xref: /freebsd/sys/netinet/ip_mroute.c (revision 6adf353a56a161443406b44a45d00c688ca7b857)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  *
11  * MROUTING Revision: 3.5
12  * $FreeBSD$
13  */
14 
15 #include "opt_mrouting.h"
16 #include "opt_random_ip_id.h"
17 
18 #include <sys/param.h>
19 #include <sys/systm.h>
20 #include <sys/malloc.h>
21 #include <sys/mbuf.h>
22 #include <sys/socket.h>
23 #include <sys/socketvar.h>
24 #include <sys/protosw.h>
25 #include <sys/time.h>
26 #include <sys/kernel.h>
27 #include <sys/sysctl.h>
28 #include <sys/sockio.h>
29 #include <sys/syslog.h>
30 #include <net/if.h>
31 #include <net/route.h>
32 #include <netinet/in.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_var.h>
37 #include <netinet/igmp.h>
38 #include <netinet/ip_encap.h>
39 #include <netinet/ip_mroute.h>
40 #include <netinet/ipprotosw.h>
41 #include <netinet/udp.h>
42 #include <machine/in_cksum.h>
43 
44 #ifndef MROUTING
45 extern u_long	_ip_mcast_src __P((int vifi));
46 extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
47 				  struct mbuf *m, struct ip_moptions *imo));
48 extern int	_ip_mrouter_done __P((void));
49 extern int	_ip_mrouter_get __P((struct socket *so, struct sockopt *sopt));
50 extern int	_ip_mrouter_set __P((struct socket *so, struct sockopt *sopt));
51 extern int	_mrt_ioctl __P((int req, caddr_t data));
52 
53 /*
54  * Dummy routines and globals used when multicast routing is not compiled in.
55  */
56 
57 struct socket  *ip_mrouter  = NULL;
58 u_int		rsvpdebug = 0;
59 
60 int
61 _ip_mrouter_set(so, sopt)
62 	struct socket *so;
63 	struct sockopt *sopt;
64 {
65 	return(EOPNOTSUPP);
66 }
67 
68 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
69 
70 
71 int
72 _ip_mrouter_get(so, sopt)
73 	struct socket *so;
74 	struct sockopt *sopt;
75 {
76 	return(EOPNOTSUPP);
77 }
78 
79 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
80 
81 int
82 _ip_mrouter_done()
83 {
84 	return(0);
85 }
86 
87 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
88 
89 int
90 _ip_mforward(ip, ifp, m, imo)
91 	struct ip *ip;
92 	struct ifnet *ifp;
93 	struct mbuf *m;
94 	struct ip_moptions *imo;
95 {
96 	return(0);
97 }
98 
99 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
100 		   struct ip_moptions *) = _ip_mforward;
101 
102 int
103 _mrt_ioctl(int req, caddr_t data)
104 {
105 	return EOPNOTSUPP;
106 }
107 
108 int (*mrt_ioctl)(int, caddr_t) = _mrt_ioctl;
109 
110 void
111 rsvp_input(m, off, proto)		/* XXX must fixup manually */
112 	struct mbuf *m;
113 	int off;
114 	int proto;
115 {
116     /* Can still get packets with rsvp_on = 0 if there is a local member
117      * of the group to which the RSVP packet is addressed.  But in this
118      * case we want to throw the packet away.
119      */
120     if (!rsvp_on) {
121 	m_freem(m);
122 	return;
123     }
124 
125     if (ip_rsvpd != NULL) {
126 	if (rsvpdebug)
127 	    printf("rsvp_input: Sending packet up old-style socket\n");
128 	rip_input(m, off, proto);
129 	return;
130     }
131     /* Drop the packet */
132     m_freem(m);
133 }
134 
135 void ipip_input(struct mbuf *m, int off, int proto) { /* XXX must fixup manually */
136 	rip_input(m, off, proto);
137 }
138 
139 int (*legal_vif_num)(int) = 0;
140 
141 /*
142  * This should never be called, since IP_MULTICAST_VIF should fail, but
143  * just in case it does get called, the code a little lower in ip_output
144  * will assign the packet a local address.
145  */
146 u_long
147 _ip_mcast_src(int vifi) { return INADDR_ANY; }
148 u_long (*ip_mcast_src)(int) = _ip_mcast_src;
149 
150 int
151 ip_rsvp_vif_init(so, sopt)
152     struct socket *so;
153     struct sockopt *sopt;
154 {
155     return(EINVAL);
156 }
157 
158 int
159 ip_rsvp_vif_done(so, sopt)
160     struct socket *so;
161     struct sockopt *sopt;
162 {
163     return(EINVAL);
164 }
165 
166 void
167 ip_rsvp_force_done(so)
168     struct socket *so;
169 {
170     return;
171 }
172 
173 #else /* MROUTING */
174 
175 #define M_HASCL(m)	((m)->m_flags & M_EXT)
176 
177 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
178 
179 #ifndef MROUTE_KLD
180 /* The socket used to communicate with the multicast routing daemon.  */
181 struct socket  *ip_mrouter  = NULL;
182 #endif
183 
184 #if defined(MROUTING) || defined(MROUTE_KLD)
185 static struct mrtstat	mrtstat;
186 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
187     &mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
188 #endif
189 
190 static struct mfc	*mfctable[MFCTBLSIZ];
191 static u_char		nexpire[MFCTBLSIZ];
192 static struct vif	viftable[MAXVIFS];
193 static u_int	mrtdebug = 0;	  /* debug level 	*/
194 #define		DEBUG_MFC	0x02
195 #define		DEBUG_FORWARD	0x04
196 #define		DEBUG_EXPIRE	0x08
197 #define		DEBUG_XMIT	0x10
198 static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
199 static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
200 
201 static struct callout_handle expire_upcalls_ch;
202 
203 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
204 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
205 
206 /*
207  * Define the token bucket filter structures
208  * tbftable -> each vif has one of these for storing info
209  */
210 
211 static struct tbf tbftable[MAXVIFS];
212 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
213 
214 /*
215  * 'Interfaces' associated with decapsulator (so we can tell
216  * packets that went through it from ones that get reflected
217  * by a broken gateway).  These interfaces are never linked into
218  * the system ifnet list & no routes point to them.  I.e., packets
219  * can't be sent this way.  They only exist as a placeholder for
220  * multicast source verification.
221  */
222 static struct ifnet multicast_decap_if[MAXVIFS];
223 
224 #define ENCAP_TTL 64
225 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
226 
227 /* prototype IP hdr for encapsulated packets */
228 static struct ip multicast_encap_iphdr = {
229 #if BYTE_ORDER == LITTLE_ENDIAN
230 	sizeof(struct ip) >> 2, IPVERSION,
231 #else
232 	IPVERSION, sizeof(struct ip) >> 2,
233 #endif
234 	0,				/* tos */
235 	sizeof(struct ip),		/* total length */
236 	0,				/* id */
237 	0,				/* frag offset */
238 	ENCAP_TTL, ENCAP_PROTO,
239 	0,				/* checksum */
240 };
241 
242 /*
243  * Private variables.
244  */
245 static vifi_t	   numvifs = 0;
246 static const struct encaptab *encap_cookie = NULL;
247 
248 /*
249  * one-back cache used by ipip_input to locate a tunnel's vif
250  * given a datagram's src ip address.
251  */
252 static u_long last_encap_src;
253 static struct vif *last_encap_vif;
254 
255 static u_long	X_ip_mcast_src __P((int vifi));
256 static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
257 static int	X_ip_mrouter_done __P((void));
258 static int	X_ip_mrouter_get __P((struct socket *so, struct sockopt *m));
259 static int	X_ip_mrouter_set __P((struct socket *so, struct sockopt *m));
260 static int	X_legal_vif_num __P((int vif));
261 static int	X_mrt_ioctl __P((int cmd, caddr_t data));
262 
263 static int get_sg_cnt(struct sioc_sg_req *);
264 static int get_vif_cnt(struct sioc_vif_req *);
265 static int ip_mrouter_init(struct socket *, int);
266 static int add_vif(struct vifctl *);
267 static int del_vif(vifi_t);
268 static int add_mfc(struct mfcctl *);
269 static int del_mfc(struct mfcctl *);
270 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
271 static int set_assert(int);
272 static void expire_upcalls(void *);
273 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
274 		  vifi_t);
275 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
276 static void encap_send(struct ip *, struct vif *, struct mbuf *);
277 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
278 static void tbf_queue(struct vif *, struct mbuf *);
279 static void tbf_process_q(struct vif *);
280 static void tbf_reprocess_q(void *);
281 static int tbf_dq_sel(struct vif *, struct ip *);
282 static void tbf_send_packet(struct vif *, struct mbuf *);
283 static void tbf_update_tokens(struct vif *);
284 static int priority(struct vif *, struct ip *);
285 
286 /*
287  * whether or not special PIM assert processing is enabled.
288  */
289 static int pim_assert;
290 /*
291  * Rate limit for assert notification messages, in usec
292  */
293 #define ASSERT_MSG_TIME		3000000
294 
295 /*
296  * Hash function for a source, group entry
297  */
298 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
299 			((g) >> 20) ^ ((g) >> 10) ^ (g))
300 
301 /*
302  * Find a route for a given origin IP address and Multicast group address
303  * Type of service parameter to be added in the future!!!
304  */
305 
306 #define MFCFIND(o, g, rt) { \
307 	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
308 	rt = NULL; \
309 	++mrtstat.mrts_mfc_lookups; \
310 	while (_rt) { \
311 		if ((_rt->mfc_origin.s_addr == o) && \
312 		    (_rt->mfc_mcastgrp.s_addr == g) && \
313 		    (_rt->mfc_stall == NULL)) { \
314 			rt = _rt; \
315 			break; \
316 		} \
317 		_rt = _rt->mfc_next; \
318 	} \
319 	if (rt == NULL) { \
320 		++mrtstat.mrts_mfc_misses; \
321 	} \
322 }
323 
324 
325 /*
326  * Macros to compute elapsed time efficiently
327  * Borrowed from Van Jacobson's scheduling code
328  */
329 #define TV_DELTA(a, b, delta) { \
330 	    register int xxs; \
331 		\
332 	    delta = (a).tv_usec - (b).tv_usec; \
333 	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
334 	       switch (xxs) { \
335 		      case 2: \
336 			  delta += 1000000; \
337 			      /* fall through */ \
338 		      case 1: \
339 			  delta += 1000000; \
340 			  break; \
341 		      default: \
342 			  delta += (1000000 * xxs); \
343 	       } \
344 	    } \
345 }
346 
347 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
348 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
349 
350 #ifdef UPCALL_TIMING
351 u_long upcall_data[51];
352 static void collate(struct timeval *);
353 #endif /* UPCALL_TIMING */
354 
355 
356 /*
357  * Handle MRT setsockopt commands to modify the multicast routing tables.
358  */
359 static int
360 X_ip_mrouter_set(so, sopt)
361 	struct socket *so;
362 	struct sockopt *sopt;
363 {
364 	int	error, optval;
365 	vifi_t	vifi;
366 	struct	vifctl vifc;
367 	struct	mfcctl mfc;
368 
369 	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
370 		return (EPERM);
371 
372 	error = 0;
373 	switch (sopt->sopt_name) {
374 	case MRT_INIT:
375 		error = sooptcopyin(sopt, &optval, sizeof optval,
376 				    sizeof optval);
377 		if (error)
378 			break;
379 		error = ip_mrouter_init(so, optval);
380 		break;
381 
382 	case MRT_DONE:
383 		error = ip_mrouter_done();
384 		break;
385 
386 	case MRT_ADD_VIF:
387 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
388 		if (error)
389 			break;
390 		error = add_vif(&vifc);
391 		break;
392 
393 	case MRT_DEL_VIF:
394 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
395 		if (error)
396 			break;
397 		error = del_vif(vifi);
398 		break;
399 
400 	case MRT_ADD_MFC:
401 	case MRT_DEL_MFC:
402 		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
403 		if (error)
404 			break;
405 		if (sopt->sopt_name == MRT_ADD_MFC)
406 			error = add_mfc(&mfc);
407 		else
408 			error = del_mfc(&mfc);
409 		break;
410 
411 	case MRT_ASSERT:
412 		error = sooptcopyin(sopt, &optval, sizeof optval,
413 				    sizeof optval);
414 		if (error)
415 			break;
416 		set_assert(optval);
417 		break;
418 
419 	default:
420 		error = EOPNOTSUPP;
421 		break;
422 	}
423 	return (error);
424 }
425 
426 #ifndef MROUTE_KLD
427 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
428 #endif
429 
430 /*
431  * Handle MRT getsockopt commands
432  */
433 static int
434 X_ip_mrouter_get(so, sopt)
435 	struct socket *so;
436 	struct sockopt *sopt;
437 {
438 	int error;
439 	static int version = 0x0305; /* !!! why is this here? XXX */
440 
441 	switch (sopt->sopt_name) {
442 	case MRT_VERSION:
443 		error = sooptcopyout(sopt, &version, sizeof version);
444 		break;
445 
446 	case MRT_ASSERT:
447 		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
448 		break;
449 	default:
450 		error = EOPNOTSUPP;
451 		break;
452 	}
453 	return (error);
454 }
455 
456 #ifndef MROUTE_KLD
457 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
458 #endif
459 
460 /*
461  * Handle ioctl commands to obtain information from the cache
462  */
463 static int
464 X_mrt_ioctl(cmd, data)
465     int cmd;
466     caddr_t data;
467 {
468     int error = 0;
469 
470     switch (cmd) {
471 	case (SIOCGETVIFCNT):
472 	    return (get_vif_cnt((struct sioc_vif_req *)data));
473 	    break;
474 	case (SIOCGETSGCNT):
475 	    return (get_sg_cnt((struct sioc_sg_req *)data));
476 	    break;
477 	default:
478 	    return (EINVAL);
479 	    break;
480     }
481     return error;
482 }
483 
484 #ifndef MROUTE_KLD
485 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
486 #endif
487 
488 /*
489  * returns the packet, byte, rpf-failure count for the source group provided
490  */
491 static int
492 get_sg_cnt(req)
493     register struct sioc_sg_req *req;
494 {
495     register struct mfc *rt;
496     int s;
497 
498     s = splnet();
499     MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
500     splx(s);
501     if (rt != NULL) {
502 	req->pktcnt = rt->mfc_pkt_cnt;
503 	req->bytecnt = rt->mfc_byte_cnt;
504 	req->wrong_if = rt->mfc_wrong_if;
505     } else
506 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
507 
508     return 0;
509 }
510 
511 /*
512  * returns the input and output packet and byte counts on the vif provided
513  */
514 static int
515 get_vif_cnt(req)
516     register struct sioc_vif_req *req;
517 {
518     register vifi_t vifi = req->vifi;
519 
520     if (vifi >= numvifs) return EINVAL;
521 
522     req->icount = viftable[vifi].v_pkt_in;
523     req->ocount = viftable[vifi].v_pkt_out;
524     req->ibytes = viftable[vifi].v_bytes_in;
525     req->obytes = viftable[vifi].v_bytes_out;
526 
527     return 0;
528 }
529 
530 /*
531  * Enable multicast routing
532  */
533 static int
534 ip_mrouter_init(so, version)
535 	struct socket *so;
536 	int version;
537 {
538     if (mrtdebug)
539 	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
540 		so->so_type, so->so_proto->pr_protocol);
541 
542     if (so->so_type != SOCK_RAW ||
543 	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
544 
545     if (version != 1)
546 	return ENOPROTOOPT;
547 
548     if (ip_mrouter != NULL) return EADDRINUSE;
549 
550     ip_mrouter = so;
551 
552     bzero((caddr_t)mfctable, sizeof(mfctable));
553     bzero((caddr_t)nexpire, sizeof(nexpire));
554 
555     pim_assert = 0;
556 
557     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
558 
559     if (mrtdebug)
560 	log(LOG_DEBUG, "ip_mrouter_init\n");
561 
562     return 0;
563 }
564 
565 /*
566  * Disable multicast routing
567  */
568 static int
569 X_ip_mrouter_done()
570 {
571     vifi_t vifi;
572     int i;
573     struct ifnet *ifp;
574     struct ifreq ifr;
575     struct mfc *rt;
576     struct rtdetq *rte;
577     int s;
578 
579     s = splnet();
580 
581     /*
582      * For each phyint in use, disable promiscuous reception of all IP
583      * multicasts.
584      */
585     for (vifi = 0; vifi < numvifs; vifi++) {
586 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
587 	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
588 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
589 	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
590 								= INADDR_ANY;
591 	    ifp = viftable[vifi].v_ifp;
592 	    if_allmulti(ifp, 0);
593 	}
594     }
595     bzero((caddr_t)tbftable, sizeof(tbftable));
596     bzero((caddr_t)viftable, sizeof(viftable));
597     numvifs = 0;
598     pim_assert = 0;
599 
600     untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
601 
602     /*
603      * Free all multicast forwarding cache entries.
604      */
605     for (i = 0; i < MFCTBLSIZ; i++) {
606 	for (rt = mfctable[i]; rt != NULL; ) {
607 	    struct mfc *nr = rt->mfc_next;
608 
609 	    for (rte = rt->mfc_stall; rte != NULL; ) {
610 		struct rtdetq *n = rte->next;
611 
612 		m_freem(rte->m);
613 		free(rte, M_MRTABLE);
614 		rte = n;
615 	    }
616 	    free(rt, M_MRTABLE);
617 	    rt = nr;
618 	}
619     }
620 
621     bzero((caddr_t)mfctable, sizeof(mfctable));
622 
623     /*
624      * Reset de-encapsulation cache
625      */
626     last_encap_src = 0;
627     last_encap_vif = NULL;
628     if (encap_cookie) {
629 	encap_detach(encap_cookie);
630 	encap_cookie = NULL;
631     }
632 
633     ip_mrouter = NULL;
634 
635     splx(s);
636 
637     if (mrtdebug)
638 	log(LOG_DEBUG, "ip_mrouter_done\n");
639 
640     return 0;
641 }
642 
643 #ifndef MROUTE_KLD
644 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
645 #endif
646 
647 /*
648  * Set PIM assert processing global
649  */
650 static int
651 set_assert(i)
652 	int i;
653 {
654     if ((i != 1) && (i != 0))
655 	return EINVAL;
656 
657     pim_assert = i;
658 
659     return 0;
660 }
661 
662 /*
663  * Decide if a packet is from a tunnelled peer.
664  * Return 0 if not, 64 if so.
665  */
666 static int
667 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
668 {
669     struct ip *ip = mtod(m, struct ip *);
670     int hlen = ip->ip_hl << 2;
671     register struct vif *vifp;
672 
673     /*
674      * don't claim the packet if it's not to a multicast destination or if
675      * we don't have an encapsulating tunnel with the source.
676      * Note:  This code assumes that the remote site IP address
677      * uniquely identifies the tunnel (i.e., that this site has
678      * at most one tunnel with the remote site).
679      */
680     if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
681 	return 0;
682     }
683     if (ip->ip_src.s_addr != last_encap_src) {
684 	register struct vif *vife;
685 
686 	vifp = viftable;
687 	vife = vifp + numvifs;
688 	last_encap_src = ip->ip_src.s_addr;
689 	last_encap_vif = 0;
690 	for ( ; vifp < vife; ++vifp)
691 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
692 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
693 		    == VIFF_TUNNEL)
694 		    last_encap_vif = vifp;
695 		break;
696 	    }
697     }
698     if ((vifp = last_encap_vif) == 0) {
699 	last_encap_src = 0;
700 	return 0;
701     }
702     return 64;
703 }
704 
705 /*
706  * De-encapsulate a packet and feed it back through ip input (this
707  * routine is called whenever IP gets a packet that mroute_encap_func()
708  * claimed).
709  */
710 static void
711 mroute_encap_input(struct mbuf *m, int off, int proto)
712 {
713     struct ip *ip = mtod(m, struct ip *);
714     int hlen = ip->ip_hl << 2;
715 
716     if (hlen > sizeof(struct ip))
717       ip_stripoptions(m, (struct mbuf *) 0);
718     m->m_data += sizeof(struct ip);
719     m->m_len -= sizeof(struct ip);
720     m->m_pkthdr.len -= sizeof(struct ip);
721 
722     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
723 
724     (void) IF_HANDOFF(&ipintrq, m, NULL);
725 	/*
726 	 * normally we would need a "schednetisr(NETISR_IP)"
727 	 * here but we were called by ip_input and it is going
728 	 * to loop back & try to dequeue the packet we just
729 	 * queued as soon as we return so we avoid the
730 	 * unnecessary software interrrupt.
731 	 */
732 }
733 
734 extern struct domain inetdomain;
735 static struct ipprotosw mroute_encap_protosw =
736 { SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
737   mroute_encap_input,	0,	0,		rip_ctloutput,
738   0,
739   0,		0,		0,		0,
740   &rip_usrreqs
741 };
742 
743 /*
744  * Add a vif to the vif table
745  */
746 static int
747 add_vif(vifcp)
748     register struct vifctl *vifcp;
749 {
750     register struct vif *vifp = viftable + vifcp->vifc_vifi;
751     static struct sockaddr_in sin = {sizeof sin, AF_INET};
752     struct ifaddr *ifa;
753     struct ifnet *ifp;
754     int error, s;
755     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
756 
757     if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
758     if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
759 
760     /* Find the interface with an address in AF_INET family */
761     sin.sin_addr = vifcp->vifc_lcl_addr;
762     ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
763     if (ifa == 0) return EADDRNOTAVAIL;
764     ifp = ifa->ifa_ifp;
765 
766     if (vifcp->vifc_flags & VIFF_TUNNEL) {
767 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
768 		/*
769 		 * An encapsulating tunnel is wanted.  Tell
770 		 * mroute_encap_input() to start paying attention
771 		 * to encapsulated packets.
772 		 */
773 		if (encap_cookie == NULL) {
774 			encap_cookie = encap_attach_func(AF_INET, -1,
775 				mroute_encapcheck,
776 				(struct protosw *)&mroute_encap_protosw, NULL);
777 
778 			if (encap_cookie == NULL) {
779 				printf("ip_mroute: unable to attach encap\n");
780 				return (EIO);	/* XXX */
781 			}
782 			for (s = 0; s < MAXVIFS; ++s) {
783 				multicast_decap_if[s].if_name = "mdecap";
784 				multicast_decap_if[s].if_unit = s;
785 			}
786 		}
787 		/*
788 		 * Set interface to fake encapsulator interface
789 		 */
790 		ifp = &multicast_decap_if[vifcp->vifc_vifi];
791 		/*
792 		 * Prepare cached route entry
793 		 */
794 		bzero(&vifp->v_route, sizeof(vifp->v_route));
795 	} else {
796 	    log(LOG_ERR, "source routed tunnels not supported\n");
797 	    return EOPNOTSUPP;
798 	}
799     } else {
800 	/* Make sure the interface supports multicast */
801 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
802 	    return EOPNOTSUPP;
803 
804 	/* Enable promiscuous reception of all IP multicasts from the if */
805 	s = splnet();
806 	error = if_allmulti(ifp, 1);
807 	splx(s);
808 	if (error)
809 	    return error;
810     }
811 
812     s = splnet();
813     /* define parameters for the tbf structure */
814     vifp->v_tbf = v_tbf;
815     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
816     vifp->v_tbf->tbf_n_tok = 0;
817     vifp->v_tbf->tbf_q_len = 0;
818     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
819     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
820 
821     vifp->v_flags     = vifcp->vifc_flags;
822     vifp->v_threshold = vifcp->vifc_threshold;
823     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
824     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
825     vifp->v_ifp       = ifp;
826     /* scaling up here allows division by 1024 in critical code */
827     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
828     vifp->v_rsvp_on   = 0;
829     vifp->v_rsvpd     = NULL;
830     /* initialize per vif pkt counters */
831     vifp->v_pkt_in    = 0;
832     vifp->v_pkt_out   = 0;
833     vifp->v_bytes_in  = 0;
834     vifp->v_bytes_out = 0;
835     splx(s);
836 
837     /* Adjust numvifs up if the vifi is higher than numvifs */
838     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
839 
840     if (mrtdebug)
841 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
842 	    vifcp->vifc_vifi,
843 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
844 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
845 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
846 	    vifcp->vifc_threshold,
847 	    vifcp->vifc_rate_limit);
848 
849     return 0;
850 }
851 
852 /*
853  * Delete a vif from the vif table
854  */
855 static int
856 del_vif(vifi)
857 	vifi_t vifi;
858 {
859     register struct vif *vifp = &viftable[vifi];
860     register struct mbuf *m;
861     struct ifnet *ifp;
862     struct ifreq ifr;
863     int s;
864 
865     if (vifi >= numvifs) return EINVAL;
866     if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
867 
868     s = splnet();
869 
870     if (!(vifp->v_flags & VIFF_TUNNEL)) {
871 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
872 	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
873 	ifp = vifp->v_ifp;
874 	if_allmulti(ifp, 0);
875     }
876 
877     if (vifp == last_encap_vif) {
878 	last_encap_vif = 0;
879 	last_encap_src = 0;
880     }
881 
882     /*
883      * Free packets queued at the interface
884      */
885     while (vifp->v_tbf->tbf_q) {
886 	m = vifp->v_tbf->tbf_q;
887 	vifp->v_tbf->tbf_q = m->m_act;
888 	m_freem(m);
889     }
890 
891     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
892     bzero((caddr_t)vifp, sizeof (*vifp));
893 
894     if (mrtdebug)
895       log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
896 
897     /* Adjust numvifs down */
898     for (vifi = numvifs; vifi > 0; vifi--)
899 	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
900     numvifs = vifi;
901 
902     splx(s);
903 
904     return 0;
905 }
906 
907 /*
908  * Add an mfc entry
909  */
910 static int
911 add_mfc(mfccp)
912     struct mfcctl *mfccp;
913 {
914     struct mfc *rt;
915     u_long hash;
916     struct rtdetq *rte;
917     register u_short nstl;
918     int s;
919     int i;
920 
921     MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
922 
923     /* If an entry already exists, just update the fields */
924     if (rt) {
925 	if (mrtdebug & DEBUG_MFC)
926 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
927 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
928 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
929 		mfccp->mfcc_parent);
930 
931 	s = splnet();
932 	rt->mfc_parent = mfccp->mfcc_parent;
933 	for (i = 0; i < numvifs; i++)
934 	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
935 	splx(s);
936 	return 0;
937     }
938 
939     /*
940      * Find the entry for which the upcall was made and update
941      */
942     s = splnet();
943     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
944     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
945 
946 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
947 	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
948 	    (rt->mfc_stall != NULL)) {
949 
950 	    if (nstl++)
951 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
952 		    "multiple kernel entries",
953 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
954 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
955 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
956 
957 	    if (mrtdebug & DEBUG_MFC)
958 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
959 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
960 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
961 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
962 
963 	    rt->mfc_origin     = mfccp->mfcc_origin;
964 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
965 	    rt->mfc_parent     = mfccp->mfcc_parent;
966 	    for (i = 0; i < numvifs; i++)
967 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
968 	    /* initialize pkt counters per src-grp */
969 	    rt->mfc_pkt_cnt    = 0;
970 	    rt->mfc_byte_cnt   = 0;
971 	    rt->mfc_wrong_if   = 0;
972 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
973 
974 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
975 	    nexpire[hash]--;
976 
977 	    /* free packets Qed at the end of this entry */
978 	    for (rte = rt->mfc_stall; rte != NULL; ) {
979 		struct rtdetq *n = rte->next;
980 
981 		ip_mdq(rte->m, rte->ifp, rt, -1);
982 		m_freem(rte->m);
983 #ifdef UPCALL_TIMING
984 		collate(&(rte->t));
985 #endif /* UPCALL_TIMING */
986 		free(rte, M_MRTABLE);
987 		rte = n;
988 	    }
989 	    rt->mfc_stall = NULL;
990 	}
991     }
992 
993     /*
994      * It is possible that an entry is being inserted without an upcall
995      */
996     if (nstl == 0) {
997 	if (mrtdebug & DEBUG_MFC)
998 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
999 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1000 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1001 		mfccp->mfcc_parent);
1002 
1003 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1004 
1005 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1006 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1007 
1008 		rt->mfc_origin     = mfccp->mfcc_origin;
1009 		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1010 		rt->mfc_parent     = mfccp->mfcc_parent;
1011 		for (i = 0; i < numvifs; i++)
1012 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1013 		/* initialize pkt counters per src-grp */
1014 		rt->mfc_pkt_cnt    = 0;
1015 		rt->mfc_byte_cnt   = 0;
1016 		rt->mfc_wrong_if   = 0;
1017 		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1018 		if (rt->mfc_expire)
1019 		    nexpire[hash]--;
1020 		rt->mfc_expire	   = 0;
1021 	    }
1022 	}
1023 	if (rt == NULL) {
1024 	    /* no upcall, so make a new entry */
1025 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1026 	    if (rt == NULL) {
1027 		splx(s);
1028 		return ENOBUFS;
1029 	    }
1030 
1031 	    /* insert new entry at head of hash chain */
1032 	    rt->mfc_origin     = mfccp->mfcc_origin;
1033 	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1034 	    rt->mfc_parent     = mfccp->mfcc_parent;
1035 	    for (i = 0; i < numvifs; i++)
1036 		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1037 	    /* initialize pkt counters per src-grp */
1038 	    rt->mfc_pkt_cnt    = 0;
1039 	    rt->mfc_byte_cnt   = 0;
1040 	    rt->mfc_wrong_if   = 0;
1041 	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1042 	    rt->mfc_expire     = 0;
1043 	    rt->mfc_stall      = NULL;
1044 
1045 	    /* link into table */
1046 	    rt->mfc_next = mfctable[hash];
1047 	    mfctable[hash] = rt;
1048 	}
1049     }
1050     splx(s);
1051     return 0;
1052 }
1053 
1054 #ifdef UPCALL_TIMING
1055 /*
1056  * collect delay statistics on the upcalls
1057  */
1058 static void collate(t)
1059 register struct timeval *t;
1060 {
1061     register u_long d;
1062     register struct timeval tp;
1063     register u_long delta;
1064 
1065     GET_TIME(tp);
1066 
1067     if (TV_LT(*t, tp))
1068     {
1069 	TV_DELTA(tp, *t, delta);
1070 
1071 	d = delta >> 10;
1072 	if (d > 50)
1073 	    d = 50;
1074 
1075 	++upcall_data[d];
1076     }
1077 }
1078 #endif /* UPCALL_TIMING */
1079 
1080 /*
1081  * Delete an mfc entry
1082  */
1083 static int
1084 del_mfc(mfccp)
1085     struct mfcctl *mfccp;
1086 {
1087     struct in_addr 	origin;
1088     struct in_addr 	mcastgrp;
1089     struct mfc 		*rt;
1090     struct mfc	 	**nptr;
1091     u_long 		hash;
1092     int s;
1093 
1094     origin = mfccp->mfcc_origin;
1095     mcastgrp = mfccp->mfcc_mcastgrp;
1096     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1097 
1098     if (mrtdebug & DEBUG_MFC)
1099 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1100 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1101 
1102     s = splnet();
1103 
1104     nptr = &mfctable[hash];
1105     while ((rt = *nptr) != NULL) {
1106 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1107 	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1108 	    rt->mfc_stall == NULL)
1109 	    break;
1110 
1111 	nptr = &rt->mfc_next;
1112     }
1113     if (rt == NULL) {
1114 	splx(s);
1115 	return EADDRNOTAVAIL;
1116     }
1117 
1118     *nptr = rt->mfc_next;
1119     free(rt, M_MRTABLE);
1120 
1121     splx(s);
1122 
1123     return 0;
1124 }
1125 
1126 /*
1127  * Send a message to mrouted on the multicast routing socket
1128  */
1129 static int
1130 socket_send(s, mm, src)
1131 	struct socket *s;
1132 	struct mbuf *mm;
1133 	struct sockaddr_in *src;
1134 {
1135 	if (s) {
1136 		if (sbappendaddr(&s->so_rcv,
1137 				 (struct sockaddr *)src,
1138 				 mm, (struct mbuf *)0) != 0) {
1139 			sorwakeup(s);
1140 			return 0;
1141 		}
1142 	}
1143 	m_freem(mm);
1144 	return -1;
1145 }
1146 
1147 /*
1148  * IP multicast forwarding function. This function assumes that the packet
1149  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1150  * pointed to by "ifp", and the packet is to be relayed to other networks
1151  * that have members of the packet's destination IP multicast group.
1152  *
1153  * The packet is returned unscathed to the caller, unless it is
1154  * erroneous, in which case a non-zero return value tells the caller to
1155  * discard it.
1156  */
1157 
1158 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1159 
1160 static int
1161 X_ip_mforward(ip, ifp, m, imo)
1162     register struct ip *ip;
1163     struct ifnet *ifp;
1164     struct mbuf *m;
1165     struct ip_moptions *imo;
1166 {
1167     register struct mfc *rt;
1168     register u_char *ipoptions;
1169     static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1170     static int srctun = 0;
1171     register struct mbuf *mm;
1172     int s;
1173     vifi_t vifi;
1174     struct vif *vifp;
1175 
1176     if (mrtdebug & DEBUG_FORWARD)
1177 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1178 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1179 	    (void *)ifp);
1180 
1181     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1182 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1183 	/*
1184 	 * Packet arrived via a physical interface or
1185 	 * an encapsulated tunnel.
1186 	 */
1187     } else {
1188 	/*
1189 	 * Packet arrived through a source-route tunnel.
1190 	 * Source-route tunnels are no longer supported.
1191 	 */
1192 	if ((srctun++ % 1000) == 0)
1193 	    log(LOG_ERR,
1194 		"ip_mforward: received source-routed packet from %lx\n",
1195 		(u_long)ntohl(ip->ip_src.s_addr));
1196 
1197 	return 1;
1198     }
1199 
1200     if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1201 	if (ip->ip_ttl < 255)
1202 		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1203 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1204 	    vifp = viftable + vifi;
1205 	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1206 		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1207 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1208 		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1209 	}
1210 	return (ip_mdq(m, ifp, NULL, vifi));
1211     }
1212     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1213 	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1214 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1215 	if(!imo)
1216 		printf("In fact, no options were specified at all\n");
1217     }
1218 
1219     /*
1220      * Don't forward a packet with time-to-live of zero or one,
1221      * or a packet destined to a local-only group.
1222      */
1223     if (ip->ip_ttl <= 1 ||
1224 	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1225 	return 0;
1226 
1227     /*
1228      * Determine forwarding vifs from the forwarding cache table
1229      */
1230     s = splnet();
1231     MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1232 
1233     /* Entry exists, so forward if necessary */
1234     if (rt != NULL) {
1235 	splx(s);
1236 	return (ip_mdq(m, ifp, rt, -1));
1237     } else {
1238 	/*
1239 	 * If we don't have a route for packet's origin,
1240 	 * Make a copy of the packet &
1241 	 * send message to routing daemon
1242 	 */
1243 
1244 	register struct mbuf *mb0;
1245 	register struct rtdetq *rte;
1246 	register u_long hash;
1247 	int hlen = ip->ip_hl << 2;
1248 #ifdef UPCALL_TIMING
1249 	struct timeval tp;
1250 
1251 	GET_TIME(tp);
1252 #endif
1253 
1254 	mrtstat.mrts_no_route++;
1255 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1256 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1257 		(u_long)ntohl(ip->ip_src.s_addr),
1258 		(u_long)ntohl(ip->ip_dst.s_addr));
1259 
1260 	/*
1261 	 * Allocate mbufs early so that we don't do extra work if we are
1262 	 * just going to fail anyway.  Make sure to pullup the header so
1263 	 * that other people can't step on it.
1264 	 */
1265 	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1266 	if (rte == NULL) {
1267 	    splx(s);
1268 	    return ENOBUFS;
1269 	}
1270 	mb0 = m_copy(m, 0, M_COPYALL);
1271 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1272 	    mb0 = m_pullup(mb0, hlen);
1273 	if (mb0 == NULL) {
1274 	    free(rte, M_MRTABLE);
1275 	    splx(s);
1276 	    return ENOBUFS;
1277 	}
1278 
1279 	/* is there an upcall waiting for this packet? */
1280 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1281 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1282 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1283 		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1284 		(rt->mfc_stall != NULL))
1285 		break;
1286 	}
1287 
1288 	if (rt == NULL) {
1289 	    int i;
1290 	    struct igmpmsg *im;
1291 
1292 	    /* no upcall, so make a new entry */
1293 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1294 	    if (rt == NULL) {
1295 		free(rte, M_MRTABLE);
1296 		m_freem(mb0);
1297 		splx(s);
1298 		return ENOBUFS;
1299 	    }
1300 	    /* Make a copy of the header to send to the user level process */
1301 	    mm = m_copy(mb0, 0, hlen);
1302 	    if (mm == NULL) {
1303 		free(rte, M_MRTABLE);
1304 		m_freem(mb0);
1305 		free(rt, M_MRTABLE);
1306 		splx(s);
1307 		return ENOBUFS;
1308 	    }
1309 
1310 	    /*
1311 	     * Send message to routing daemon to install
1312 	     * a route into the kernel table
1313 	     */
1314 	    k_igmpsrc.sin_addr = ip->ip_src;
1315 
1316 	    im = mtod(mm, struct igmpmsg *);
1317 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1318 	    im->im_mbz		= 0;
1319 
1320 	    mrtstat.mrts_upcalls++;
1321 
1322 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1323 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1324 		++mrtstat.mrts_upq_sockfull;
1325 		free(rte, M_MRTABLE);
1326 		m_freem(mb0);
1327 		free(rt, M_MRTABLE);
1328 		splx(s);
1329 		return ENOBUFS;
1330 	    }
1331 
1332 	    /* insert new entry at head of hash chain */
1333 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1334 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1335 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1336 	    nexpire[hash]++;
1337 	    for (i = 0; i < numvifs; i++)
1338 		rt->mfc_ttls[i] = 0;
1339 	    rt->mfc_parent = -1;
1340 
1341 	    /* link into table */
1342 	    rt->mfc_next   = mfctable[hash];
1343 	    mfctable[hash] = rt;
1344 	    rt->mfc_stall = rte;
1345 
1346 	} else {
1347 	    /* determine if q has overflowed */
1348 	    int npkts = 0;
1349 	    struct rtdetq **p;
1350 
1351 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1352 		npkts++;
1353 
1354 	    if (npkts > MAX_UPQ) {
1355 		mrtstat.mrts_upq_ovflw++;
1356 		free(rte, M_MRTABLE);
1357 		m_freem(mb0);
1358 		splx(s);
1359 		return 0;
1360 	    }
1361 
1362 	    /* Add this entry to the end of the queue */
1363 	    *p = rte;
1364 	}
1365 
1366 	rte->m 			= mb0;
1367 	rte->ifp 		= ifp;
1368 #ifdef UPCALL_TIMING
1369 	rte->t			= tp;
1370 #endif
1371 	rte->next		= NULL;
1372 
1373 	splx(s);
1374 
1375 	return 0;
1376     }
1377 }
1378 
1379 #ifndef MROUTE_KLD
1380 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1381 		   struct ip_moptions *) = X_ip_mforward;
1382 #endif
1383 
1384 /*
1385  * Clean up the cache entry if upcall is not serviced
1386  */
1387 static void
1388 expire_upcalls(void *unused)
1389 {
1390     struct rtdetq *rte;
1391     struct mfc *mfc, **nptr;
1392     int i;
1393     int s;
1394 
1395     s = splnet();
1396     for (i = 0; i < MFCTBLSIZ; i++) {
1397 	if (nexpire[i] == 0)
1398 	    continue;
1399 	nptr = &mfctable[i];
1400 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1401 	    /*
1402 	     * Skip real cache entries
1403 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1404 	     * If it expires now
1405 	     */
1406 	    if (mfc->mfc_stall != NULL &&
1407 	        mfc->mfc_expire != 0 &&
1408 		--mfc->mfc_expire == 0) {
1409 		if (mrtdebug & DEBUG_EXPIRE)
1410 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1411 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1412 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1413 		/*
1414 		 * drop all the packets
1415 		 * free the mbuf with the pkt, if, timing info
1416 		 */
1417 		for (rte = mfc->mfc_stall; rte; ) {
1418 		    struct rtdetq *n = rte->next;
1419 
1420 		    m_freem(rte->m);
1421 		    free(rte, M_MRTABLE);
1422 		    rte = n;
1423 		}
1424 		++mrtstat.mrts_cache_cleanups;
1425 		nexpire[i]--;
1426 
1427 		*nptr = mfc->mfc_next;
1428 		free(mfc, M_MRTABLE);
1429 	    } else {
1430 		nptr = &mfc->mfc_next;
1431 	    }
1432 	}
1433     }
1434     splx(s);
1435     expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1436 }
1437 
1438 /*
1439  * Packet forwarding routine once entry in the cache is made
1440  */
1441 static int
1442 ip_mdq(m, ifp, rt, xmt_vif)
1443     register struct mbuf *m;
1444     register struct ifnet *ifp;
1445     register struct mfc *rt;
1446     register vifi_t xmt_vif;
1447 {
1448     register struct ip  *ip = mtod(m, struct ip *);
1449     register vifi_t vifi;
1450     register struct vif *vifp;
1451     register int plen = ip->ip_len;
1452 
1453 /*
1454  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1455  * input, they shouldn't get counted on output, so statistics keeping is
1456  * separate.
1457  */
1458 #define MC_SEND(ip,vifp,m) {                             \
1459                 if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1460                     encap_send((ip), (vifp), (m));       \
1461                 else                                     \
1462                     phyint_send((ip), (vifp), (m));      \
1463 }
1464 
1465     /*
1466      * If xmt_vif is not -1, send on only the requested vif.
1467      *
1468      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1469      */
1470     if (xmt_vif < numvifs) {
1471 	MC_SEND(ip, viftable + xmt_vif, m);
1472 	return 1;
1473     }
1474 
1475     /*
1476      * Don't forward if it didn't arrive from the parent vif for its origin.
1477      */
1478     vifi = rt->mfc_parent;
1479     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1480 	/* came in the wrong interface */
1481 	if (mrtdebug & DEBUG_FORWARD)
1482 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1483 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1484 	++mrtstat.mrts_wrong_if;
1485 	++rt->mfc_wrong_if;
1486 	/*
1487 	 * If we are doing PIM assert processing, and we are forwarding
1488 	 * packets on this interface, and it is a broadcast medium
1489 	 * interface (and not a tunnel), send a message to the routing daemon.
1490 	 */
1491 	if (pim_assert && rt->mfc_ttls[vifi] &&
1492 		(ifp->if_flags & IFF_BROADCAST) &&
1493 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1494 	    struct sockaddr_in k_igmpsrc;
1495 	    struct mbuf *mm;
1496 	    struct igmpmsg *im;
1497 	    int hlen = ip->ip_hl << 2;
1498 	    struct timeval now;
1499 	    register u_long delta;
1500 
1501 	    GET_TIME(now);
1502 
1503 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1504 
1505 	    if (delta > ASSERT_MSG_TIME) {
1506 		mm = m_copy(m, 0, hlen);
1507 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1508 		    mm = m_pullup(mm, hlen);
1509 		if (mm == NULL) {
1510 		    return ENOBUFS;
1511 		}
1512 
1513 		rt->mfc_last_assert = now;
1514 
1515 		im = mtod(mm, struct igmpmsg *);
1516 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1517 		im->im_mbz		= 0;
1518 		im->im_vif		= vifi;
1519 
1520 		k_igmpsrc.sin_addr = im->im_src;
1521 
1522 		socket_send(ip_mrouter, mm, &k_igmpsrc);
1523 	    }
1524 	}
1525 	return 0;
1526     }
1527 
1528     /* If I sourced this packet, it counts as output, else it was input. */
1529     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1530 	viftable[vifi].v_pkt_out++;
1531 	viftable[vifi].v_bytes_out += plen;
1532     } else {
1533 	viftable[vifi].v_pkt_in++;
1534 	viftable[vifi].v_bytes_in += plen;
1535     }
1536     rt->mfc_pkt_cnt++;
1537     rt->mfc_byte_cnt += plen;
1538 
1539     /*
1540      * For each vif, decide if a copy of the packet should be forwarded.
1541      * Forward if:
1542      *		- the ttl exceeds the vif's threshold
1543      *		- there are group members downstream on interface
1544      */
1545     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1546 	if ((rt->mfc_ttls[vifi] > 0) &&
1547 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1548 	    vifp->v_pkt_out++;
1549 	    vifp->v_bytes_out += plen;
1550 	    MC_SEND(ip, vifp, m);
1551 	}
1552 
1553     return 0;
1554 }
1555 
1556 /*
1557  * check if a vif number is legal/ok. This is used by ip_output, to export
1558  * numvifs there,
1559  */
1560 static int
1561 X_legal_vif_num(vif)
1562     int vif;
1563 {
1564     if (vif >= 0 && vif < numvifs)
1565        return(1);
1566     else
1567        return(0);
1568 }
1569 
1570 #ifndef MROUTE_KLD
1571 int (*legal_vif_num)(int) = X_legal_vif_num;
1572 #endif
1573 
1574 /*
1575  * Return the local address used by this vif
1576  */
1577 static u_long
1578 X_ip_mcast_src(vifi)
1579     int vifi;
1580 {
1581     if (vifi >= 0 && vifi < numvifs)
1582 	return viftable[vifi].v_lcl_addr.s_addr;
1583     else
1584 	return INADDR_ANY;
1585 }
1586 
1587 #ifndef MROUTE_KLD
1588 u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1589 #endif
1590 
1591 static void
1592 phyint_send(ip, vifp, m)
1593     struct ip *ip;
1594     struct vif *vifp;
1595     struct mbuf *m;
1596 {
1597     register struct mbuf *mb_copy;
1598     register int hlen = ip->ip_hl << 2;
1599 
1600     /*
1601      * Make a new reference to the packet; make sure that
1602      * the IP header is actually copied, not just referenced,
1603      * so that ip_output() only scribbles on the copy.
1604      */
1605     mb_copy = m_copy(m, 0, M_COPYALL);
1606     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1607 	mb_copy = m_pullup(mb_copy, hlen);
1608     if (mb_copy == NULL)
1609 	return;
1610 
1611     if (vifp->v_rate_limit == 0)
1612 	tbf_send_packet(vifp, mb_copy);
1613     else
1614 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1615 }
1616 
1617 static void
1618 encap_send(ip, vifp, m)
1619     register struct ip *ip;
1620     register struct vif *vifp;
1621     register struct mbuf *m;
1622 {
1623     register struct mbuf *mb_copy;
1624     register struct ip *ip_copy;
1625     register int i, len = ip->ip_len;
1626 
1627     /*
1628      * copy the old packet & pullup its IP header into the
1629      * new mbuf so we can modify it.  Try to fill the new
1630      * mbuf since if we don't the ethernet driver will.
1631      */
1632     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1633     if (mb_copy == NULL)
1634 	return;
1635     mb_copy->m_data += max_linkhdr;
1636     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1637 
1638     if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1639 	m_freem(mb_copy);
1640 	return;
1641     }
1642     i = MHLEN - M_LEADINGSPACE(mb_copy);
1643     if (i > len)
1644 	i = len;
1645     mb_copy = m_pullup(mb_copy, i);
1646     if (mb_copy == NULL)
1647 	return;
1648     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1649 
1650     /*
1651      * fill in the encapsulating IP header.
1652      */
1653     ip_copy = mtod(mb_copy, struct ip *);
1654     *ip_copy = multicast_encap_iphdr;
1655 #ifdef RANDOM_IP_ID
1656     ip_copy->ip_id = ip_randomid();
1657 #else
1658     ip_copy->ip_id = htons(ip_id++);
1659 #endif
1660     ip_copy->ip_len += len;
1661     ip_copy->ip_src = vifp->v_lcl_addr;
1662     ip_copy->ip_dst = vifp->v_rmt_addr;
1663 
1664     /*
1665      * turn the encapsulated IP header back into a valid one.
1666      */
1667     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1668     --ip->ip_ttl;
1669     HTONS(ip->ip_len);
1670     HTONS(ip->ip_off);
1671     ip->ip_sum = 0;
1672     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1673     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1674     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1675 
1676     if (vifp->v_rate_limit == 0)
1677 	tbf_send_packet(vifp, mb_copy);
1678     else
1679 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1680 }
1681 
1682 /*
1683  * Token bucket filter module
1684  */
1685 
1686 static void
1687 tbf_control(vifp, m, ip, p_len)
1688 	register struct vif *vifp;
1689 	register struct mbuf *m;
1690 	register struct ip *ip;
1691 	register u_long p_len;
1692 {
1693     register struct tbf *t = vifp->v_tbf;
1694 
1695     if (p_len > MAX_BKT_SIZE) {
1696 	/* drop if packet is too large */
1697 	mrtstat.mrts_pkt2large++;
1698 	m_freem(m);
1699 	return;
1700     }
1701 
1702     tbf_update_tokens(vifp);
1703 
1704     /* if there are enough tokens,
1705      * and the queue is empty,
1706      * send this packet out
1707      */
1708 
1709     if (t->tbf_q_len == 0) {
1710 	/* queue empty, send packet if enough tokens */
1711 	if (p_len <= t->tbf_n_tok) {
1712 	    t->tbf_n_tok -= p_len;
1713 	    tbf_send_packet(vifp, m);
1714 	} else {
1715 	    /* queue packet and timeout till later */
1716 	    tbf_queue(vifp, m);
1717 	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1718 	}
1719     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1720 	/* finite queue length, so queue pkts and process queue */
1721 	tbf_queue(vifp, m);
1722 	tbf_process_q(vifp);
1723     } else {
1724 	/* queue length too much, try to dq and queue and process */
1725 	if (!tbf_dq_sel(vifp, ip)) {
1726 	    mrtstat.mrts_q_overflow++;
1727 	    m_freem(m);
1728 	    return;
1729 	} else {
1730 	    tbf_queue(vifp, m);
1731 	    tbf_process_q(vifp);
1732 	}
1733     }
1734     return;
1735 }
1736 
1737 /*
1738  * adds a packet to the queue at the interface
1739  */
1740 static void
1741 tbf_queue(vifp, m)
1742 	register struct vif *vifp;
1743 	register struct mbuf *m;
1744 {
1745     register int s = splnet();
1746     register struct tbf *t = vifp->v_tbf;
1747 
1748     if (t->tbf_t == NULL) {
1749 	/* Queue was empty */
1750 	t->tbf_q = m;
1751     } else {
1752 	/* Insert at tail */
1753 	t->tbf_t->m_act = m;
1754     }
1755 
1756     /* Set new tail pointer */
1757     t->tbf_t = m;
1758 
1759 #ifdef DIAGNOSTIC
1760     /* Make sure we didn't get fed a bogus mbuf */
1761     if (m->m_act)
1762 	panic("tbf_queue: m_act");
1763 #endif
1764     m->m_act = NULL;
1765 
1766     t->tbf_q_len++;
1767 
1768     splx(s);
1769 }
1770 
1771 
1772 /*
1773  * processes the queue at the interface
1774  */
1775 static void
1776 tbf_process_q(vifp)
1777     register struct vif *vifp;
1778 {
1779     register struct mbuf *m;
1780     register int len;
1781     register int s = splnet();
1782     register struct tbf *t = vifp->v_tbf;
1783 
1784     /* loop through the queue at the interface and send as many packets
1785      * as possible
1786      */
1787     while (t->tbf_q_len > 0) {
1788 	m = t->tbf_q;
1789 
1790 	len = mtod(m, struct ip *)->ip_len;
1791 
1792 	/* determine if the packet can be sent */
1793 	if (len <= t->tbf_n_tok) {
1794 	    /* if so,
1795 	     * reduce no of tokens, dequeue the packet,
1796 	     * send the packet.
1797 	     */
1798 	    t->tbf_n_tok -= len;
1799 
1800 	    t->tbf_q = m->m_act;
1801 	    if (--t->tbf_q_len == 0)
1802 		t->tbf_t = NULL;
1803 
1804 	    m->m_act = NULL;
1805 	    tbf_send_packet(vifp, m);
1806 
1807 	} else break;
1808     }
1809     splx(s);
1810 }
1811 
1812 static void
1813 tbf_reprocess_q(xvifp)
1814 	void *xvifp;
1815 {
1816     register struct vif *vifp = xvifp;
1817     if (ip_mrouter == NULL)
1818 	return;
1819 
1820     tbf_update_tokens(vifp);
1821 
1822     tbf_process_q(vifp);
1823 
1824     if (vifp->v_tbf->tbf_q_len)
1825 	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1826 }
1827 
1828 /* function that will selectively discard a member of the queue
1829  * based on the precedence value and the priority
1830  */
1831 static int
1832 tbf_dq_sel(vifp, ip)
1833     register struct vif *vifp;
1834     register struct ip *ip;
1835 {
1836     register int s = splnet();
1837     register u_int p;
1838     register struct mbuf *m, *last;
1839     register struct mbuf **np;
1840     register struct tbf *t = vifp->v_tbf;
1841 
1842     p = priority(vifp, ip);
1843 
1844     np = &t->tbf_q;
1845     last = NULL;
1846     while ((m = *np) != NULL) {
1847 	if (p > priority(vifp, mtod(m, struct ip *))) {
1848 	    *np = m->m_act;
1849 	    /* If we're removing the last packet, fix the tail pointer */
1850 	    if (m == t->tbf_t)
1851 		t->tbf_t = last;
1852 	    m_freem(m);
1853 	    /* it's impossible for the queue to be empty, but
1854 	     * we check anyway. */
1855 	    if (--t->tbf_q_len == 0)
1856 		t->tbf_t = NULL;
1857 	    splx(s);
1858 	    mrtstat.mrts_drop_sel++;
1859 	    return(1);
1860 	}
1861 	np = &m->m_act;
1862 	last = m;
1863     }
1864     splx(s);
1865     return(0);
1866 }
1867 
1868 static void
1869 tbf_send_packet(vifp, m)
1870     register struct vif *vifp;
1871     register struct mbuf *m;
1872 {
1873     struct ip_moptions imo;
1874     int error;
1875     static struct route ro;
1876     int s = splnet();
1877 
1878     if (vifp->v_flags & VIFF_TUNNEL) {
1879 	/* If tunnel options */
1880 	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1881 		  IP_FORWARDING, (struct ip_moptions *)0);
1882     } else {
1883 	imo.imo_multicast_ifp  = vifp->v_ifp;
1884 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1885 	imo.imo_multicast_loop = 1;
1886 	imo.imo_multicast_vif  = -1;
1887 
1888 	/*
1889 	 * Re-entrancy should not be a problem here, because
1890 	 * the packets that we send out and are looped back at us
1891 	 * should get rejected because they appear to come from
1892 	 * the loopback interface, thus preventing looping.
1893 	 */
1894 	error = ip_output(m, (struct mbuf *)0, &ro,
1895 			  IP_FORWARDING, &imo);
1896 
1897 	if (mrtdebug & DEBUG_XMIT)
1898 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1899 		vifp - viftable, error);
1900     }
1901     splx(s);
1902 }
1903 
1904 /* determine the current time and then
1905  * the elapsed time (between the last time and time now)
1906  * in milliseconds & update the no. of tokens in the bucket
1907  */
1908 static void
1909 tbf_update_tokens(vifp)
1910     register struct vif *vifp;
1911 {
1912     struct timeval tp;
1913     register u_long tm;
1914     register int s = splnet();
1915     register struct tbf *t = vifp->v_tbf;
1916 
1917     GET_TIME(tp);
1918 
1919     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1920 
1921     /*
1922      * This formula is actually
1923      * "time in seconds" * "bytes/second".
1924      *
1925      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1926      *
1927      * The (1000/1024) was introduced in add_vif to optimize
1928      * this divide into a shift.
1929      */
1930     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1931     t->tbf_last_pkt_t = tp;
1932 
1933     if (t->tbf_n_tok > MAX_BKT_SIZE)
1934 	t->tbf_n_tok = MAX_BKT_SIZE;
1935 
1936     splx(s);
1937 }
1938 
1939 static int
1940 priority(vifp, ip)
1941     register struct vif *vifp;
1942     register struct ip *ip;
1943 {
1944     register int prio;
1945 
1946     /* temporary hack; may add general packet classifier some day */
1947 
1948     /*
1949      * The UDP port space is divided up into four priority ranges:
1950      * [0, 16384)     : unclassified - lowest priority
1951      * [16384, 32768) : audio - highest priority
1952      * [32768, 49152) : whiteboard - medium priority
1953      * [49152, 65536) : video - low priority
1954      */
1955     if (ip->ip_p == IPPROTO_UDP) {
1956 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1957 	switch (ntohs(udp->uh_dport) & 0xc000) {
1958 	    case 0x4000:
1959 		prio = 70;
1960 		break;
1961 	    case 0x8000:
1962 		prio = 60;
1963 		break;
1964 	    case 0xc000:
1965 		prio = 55;
1966 		break;
1967 	    default:
1968 		prio = 50;
1969 		break;
1970 	}
1971 	if (tbfdebug > 1)
1972 		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1973     } else {
1974 	    prio = 50;
1975     }
1976     return prio;
1977 }
1978 
1979 /*
1980  * End of token bucket filter modifications
1981  */
1982 
1983 int
1984 ip_rsvp_vif_init(so, sopt)
1985 	struct socket *so;
1986 	struct sockopt *sopt;
1987 {
1988     int error, i, s;
1989 
1990     if (rsvpdebug)
1991 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1992 	       so->so_type, so->so_proto->pr_protocol);
1993 
1994     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1995 	return EOPNOTSUPP;
1996 
1997     /* Check mbuf. */
1998     error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1999     if (error)
2000 	    return (error);
2001 
2002     if (rsvpdebug)
2003 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2004 
2005     s = splnet();
2006 
2007     /* Check vif. */
2008     if (!legal_vif_num(i)) {
2009 	splx(s);
2010 	return EADDRNOTAVAIL;
2011     }
2012 
2013     /* Check if socket is available. */
2014     if (viftable[i].v_rsvpd != NULL) {
2015 	splx(s);
2016 	return EADDRINUSE;
2017     }
2018 
2019     viftable[i].v_rsvpd = so;
2020     /* This may seem silly, but we need to be sure we don't over-increment
2021      * the RSVP counter, in case something slips up.
2022      */
2023     if (!viftable[i].v_rsvp_on) {
2024 	viftable[i].v_rsvp_on = 1;
2025 	rsvp_on++;
2026     }
2027 
2028     splx(s);
2029     return 0;
2030 }
2031 
2032 int
2033 ip_rsvp_vif_done(so, sopt)
2034 	struct socket *so;
2035 	struct sockopt *sopt;
2036 {
2037 	int error, i, s;
2038 
2039 	if (rsvpdebug)
2040 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2041 		       so->so_type, so->so_proto->pr_protocol);
2042 
2043 	if (so->so_type != SOCK_RAW ||
2044 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2045 		return EOPNOTSUPP;
2046 
2047 	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2048 	if (error)
2049 		return (error);
2050 
2051 	s = splnet();
2052 
2053 	/* Check vif. */
2054 	if (!legal_vif_num(i)) {
2055 		splx(s);
2056 		return EADDRNOTAVAIL;
2057 	}
2058 
2059 	if (rsvpdebug)
2060 		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2061 		       viftable[i].v_rsvpd, so);
2062 
2063 	viftable[i].v_rsvpd = NULL;
2064 	/*
2065 	 * This may seem silly, but we need to be sure we don't over-decrement
2066 	 * the RSVP counter, in case something slips up.
2067 	 */
2068 	if (viftable[i].v_rsvp_on) {
2069 		viftable[i].v_rsvp_on = 0;
2070 		rsvp_on--;
2071 	}
2072 
2073 	splx(s);
2074 	return 0;
2075 }
2076 
2077 void
2078 ip_rsvp_force_done(so)
2079     struct socket *so;
2080 {
2081     int vifi;
2082     register int s;
2083 
2084     /* Don't bother if it is not the right type of socket. */
2085     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2086 	return;
2087 
2088     s = splnet();
2089 
2090     /* The socket may be attached to more than one vif...this
2091      * is perfectly legal.
2092      */
2093     for (vifi = 0; vifi < numvifs; vifi++) {
2094 	if (viftable[vifi].v_rsvpd == so) {
2095 	    viftable[vifi].v_rsvpd = NULL;
2096 	    /* This may seem silly, but we need to be sure we don't
2097 	     * over-decrement the RSVP counter, in case something slips up.
2098 	     */
2099 	    if (viftable[vifi].v_rsvp_on) {
2100 		viftable[vifi].v_rsvp_on = 0;
2101 		rsvp_on--;
2102 	    }
2103 	}
2104     }
2105 
2106     splx(s);
2107     return;
2108 }
2109 
2110 void
2111 rsvp_input(m, off, proto)
2112 	struct mbuf *m;
2113 	int off;
2114 	int proto;
2115 {
2116     int vifi;
2117     register struct ip *ip = mtod(m, struct ip *);
2118     static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2119     register int s;
2120     struct ifnet *ifp;
2121 
2122     if (rsvpdebug)
2123 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2124 
2125     /* Can still get packets with rsvp_on = 0 if there is a local member
2126      * of the group to which the RSVP packet is addressed.  But in this
2127      * case we want to throw the packet away.
2128      */
2129     if (!rsvp_on) {
2130 	m_freem(m);
2131 	return;
2132     }
2133 
2134     s = splnet();
2135 
2136     if (rsvpdebug)
2137 	printf("rsvp_input: check vifs\n");
2138 
2139 #ifdef DIAGNOSTIC
2140     if (!(m->m_flags & M_PKTHDR))
2141 	    panic("rsvp_input no hdr");
2142 #endif
2143 
2144     ifp = m->m_pkthdr.rcvif;
2145     /* Find which vif the packet arrived on. */
2146     for (vifi = 0; vifi < numvifs; vifi++)
2147 	if (viftable[vifi].v_ifp == ifp)
2148 	    break;
2149 
2150     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2151 	/*
2152 	 * If the old-style non-vif-associated socket is set,
2153 	 * then use it.  Otherwise, drop packet since there
2154 	 * is no specific socket for this vif.
2155 	 */
2156 	if (ip_rsvpd != NULL) {
2157 	    if (rsvpdebug)
2158 		printf("rsvp_input: Sending packet up old-style socket\n");
2159 	    rip_input(m, off, proto);  /* xxx */
2160 	} else {
2161 	    if (rsvpdebug && vifi == numvifs)
2162 		printf("rsvp_input: Can't find vif for packet.\n");
2163 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2164 		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2165 	    m_freem(m);
2166 	}
2167 	splx(s);
2168 	return;
2169     }
2170     rsvp_src.sin_addr = ip->ip_src;
2171 
2172     if (rsvpdebug && m)
2173 	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2174 	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2175 
2176     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2177 	if (rsvpdebug)
2178 	    printf("rsvp_input: Failed to append to socket\n");
2179     } else {
2180 	if (rsvpdebug)
2181 	    printf("rsvp_input: send packet up\n");
2182     }
2183 
2184     splx(s);
2185 }
2186 
2187 #ifdef MROUTE_KLD
2188 
2189 static int
2190 ip_mroute_modevent(module_t mod, int type, void *unused)
2191 {
2192 	int s;
2193 
2194 	switch (type) {
2195 		static u_long (*old_ip_mcast_src)(int);
2196 		static int (*old_ip_mrouter_set)(struct socket *,
2197 			struct sockopt *);
2198 		static int (*old_ip_mrouter_get)(struct socket *,
2199 			struct sockopt *);
2200 		static int (*old_ip_mrouter_done)(void);
2201 		static int (*old_ip_mforward)(struct ip *, struct ifnet *,
2202 			struct mbuf *, struct ip_moptions *);
2203 		static int (*old_mrt_ioctl)(int, caddr_t);
2204 		static int (*old_legal_vif_num)(int);
2205 
2206 	case MOD_LOAD:
2207 		s = splnet();
2208 		/* XXX Protect against multiple loading */
2209 		old_ip_mcast_src = ip_mcast_src;
2210 		ip_mcast_src = X_ip_mcast_src;
2211 		old_ip_mrouter_get = ip_mrouter_get;
2212 		ip_mrouter_get = X_ip_mrouter_get;
2213 		old_ip_mrouter_set = ip_mrouter_set;
2214 		ip_mrouter_set = X_ip_mrouter_set;
2215 		old_ip_mrouter_done = ip_mrouter_done;
2216 		ip_mrouter_done = X_ip_mrouter_done;
2217 		old_ip_mforward = ip_mforward;
2218 		ip_mforward = X_ip_mforward;
2219 		old_mrt_ioctl = mrt_ioctl;
2220 		mrt_ioctl = X_mrt_ioctl;
2221 		old_legal_vif_num = legal_vif_num;
2222 		legal_vif_num = X_legal_vif_num;
2223 
2224 		splx(s);
2225 		return 0;
2226 
2227 	case MOD_UNLOAD:
2228 		if (ip_mrouter)
2229 		  return EINVAL;
2230 
2231 		s = splnet();
2232 		ip_mrouter_get = old_ip_mrouter_get;
2233 		ip_mrouter_set = old_ip_mrouter_set;
2234 		ip_mrouter_done = old_ip_mrouter_done;
2235 		ip_mforward = old_ip_mforward;
2236 		mrt_ioctl = old_mrt_ioctl;
2237 		legal_vif_num = old_legal_vif_num;
2238 		splx(s);
2239 		return 0;
2240 
2241 	default:
2242 		break;
2243 	}
2244 	return 0;
2245 }
2246 
2247 static moduledata_t ip_mroutemod = {
2248 	"ip_mroute",
2249 	ip_mroute_modevent,
2250 	0
2251 };
2252 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2253 
2254 #endif /* MROUTE_KLD */
2255 #endif /* MROUTING */
2256