = 0; 686 687 VIF_LOCK(); 688 if (encap_cookie) { 689 const struct encaptab *c = encap_cookie; 690 encap_cookie = NULL; 691 encap_detach(c); 692 } 693 VIF_UNLOCK(); 694 695 callout_stop(&tbf_reprocess_ch); 696 697 VIF_LOCK(); 698 /* 699 * For each phyint in use, disable promiscuous reception of all IP 700 * multicasts. 701 */ 702 for (vifi = 0; vifi < numvifs; vifi++) { 703 if (viftable[vifi].v_lcl_addr.s_addr != 0 && 704 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 705 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 706 707 so->sin_len = sizeof(struct sockaddr_in); 708 so->sin_family = AF_INET; 709 so->sin_addr.s_addr = INADDR_ANY; 710 ifp = viftable[vifi].v_ifp; 711 if_allmulti(ifp, 0); 712 } 713 } 714 bzero((caddr_t)tbftable, sizeof(tbftable)); 715 bzero((caddr_t)viftable, sizeof(viftable)); 716 numvifs = 0; 717 pim_assert = 0; 718 VIF_UNLOCK(); 719 720 /* 721 * Free all multicast forwarding cache entries. 722 */ 723 callout_stop(&expire_upcalls_ch); 724 callout_stop(&bw_upcalls_ch); 725 callout_stop(&bw_meter_ch); 726 727 MFC_LOCK(); 728 for (i = 0; i < MFCTBLSIZ; i++) { 729 for (rt = mfctable[i]; rt != NULL; ) { 730 struct mfc *nr = rt->mfc_next; 731 732 for (rte = rt->mfc_stall; rte != NULL; ) { 733 struct rtdetq *n = rte->next; 734 735 m_freem(rte->m); 736 free(rte, M_MRTABLE); 737 rte = n; 738 } 739 free_bw_list(rt->mfc_bw_meter); 740 free(rt, M_MRTABLE); 741 rt = nr; 742 } 743 } 744 bzero((caddr_t)mfctable, sizeof(mfctable)); 745 bzero((caddr_t)nexpire, sizeof(nexpire)); 746 bw_upcalls_n = 0; 747 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 748 MFC_UNLOCK(); 749 750 /* 751 * Reset de-encapsulation cache 752 */ 753 last_encap_src = INADDR_ANY; 754 last_encap_vif = NULL; 755 #ifdef PIM 756 reg_vif_num = VIFI_INVALID; 757 #endif 758 759 mtx_unlock(&mrouter_mtx); 760 761 if (mrtdebug) 762 log(LOG_DEBUG, "ip_mrouter_done\n"); 763 764 return 0; 765 } 766 767 /* 768 * Set PIM assert processing global 769 */ 770 static int 771 set_assert(int i) 772 { 773 if ((i != 1) && (i != 0)) 774 return EINVAL; 775 776 pim_assert = i; 777 778 return 0; 779 } 780 781 /* 782 * Configure API capabilities 783 */ 784 int 785 set_api_config(uint32_t *apival) 786 { 787 int i; 788 789 /* 790 * We can set the API capabilities only if it is the first operation 791 * after MRT_INIT. I.e.: 792 * - there are no vifs installed 793 * - pim_assert is not enabled 794 * - the MFC table is empty 795 */ 796 if (numvifs > 0) { 797 *apival = 0; 798 return EPERM; 799 } 800 if (pim_assert) { 801 *apival = 0; 802 return EPERM; 803 } 804 for (i = 0; i < MFCTBLSIZ; i++) { 805 if (mfctable[i] != NULL) { 806 *apival = 0; 807 return EPERM; 808 } 809 } 810 811 mrt_api_config = *apival & mrt_api_support; 812 *apival = mrt_api_config; 813 814 return 0; 815 } 816 817 /* 818 * Decide if a packet is from a tunnelled peer. 819 * Return 0 if not, 64 if so. XXX yuck.. 64 ??? 820 */ 821 static int 822 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 823 { 824 struct ip *ip = mtod(m, struct ip *); 825 int hlen = ip->ip_hl << 2; 826 827 /* 828 * don't claim the packet if it's not to a multicast destination or if 829 * we don't have an encapsulating tunnel with the source. 830 * Note: This code assumes that the remote site IP address 831 * uniquely identifies the tunnel (i.e., that this site has 832 * at most one tunnel with the remote site). 833 */ 834 if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) 835 return 0; 836 if (ip->ip_src.s_addr != last_encap_src) { 837 struct vif *vifp = viftable; 838 struct vif *vife = vifp + numvifs; 839 840 last_encap_src = ip->ip_src.s_addr; 841 last_encap_vif = NULL; 842 for ( ; vifp < vife; ++vifp) 843 if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) { 844 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL) 845 last_encap_vif = vifp; 846 break; 847 } 848 } 849 if (last_encap_vif == NULL) { 850 last_encap_src = INADDR_ANY; 851 return 0; 852 } 853 return 64; 854 } 855 856 /* 857 * De-encapsulate a packet and feed it back through ip input (this 858 * routine is called whenever IP gets a packet that mroute_encap_func() 859 * claimed). 860 */ 861 static void 862 mroute_encap_input(struct mbuf *m, int off) 863 { 864 struct ip *ip = mtod(m, struct ip *); 865 int hlen = ip->ip_hl << 2; 866 867 if (hlen > sizeof(struct ip)) 868 ip_stripoptions(m, (struct mbuf *) 0); 869 m->m_data += sizeof(struct ip); 870 m->m_len -= sizeof(struct ip); 871 m->m_pkthdr.len -= sizeof(struct ip); 872 873 m->m_pkthdr.rcvif = last_encap_vif->v_ifp; 874 875 netisr_queue(NETISR_IP, m); /* mbuf is free'd on failure. */ 876 /* 877 * normally we would need a "schednetisr(NETISR_IP)" 878 * here but we were called by ip_input and it is going 879 * to loop back & try to dequeue the packet we just 880 * queued as soon as we return so we avoid the 881 * unnecessary software interrrupt. 882 * 883 * XXX 884 * This no longer holds - we may have direct-dispatched the packet, 885 * or there may be a queue processing limit. 886 */ 887 } 888 889 extern struct domain inetdomain; 890 static struct protosw mroute_encap_protosw = 891 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 892 mroute_encap_input, 0, 0, rip_ctloutput, 893 0, 894 0, 0, 0, 0, 895 &rip_usrreqs 896 }; 897 898 /* 899 * Add a vif to the vif table 900 */ 901 static int 902 add_vif(struct vifctl *vifcp) 903 { 904 struct vif *vifp = viftable + vifcp->vifc_vifi; 905 struct sockaddr_in sin = {sizeof sin, AF_INET}; 906 struct ifaddr *ifa; 907 struct ifnet *ifp; 908 int error; 909 struct tbf *v_tbf = tbftable + vifcp->vifc_vifi; 910 911 VIF_LOCK(); 912 if (vifcp->vifc_vifi >= MAXVIFS) { 913 VIF_UNLOCK(); 914 return EINVAL; 915 } 916 if (vifp->v_lcl_addr.s_addr != INADDR_ANY) { 917 VIF_UNLOCK(); 918 return EADDRINUSE; 919 } 920 if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) { 921 VIF_UNLOCK(); 922 return EADDRNOTAVAIL; 923 } 924 925 /* Find the interface with an address in AF_INET family */ 926 #ifdef PIM 927 if (vifcp->vifc_flags & VIFF_REGISTER) { 928 /* 929 * XXX: Because VIFF_REGISTER does not really need a valid 930 * local interface (e.g. it could be 127.0.0.2), we don't 931 * check its address. 932 */ 933 ifp = NULL; 934 } else 935 #endif 936 { 937 sin.sin_addr = vifcp->vifc_lcl_addr; 938 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 939 if (ifa == NULL) { 940 VIF_UNLOCK(); 941 return EADDRNOTAVAIL; 942 } 943 ifp = ifa->ifa_ifp; 944 } 945 946 if (vifcp->vifc_flags & VIFF_TUNNEL) { 947 if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) { 948 /* 949 * An encapsulating tunnel is wanted. Tell 950 * mroute_encap_input() to start paying attention 951 * to encapsulated packets. 952 */ 953 if (encap_cookie == NULL) { 954 int i; 955 956 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 957 mroute_encapcheck, 958 (struct protosw *)&mroute_encap_protosw, NULL); 959 960 if (encap_cookie == NULL) { 961 printf("ip_mroute: unable to attach encap\n"); 962 VIF_UNLOCK(); 963 return EIO; /* XXX */ 964 } 965 for (i = 0; i < MAXVIFS; ++i) { 966 if_initname(&multicast_decap_if[i], "mdecap", i); 967 } 968 } 969 /* 970 * Set interface to fake encapsulator interface 971 */ 972 ifp = &multicast_decap_if[vifcp->vifc_vifi]; 973 /* 974 * Prepare cached route entry 975 */ 976 bzero(&vifp->v_route, sizeof(vifp->v_route)); 977 } else { 978 log(LOG_ERR, "source routed tunnels not supported\n"); 979 VIF_UNLOCK(); 980 return EOPNOTSUPP; 981 } 982 #ifdef PIM 983 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 984 ifp = &multicast_register_if; 985 if (mrtdebug) 986 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 987 (void *)&multicast_register_if); 988 if (reg_vif_num == VIFI_INVALID) { 989 if_initname(&multicast_register_if, "register_vif", 0); 990 multicast_register_if.if_flags = IFF_LOOPBACK; 991 bzero(&vifp->v_route, sizeof(vifp->v_route)); 992 reg_vif_num = vifcp->vifc_vifi; 993 } 994 #endif 995 } else { /* Make sure the interface supports multicast */ 996 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 997 VIF_UNLOCK(); 998 return EOPNOTSUPP; 999 } 1000 1001 /* Enable promiscuous reception of all IP multicasts from the if */ 1002 error = if_allmulti(ifp, 1); 1003 if (error) { 1004 VIF_UNLOCK(); 1005 return error; 1006 } 1007 } 1008 1009 /* define parameters for the tbf structure */ 1010 vifp->v_tbf = v_tbf; 1011 GET_TIME(vifp->v_tbf->tbf_last_pkt_t); 1012 vifp->v_tbf->tbf_n_tok = 0; 1013 vifp->v_tbf->tbf_q_len = 0; 1014 vifp->v_tbf->tbf_max_q_len = MAXQSIZE; 1015 vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL; 1016 1017 vifp->v_flags = vifcp->vifc_flags; 1018 vifp->v_threshold = vifcp->vifc_threshold; 1019 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 1020 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 1021 vifp->v_ifp = ifp; 1022 /* scaling up here allows division by 1024 in critical code */ 1023 vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000; 1024 vifp->v_rsvp_on = 0; 1025 vifp->v_rsvpd = NULL; 1026 /* initialize per vif pkt counters */ 1027 vifp->v_pkt_in = 0; 1028 vifp->v_pkt_out = 0; 1029 vifp->v_bytes_in = 0; 1030 vifp->v_bytes_out = 0; 1031 1032 /* Adjust numvifs up if the vifi is higher than numvifs */ 1033 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; 1034 1035 VIF_UNLOCK(); 1036 1037 if (mrtdebug) 1038 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n", 1039 vifcp->vifc_vifi, 1040 (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), 1041 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 1042 (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), 1043 vifcp->vifc_threshold, 1044 vifcp->vifc_rate_limit); 1045 1046 return 0; 1047 } 1048 1049 /* 1050 * Delete a vif from the vif table 1051 */ 1052 static int 1053 del_vif(vifi_t vifi) 1054 { 1055 struct vif *vifp; 1056 1057 VIF_LOCK(); 1058 1059 if (vifi >= numvifs) { 1060 VIF_UNLOCK(); 1061 return EINVAL; 1062 } 1063 vifp = &viftable[vifi]; 1064 if (vifp->v_lcl_addr.s_addr == INADDR_ANY) { 1065 VIF_UNLOCK(); 1066 return EADDRNOTAVAIL; 1067 } 1068 1069 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1070 if_allmulti(vifp->v_ifp, 0); 1071 1072 if (vifp == last_encap_vif) { 1073 last_encap_vif = NULL; 1074 last_encap_src = INADDR_ANY; 1075 } 1076 1077 /* 1078 * Free packets queued at the interface 1079 */ 1080 while (vifp->v_tbf->tbf_q) { 1081 struct mbuf *m = vifp->v_tbf->tbf_q; 1082 1083 vifp->v_tbf->tbf_q = m->m_act; 1084 m_freem(m); 1085 } 1086 1087 #ifdef PIM 1088 if (vifp->v_flags & VIFF_REGISTER) 1089 reg_vif_num = VIFI_INVALID; 1090 #endif 1091 1092 bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf))); 1093 bzero((caddr_t)vifp, sizeof (*vifp)); 1094 1095 if (mrtdebug) 1096 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); 1097 1098 /* Adjust numvifs down */ 1099 for (vifi = numvifs; vifi > 0; vifi--) 1100 if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY) 1101 break; 1102 numvifs = vifi; 1103 1104 VIF_UNLOCK(); 1105 1106 return 0; 1107 } 1108 1109 /* 1110 * update an mfc entry without resetting counters and S,G addresses. 1111 */ 1112 static void 1113 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1114 { 1115 int i; 1116 1117 rt->mfc_parent = mfccp->mfcc_parent; 1118 for (i = 0; i < numvifs; i++) { 1119 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1120 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1121 MRT_MFC_FLAGS_ALL; 1122 } 1123 /* set the RP address */ 1124 if (mrt_api_config & MRT_MFC_RP) 1125 rt->mfc_rp = mfccp->mfcc_rp; 1126 else 1127 rt->mfc_rp.s_addr = INADDR_ANY; 1128 } 1129 1130 /* 1131 * fully initialize an mfc entry from the parameter. 1132 */ 1133 static void 1134 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1135 { 1136 rt->mfc_origin = mfccp->mfcc_origin; 1137 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1138 1139 update_mfc_params(rt, mfccp); 1140 1141 /* initialize pkt counters per src-grp */ 1142 rt->mfc_pkt_cnt = 0; 1143 rt->mfc_byte_cnt = 0; 1144 rt->mfc_wrong_if = 0; 1145 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; 1146 } 1147 1148 1149 /* 1150 * Add an mfc entry 1151 */ 1152 static int 1153 add_mfc(struct mfcctl2 *mfccp) 1154 { 1155 struct mfc *rt; 1156 u_long hash; 1157 struct rtdetq *rte; 1158 u_short nstl; 1159 1160 VIF_LOCK(); 1161 MFC_LOCK(); 1162 1163 rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1164 1165 /* If an entry already exists, just update the fields */ 1166 if (rt) { 1167 if (mrtdebug & DEBUG_MFC) 1168 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", 1169 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1170 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1171 mfccp->mfcc_parent); 1172 1173 update_mfc_params(rt, mfccp); 1174 MFC_UNLOCK(); 1175 VIF_UNLOCK(); 1176 return 0; 1177 } 1178 1179 /* 1180 * Find the entry for which the upcall was made and update 1181 */ 1182 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1183 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { 1184 1185 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1186 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && 1187 (rt->mfc_stall != NULL)) { 1188 1189 if (nstl++) 1190 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", 1191 "multiple kernel entries", 1192 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1193 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1194 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1195 1196 if (mrtdebug & DEBUG_MFC) 1197 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", 1198 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1199 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1200 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1201 1202 init_mfc_params(rt, mfccp); 1203 1204 rt->mfc_expire = 0; /* Don't clean this guy up */ 1205 nexpire[hash]--; 1206 1207 /* free packets Qed at the end of this entry */ 1208 for (rte = rt->mfc_stall; rte != NULL; ) { 1209 struct rtdetq *n = rte->next; 1210 1211 ip_mdq(rte->m, rte->ifp, rt, -1); 1212 m_freem(rte->m); 1213 free(rte, M_MRTABLE); 1214 rte = n; 1215 } 1216 rt->mfc_stall = NULL; 1217 } 1218 } 1219 1220 /* 1221 * It is possible that an entry is being inserted without an upcall 1222 */ 1223 if (nstl == 0) { 1224 if (mrtdebug & DEBUG_MFC) 1225 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", 1226 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1227 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1228 mfccp->mfcc_parent); 1229 1230 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { 1231 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1232 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { 1233 init_mfc_params(rt, mfccp); 1234 if (rt->mfc_expire) 1235 nexpire[hash]--; 1236 rt->mfc_expire = 0; 1237 break; /* XXX */ 1238 } 1239 } 1240 if (rt == NULL) { /* no upcall, so make a new entry */ 1241 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1242 if (rt == NULL) { 1243 MFC_UNLOCK(); 1244 VIF_UNLOCK(); 1245 return ENOBUFS; 1246 } 1247 1248 init_mfc_params(rt, mfccp); 1249 rt->mfc_expire = 0; 1250 rt->mfc_stall = NULL; 1251 1252 rt->mfc_bw_meter = NULL; 1253 /* insert new entry at head of hash chain */ 1254 rt->mfc_next = mfctable[hash]; 1255 mfctable[hash] = rt; 1256 } 1257 } 1258 MFC_UNLOCK(); 1259 VIF_UNLOCK(); 1260 return 0; 1261 } 1262 1263 /* 1264 * Delete an mfc entry 1265 */ 1266 static int 1267 del_mfc(struct mfcctl2 *mfccp) 1268 { 1269 struct in_addr origin; 1270 struct in_addr mcastgrp; 1271 struct mfc *rt; 1272 struct mfc **nptr; 1273 u_long hash; 1274 struct bw_meter *list; 1275 1276 origin = mfccp->mfcc_origin; 1277 mcastgrp = mfccp->mfcc_mcastgrp; 1278 1279 if (mrtdebug & DEBUG_MFC) 1280 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", 1281 (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1282 1283 MFC_LOCK(); 1284 1285 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); 1286 for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next) 1287 if (origin.s_addr == rt->mfc_origin.s_addr && 1288 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && 1289 rt->mfc_stall == NULL) 1290 break; 1291 if (rt == NULL) { 1292 MFC_UNLOCK(); 1293 return EADDRNOTAVAIL; 1294 } 1295 1296 *nptr = rt->mfc_next; 1297 1298 /* 1299 * free the bw_meter entries 1300 */ 1301 list = rt->mfc_bw_meter; 1302 rt->mfc_bw_meter = NULL; 1303 1304 free(rt, M_MRTABLE); 1305 1306 free_bw_list(list); 1307 1308 MFC_UNLOCK(); 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * Send a message to mrouted on the multicast routing socket 1315 */ 1316 static int 1317 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1318 { 1319 if (s) { 1320 SOCKBUF_LOCK(&s->so_rcv); 1321 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1322 NULL) != 0) { 1323 sorwakeup_locked(s); 1324 return 0; 1325 } 1326 SOCKBUF_UNLOCK(&s->so_rcv); 1327 } 1328 m_freem(mm); 1329 return -1; 1330 } 1331 1332 /* 1333 * IP multicast forwarding function. This function assumes that the packet 1334 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1335 * pointed to by "ifp", and the packet is to be relayed to other networks 1336 * that have members of the packet's destination IP multicast group. 1337 * 1338 * The packet is returned unscathed to the caller, unless it is 1339 * erroneous, in which case a non-zero return value tells the caller to 1340 * discard it. 1341 */ 1342 1343 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1344 1345 static int 1346 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1347 struct ip_moptions *imo) 1348 { 1349 struct mfc *rt; 1350 int error; 1351 vifi_t vifi; 1352 1353 if (mrtdebug & DEBUG_FORWARD) 1354 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", 1355 (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), 1356 (void *)ifp); 1357 1358 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1359 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1360 /* 1361 * Packet arrived via a physical interface or 1362 * an encapsulated tunnel or a register_vif. 1363 */ 1364 } else { 1365 /* 1366 * Packet arrived through a source-route tunnel. 1367 * Source-route tunnels are no longer supported. 1368 */ 1369 static int last_log; 1370 if (last_log != time_second) { 1371 last_log = time_second; 1372 log(LOG_ERR, 1373 "ip_mforward: received source-routed packet from %lx\n", 1374 (u_long)ntohl(ip->ip_src.s_addr)); 1375 } 1376 return 1; 1377 } 1378 1379 VIF_LOCK(); 1380 MFC_LOCK(); 1381 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1382 if (ip->ip_ttl < 255) 1383 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1384 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1385 struct vif *vifp = viftable + vifi; 1386 1387 printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n", 1388 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr), 1389 vifi, 1390 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1391 vifp->v_ifp->if_xname); 1392 } 1393 error = ip_mdq(m, ifp, NULL, vifi); 1394 MFC_UNLOCK(); 1395 VIF_UNLOCK(); 1396 return error; 1397 } 1398 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1399 printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", 1400 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr)); 1401 if (!imo) 1402 printf("In fact, no options were specified at all\n"); 1403 } 1404 1405 /* 1406 * Don't forward a packet with time-to-live of zero or one, 1407 * or a packet destined to a local-only group. 1408 */ 1409 if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) { 1410 MFC_UNLOCK(); 1411 VIF_UNLOCK(); 1412 return 0; 1413 } 1414 1415 /* 1416 * Determine forwarding vifs from the forwarding cache table 1417 */ 1418 ++mrtstat.mrts_mfc_lookups; 1419 rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1420 1421 /* Entry exists, so forward if necessary */ 1422 if (rt != NULL) { 1423 error = ip_mdq(m, ifp, rt, -1); 1424 MFC_UNLOCK(); 1425 VIF_UNLOCK(); 1426 return error; 1427 } else { 1428 /* 1429 * If we don't have a route for packet's origin, 1430 * Make a copy of the packet & send message to routing daemon 1431 */ 1432 1433 struct mbuf *mb0; 1434 struct rtdetq *rte; 1435 u_long hash; 1436 int hlen = ip->ip_hl << 2; 1437 1438 ++mrtstat.mrts_mfc_misses; 1439 1440 mrtstat.mrts_no_route++; 1441 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1442 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", 1443 (u_long)ntohl(ip->ip_src.s_addr), 1444 (u_long)ntohl(ip->ip_dst.s_addr)); 1445 1446 /* 1447 * Allocate mbufs early so that we don't do extra work if we are 1448 * just going to fail anyway. Make sure to pullup the header so 1449 * that other people can't step on it. 1450 */ 1451 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); 1452 if (rte == NULL) { 1453 MFC_UNLOCK(); 1454 VIF_UNLOCK(); 1455 return ENOBUFS; 1456 } 1457 mb0 = m_copypacket(m, M_DONTWAIT); 1458 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1459 mb0 = m_pullup(mb0, hlen); 1460 if (mb0 == NULL) { 1461 free(rte, M_MRTABLE); 1462 MFC_UNLOCK(); 1463 VIF_UNLOCK(); 1464 return ENOBUFS; 1465 } 1466 1467 /* is there an upcall waiting for this flow ? */ 1468 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1469 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { 1470 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && 1471 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && 1472 (rt->mfc_stall != NULL)) 1473 break; 1474 } 1475 1476 if (rt == NULL) { 1477 int i; 1478 struct igmpmsg *im; 1479 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1480 struct mbuf *mm; 1481 1482 /* 1483 * Locate the vifi for the incoming interface for this packet. 1484 * If none found, drop packet. 1485 */ 1486 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1487 ; 1488 if (vifi >= numvifs) /* vif not found, drop packet */ 1489 goto non_fatal; 1490 1491 /* no upcall, so make a new entry */ 1492 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1493 if (rt == NULL) 1494 goto fail; 1495 /* Make a copy of the header to send to the user level process */ 1496 mm = m_copy(mb0, 0, hlen); 1497 if (mm == NULL) 1498 goto fail1; 1499 1500 /* 1501 * Send message to routing daemon to install 1502 * a route into the kernel table 1503 */ 1504 1505 im = mtod(mm, struct igmpmsg *); 1506 im->im_msgtype = IGMPMSG_NOCACHE; 1507 im->im_mbz = 0; 1508 im->im_vif = vifi; 1509 1510 mrtstat.mrts_upcalls++; 1511 1512 k_igmpsrc.sin_addr = ip->ip_src; 1513 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { 1514 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); 1515 ++mrtstat.mrts_upq_sockfull; 1516 fail1: 1517 free(rt, M_MRTABLE); 1518 fail: 1519 free(rte, M_MRTABLE); 1520 m_freem(mb0); 1521 MFC_UNLOCK(); 1522 VIF_UNLOCK(); 1523 return ENOBUFS; 1524 } 1525 1526 /* insert new entry at head of hash chain */ 1527 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1528 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1529 rt->mfc_expire = UPCALL_EXPIRE; 1530 nexpire[hash]++; 1531 for (i = 0; i < numvifs; i++) { 1532 rt->mfc_ttls[i] = 0; 1533 rt->mfc_flags[i] = 0; 1534 } 1535 rt->mfc_parent = -1; 1536 1537 rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */ 1538 1539 rt->mfc_bw_meter = NULL; 1540 1541 /* link into table */ 1542 rt->mfc_next = mfctable[hash]; 1543 mfctable[hash] = rt; 1544 rt->mfc_stall = rte; 1545 1546 } else { 1547 /* determine if q has overflowed */ 1548 int npkts = 0; 1549 struct rtdetq **p; 1550 1551 /* 1552 * XXX ouch! we need to append to the list, but we 1553 * only have a pointer to the front, so we have to 1554 * scan the entire list every time. 1555 */ 1556 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1557 npkts++; 1558 1559 if (npkts > MAX_UPQ) { 1560 mrtstat.mrts_upq_ovflw++; 1561 non_fatal: 1562 free(rte, M_MRTABLE); 1563 m_freem(mb0); 1564 MFC_UNLOCK(); 1565 VIF_UNLOCK(); 1566 return 0; 1567 } 1568 1569 /* Add this entry to the end of the queue */ 1570 *p = rte; 1571 } 1572 1573 rte->m = mb0; 1574 rte->ifp = ifp; 1575 rte->next = NULL; 1576 1577 MFC_UNLOCK(); 1578 VIF_UNLOCK(); 1579 1580 return 0; 1581 } 1582 } 1583 1584 /* 1585 * Clean up the cache entry if upcall is not serviced 1586 */ 1587 static void 1588 expire_upcalls(void *unused) 1589 { 1590 struct rtdetq *rte; 1591 struct mfc *mfc, **nptr; 1592 int i; 1593 1594 MFC_LOCK(); 1595 for (i = 0; i < MFCTBLSIZ; i++) { 1596 if (nexpire[i] == 0) 1597 continue; 1598 nptr = &mfctable[i]; 1599 for (mfc = *nptr; mfc != NULL; mfc = *nptr) { 1600 /* 1601 * Skip real cache entries 1602 * Make sure it wasn't marked to not expire (shouldn't happen) 1603 * If it expires now 1604 */ 1605 if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && 1606 --mfc->mfc_expire == 0) { 1607 if (mrtdebug & DEBUG_EXPIRE) 1608 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", 1609 (u_long)ntohl(mfc->mfc_origin.s_addr), 1610 (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); 1611 /* 1612 * drop all the packets 1613 * free the mbuf with the pkt, if, timing info 1614 */ 1615 for (rte = mfc->mfc_stall; rte; ) { 1616 struct rtdetq *n = rte->next; 1617 1618 m_freem(rte->m); 1619 free(rte, M_MRTABLE); 1620 rte = n; 1621 } 1622 ++mrtstat.mrts_cache_cleanups; 1623 nexpire[i]--; 1624 1625 /* 1626 * free the bw_meter entries 1627 */ 1628 while (mfc->mfc_bw_meter != NULL) { 1629 struct bw_meter *x = mfc->mfc_bw_meter; 1630 1631 mfc->mfc_bw_meter = x->bm_mfc_next; 1632 free(x, M_BWMETER); 1633 } 1634 1635 *nptr = mfc->mfc_next; 1636 free(mfc, M_MRTABLE); 1637 } else { 1638 nptr = &mfc->mfc_next; 1639 } 1640 } 1641 } 1642 MFC_UNLOCK(); 1643 1644 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1645 } 1646 1647 /* 1648 * Packet forwarding routine once entry in the cache is made 1649 */ 1650 static int 1651 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1652 { 1653 struct ip *ip = mtod(m, struct ip *); 1654 vifi_t vifi; 1655 int plen = ip->ip_len; 1656 1657 VIF_LOCK_ASSERT(); 1658 /* 1659 * Macro to send packet on vif. Since RSVP packets don't get counted on 1660 * input, they shouldn't get counted on output, so statistics keeping is 1661 * separate. 1662 */ 1663 #define MC_SEND(ip,vifp,m) { \ 1664 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1665 encap_send((ip), (vifp), (m)); \ 1666 else \ 1667 phyint_send((ip), (vifp), (m)); \ 1668 } 1669 1670 /* 1671 * If xmt_vif is not -1, send on only the requested vif. 1672 * 1673 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1674 */ 1675 if (xmt_vif < numvifs) { 1676 #ifdef PIM 1677 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1678 pim_register_send(ip, viftable + xmt_vif, m, rt); 1679 else 1680 #endif 1681 MC_SEND(ip, viftable + xmt_vif, m); 1682 return 1; 1683 } 1684 1685 /* 1686 * Don't forward if it didn't arrive from the parent vif for its origin. 1687 */ 1688 vifi = rt->mfc_parent; 1689 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1690 /* came in the wrong interface */ 1691 if (mrtdebug & DEBUG_FORWARD) 1692 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1693 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); 1694 ++mrtstat.mrts_wrong_if; 1695 ++rt->mfc_wrong_if; 1696 /* 1697 * If we are doing PIM assert processing, send a message 1698 * to the routing daemon. 1699 * 1700 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1701 * can complete the SPT switch, regardless of the type 1702 * of the iif (broadcast media, GRE tunnel, etc). 1703 */ 1704 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1705 struct timeval now; 1706 u_long delta; 1707 1708 #ifdef PIM 1709 if (ifp == &multicast_register_if) 1710 pimstat.pims_rcv_registers_wrongiif++; 1711 #endif 1712 1713 /* Get vifi for the incoming packet */ 1714 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1715 ; 1716 if (vifi >= numvifs) 1717 return 0; /* The iif is not found: ignore the packet. */ 1718 1719 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1720 return 0; /* WRONGVIF disabled: ignore the packet */ 1721 1722 GET_TIME(now); 1723 1724 TV_DELTA(rt->mfc_last_assert, now, delta); 1725 1726 if (delta > ASSERT_MSG_TIME) { 1727 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1728 struct igmpmsg *im; 1729 int hlen = ip->ip_hl << 2; 1730 struct mbuf *mm = m_copy(m, 0, hlen); 1731 1732 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1733 mm = m_pullup(mm, hlen); 1734 if (mm == NULL) 1735 return ENOBUFS; 1736 1737 rt->mfc_last_assert = now; 1738 1739 im = mtod(mm, struct igmpmsg *); 1740 im->im_msgtype = IGMPMSG_WRONGVIF; 1741 im->im_mbz = 0; 1742 im->im_vif = vifi; 1743 1744 mrtstat.mrts_upcalls++; 1745 1746 k_igmpsrc.sin_addr = im->im_src; 1747 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { 1748 log(LOG_WARNING, 1749 "ip_mforward: ip_mrouter socket queue full\n"); 1750 ++mrtstat.mrts_upq_sockfull; 1751 return ENOBUFS; 1752 } 1753 } 1754 } 1755 return 0; 1756 } 1757 1758 /* If I sourced this packet, it counts as output, else it was input. */ 1759 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { 1760 viftable[vifi].v_pkt_out++; 1761 viftable[vifi].v_bytes_out += plen; 1762 } else { 1763 viftable[vifi].v_pkt_in++; 1764 viftable[vifi].v_bytes_in += plen; 1765 } 1766 rt->mfc_pkt_cnt++; 1767 rt->mfc_byte_cnt += plen; 1768 1769 /* 1770 * For each vif, decide if a copy of the packet should be forwarded. 1771 * Forward if: 1772 * - the ttl exceeds the vif's threshold 1773 * - there are group members downstream on interface 1774 */ 1775 for (vifi = 0; vifi < numvifs; vifi++) 1776 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1777 viftable[vifi].v_pkt_out++; 1778 viftable[vifi].v_bytes_out += plen; 1779 #ifdef PIM 1780 if (viftable[vifi].v_flags & VIFF_REGISTER) 1781 pim_register_send(ip, viftable + vifi, m, rt); 1782 else 1783 #endif 1784 MC_SEND(ip, viftable+vifi, m); 1785 } 1786 1787 /* 1788 * Perform upcall-related bw measuring. 1789 */ 1790 if (rt->mfc_bw_meter != NULL) { 1791 struct bw_meter *x; 1792 struct timeval now; 1793 1794 GET_TIME(now); 1795 MFC_LOCK_ASSERT(); 1796 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1797 bw_meter_receive_packet(x, plen, &now); 1798 } 1799 1800 return 0; 1801 } 1802 1803 /* 1804 * check if a vif number is legal/ok. This is used by ip_output. 1805 */ 1806 static int 1807 X_legal_vif_num(int vif) 1808 { 1809 /* XXX unlocked, matter? */ 1810 return (vif >= 0 && vif < numvifs); 1811 } 1812 1813 /* 1814 * Return the local address used by this vif 1815 */ 1816 static u_long 1817 X_ip_mcast_src(int vifi) 1818 { 1819 /* XXX unlocked, matter? */ 1820 if (vifi >= 0 && vifi < numvifs) 1821 return viftable[vifi].v_lcl_addr.s_addr; 1822 else 1823 return INADDR_ANY; 1824 } 1825 1826 static void 1827 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1828 { 1829 struct mbuf *mb_copy; 1830 int hlen = ip->ip_hl << 2; 1831 1832 VIF_LOCK_ASSERT(); 1833 1834 /* 1835 * Make a new reference to the packet; make sure that 1836 * the IP header is actually copied, not just referenced, 1837 * so that ip_output() only scribbles on the copy. 1838 */ 1839 mb_copy = m_copypacket(m, M_DONTWAIT); 1840 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1841 mb_copy = m_pullup(mb_copy, hlen); 1842 if (mb_copy == NULL) 1843 return; 1844 1845 if (vifp->v_rate_limit == 0) 1846 tbf_send_packet(vifp, mb_copy); 1847 else 1848 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len); 1849 } 1850 1851 static void 1852 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1853 { 1854 struct mbuf *mb_copy; 1855 struct ip *ip_copy; 1856 int i, len = ip->ip_len; 1857 1858 VIF_LOCK_ASSERT(); 1859 1860 /* Take care of delayed checksums */ 1861 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1862 in_delayed_cksum(m); 1863 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1864 } 1865 1866 /* 1867 * copy the old packet & pullup its IP header into the 1868 * new mbuf so we can modify it. Try to fill the new 1869 * mbuf since if we don't the ethernet driver will. 1870 */ 1871 MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER); 1872 if (mb_copy == NULL) 1873 return; 1874 #ifdef MAC 1875 mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy); 1876 #endif 1877 mb_copy->m_data += max_linkhdr; 1878 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1879 1880 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1881 m_freem(mb_copy); 1882 return; 1883 } 1884 i = MHLEN - M_LEADINGSPACE(mb_copy); 1885 if (i > len) 1886 i = len; 1887 mb_copy = m_pullup(mb_copy, i); 1888 if (mb_copy == NULL) 1889 return; 1890 mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr); 1891 1892 /* 1893 * fill in the encapsulating IP header. 1894 */ 1895 ip_copy = mtod(mb_copy, struct ip *); 1896 *ip_copy = multicast_encap_iphdr; 1897 ip_copy->ip_id = ip_newid(); 1898 ip_copy->ip_len += len; 1899 ip_copy->ip_src = vifp->v_lcl_addr; 1900 ip_copy->ip_dst = vifp->v_rmt_addr; 1901 1902 /* 1903 * turn the encapsulated IP header back into a valid one. 1904 */ 1905 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); 1906 --ip->ip_ttl; 1907 ip->ip_len = htons(ip->ip_len); 1908 ip->ip_off = htons(ip->ip_off); 1909 ip->ip_sum = 0; 1910 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1911 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1912 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1913 1914 if (vifp->v_rate_limit == 0) 1915 tbf_send_packet(vifp, mb_copy); 1916 else 1917 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len); 1918 } 1919 1920 /* 1921 * Token bucket filter module 1922 */ 1923 1924 static void 1925 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len) 1926 { 1927 struct tbf *t = vifp->v_tbf; 1928 1929 VIF_LOCK_ASSERT(); 1930 1931 if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */ 1932 mrtstat.mrts_pkt2large++; 1933 m_freem(m); 1934 return; 1935 } 1936 1937 tbf_update_tokens(vifp); 1938 1939 if (t->tbf_q_len == 0) { /* queue empty... */ 1940 if (p_len <= t->tbf_n_tok) { /* send packet if enough tokens */ 1941 t->tbf_n_tok -= p_len; 1942 tbf_send_packet(vifp, m); 1943 } else { /* no, queue packet and try later */ 1944 tbf_queue(vifp, m); 1945 callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, 1946 tbf_reprocess_q, vifp); 1947 } 1948 } else if (t->tbf_q_len < t->tbf_max_q_len) { 1949 /* finite queue length, so queue pkts and process queue */ 1950 tbf_queue(vifp, m); 1951 tbf_process_q(vifp); 1952 } else { 1953 /* queue full, try to dq and queue and process */ 1954 if (!tbf_dq_sel(vifp, ip)) { 1955 mrtstat.mrts_q_overflow++; 1956 m_freem(m); 1957 } else { 1958 tbf_queue(vifp, m); 1959 tbf_process_q(vifp); 1960 } 1961 } 1962 } 1963 1964 /* 1965 * adds a packet to the queue at the interface 1966 */ 1967 static void 1968 tbf_queue(struct vif *vifp, struct mbuf *m) 1969 { 1970 struct tbf *t = vifp->v_tbf; 1971 1972 VIF_LOCK_ASSERT(); 1973 1974 if (t->tbf_t == NULL) /* Queue was empty */ 1975 t->tbf_q = m; 1976 else /* Insert at tail */ 1977 t->tbf_t->m_act = m; 1978 1979 t->tbf_t = m; /* Set new tail pointer */ 1980 1981 #ifdef DIAGNOSTIC 1982 /* Make sure we didn't get fed a bogus mbuf */ 1983 if (m->m_act) 1984 panic("tbf_queue: m_act"); 1985 #endif 1986 m->m_act = NULL; 1987 1988 t->tbf_q_len++; 1989 } 1990 1991 /* 1992 * processes the queue at the interface 1993 */ 1994 static void 1995 tbf_process_q(struct vif *vifp) 1996 { 1997 struct tbf *t = vifp->v_tbf; 1998 1999 VIF_LOCK_ASSERT(); 2000 2001 /* loop through the queue at the interface and send as many packets 2002 * as possible 2003 */ 2004 while (t->tbf_q_len > 0) { 2005 struct mbuf *m = t->tbf_q; 2006 int len = mtod(m, struct ip *)->ip_len; 2007 2008 /* determine if the packet can be sent */ 2009 if (len > t->tbf_n_tok) /* not enough tokens, we are done */ 2010 break; 2011 /* ok, reduce no of tokens, dequeue and send the packet. */ 2012 t->tbf_n_tok -= len; 2013 2014 t->tbf_q = m->m_act; 2015 if (--t->tbf_q_len == 0) 2016 t->tbf_t = NULL; 2017 2018 m->m_act = NULL; 2019 tbf_send_packet(vifp, m); 2020 } 2021 } 2022 2023 static void 2024 tbf_reprocess_q(void *xvifp) 2025 { 2026 struct vif *vifp = xvifp; 2027 2028 if (ip_mrouter == NULL) 2029 return; 2030 VIF_LOCK(); 2031 tbf_update_tokens(vifp); 2032 tbf_process_q(vifp); 2033 if (vifp->v_tbf->tbf_q_len) 2034 callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp); 2035 VIF_UNLOCK(); 2036 } 2037 2038 /* function that will selectively discard a member of the queue 2039 * based on the precedence value and the priority 2040 */ 2041 static int 2042 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2043 { 2044 u_int p; 2045 struct mbuf *m, *last; 2046 struct mbuf **np; 2047 struct tbf *t = vifp->v_tbf; 2048 2049 VIF_LOCK_ASSERT(); 2050 2051 p = priority(vifp, ip); 2052 2053 np = &t->tbf_q; 2054 last = NULL; 2055 while ((m = *np) != NULL) { 2056 if (p > priority(vifp, mtod(m, struct ip *))) { 2057 *np = m->m_act; 2058 /* If we're removing the last packet, fix the tail pointer */ 2059 if (m == t->tbf_t) 2060 t->tbf_t = last; 2061 m_freem(m); 2062 /* It's impossible for the queue to be empty, but check anyways. */ 2063 if (--t->tbf_q_len == 0) 2064 t->tbf_t = NULL; 2065 mrtstat.mrts_drop_sel++; 2066 return 1; 2067 } 2068 np = &m->m_act; 2069 last = m; 2070 } 2071 return 0; 2072 } 2073 2074 static void 2075 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2076 { 2077 VIF_LOCK_ASSERT(); 2078 2079 if (vifp->v_flags & VIFF_TUNNEL) /* If tunnel options */ 2080 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL); 2081 else { 2082 struct ip_moptions imo; 2083 int error; 2084 static struct route ro; /* XXX check this */ 2085 2086 imo.imo_multicast_ifp = vifp->v_ifp; 2087 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2088 imo.imo_multicast_loop = 1; 2089 imo.imo_multicast_vif = -1; 2090 2091 /* 2092 * Re-entrancy should not be a problem here, because 2093 * the packets that we send out and are looped back at us 2094 * should get rejected because they appear to come from 2095 * the loopback interface, thus preventing looping. 2096 */ 2097 error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL); 2098 2099 if (mrtdebug & DEBUG_XMIT) 2100 log(LOG_DEBUG, "phyint_send on vif %d err %d\n", 2101 (int)(vifp - viftable), error); 2102 } 2103 } 2104 2105 /* determine the current time and then 2106 * the elapsed time (between the last time and time now) 2107 * in milliseconds & update the no. of tokens in the bucket 2108 */ 2109 static void 2110 tbf_update_tokens(struct vif *vifp) 2111 { 2112 struct timeval tp; 2113 u_long tm; 2114 struct tbf *t = vifp->v_tbf; 2115 2116 VIF_LOCK_ASSERT(); 2117 2118 GET_TIME(tp); 2119 2120 TV_DELTA(tp, t->tbf_last_pkt_t, tm); 2121 2122 /* 2123 * This formula is actually 2124 * "time in seconds" * "bytes/second". 2125 * 2126 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2127 * 2128 * The (1000/1024) was introduced in add_vif to optimize 2129 * this divide into a shift. 2130 */ 2131 t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8; 2132 t->tbf_last_pkt_t = tp; 2133 2134 if (t->tbf_n_tok > MAX_BKT_SIZE) 2135 t->tbf_n_tok = MAX_BKT_SIZE; 2136 } 2137 2138 static int 2139 priority(struct vif *vifp, struct ip *ip) 2140 { 2141 int prio = 50; /* the lowest priority -- default case */ 2142 2143 /* temporary hack; may add general packet classifier some day */ 2144 2145 /* 2146 * The UDP port space is divided up into four priority ranges: 2147 * [0, 16384) : unclassified - lowest priority 2148 * [16384, 32768) : audio - highest priority 2149 * [32768, 49152) : whiteboard - medium priority 2150 * [49152, 65536) : video - low priority 2151 * 2152 * Everything else gets lowest priority. 2153 */ 2154 if (ip->ip_p == IPPROTO_UDP) { 2155 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2156 switch (ntohs(udp->uh_dport) & 0xc000) { 2157 case 0x4000: 2158 prio = 70; 2159 break; 2160 case 0x8000: 2161 prio = 60; 2162 break; 2163 case 0xc000: 2164 prio = 55; 2165 break; 2166 } 2167 } 2168 return prio; 2169 } 2170 2171 /* 2172 * End of token bucket filter modifications 2173 */ 2174 2175 static int 2176 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt) 2177 { 2178 int error, vifi; 2179 2180 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 2181 return EOPNOTSUPP; 2182 2183 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 2184 if (error) 2185 return error; 2186 2187 VIF_LOCK(); 2188 2189 if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */ 2190 VIF_UNLOCK(); 2191 return EADDRNOTAVAIL; 2192 } 2193 2194 if (sopt->sopt_name == IP_RSVP_VIF_ON) { 2195 /* Check if socket is available. */ 2196 if (viftable[vifi].v_rsvpd != NULL) { 2197 VIF_UNLOCK(); 2198 return EADDRINUSE; 2199 } 2200 2201 viftable[vifi].v_rsvpd = so; 2202 /* This may seem silly, but we need to be sure we don't over-increment 2203 * the RSVP counter, in case something slips up. 2204 */ 2205 if (!viftable[vifi].v_rsvp_on) { 2206 viftable[vifi].v_rsvp_on = 1; 2207 rsvp_on++; 2208 } 2209 } else { /* must be VIF_OFF */ 2210 /* 2211 * XXX as an additional consistency check, one could make sure 2212 * that viftable[vifi].v_rsvpd == so, otherwise passing so as 2213 * first parameter is pretty useless. 2214 */ 2215 viftable[vifi].v_rsvpd = NULL; 2216 /* 2217 * This may seem silly, but we need to be sure we don't over-decrement 2218 * the RSVP counter, in case something slips up. 2219 */ 2220 if (viftable[vifi].v_rsvp_on) { 2221 viftable[vifi].v_rsvp_on = 0; 2222 rsvp_on--; 2223 } 2224 } 2225 VIF_UNLOCK(); 2226 return 0; 2227 } 2228 2229 static void 2230 X_ip_rsvp_force_done(struct socket *so) 2231 { 2232 int vifi; 2233 2234 /* Don't bother if it is not the right type of socket. */ 2235 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 2236 return; 2237 2238 VIF_LOCK(); 2239 2240 /* The socket may be attached to more than one vif...this 2241 * is perfectly legal. 2242 */ 2243 for (vifi = 0; vifi < numvifs; vifi++) { 2244 if (viftable[vifi].v_rsvpd == so) { 2245 viftable[vifi].v_rsvpd = NULL; 2246 /* This may seem silly, but we need to be sure we don't 2247 * over-decrement the RSVP counter, in case something slips up. 2248 */ 2249 if (viftable[vifi].v_rsvp_on) { 2250 viftable[vifi].v_rsvp_on = 0; 2251 rsvp_on--; 2252 } 2253 } 2254 } 2255 2256 VIF_UNLOCK(); 2257 } 2258 2259 static void 2260 X_rsvp_input(struct mbuf *m, int off) 2261 { 2262 int vifi; 2263 struct ip *ip = mtod(m, struct ip *); 2264 struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; 2265 struct ifnet *ifp; 2266 2267 if (rsvpdebug) 2268 printf("rsvp_input: rsvp_on %d\n",rsvp_on); 2269 2270 /* Can still get packets with rsvp_on = 0 if there is a local member 2271 * of the group to which the RSVP packet is addressed. But in this 2272 * case we want to throw the packet away. 2273 */ 2274 if (!rsvp_on) { 2275 m_freem(m); 2276 return; 2277 } 2278 2279 if (rsvpdebug) 2280 printf("rsvp_input: check vifs\n"); 2281 2282 #ifdef DIAGNOSTIC 2283 M_ASSERTPKTHDR(m); 2284 #endif 2285 2286 ifp = m->m_pkthdr.rcvif; 2287 2288 VIF_LOCK(); 2289 /* Find which vif the packet arrived on. */ 2290 for (vifi = 0; vifi < numvifs; vifi++) 2291 if (viftable[vifi].v_ifp == ifp) 2292 break; 2293 2294 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) { 2295 /* 2296 * Drop the lock here to avoid holding it across rip_input. 2297 * This could make rsvpdebug printfs wrong. If you care, 2298 * record the state of stuff before dropping the lock. 2299 */ 2300 VIF_UNLOCK(); 2301 /* 2302 * If the old-style non-vif-associated socket is set, 2303 * then use it. Otherwise, drop packet since there 2304 * is no specific socket for this vif. 2305 */ 2306 if (ip_rsvpd != NULL) { 2307 if (rsvpdebug) 2308 printf("rsvp_input: Sending packet up old-style socket\n"); 2309 rip_input(m, off); /* xxx */ 2310 } else { 2311 if (rsvpdebug && vifi == numvifs) 2312 printf("rsvp_input: Can't find vif for packet.\n"); 2313 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL) 2314 printf("rsvp_input: No socket defined for vif %d\n",vifi); 2315 m_freem(m); 2316 } 2317 return; 2318 } 2319 rsvp_src.sin_addr = ip->ip_src; 2320 2321 if (rsvpdebug && m) 2322 printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", 2323 m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); 2324 2325 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { 2326 if (rsvpdebug) 2327 printf("rsvp_input: Failed to append to socket\n"); 2328 } else { 2329 if (rsvpdebug) 2330 printf("rsvp_input: send packet up\n"); 2331 } 2332 VIF_UNLOCK(); 2333 } 2334 2335 /* 2336 * Code for bandwidth monitors 2337 */ 2338 2339 /* 2340 * Define common interface for timeval-related methods 2341 */ 2342 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 2343 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 2344 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 2345 2346 static uint32_t 2347 compute_bw_meter_flags(struct bw_upcall *req) 2348 { 2349 uint32_t flags = 0; 2350 2351 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2352 flags |= BW_METER_UNIT_PACKETS; 2353 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2354 flags |= BW_METER_UNIT_BYTES; 2355 if (req->bu_flags & BW_UPCALL_GEQ) 2356 flags |= BW_METER_GEQ; 2357 if (req->bu_flags & BW_UPCALL_LEQ) 2358 flags |= BW_METER_LEQ; 2359 2360 return flags; 2361 } 2362 2363 /* 2364 * Add a bw_meter entry 2365 */ 2366 static int 2367 add_bw_upcall(struct bw_upcall *req) 2368 { 2369 struct mfc *mfc; 2370 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2371 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2372 struct timeval now; 2373 struct bw_meter *x; 2374 uint32_t flags; 2375 2376 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2377 return EOPNOTSUPP; 2378 2379 /* Test if the flags are valid */ 2380 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2381 return EINVAL; 2382 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2383 return EINVAL; 2384 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2385 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2386 return EINVAL; 2387 2388 /* Test if the threshold time interval is valid */ 2389 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2390 return EINVAL; 2391 2392 flags = compute_bw_meter_flags(req); 2393 2394 /* 2395 * Find if we have already same bw_meter entry 2396 */ 2397 MFC_LOCK(); 2398 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2399 if (mfc == NULL) { 2400 MFC_UNLOCK(); 2401 return EADDRNOTAVAIL; 2402 } 2403 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2404 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2405 &req->bu_threshold.b_time, ==)) && 2406 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2407 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2408 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2409 MFC_UNLOCK(); 2410 return 0; /* XXX Already installed */ 2411 } 2412 } 2413 2414 /* Allocate the new bw_meter entry */ 2415 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2416 if (x == NULL) { 2417 MFC_UNLOCK(); 2418 return ENOBUFS; 2419 } 2420 2421 /* Set the new bw_meter entry */ 2422 x->bm_threshold.b_time = req->bu_threshold.b_time; 2423 GET_TIME(now); 2424 x->bm_start_time = now; 2425 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2426 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2427 x->bm_measured.b_packets = 0; 2428 x->bm_measured.b_bytes = 0; 2429 x->bm_flags = flags; 2430 x->bm_time_next = NULL; 2431 x->bm_time_hash = BW_METER_BUCKETS; 2432 2433 /* Add the new bw_meter entry to the front of entries for this MFC */ 2434 x->bm_mfc = mfc; 2435 x->bm_mfc_next = mfc->mfc_bw_meter; 2436 mfc->mfc_bw_meter = x; 2437 schedule_bw_meter(x, &now); 2438 MFC_UNLOCK(); 2439 2440 return 0; 2441 } 2442 2443 static void 2444 free_bw_list(struct bw_meter *list) 2445 { 2446 while (list != NULL) { 2447 struct bw_meter *x = list; 2448 2449 list = list->bm_mfc_next; 2450 unschedule_bw_meter(x); 2451 free(x, M_BWMETER); 2452 } 2453 } 2454 2455 /* 2456 * Delete one or multiple bw_meter entries 2457 */ 2458 static int 2459 del_bw_upcall(struct bw_upcall *req) 2460 { 2461 struct mfc *mfc; 2462 struct bw_meter *x; 2463 2464 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2465 return EOPNOTSUPP; 2466 2467 MFC_LOCK(); 2468 /* Find the corresponding MFC entry */ 2469 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2470 if (mfc == NULL) { 2471 MFC_UNLOCK(); 2472 return EADDRNOTAVAIL; 2473 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2474 /* 2475 * Delete all bw_meter entries for this mfc 2476 */ 2477 struct bw_meter *list; 2478 2479 list = mfc->mfc_bw_meter; 2480 mfc->mfc_bw_meter = NULL; 2481 free_bw_list(list); 2482 MFC_UNLOCK(); 2483 return 0; 2484 } else { /* Delete a single bw_meter entry */ 2485 struct bw_meter *prev; 2486 uint32_t flags = 0; 2487 2488 flags = compute_bw_meter_flags(req); 2489 2490 /* Find the bw_meter entry to delete */ 2491 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2492 prev = x, x = x->bm_mfc_next) { 2493 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2494 &req->bu_threshold.b_time, ==)) && 2495 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2496 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2497 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2498 break; 2499 } 2500 if (x != NULL) { /* Delete entry from the list for this MFC */ 2501 if (prev != NULL) 2502 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2503 else 2504 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2505 2506 unschedule_bw_meter(x); 2507 MFC_UNLOCK(); 2508 /* Free the bw_meter entry */ 2509 free(x, M_BWMETER); 2510 return 0; 2511 } else { 2512 MFC_UNLOCK(); 2513 return EINVAL; 2514 } 2515 } 2516 /* NOTREACHED */ 2517 } 2518 2519 /* 2520 * Perform bandwidth measurement processing that may result in an upcall 2521 */ 2522 static void 2523 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2524 { 2525 struct timeval delta; 2526 2527 MFC_LOCK_ASSERT(); 2528 2529 delta = *nowp; 2530 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2531 2532 if (x->bm_flags & BW_METER_GEQ) { 2533 /* 2534 * Processing for ">=" type of bw_meter entry 2535 */ 2536 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2537 /* Reset the bw_meter entry */ 2538 x->bm_start_time = *nowp; 2539 x->bm_measured.b_packets = 0; 2540 x->bm_measured.b_bytes = 0; 2541 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2542 } 2543 2544 /* Record that a packet is received */ 2545 x->bm_measured.b_packets++; 2546 x->bm_measured.b_bytes += plen; 2547 2548 /* 2549 * Test if we should deliver an upcall 2550 */ 2551 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2552 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2553 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2554 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2555 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2556 /* Prepare an upcall for delivery */ 2557 bw_meter_prepare_upcall(x, nowp); 2558 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2559 } 2560 } 2561 } else if (x->bm_flags & BW_METER_LEQ) { 2562 /* 2563 * Processing for "<=" type of bw_meter entry 2564 */ 2565 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2566 /* 2567 * We are behind time with the multicast forwarding table 2568 * scanning for "<=" type of bw_meter entries, so test now 2569 * if we should deliver an upcall. 2570 */ 2571 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2572 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2573 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2574 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2575 /* Prepare an upcall for delivery */ 2576 bw_meter_prepare_upcall(x, nowp); 2577 } 2578 /* Reschedule the bw_meter entry */ 2579 unschedule_bw_meter(x); 2580 schedule_bw_meter(x, nowp); 2581 } 2582 2583 /* Record that a packet is received */ 2584 x->bm_measured.b_packets++; 2585 x->bm_measured.b_bytes += plen; 2586 2587 /* 2588 * Test if we should restart the measuring interval 2589 */ 2590 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2591 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2592 (x->bm_flags & BW_METER_UNIT_BYTES && 2593 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2594 /* Don't restart the measuring interval */ 2595 } else { 2596 /* Do restart the measuring interval */ 2597 /* 2598 * XXX: note that we don't unschedule and schedule, because this 2599 * might be too much overhead per packet. Instead, when we process 2600 * all entries for a given timer hash bin, we check whether it is 2601 * really a timeout. If not, we reschedule at that time. 2602 */ 2603 x->bm_start_time = *nowp; 2604 x->bm_measured.b_packets = 0; 2605 x->bm_measured.b_bytes = 0; 2606 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2607 } 2608 } 2609 } 2610 2611 /* 2612 * Prepare a bandwidth-related upcall 2613 */ 2614 static void 2615 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2616 { 2617 struct timeval delta; 2618 struct bw_upcall *u; 2619 2620 MFC_LOCK_ASSERT(); 2621 2622 /* 2623 * Compute the measured time interval 2624 */ 2625 delta = *nowp; 2626 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2627 2628 /* 2629 * If there are too many pending upcalls, deliver them now 2630 */ 2631 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2632 bw_upcalls_send(); 2633 2634 /* 2635 * Set the bw_upcall entry 2636 */ 2637 u = &bw_upcalls[bw_upcalls_n++]; 2638 u->bu_src = x->bm_mfc->mfc_origin; 2639 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2640 u->bu_threshold.b_time = x->bm_threshold.b_time; 2641 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2642 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2643 u->bu_measured.b_time = delta; 2644 u->bu_measured.b_packets = x->bm_measured.b_packets; 2645 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2646 u->bu_flags = 0; 2647 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2648 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2649 if (x->bm_flags & BW_METER_UNIT_BYTES) 2650 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2651 if (x->bm_flags & BW_METER_GEQ) 2652 u->bu_flags |= BW_UPCALL_GEQ; 2653 if (x->bm_flags & BW_METER_LEQ) 2654 u->bu_flags |= BW_UPCALL_LEQ; 2655 } 2656 2657 /* 2658 * Send the pending bandwidth-related upcalls 2659 */ 2660 static void 2661 bw_upcalls_send(void) 2662 { 2663 struct mbuf *m; 2664 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2665 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2666 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2667 0, /* unused2 */ 2668 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2669 0, /* im_mbz */ 2670 0, /* im_vif */ 2671 0, /* unused3 */ 2672 { 0 }, /* im_src */ 2673 { 0 } }; /* im_dst */ 2674 2675 MFC_LOCK_ASSERT(); 2676 2677 if (bw_upcalls_n == 0) 2678 return; /* No pending upcalls */ 2679 2680 bw_upcalls_n = 0; 2681 2682 /* 2683 * Allocate a new mbuf, initialize it with the header and 2684 * the payload for the pending calls. 2685 */ 2686 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2687 if (m == NULL) { 2688 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2689 return; 2690 } 2691 2692 m->m_len = m->m_pkthdr.len = 0; 2693 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2694 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2695 2696 /* 2697 * Send the upcalls 2698 * XXX do we need to set the address in k_igmpsrc ? 2699 */ 2700 mrtstat.mrts_upcalls++; 2701 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2702 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2703 ++mrtstat.mrts_upq_sockfull; 2704 } 2705 } 2706 2707 /* 2708 * Compute the timeout hash value for the bw_meter entries 2709 */ 2710 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2711 do { \ 2712 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2713 \ 2714 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2715 (hash) = next_timeval.tv_sec; \ 2716 if (next_timeval.tv_usec) \ 2717 (hash)++; /* XXX: make sure we don't timeout early */ \ 2718 (hash) %= BW_METER_BUCKETS; \ 2719 } while (0) 2720 2721 /* 2722 * Schedule a timer to process periodically bw_meter entry of type "<=" 2723 * by linking the entry in the proper hash bucket. 2724 */ 2725 static void 2726 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2727 { 2728 int time_hash; 2729 2730 MFC_LOCK_ASSERT(); 2731 2732 if (!(x->bm_flags & BW_METER_LEQ)) 2733 return; /* XXX: we schedule timers only for "<=" entries */ 2734 2735 /* 2736 * Reset the bw_meter entry 2737 */ 2738 x->bm_start_time = *nowp; 2739 x->bm_measured.b_packets = 0; 2740 x->bm_measured.b_bytes = 0; 2741 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2742 2743 /* 2744 * Compute the timeout hash value and insert the entry 2745 */ 2746 BW_METER_TIMEHASH(x, time_hash); 2747 x->bm_time_next = bw_meter_timers[time_hash]; 2748 bw_meter_timers[time_hash] = x; 2749 x->bm_time_hash = time_hash; 2750 } 2751 2752 /* 2753 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2754 * by removing the entry from the proper hash bucket. 2755 */ 2756 static void 2757 unschedule_bw_meter(struct bw_meter *x) 2758 { 2759 int time_hash; 2760 struct bw_meter *prev, *tmp; 2761 2762 MFC_LOCK_ASSERT(); 2763 2764 if (!(x->bm_flags & BW_METER_LEQ)) 2765 return; /* XXX: we schedule timers only for "<=" entries */ 2766 2767 /* 2768 * Compute the timeout hash value and delete the entry 2769 */ 2770 time_hash = x->bm_time_hash; 2771 if (time_hash >= BW_METER_BUCKETS) 2772 return; /* Entry was not scheduled */ 2773 2774 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2775 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2776 if (tmp == x) 2777 break; 2778 2779 if (tmp == NULL) 2780 panic("unschedule_bw_meter: bw_meter entry not found"); 2781 2782 if (prev != NULL) 2783 prev->bm_time_next = x->bm_time_next; 2784 else 2785 bw_meter_timers[time_hash] = x->bm_time_next; 2786 2787 x->bm_time_next = NULL; 2788 x->bm_time_hash = BW_METER_BUCKETS; 2789 } 2790 2791 2792 /* 2793 * Process all "<=" type of bw_meter that should be processed now, 2794 * and for each entry prepare an upcall if necessary. Each processed 2795 * entry is rescheduled again for the (periodic) processing. 2796 * 2797 * This is run periodically (once per second normally). On each round, 2798 * all the potentially matching entries are in the hash slot that we are 2799 * looking at. 2800 */ 2801 static void 2802 bw_meter_process() 2803 { 2804 static uint32_t last_tv_sec; /* last time we processed this */ 2805 2806 uint32_t loops; 2807 int i; 2808 struct timeval now, process_endtime; 2809 2810 GET_TIME(now); 2811 if (last_tv_sec == now.tv_sec) 2812 return; /* nothing to do */ 2813 2814 loops = now.tv_sec - last_tv_sec; 2815 last_tv_sec = now.tv_sec; 2816 if (loops > BW_METER_BUCKETS) 2817 loops = BW_METER_BUCKETS; 2818 2819 MFC_LOCK(); 2820 /* 2821 * Process all bins of bw_meter entries from the one after the last 2822 * processed to the current one. On entry, i points to the last bucket 2823 * visited, so we need to increment i at the beginning of the loop. 2824 */ 2825 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2826 struct bw_meter *x, *tmp_list; 2827 2828 if (++i >= BW_METER_BUCKETS) 2829 i = 0; 2830 2831 /* Disconnect the list of bw_meter entries from the bin */ 2832 tmp_list = bw_meter_timers[i]; 2833 bw_meter_timers[i] = NULL; 2834 2835 /* Process the list of bw_meter entries */ 2836 while (tmp_list != NULL) { 2837 x = tmp_list; 2838 tmp_list = tmp_list->bm_time_next; 2839 2840 /* Test if the time interval is over */ 2841 process_endtime = x->bm_start_time; 2842 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2843 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2844 /* Not yet: reschedule, but don't reset */ 2845 int time_hash; 2846 2847 BW_METER_TIMEHASH(x, time_hash); 2848 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2849 /* 2850 * XXX: somehow the bin processing is a bit ahead of time. 2851 * Put the entry in the next bin. 2852 */ 2853 if (++time_hash >= BW_METER_BUCKETS) 2854 time_hash = 0; 2855 } 2856 x->bm_time_next = bw_meter_timers[time_hash]; 2857 bw_meter_timers[time_hash] = x; 2858 x->bm_time_hash = time_hash; 2859 2860 continue; 2861 } 2862 2863 /* 2864 * Test if we should deliver an upcall 2865 */ 2866 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2867 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2868 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2869 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2870 /* Prepare an upcall for delivery */ 2871 bw_meter_prepare_upcall(x, &now); 2872 } 2873 2874 /* 2875 * Reschedule for next processing 2876 */ 2877 schedule_bw_meter(x, &now); 2878 } 2879 } 2880 2881 /* Send all upcalls that are pending delivery */ 2882 bw_upcalls_send(); 2883 2884 MFC_UNLOCK(); 2885 } 2886 2887 /* 2888 * A periodic function for sending all upcalls that are pending delivery 2889 */ 2890 static void 2891 expire_bw_upcalls_send(void *unused) 2892 { 2893 MFC_LOCK(); 2894 bw_upcalls_send(); 2895 MFC_UNLOCK(); 2896 2897 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2898 expire_bw_upcalls_send, NULL); 2899 } 2900 2901 /* 2902 * A periodic function for periodic scanning of the multicast forwarding 2903 * table for processing all "<=" bw_meter entries. 2904 */ 2905 static void 2906 expire_bw_meter_process(void *unused) 2907 { 2908 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2909 bw_meter_process(); 2910 2911 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 2912 } 2913 2914 /* 2915 * End of bandwidth monitoring code 2916 */ 2917 2918 #ifdef PIM 2919 /* 2920 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2921 * 2922 */ 2923 static int 2924 pim_register_send(struct ip *ip, struct vif *vifp, 2925 struct mbuf *m, struct mfc *rt) 2926 { 2927 struct mbuf *mb_copy, *mm; 2928 2929 if (mrtdebug & DEBUG_PIM) 2930 log(LOG_DEBUG, "pim_register_send: "); 2931 2932 mb_copy = pim_register_prepare(ip, m); 2933 if (mb_copy == NULL) 2934 return ENOBUFS; 2935 2936 /* 2937 * Send all the fragments. Note that the mbuf for each fragment 2938 * is freed by the sending machinery. 2939 */ 2940 for (mm = mb_copy; mm; mm = mb_copy) { 2941 mb_copy = mm->m_nextpkt; 2942 mm->m_nextpkt = 0; 2943 mm = m_pullup(mm, sizeof(struct ip)); 2944 if (mm != NULL) { 2945 ip = mtod(mm, struct ip *); 2946 if ((mrt_api_config & MRT_MFC_RP) && 2947 (rt->mfc_rp.s_addr != INADDR_ANY)) { 2948 pim_register_send_rp(ip, vifp, mm, rt); 2949 } else { 2950 pim_register_send_upcall(ip, vifp, mm, rt); 2951 } 2952 } 2953 } 2954 2955 return 0; 2956 } 2957 2958 /* 2959 * Return a copy of the data packet that is ready for PIM Register 2960 * encapsulation. 2961 * XXX: Note that in the returned copy the IP header is a valid one. 2962 */ 2963 static struct mbuf * 2964 pim_register_prepare(struct ip *ip, struct mbuf *m) 2965 { 2966 struct mbuf *mb_copy = NULL; 2967 int mtu; 2968 2969 /* Take care of delayed checksums */ 2970 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2971 in_delayed_cksum(m); 2972 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2973 } 2974 2975 /* 2976 * Copy the old packet & pullup its IP header into the 2977 * new mbuf so we can modify it. 2978 */ 2979 mb_copy = m_copypacket(m, M_DONTWAIT); 2980 if (mb_copy == NULL) 2981 return NULL; 2982 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2983 if (mb_copy == NULL) 2984 return NULL; 2985 2986 /* take care of the TTL */ 2987 ip = mtod(mb_copy, struct ip *); 2988 --ip->ip_ttl; 2989 2990 /* Compute the MTU after the PIM Register encapsulation */ 2991 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2992 2993 if (ip->ip_len <= mtu) { 2994 /* Turn the IP header into a valid one */ 2995 ip->ip_len = htons(ip->ip_len); 2996 ip->ip_off = htons(ip->ip_off); 2997 ip->ip_sum = 0; 2998 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2999 } else { 3000 /* Fragment the packet */ 3001 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 3002 m_freem(mb_copy); 3003 return NULL; 3004 } 3005 } 3006 return mb_copy; 3007 } 3008 3009 /* 3010 * Send an upcall with the data packet to the user-level process. 3011 */ 3012 static int 3013 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3014 struct mbuf *mb_copy, struct mfc *rt) 3015 { 3016 struct mbuf *mb_first; 3017 int len = ntohs(ip->ip_len); 3018 struct igmpmsg *im; 3019 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 3020 3021 VIF_LOCK_ASSERT(); 3022 3023 /* 3024 * Add a new mbuf with an upcall header 3025 */ 3026 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3027 if (mb_first == NULL) { 3028 m_freem(mb_copy); 3029 return ENOBUFS; 3030 } 3031 mb_first->m_data += max_linkhdr; 3032 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3033 mb_first->m_len = sizeof(struct igmpmsg); 3034 mb_first->m_next = mb_copy; 3035 3036 /* Send message to routing daemon */ 3037 im = mtod(mb_first, struct igmpmsg *); 3038 im->im_msgtype = IGMPMSG_WHOLEPKT; 3039 im->im_mbz = 0; 3040 im->im_vif = vifp - viftable; 3041 im->im_src = ip->ip_src; 3042 im->im_dst = ip->ip_dst; 3043 3044 k_igmpsrc.sin_addr = ip->ip_src; 3045 3046 mrtstat.mrts_upcalls++; 3047 3048 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3049 if (mrtdebug & DEBUG_PIM) 3050 log(LOG_WARNING, 3051 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3052 ++mrtstat.mrts_upq_sockfull; 3053 return ENOBUFS; 3054 } 3055 3056 /* Keep statistics */ 3057 pimstat.pims_snd_registers_msgs++; 3058 pimstat.pims_snd_registers_bytes += len; 3059 3060 return 0; 3061 } 3062 3063 /* 3064 * Encapsulate the data packet in PIM Register message and send it to the RP. 3065 */ 3066 static int 3067 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3068 struct mbuf *mb_copy, struct mfc *rt) 3069 { 3070 struct mbuf *mb_first; 3071 struct ip *ip_outer; 3072 struct pim_encap_pimhdr *pimhdr; 3073 int len = ntohs(ip->ip_len); 3074 vifi_t vifi = rt->mfc_parent; 3075 3076 VIF_LOCK_ASSERT(); 3077 3078 if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) { 3079 m_freem(mb_copy); 3080 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3081 } 3082 3083 /* 3084 * Add a new mbuf with the encapsulating header 3085 */ 3086 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3087 if (mb_first == NULL) { 3088 m_freem(mb_copy); 3089 return ENOBUFS; 3090 } 3091 mb_first->m_data += max_linkhdr; 3092 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3093 mb_first->m_next = mb_copy; 3094 3095 mb_first->m_pkthdr.len = len + mb_first->m_len; 3096 3097 /* 3098 * Fill in the encapsulating IP and PIM header 3099 */ 3100 ip_outer = mtod(mb_first, struct ip *); 3101 *ip_outer = pim_encap_iphdr; 3102 ip_outer->ip_id = ip_newid(); 3103 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3104 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3105 ip_outer->ip_dst = rt->mfc_rp; 3106 /* 3107 * Copy the inner header TOS to the outer header, and take care of the 3108 * IP_DF bit. 3109 */ 3110 ip_outer->ip_tos = ip->ip_tos; 3111 if (ntohs(ip->ip_off) & IP_DF) 3112 ip_outer->ip_off |= IP_DF; 3113 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 3114 + sizeof(pim_encap_iphdr)); 3115 *pimhdr = pim_encap_pimhdr; 3116 /* If the iif crosses a border, set the Border-bit */ 3117 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3118 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3119 3120 mb_first->m_data += sizeof(pim_encap_iphdr); 3121 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3122 mb_first->m_data -= sizeof(pim_encap_iphdr); 3123 3124 if (vifp->v_rate_limit == 0) 3125 tbf_send_packet(vifp, mb_first); 3126 else 3127 tbf_control(vifp, mb_first, ip, ip_outer->ip_len); 3128 3129 /* Keep statistics */ 3130 pimstat.pims_snd_registers_msgs++; 3131 pimstat.pims_snd_registers_bytes += len; 3132 3133 return 0; 3134 } 3135 3136 /* 3137 * PIM-SMv2 and PIM-DM messages processing. 3138 * Receives and verifies the PIM control messages, and passes them 3139 * up to the listening socket, using rip_input(). 3140 * The only message with special processing is the PIM_REGISTER message 3141 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3142 * is passed to if_simloop(). 3143 */ 3144 void 3145 pim_input(struct mbuf *m, int off) 3146 { 3147 struct ip *ip = mtod(m, struct ip *); 3148 struct pim *pim; 3149 int minlen; 3150 int datalen = ip->ip_len; 3151 int ip_tos; 3152 int iphlen = off; 3153 3154 /* Keep statistics */ 3155 pimstat.pims_rcv_total_msgs++; 3156 pimstat.pims_rcv_total_bytes += datalen; 3157 3158 /* 3159 * Validate lengths 3160 */ 3161 if (datalen < PIM_MINLEN) { 3162 pimstat.pims_rcv_tooshort++; 3163 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3164 datalen, (u_long)ip->ip_src.s_addr); 3165 m_freem(m); 3166 return; 3167 } 3168 3169 /* 3170 * If the packet is at least as big as a REGISTER, go agead 3171 * and grab the PIM REGISTER header size, to avoid another 3172 * possible m_pullup() later. 3173 * 3174 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3175 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3176 */ 3177 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3178 /* 3179 * Get the IP and PIM headers in contiguous memory, and 3180 * possibly the PIM REGISTER header. 3181 */ 3182 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3183 (m = m_pullup(m, minlen)) == 0) { 3184 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3185 return; 3186 } 3187 /* m_pullup() may have given us a new mbuf so reset ip. */ 3188 ip = mtod(m, struct ip *); 3189 ip_tos = ip->ip_tos; 3190 3191 /* adjust mbuf to point to the PIM header */ 3192 m->m_data += iphlen; 3193 m->m_len -= iphlen; 3194 pim = mtod(m, struct pim *); 3195 3196 /* 3197 * Validate checksum. If PIM REGISTER, exclude the data packet. 3198 * 3199 * XXX: some older PIMv2 implementations don't make this distinction, 3200 * so for compatibility reason perform the checksum over part of the 3201 * message, and if error, then over the whole message. 3202 */ 3203 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3204 /* do nothing, checksum okay */ 3205 } else if (in_cksum(m, datalen)) { 3206 pimstat.pims_rcv_badsum++; 3207 if (mrtdebug & DEBUG_PIM) 3208 log(LOG_DEBUG, "pim_input: invalid checksum"); 3209 m_freem(m); 3210 return; 3211 } 3212 3213 /* PIM version check */ 3214 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3215 pimstat.pims_rcv_badversion++; 3216 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3217 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3218 m_freem(m); 3219 return; 3220 } 3221 3222 /* restore mbuf back to the outer IP */ 3223 m->m_data -= iphlen; 3224 m->m_len += iphlen; 3225 3226 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3227 /* 3228 * Since this is a REGISTER, we'll make a copy of the register 3229 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3230 * routing daemon. 3231 */ 3232 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 3233 struct mbuf *mcp; 3234 struct ip *encap_ip; 3235 u_int32_t *reghdr; 3236 struct ifnet *vifp; 3237 3238 VIF_LOCK(); 3239 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3240 VIF_UNLOCK(); 3241 if (mrtdebug & DEBUG_PIM) 3242 log(LOG_DEBUG, 3243 "pim_input: register vif not set: %d\n", reg_vif_num); 3244 m_freem(m); 3245 return; 3246 } 3247 /* XXX need refcnt? */ 3248 vifp = viftable[reg_vif_num].v_ifp; 3249 VIF_UNLOCK(); 3250 3251 /* 3252 * Validate length 3253 */ 3254 if (datalen < PIM_REG_MINLEN) { 3255 pimstat.pims_rcv_tooshort++; 3256 pimstat.pims_rcv_badregisters++; 3257 log(LOG_ERR, 3258 "pim_input: register packet size too small %d from %lx\n", 3259 datalen, (u_long)ip->ip_src.s_addr); 3260 m_freem(m); 3261 return; 3262 } 3263 3264 reghdr = (u_int32_t *)(pim + 1); 3265 encap_ip = (struct ip *)(reghdr + 1); 3266 3267 if (mrtdebug & DEBUG_PIM) { 3268 log(LOG_DEBUG, 3269 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3270 (u_long)ntohl(encap_ip->ip_src.s_addr), 3271 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3272 ntohs(encap_ip->ip_len)); 3273 } 3274 3275 /* verify the version number of the inner packet */ 3276 if (encap_ip->ip_v != IPVERSION) { 3277 pimstat.pims_rcv_badregisters++; 3278 if (mrtdebug & DEBUG_PIM) { 3279 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3280 "of the inner packet\n", encap_ip->ip_v); 3281 } 3282 m_freem(m); 3283 return; 3284 } 3285 3286 /* verify the inner packet is destined to a mcast group */ 3287 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 3288 pimstat.pims_rcv_badregisters++; 3289 if (mrtdebug & DEBUG_PIM) 3290 log(LOG_DEBUG, 3291 "pim_input: inner packet of register is not " 3292 "multicast %lx\n", 3293 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3294 m_freem(m); 3295 return; 3296 } 3297 3298 /* If a NULL_REGISTER, pass it to the daemon */ 3299 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3300 goto pim_input_to_daemon; 3301 3302 /* 3303 * Copy the TOS from the outer IP header to the inner IP header. 3304 */ 3305 if (encap_ip->ip_tos != ip_tos) { 3306 /* Outer TOS -> inner TOS */ 3307 encap_ip->ip_tos = ip_tos; 3308 /* Recompute the inner header checksum. Sigh... */ 3309 3310 /* adjust mbuf to point to the inner IP header */ 3311 m->m_data += (iphlen + PIM_MINLEN); 3312 m->m_len -= (iphlen + PIM_MINLEN); 3313 3314 encap_ip->ip_sum = 0; 3315 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3316 3317 /* restore mbuf to point back to the outer IP header */ 3318 m->m_data -= (iphlen + PIM_MINLEN); 3319 m->m_len += (iphlen + PIM_MINLEN); 3320 } 3321 3322 /* 3323 * Decapsulate the inner IP packet and loopback to forward it 3324 * as a normal multicast packet. Also, make a copy of the 3325 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3326 * to pass to the daemon later, so it can take the appropriate 3327 * actions (e.g., send back PIM_REGISTER_STOP). 3328 * XXX: here m->m_data points to the outer IP header. 3329 */ 3330 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 3331 if (mcp == NULL) { 3332 log(LOG_ERR, 3333 "pim_input: pim register: could not copy register head\n"); 3334 m_freem(m); 3335 return; 3336 } 3337 3338 /* Keep statistics */ 3339 /* XXX: registers_bytes include only the encap. mcast pkt */ 3340 pimstat.pims_rcv_registers_msgs++; 3341 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3342 3343 /* 3344 * forward the inner ip packet; point m_data at the inner ip. 3345 */ 3346 m_adj(m, iphlen + PIM_MINLEN); 3347 3348 if (mrtdebug & DEBUG_PIM) { 3349 log(LOG_DEBUG, 3350 "pim_input: forwarding decapsulated register: " 3351 "src %lx, dst %lx, vif %d\n", 3352 (u_long)ntohl(encap_ip->ip_src.s_addr), 3353 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3354 reg_vif_num); 3355 } 3356 /* NB: vifp was collected above; can it change on us? */ 3357 if_simloop(vifp, m, dst.sin_family, 0); 3358 3359 /* prepare the register head to send to the mrouting daemon */ 3360 m = mcp; 3361 } 3362 3363 pim_input_to_daemon: 3364 /* 3365 * Pass the PIM message up to the daemon; if it is a Register message, 3366 * pass the 'head' only up to the daemon. This includes the 3367 * outer IP header, PIM header, PIM-Register header and the 3368 * inner IP header. 3369 * XXX: the outer IP header pkt size of a Register is not adjust to 3370 * reflect the fact that the inner multicast data is truncated. 3371 */ 3372 rip_input(m, iphlen); 3373 3374 return; 3375 } 3376 #endif /* PIM */ 3377 3378 static int 3379 ip_mroute_modevent(module_t mod, int type, void *unused) 3380 { 3381 switch (type) { 3382 case MOD_LOAD: 3383 mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF); 3384 MFC_LOCK_INIT(); 3385 VIF_LOCK_INIT(); 3386 ip_mrouter_reset(); 3387 ip_mcast_src = X_ip_mcast_src; 3388 ip_mforward = X_ip_mforward; 3389 ip_mrouter_done = X_ip_mrouter_done; 3390 ip_mrouter_get = X_ip_mrouter_get; 3391 ip_mrouter_set = X_ip_mrouter_set; 3392 ip_rsvp_force_done = X_ip_rsvp_force_done; 3393 ip_rsvp_vif = X_ip_rsvp_vif; 3394 legal_vif_num = X_legal_vif_num; 3395 mrt_ioctl = X_mrt_ioctl; 3396 rsvp_input_p = X_rsvp_input; 3397 break; 3398 3399 case MOD_UNLOAD: 3400 /* 3401 * Typically module unload happens after the user-level 3402 * process has shutdown the kernel services (the check 3403 * below insures someone can't just yank the module out 3404 * from under a running process). But if the module is 3405 * just loaded and then unloaded w/o starting up a user 3406 * process we still need to cleanup. 3407 */ 3408 if (ip_mrouter) 3409 return EINVAL; 3410 3411 X_ip_mrouter_done(); 3412 ip_mcast_src = NULL; 3413 ip_mforward = NULL; 3414 ip_mrouter_done = NULL; 3415 ip_mrouter_get = NULL; 3416 ip_mrouter_set = NULL; 3417 ip_rsvp_force_done = NULL; 3418 ip_rsvp_vif = NULL; 3419 legal_vif_num = NULL; 3420 mrt_ioctl = NULL; 3421 rsvp_input_p = NULL; 3422 VIF_LOCK_DESTROY(); 3423 MFC_LOCK_DESTROY(); 3424 mtx_destroy(&mrouter_mtx); 3425 break; 3426 default: 3427 return EOPNOTSUPP; 3428 } 3429 return 0; 3430 } 3431 3432 static moduledata_t ip_mroutemod = { 3433 "ip_mroute", 3434 ip_mroute_modevent, 3435 0 3436 }; 3437 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3438