1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * 53 * MROUTING Revision: 3.5 54 * and PIM-SMv2 and PIM-DM support, advanced API support, 55 * bandwidth metering and signaling 56 */ 57 58 /* 59 * TODO: Prefix functions with ipmf_. 60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 61 * domain attachment (if_afdata) so we can track consumers of that service. 62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 63 * move it to socket options. 64 * TODO: Cleanup LSRR removal further. 65 * TODO: Push RSVP stubs into raw_ip.c. 66 * TODO: Use bitstring.h for vif set. 67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 68 * TODO: Sync ip6_mroute.c with this file. 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_inet.h" 75 #include "opt_mrouting.h" 76 77 #define _PIM_VT 1 78 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/ktr.h> 85 #include <sys/malloc.h> 86 #include <sys/mbuf.h> 87 #include <sys/module.h> 88 #include <sys/priv.h> 89 #include <sys/protosw.h> 90 #include <sys/signalvar.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/sockio.h> 94 #include <sys/sx.h> 95 #include <sys/sysctl.h> 96 #include <sys/syslog.h> 97 #include <sys/systm.h> 98 #include <sys/time.h> 99 #include <sys/counter.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/netisr.h> 104 #include <net/route.h> 105 #include <net/vnet.h> 106 107 #include <netinet/in.h> 108 #include <netinet/igmp.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/ip_encap.h> 113 #include <netinet/ip_mroute.h> 114 #include <netinet/ip_var.h> 115 #include <netinet/ip_options.h> 116 #include <netinet/pim.h> 117 #include <netinet/pim_var.h> 118 #include <netinet/udp.h> 119 120 #include <machine/in_cksum.h> 121 122 #ifndef KTR_IPMF 123 #define KTR_IPMF KTR_INET 124 #endif 125 126 #define VIFI_INVALID ((vifi_t) -1) 127 128 VNET_DEFINE_STATIC(uint32_t, last_tv_sec); /* last time we processed this */ 129 #define V_last_tv_sec VNET(last_tv_sec) 130 131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 132 133 /* 134 * Locking. We use two locks: one for the virtual interface table and 135 * one for the forwarding table. These locks may be nested in which case 136 * the VIF lock must always be taken first. Note that each lock is used 137 * to cover not only the specific data structure but also related data 138 * structures. 139 */ 140 141 static struct mtx mrouter_mtx; 142 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 143 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 144 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 145 #define MROUTER_LOCK_INIT() \ 146 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 147 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 148 149 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 151 152 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 153 VNET_PCPUSTAT_SYSINIT(mrtstat); 154 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 156 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 157 "netinet/ip_mroute.h)"); 158 159 VNET_DEFINE_STATIC(u_long, mfchash); 160 #define V_mfchash VNET(mfchash) 161 #define MFCHASH(a, g) \ 162 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 163 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 164 #define MFCHASHSIZE 256 165 166 static u_long mfchashsize; /* Hash size */ 167 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 168 #define V_nexpire VNET(nexpire) 169 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 170 #define V_mfchashtbl VNET(mfchashtbl) 171 172 static struct mtx mfc_mtx; 173 #define MFC_LOCK() mtx_lock(&mfc_mtx) 174 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 175 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 176 #define MFC_LOCK_INIT() \ 177 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF) 178 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 179 180 VNET_DEFINE_STATIC(vifi_t, numvifs); 181 #define V_numvifs VNET(numvifs) 182 VNET_DEFINE_STATIC(struct vif, viftable[MAXVIFS]); 183 #define V_viftable VNET(viftable) 184 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD, 185 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]", 186 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 187 188 static struct mtx vif_mtx; 189 #define VIF_LOCK() mtx_lock(&vif_mtx) 190 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 191 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 192 #define VIF_LOCK_INIT() \ 193 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF) 194 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 195 196 static eventhandler_tag if_detach_event_tag = NULL; 197 198 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 199 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 200 201 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 202 #define UPCALL_EXPIRE 6 /* number of timeouts */ 203 204 /* 205 * Bandwidth meter variables and constants 206 */ 207 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 208 /* 209 * Pending timeouts are stored in a hash table, the key being the 210 * expiration time. Periodically, the entries are analysed and processed. 211 */ 212 #define BW_METER_BUCKETS 1024 213 VNET_DEFINE_STATIC(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]); 214 #define V_bw_meter_timers VNET(bw_meter_timers) 215 VNET_DEFINE_STATIC(struct callout, bw_meter_ch); 216 #define V_bw_meter_ch VNET(bw_meter_ch) 217 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 218 219 /* 220 * Pending upcalls are stored in a vector which is flushed when 221 * full, or periodically 222 */ 223 VNET_DEFINE_STATIC(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]); 224 #define V_bw_upcalls VNET(bw_upcalls) 225 VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */ 226 #define V_bw_upcalls_n VNET(bw_upcalls_n) 227 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 228 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 229 230 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 231 232 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 233 VNET_PCPUSTAT_SYSINIT(pimstat); 234 VNET_PCPUSTAT_SYSUNINIT(pimstat); 235 236 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 237 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 238 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 239 240 static u_long pim_squelch_wholepkt = 0; 241 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 242 &pim_squelch_wholepkt, 0, 243 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 244 245 static const struct encaptab *pim_encap_cookie; 246 static int pim_encapcheck(const struct mbuf *, int, int, void *); 247 static int pim_input(struct mbuf *, int, int, void *); 248 249 static const struct encap_config ipv4_encap_cfg = { 250 .proto = IPPROTO_PIM, 251 .min_length = sizeof(struct ip) + PIM_MINLEN, 252 .exact_match = 8, 253 .check = pim_encapcheck, 254 .input = pim_input 255 }; 256 257 /* 258 * Note: the PIM Register encapsulation adds the following in front of a 259 * data packet: 260 * 261 * struct pim_encap_hdr { 262 * struct ip ip; 263 * struct pim_encap_pimhdr pim; 264 * } 265 * 266 */ 267 268 struct pim_encap_pimhdr { 269 struct pim pim; 270 uint32_t flags; 271 }; 272 #define PIM_ENCAP_TTL 64 273 274 static struct ip pim_encap_iphdr = { 275 #if BYTE_ORDER == LITTLE_ENDIAN 276 sizeof(struct ip) >> 2, 277 IPVERSION, 278 #else 279 IPVERSION, 280 sizeof(struct ip) >> 2, 281 #endif 282 0, /* tos */ 283 sizeof(struct ip), /* total length */ 284 0, /* id */ 285 0, /* frag offset */ 286 PIM_ENCAP_TTL, 287 IPPROTO_PIM, 288 0, /* checksum */ 289 }; 290 291 static struct pim_encap_pimhdr pim_encap_pimhdr = { 292 { 293 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 294 0, /* reserved */ 295 0, /* checksum */ 296 }, 297 0 /* flags */ 298 }; 299 300 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 301 #define V_reg_vif_num VNET(reg_vif_num) 302 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if); 303 #define V_multicast_register_if VNET(multicast_register_if) 304 305 /* 306 * Private variables. 307 */ 308 309 static u_long X_ip_mcast_src(int); 310 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 311 struct ip_moptions *); 312 static int X_ip_mrouter_done(void); 313 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 314 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 315 static int X_legal_vif_num(int); 316 static int X_mrt_ioctl(u_long, caddr_t, int); 317 318 static int add_bw_upcall(struct bw_upcall *); 319 static int add_mfc(struct mfcctl2 *); 320 static int add_vif(struct vifctl *); 321 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 322 static void bw_meter_process(void); 323 static void bw_meter_receive_packet(struct bw_meter *, int, 324 struct timeval *); 325 static void bw_upcalls_send(void); 326 static int del_bw_upcall(struct bw_upcall *); 327 static int del_mfc(struct mfcctl2 *); 328 static int del_vif(vifi_t); 329 static int del_vif_locked(vifi_t); 330 static void expire_bw_meter_process(void *); 331 static void expire_bw_upcalls_send(void *); 332 static void expire_mfc(struct mfc *); 333 static void expire_upcalls(void *); 334 static void free_bw_list(struct bw_meter *); 335 static int get_sg_cnt(struct sioc_sg_req *); 336 static int get_vif_cnt(struct sioc_vif_req *); 337 static void if_detached_event(void *, struct ifnet *); 338 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 339 static int ip_mrouter_init(struct socket *, int); 340 static __inline struct mfc * 341 mfc_find(struct in_addr *, struct in_addr *); 342 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 343 static struct mbuf * 344 pim_register_prepare(struct ip *, struct mbuf *); 345 static int pim_register_send(struct ip *, struct vif *, 346 struct mbuf *, struct mfc *); 347 static int pim_register_send_rp(struct ip *, struct vif *, 348 struct mbuf *, struct mfc *); 349 static int pim_register_send_upcall(struct ip *, struct vif *, 350 struct mbuf *, struct mfc *); 351 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 352 static void send_packet(struct vif *, struct mbuf *); 353 static int set_api_config(uint32_t *); 354 static int set_assert(int); 355 static int socket_send(struct socket *, struct mbuf *, 356 struct sockaddr_in *); 357 static void unschedule_bw_meter(struct bw_meter *); 358 359 /* 360 * Kernel multicast forwarding API capabilities and setup. 361 * If more API capabilities are added to the kernel, they should be 362 * recorded in `mrt_api_support'. 363 */ 364 #define MRT_API_VERSION 0x0305 365 366 static const int mrt_api_version = MRT_API_VERSION; 367 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 368 MRT_MFC_FLAGS_BORDER_VIF | 369 MRT_MFC_RP | 370 MRT_MFC_BW_UPCALL); 371 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 372 #define V_mrt_api_config VNET(mrt_api_config) 373 VNET_DEFINE_STATIC(int, pim_assert_enabled); 374 #define V_pim_assert_enabled VNET(pim_assert_enabled) 375 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 376 377 /* 378 * Find a route for a given origin IP address and multicast group address. 379 * Statistics must be updated by the caller. 380 */ 381 static __inline struct mfc * 382 mfc_find(struct in_addr *o, struct in_addr *g) 383 { 384 struct mfc *rt; 385 386 MFC_LOCK_ASSERT(); 387 388 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 389 if (in_hosteq(rt->mfc_origin, *o) && 390 in_hosteq(rt->mfc_mcastgrp, *g) && 391 TAILQ_EMPTY(&rt->mfc_stall)) 392 break; 393 } 394 395 return (rt); 396 } 397 398 /* 399 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 400 */ 401 static int 402 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 403 { 404 int error, optval; 405 vifi_t vifi; 406 struct vifctl vifc; 407 struct mfcctl2 mfc; 408 struct bw_upcall bw_upcall; 409 uint32_t i; 410 411 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 412 return EPERM; 413 414 error = 0; 415 switch (sopt->sopt_name) { 416 case MRT_INIT: 417 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 418 if (error) 419 break; 420 error = ip_mrouter_init(so, optval); 421 break; 422 423 case MRT_DONE: 424 error = ip_mrouter_done(); 425 break; 426 427 case MRT_ADD_VIF: 428 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 429 if (error) 430 break; 431 error = add_vif(&vifc); 432 break; 433 434 case MRT_DEL_VIF: 435 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 436 if (error) 437 break; 438 error = del_vif(vifi); 439 break; 440 441 case MRT_ADD_MFC: 442 case MRT_DEL_MFC: 443 /* 444 * select data size depending on API version. 445 */ 446 if (sopt->sopt_name == MRT_ADD_MFC && 447 V_mrt_api_config & MRT_API_FLAGS_ALL) { 448 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 449 sizeof(struct mfcctl2)); 450 } else { 451 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 452 sizeof(struct mfcctl)); 453 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 454 sizeof(mfc) - sizeof(struct mfcctl)); 455 } 456 if (error) 457 break; 458 if (sopt->sopt_name == MRT_ADD_MFC) 459 error = add_mfc(&mfc); 460 else 461 error = del_mfc(&mfc); 462 break; 463 464 case MRT_ASSERT: 465 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 466 if (error) 467 break; 468 set_assert(optval); 469 break; 470 471 case MRT_API_CONFIG: 472 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 473 if (!error) 474 error = set_api_config(&i); 475 if (!error) 476 error = sooptcopyout(sopt, &i, sizeof i); 477 break; 478 479 case MRT_ADD_BW_UPCALL: 480 case MRT_DEL_BW_UPCALL: 481 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 482 sizeof bw_upcall); 483 if (error) 484 break; 485 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 486 error = add_bw_upcall(&bw_upcall); 487 else 488 error = del_bw_upcall(&bw_upcall); 489 break; 490 491 default: 492 error = EOPNOTSUPP; 493 break; 494 } 495 return error; 496 } 497 498 /* 499 * Handle MRT getsockopt commands 500 */ 501 static int 502 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 503 { 504 int error; 505 506 switch (sopt->sopt_name) { 507 case MRT_VERSION: 508 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); 509 break; 510 511 case MRT_ASSERT: 512 error = sooptcopyout(sopt, &V_pim_assert_enabled, 513 sizeof V_pim_assert_enabled); 514 break; 515 516 case MRT_API_SUPPORT: 517 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 518 break; 519 520 case MRT_API_CONFIG: 521 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); 522 break; 523 524 default: 525 error = EOPNOTSUPP; 526 break; 527 } 528 return error; 529 } 530 531 /* 532 * Handle ioctl commands to obtain information from the cache 533 */ 534 static int 535 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 536 { 537 int error = 0; 538 539 /* 540 * Currently the only function calling this ioctl routine is rtioctl_fib(). 541 * Typically, only root can create the raw socket in order to execute 542 * this ioctl method, however the request might be coming from a prison 543 */ 544 error = priv_check(curthread, PRIV_NETINET_MROUTE); 545 if (error) 546 return (error); 547 switch (cmd) { 548 case (SIOCGETVIFCNT): 549 error = get_vif_cnt((struct sioc_vif_req *)data); 550 break; 551 552 case (SIOCGETSGCNT): 553 error = get_sg_cnt((struct sioc_sg_req *)data); 554 break; 555 556 default: 557 error = EINVAL; 558 break; 559 } 560 return error; 561 } 562 563 /* 564 * returns the packet, byte, rpf-failure count for the source group provided 565 */ 566 static int 567 get_sg_cnt(struct sioc_sg_req *req) 568 { 569 struct mfc *rt; 570 571 MFC_LOCK(); 572 rt = mfc_find(&req->src, &req->grp); 573 if (rt == NULL) { 574 MFC_UNLOCK(); 575 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 576 return EADDRNOTAVAIL; 577 } 578 req->pktcnt = rt->mfc_pkt_cnt; 579 req->bytecnt = rt->mfc_byte_cnt; 580 req->wrong_if = rt->mfc_wrong_if; 581 MFC_UNLOCK(); 582 return 0; 583 } 584 585 /* 586 * returns the input and output packet and byte counts on the vif provided 587 */ 588 static int 589 get_vif_cnt(struct sioc_vif_req *req) 590 { 591 vifi_t vifi = req->vifi; 592 593 VIF_LOCK(); 594 if (vifi >= V_numvifs) { 595 VIF_UNLOCK(); 596 return EINVAL; 597 } 598 599 req->icount = V_viftable[vifi].v_pkt_in; 600 req->ocount = V_viftable[vifi].v_pkt_out; 601 req->ibytes = V_viftable[vifi].v_bytes_in; 602 req->obytes = V_viftable[vifi].v_bytes_out; 603 VIF_UNLOCK(); 604 605 return 0; 606 } 607 608 static void 609 if_detached_event(void *arg __unused, struct ifnet *ifp) 610 { 611 vifi_t vifi; 612 u_long i; 613 614 MROUTER_LOCK(); 615 616 if (V_ip_mrouter == NULL) { 617 MROUTER_UNLOCK(); 618 return; 619 } 620 621 VIF_LOCK(); 622 MFC_LOCK(); 623 624 /* 625 * Tear down multicast forwarder state associated with this ifnet. 626 * 1. Walk the vif list, matching vifs against this ifnet. 627 * 2. Walk the multicast forwarding cache (mfc) looking for 628 * inner matches with this vif's index. 629 * 3. Expire any matching multicast forwarding cache entries. 630 * 4. Free vif state. This should disable ALLMULTI on the interface. 631 */ 632 for (vifi = 0; vifi < V_numvifs; vifi++) { 633 if (V_viftable[vifi].v_ifp != ifp) 634 continue; 635 for (i = 0; i < mfchashsize; i++) { 636 struct mfc *rt, *nrt; 637 638 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 639 if (rt->mfc_parent == vifi) { 640 expire_mfc(rt); 641 } 642 } 643 } 644 del_vif_locked(vifi); 645 } 646 647 MFC_UNLOCK(); 648 VIF_UNLOCK(); 649 650 MROUTER_UNLOCK(); 651 } 652 653 /* 654 * Enable multicast forwarding. 655 */ 656 static int 657 ip_mrouter_init(struct socket *so, int version) 658 { 659 660 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__, 661 so->so_type, so->so_proto->pr_protocol); 662 663 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 664 return EOPNOTSUPP; 665 666 if (version != 1) 667 return ENOPROTOOPT; 668 669 MROUTER_LOCK(); 670 671 if (ip_mrouter_unloading) { 672 MROUTER_UNLOCK(); 673 return ENOPROTOOPT; 674 } 675 676 if (V_ip_mrouter != NULL) { 677 MROUTER_UNLOCK(); 678 return EADDRINUSE; 679 } 680 681 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 682 HASH_NOWAIT); 683 684 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 685 curvnet); 686 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 687 curvnet); 688 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 689 curvnet); 690 691 V_ip_mrouter = so; 692 ip_mrouter_cnt++; 693 694 MROUTER_UNLOCK(); 695 696 CTR1(KTR_IPMF, "%s: done", __func__); 697 698 return 0; 699 } 700 701 /* 702 * Disable multicast forwarding. 703 */ 704 static int 705 X_ip_mrouter_done(void) 706 { 707 struct ifnet *ifp; 708 u_long i; 709 vifi_t vifi; 710 711 MROUTER_LOCK(); 712 713 if (V_ip_mrouter == NULL) { 714 MROUTER_UNLOCK(); 715 return EINVAL; 716 } 717 718 /* 719 * Detach/disable hooks to the reset of the system. 720 */ 721 V_ip_mrouter = NULL; 722 ip_mrouter_cnt--; 723 V_mrt_api_config = 0; 724 725 VIF_LOCK(); 726 727 /* 728 * For each phyint in use, disable promiscuous reception of all IP 729 * multicasts. 730 */ 731 for (vifi = 0; vifi < V_numvifs; vifi++) { 732 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 733 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 734 ifp = V_viftable[vifi].v_ifp; 735 if_allmulti(ifp, 0); 736 } 737 } 738 bzero((caddr_t)V_viftable, sizeof(V_viftable)); 739 V_numvifs = 0; 740 V_pim_assert_enabled = 0; 741 742 VIF_UNLOCK(); 743 744 callout_stop(&V_expire_upcalls_ch); 745 callout_stop(&V_bw_upcalls_ch); 746 callout_stop(&V_bw_meter_ch); 747 748 MFC_LOCK(); 749 750 /* 751 * Free all multicast forwarding cache entries. 752 * Do not use hashdestroy(), as we must perform other cleanup. 753 */ 754 for (i = 0; i < mfchashsize; i++) { 755 struct mfc *rt, *nrt; 756 757 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 758 expire_mfc(rt); 759 } 760 } 761 free(V_mfchashtbl, M_MRTABLE); 762 V_mfchashtbl = NULL; 763 764 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 765 766 V_bw_upcalls_n = 0; 767 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 768 769 MFC_UNLOCK(); 770 771 V_reg_vif_num = VIFI_INVALID; 772 773 MROUTER_UNLOCK(); 774 775 CTR1(KTR_IPMF, "%s: done", __func__); 776 777 return 0; 778 } 779 780 /* 781 * Set PIM assert processing global 782 */ 783 static int 784 set_assert(int i) 785 { 786 if ((i != 1) && (i != 0)) 787 return EINVAL; 788 789 V_pim_assert_enabled = i; 790 791 return 0; 792 } 793 794 /* 795 * Configure API capabilities 796 */ 797 int 798 set_api_config(uint32_t *apival) 799 { 800 u_long i; 801 802 /* 803 * We can set the API capabilities only if it is the first operation 804 * after MRT_INIT. I.e.: 805 * - there are no vifs installed 806 * - pim_assert is not enabled 807 * - the MFC table is empty 808 */ 809 if (V_numvifs > 0) { 810 *apival = 0; 811 return EPERM; 812 } 813 if (V_pim_assert_enabled) { 814 *apival = 0; 815 return EPERM; 816 } 817 818 MFC_LOCK(); 819 820 for (i = 0; i < mfchashsize; i++) { 821 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 822 MFC_UNLOCK(); 823 *apival = 0; 824 return EPERM; 825 } 826 } 827 828 MFC_UNLOCK(); 829 830 V_mrt_api_config = *apival & mrt_api_support; 831 *apival = V_mrt_api_config; 832 833 return 0; 834 } 835 836 /* 837 * Add a vif to the vif table 838 */ 839 static int 840 add_vif(struct vifctl *vifcp) 841 { 842 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 843 struct sockaddr_in sin = {sizeof sin, AF_INET}; 844 struct ifaddr *ifa; 845 struct ifnet *ifp; 846 int error; 847 848 VIF_LOCK(); 849 if (vifcp->vifc_vifi >= MAXVIFS) { 850 VIF_UNLOCK(); 851 return EINVAL; 852 } 853 /* rate limiting is no longer supported by this code */ 854 if (vifcp->vifc_rate_limit != 0) { 855 log(LOG_ERR, "rate limiting is no longer supported\n"); 856 VIF_UNLOCK(); 857 return EINVAL; 858 } 859 if (!in_nullhost(vifp->v_lcl_addr)) { 860 VIF_UNLOCK(); 861 return EADDRINUSE; 862 } 863 if (in_nullhost(vifcp->vifc_lcl_addr)) { 864 VIF_UNLOCK(); 865 return EADDRNOTAVAIL; 866 } 867 868 /* Find the interface with an address in AF_INET family */ 869 if (vifcp->vifc_flags & VIFF_REGISTER) { 870 /* 871 * XXX: Because VIFF_REGISTER does not really need a valid 872 * local interface (e.g. it could be 127.0.0.2), we don't 873 * check its address. 874 */ 875 ifp = NULL; 876 } else { 877 struct epoch_tracker et; 878 879 sin.sin_addr = vifcp->vifc_lcl_addr; 880 NET_EPOCH_ENTER(et); 881 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 882 if (ifa == NULL) { 883 NET_EPOCH_EXIT(et); 884 VIF_UNLOCK(); 885 return EADDRNOTAVAIL; 886 } 887 ifp = ifa->ifa_ifp; 888 NET_EPOCH_EXIT(et); 889 } 890 891 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 892 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 893 VIF_UNLOCK(); 894 return EOPNOTSUPP; 895 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 896 ifp = &V_multicast_register_if; 897 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 898 if (V_reg_vif_num == VIFI_INVALID) { 899 if_initname(&V_multicast_register_if, "register_vif", 0); 900 V_multicast_register_if.if_flags = IFF_LOOPBACK; 901 V_reg_vif_num = vifcp->vifc_vifi; 902 } 903 } else { /* Make sure the interface supports multicast */ 904 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 905 VIF_UNLOCK(); 906 return EOPNOTSUPP; 907 } 908 909 /* Enable promiscuous reception of all IP multicasts from the if */ 910 error = if_allmulti(ifp, 1); 911 if (error) { 912 VIF_UNLOCK(); 913 return error; 914 } 915 } 916 917 vifp->v_flags = vifcp->vifc_flags; 918 vifp->v_threshold = vifcp->vifc_threshold; 919 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 920 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 921 vifp->v_ifp = ifp; 922 /* initialize per vif pkt counters */ 923 vifp->v_pkt_in = 0; 924 vifp->v_pkt_out = 0; 925 vifp->v_bytes_in = 0; 926 vifp->v_bytes_out = 0; 927 928 /* Adjust numvifs up if the vifi is higher than numvifs */ 929 if (V_numvifs <= vifcp->vifc_vifi) 930 V_numvifs = vifcp->vifc_vifi + 1; 931 932 VIF_UNLOCK(); 933 934 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 935 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 936 (int)vifcp->vifc_threshold); 937 938 return 0; 939 } 940 941 /* 942 * Delete a vif from the vif table 943 */ 944 static int 945 del_vif_locked(vifi_t vifi) 946 { 947 struct vif *vifp; 948 949 VIF_LOCK_ASSERT(); 950 951 if (vifi >= V_numvifs) { 952 return EINVAL; 953 } 954 vifp = &V_viftable[vifi]; 955 if (in_nullhost(vifp->v_lcl_addr)) { 956 return EADDRNOTAVAIL; 957 } 958 959 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 960 if_allmulti(vifp->v_ifp, 0); 961 962 if (vifp->v_flags & VIFF_REGISTER) 963 V_reg_vif_num = VIFI_INVALID; 964 965 bzero((caddr_t)vifp, sizeof (*vifp)); 966 967 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 968 969 /* Adjust numvifs down */ 970 for (vifi = V_numvifs; vifi > 0; vifi--) 971 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 972 break; 973 V_numvifs = vifi; 974 975 return 0; 976 } 977 978 static int 979 del_vif(vifi_t vifi) 980 { 981 int cc; 982 983 VIF_LOCK(); 984 cc = del_vif_locked(vifi); 985 VIF_UNLOCK(); 986 987 return cc; 988 } 989 990 /* 991 * update an mfc entry without resetting counters and S,G addresses. 992 */ 993 static void 994 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 995 { 996 int i; 997 998 rt->mfc_parent = mfccp->mfcc_parent; 999 for (i = 0; i < V_numvifs; i++) { 1000 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1001 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1002 MRT_MFC_FLAGS_ALL; 1003 } 1004 /* set the RP address */ 1005 if (V_mrt_api_config & MRT_MFC_RP) 1006 rt->mfc_rp = mfccp->mfcc_rp; 1007 else 1008 rt->mfc_rp.s_addr = INADDR_ANY; 1009 } 1010 1011 /* 1012 * fully initialize an mfc entry from the parameter. 1013 */ 1014 static void 1015 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1016 { 1017 rt->mfc_origin = mfccp->mfcc_origin; 1018 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1019 1020 update_mfc_params(rt, mfccp); 1021 1022 /* initialize pkt counters per src-grp */ 1023 rt->mfc_pkt_cnt = 0; 1024 rt->mfc_byte_cnt = 0; 1025 rt->mfc_wrong_if = 0; 1026 timevalclear(&rt->mfc_last_assert); 1027 } 1028 1029 static void 1030 expire_mfc(struct mfc *rt) 1031 { 1032 struct rtdetq *rte, *nrte; 1033 1034 MFC_LOCK_ASSERT(); 1035 1036 free_bw_list(rt->mfc_bw_meter); 1037 1038 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1039 m_freem(rte->m); 1040 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1041 free(rte, M_MRTABLE); 1042 } 1043 1044 LIST_REMOVE(rt, mfc_hash); 1045 free(rt, M_MRTABLE); 1046 } 1047 1048 /* 1049 * Add an mfc entry 1050 */ 1051 static int 1052 add_mfc(struct mfcctl2 *mfccp) 1053 { 1054 struct mfc *rt; 1055 struct rtdetq *rte, *nrte; 1056 u_long hash = 0; 1057 u_short nstl; 1058 1059 VIF_LOCK(); 1060 MFC_LOCK(); 1061 1062 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1063 1064 /* If an entry already exists, just update the fields */ 1065 if (rt) { 1066 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1067 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1068 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1069 mfccp->mfcc_parent); 1070 update_mfc_params(rt, mfccp); 1071 MFC_UNLOCK(); 1072 VIF_UNLOCK(); 1073 return (0); 1074 } 1075 1076 /* 1077 * Find the entry for which the upcall was made and update 1078 */ 1079 nstl = 0; 1080 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1081 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1082 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1083 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1084 !TAILQ_EMPTY(&rt->mfc_stall)) { 1085 CTR5(KTR_IPMF, 1086 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1087 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1088 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1089 mfccp->mfcc_parent, 1090 TAILQ_FIRST(&rt->mfc_stall)); 1091 if (nstl++) 1092 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1093 1094 init_mfc_params(rt, mfccp); 1095 rt->mfc_expire = 0; /* Don't clean this guy up */ 1096 V_nexpire[hash]--; 1097 1098 /* Free queued packets, but attempt to forward them first. */ 1099 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) { 1100 if (rte->ifp != NULL) 1101 ip_mdq(rte->m, rte->ifp, rt, -1); 1102 m_freem(rte->m); 1103 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link); 1104 rt->mfc_nstall--; 1105 free(rte, M_MRTABLE); 1106 } 1107 } 1108 } 1109 1110 /* 1111 * It is possible that an entry is being inserted without an upcall 1112 */ 1113 if (nstl == 0) { 1114 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1115 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1116 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1117 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1118 init_mfc_params(rt, mfccp); 1119 if (rt->mfc_expire) 1120 V_nexpire[hash]--; 1121 rt->mfc_expire = 0; 1122 break; /* XXX */ 1123 } 1124 } 1125 1126 if (rt == NULL) { /* no upcall, so make a new entry */ 1127 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1128 if (rt == NULL) { 1129 MFC_UNLOCK(); 1130 VIF_UNLOCK(); 1131 return (ENOBUFS); 1132 } 1133 1134 init_mfc_params(rt, mfccp); 1135 TAILQ_INIT(&rt->mfc_stall); 1136 rt->mfc_nstall = 0; 1137 1138 rt->mfc_expire = 0; 1139 rt->mfc_bw_meter = NULL; 1140 1141 /* insert new entry at head of hash chain */ 1142 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1143 } 1144 } 1145 1146 MFC_UNLOCK(); 1147 VIF_UNLOCK(); 1148 1149 return (0); 1150 } 1151 1152 /* 1153 * Delete an mfc entry 1154 */ 1155 static int 1156 del_mfc(struct mfcctl2 *mfccp) 1157 { 1158 struct in_addr origin; 1159 struct in_addr mcastgrp; 1160 struct mfc *rt; 1161 1162 origin = mfccp->mfcc_origin; 1163 mcastgrp = mfccp->mfcc_mcastgrp; 1164 1165 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1166 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1167 1168 MFC_LOCK(); 1169 1170 rt = mfc_find(&origin, &mcastgrp); 1171 if (rt == NULL) { 1172 MFC_UNLOCK(); 1173 return EADDRNOTAVAIL; 1174 } 1175 1176 /* 1177 * free the bw_meter entries 1178 */ 1179 free_bw_list(rt->mfc_bw_meter); 1180 rt->mfc_bw_meter = NULL; 1181 1182 LIST_REMOVE(rt, mfc_hash); 1183 free(rt, M_MRTABLE); 1184 1185 MFC_UNLOCK(); 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Send a message to the routing daemon on the multicast routing socket. 1192 */ 1193 static int 1194 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1195 { 1196 if (s) { 1197 SOCKBUF_LOCK(&s->so_rcv); 1198 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1199 NULL) != 0) { 1200 sorwakeup_locked(s); 1201 return 0; 1202 } 1203 SOCKBUF_UNLOCK(&s->so_rcv); 1204 } 1205 m_freem(mm); 1206 return -1; 1207 } 1208 1209 /* 1210 * IP multicast forwarding function. This function assumes that the packet 1211 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1212 * pointed to by "ifp", and the packet is to be relayed to other networks 1213 * that have members of the packet's destination IP multicast group. 1214 * 1215 * The packet is returned unscathed to the caller, unless it is 1216 * erroneous, in which case a non-zero return value tells the caller to 1217 * discard it. 1218 */ 1219 1220 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1221 1222 static int 1223 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1224 struct ip_moptions *imo) 1225 { 1226 struct mfc *rt; 1227 int error; 1228 vifi_t vifi; 1229 1230 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1231 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1232 1233 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1234 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1235 /* 1236 * Packet arrived via a physical interface or 1237 * an encapsulated tunnel or a register_vif. 1238 */ 1239 } else { 1240 /* 1241 * Packet arrived through a source-route tunnel. 1242 * Source-route tunnels are no longer supported. 1243 */ 1244 return (1); 1245 } 1246 1247 VIF_LOCK(); 1248 MFC_LOCK(); 1249 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1250 if (ip->ip_ttl < MAXTTL) 1251 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1252 error = ip_mdq(m, ifp, NULL, vifi); 1253 MFC_UNLOCK(); 1254 VIF_UNLOCK(); 1255 return error; 1256 } 1257 1258 /* 1259 * Don't forward a packet with time-to-live of zero or one, 1260 * or a packet destined to a local-only group. 1261 */ 1262 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1263 MFC_UNLOCK(); 1264 VIF_UNLOCK(); 1265 return 0; 1266 } 1267 1268 /* 1269 * Determine forwarding vifs from the forwarding cache table 1270 */ 1271 MRTSTAT_INC(mrts_mfc_lookups); 1272 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1273 1274 /* Entry exists, so forward if necessary */ 1275 if (rt != NULL) { 1276 error = ip_mdq(m, ifp, rt, -1); 1277 MFC_UNLOCK(); 1278 VIF_UNLOCK(); 1279 return error; 1280 } else { 1281 /* 1282 * If we don't have a route for packet's origin, 1283 * Make a copy of the packet & send message to routing daemon 1284 */ 1285 1286 struct mbuf *mb0; 1287 struct rtdetq *rte; 1288 u_long hash; 1289 int hlen = ip->ip_hl << 2; 1290 1291 MRTSTAT_INC(mrts_mfc_misses); 1292 MRTSTAT_INC(mrts_no_route); 1293 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1294 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1295 1296 /* 1297 * Allocate mbufs early so that we don't do extra work if we are 1298 * just going to fail anyway. Make sure to pullup the header so 1299 * that other people can't step on it. 1300 */ 1301 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, 1302 M_NOWAIT|M_ZERO); 1303 if (rte == NULL) { 1304 MFC_UNLOCK(); 1305 VIF_UNLOCK(); 1306 return ENOBUFS; 1307 } 1308 1309 mb0 = m_copypacket(m, M_NOWAIT); 1310 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1311 mb0 = m_pullup(mb0, hlen); 1312 if (mb0 == NULL) { 1313 free(rte, M_MRTABLE); 1314 MFC_UNLOCK(); 1315 VIF_UNLOCK(); 1316 return ENOBUFS; 1317 } 1318 1319 /* is there an upcall waiting for this flow ? */ 1320 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1321 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1322 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1323 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1324 !TAILQ_EMPTY(&rt->mfc_stall)) 1325 break; 1326 } 1327 1328 if (rt == NULL) { 1329 int i; 1330 struct igmpmsg *im; 1331 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1332 struct mbuf *mm; 1333 1334 /* 1335 * Locate the vifi for the incoming interface for this packet. 1336 * If none found, drop packet. 1337 */ 1338 for (vifi = 0; vifi < V_numvifs && 1339 V_viftable[vifi].v_ifp != ifp; vifi++) 1340 ; 1341 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1342 goto non_fatal; 1343 1344 /* no upcall, so make a new entry */ 1345 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1346 if (rt == NULL) 1347 goto fail; 1348 1349 /* Make a copy of the header to send to the user level process */ 1350 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1351 if (mm == NULL) 1352 goto fail1; 1353 1354 /* 1355 * Send message to routing daemon to install 1356 * a route into the kernel table 1357 */ 1358 1359 im = mtod(mm, struct igmpmsg *); 1360 im->im_msgtype = IGMPMSG_NOCACHE; 1361 im->im_mbz = 0; 1362 im->im_vif = vifi; 1363 1364 MRTSTAT_INC(mrts_upcalls); 1365 1366 k_igmpsrc.sin_addr = ip->ip_src; 1367 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1368 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1369 MRTSTAT_INC(mrts_upq_sockfull); 1370 fail1: 1371 free(rt, M_MRTABLE); 1372 fail: 1373 free(rte, M_MRTABLE); 1374 m_freem(mb0); 1375 MFC_UNLOCK(); 1376 VIF_UNLOCK(); 1377 return ENOBUFS; 1378 } 1379 1380 /* insert new entry at head of hash chain */ 1381 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1382 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1383 rt->mfc_expire = UPCALL_EXPIRE; 1384 V_nexpire[hash]++; 1385 for (i = 0; i < V_numvifs; i++) { 1386 rt->mfc_ttls[i] = 0; 1387 rt->mfc_flags[i] = 0; 1388 } 1389 rt->mfc_parent = -1; 1390 1391 /* clear the RP address */ 1392 rt->mfc_rp.s_addr = INADDR_ANY; 1393 rt->mfc_bw_meter = NULL; 1394 1395 /* initialize pkt counters per src-grp */ 1396 rt->mfc_pkt_cnt = 0; 1397 rt->mfc_byte_cnt = 0; 1398 rt->mfc_wrong_if = 0; 1399 timevalclear(&rt->mfc_last_assert); 1400 1401 TAILQ_INIT(&rt->mfc_stall); 1402 rt->mfc_nstall = 0; 1403 1404 /* link into table */ 1405 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1406 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link); 1407 rt->mfc_nstall++; 1408 1409 } else { 1410 /* determine if queue has overflowed */ 1411 if (rt->mfc_nstall > MAX_UPQ) { 1412 MRTSTAT_INC(mrts_upq_ovflw); 1413 non_fatal: 1414 free(rte, M_MRTABLE); 1415 m_freem(mb0); 1416 MFC_UNLOCK(); 1417 VIF_UNLOCK(); 1418 return (0); 1419 } 1420 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link); 1421 rt->mfc_nstall++; 1422 } 1423 1424 rte->m = mb0; 1425 rte->ifp = ifp; 1426 1427 MFC_UNLOCK(); 1428 VIF_UNLOCK(); 1429 1430 return 0; 1431 } 1432 } 1433 1434 /* 1435 * Clean up the cache entry if upcall is not serviced 1436 */ 1437 static void 1438 expire_upcalls(void *arg) 1439 { 1440 u_long i; 1441 1442 CURVNET_SET((struct vnet *) arg); 1443 1444 MFC_LOCK(); 1445 1446 for (i = 0; i < mfchashsize; i++) { 1447 struct mfc *rt, *nrt; 1448 1449 if (V_nexpire[i] == 0) 1450 continue; 1451 1452 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1453 if (TAILQ_EMPTY(&rt->mfc_stall)) 1454 continue; 1455 1456 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1457 continue; 1458 1459 /* 1460 * free the bw_meter entries 1461 */ 1462 while (rt->mfc_bw_meter != NULL) { 1463 struct bw_meter *x = rt->mfc_bw_meter; 1464 1465 rt->mfc_bw_meter = x->bm_mfc_next; 1466 free(x, M_BWMETER); 1467 } 1468 1469 MRTSTAT_INC(mrts_cache_cleanups); 1470 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1471 (u_long)ntohl(rt->mfc_origin.s_addr), 1472 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1473 1474 expire_mfc(rt); 1475 } 1476 } 1477 1478 MFC_UNLOCK(); 1479 1480 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1481 curvnet); 1482 1483 CURVNET_RESTORE(); 1484 } 1485 1486 /* 1487 * Packet forwarding routine once entry in the cache is made 1488 */ 1489 static int 1490 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1491 { 1492 struct ip *ip = mtod(m, struct ip *); 1493 vifi_t vifi; 1494 int plen = ntohs(ip->ip_len); 1495 1496 VIF_LOCK_ASSERT(); 1497 1498 /* 1499 * If xmt_vif is not -1, send on only the requested vif. 1500 * 1501 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1502 */ 1503 if (xmt_vif < V_numvifs) { 1504 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1505 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1506 else 1507 phyint_send(ip, V_viftable + xmt_vif, m); 1508 return 1; 1509 } 1510 1511 /* 1512 * Don't forward if it didn't arrive from the parent vif for its origin. 1513 */ 1514 vifi = rt->mfc_parent; 1515 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1516 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1517 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1518 MRTSTAT_INC(mrts_wrong_if); 1519 ++rt->mfc_wrong_if; 1520 /* 1521 * If we are doing PIM assert processing, send a message 1522 * to the routing daemon. 1523 * 1524 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1525 * can complete the SPT switch, regardless of the type 1526 * of the iif (broadcast media, GRE tunnel, etc). 1527 */ 1528 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1529 V_viftable[vifi].v_ifp) { 1530 1531 if (ifp == &V_multicast_register_if) 1532 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1533 1534 /* Get vifi for the incoming packet */ 1535 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; 1536 vifi++) 1537 ; 1538 if (vifi >= V_numvifs) 1539 return 0; /* The iif is not found: ignore the packet. */ 1540 1541 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1542 return 0; /* WRONGVIF disabled: ignore the packet */ 1543 1544 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1545 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1546 struct igmpmsg *im; 1547 int hlen = ip->ip_hl << 2; 1548 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1549 1550 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1551 mm = m_pullup(mm, hlen); 1552 if (mm == NULL) 1553 return ENOBUFS; 1554 1555 im = mtod(mm, struct igmpmsg *); 1556 im->im_msgtype = IGMPMSG_WRONGVIF; 1557 im->im_mbz = 0; 1558 im->im_vif = vifi; 1559 1560 MRTSTAT_INC(mrts_upcalls); 1561 1562 k_igmpsrc.sin_addr = im->im_src; 1563 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1564 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1565 MRTSTAT_INC(mrts_upq_sockfull); 1566 return ENOBUFS; 1567 } 1568 } 1569 } 1570 return 0; 1571 } 1572 1573 1574 /* If I sourced this packet, it counts as output, else it was input. */ 1575 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1576 V_viftable[vifi].v_pkt_out++; 1577 V_viftable[vifi].v_bytes_out += plen; 1578 } else { 1579 V_viftable[vifi].v_pkt_in++; 1580 V_viftable[vifi].v_bytes_in += plen; 1581 } 1582 rt->mfc_pkt_cnt++; 1583 rt->mfc_byte_cnt += plen; 1584 1585 /* 1586 * For each vif, decide if a copy of the packet should be forwarded. 1587 * Forward if: 1588 * - the ttl exceeds the vif's threshold 1589 * - there are group members downstream on interface 1590 */ 1591 for (vifi = 0; vifi < V_numvifs; vifi++) 1592 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1593 V_viftable[vifi].v_pkt_out++; 1594 V_viftable[vifi].v_bytes_out += plen; 1595 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1596 pim_register_send(ip, V_viftable + vifi, m, rt); 1597 else 1598 phyint_send(ip, V_viftable + vifi, m); 1599 } 1600 1601 /* 1602 * Perform upcall-related bw measuring. 1603 */ 1604 if (rt->mfc_bw_meter != NULL) { 1605 struct bw_meter *x; 1606 struct timeval now; 1607 1608 microtime(&now); 1609 MFC_LOCK_ASSERT(); 1610 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1611 bw_meter_receive_packet(x, plen, &now); 1612 } 1613 1614 return 0; 1615 } 1616 1617 /* 1618 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1619 */ 1620 static int 1621 X_legal_vif_num(int vif) 1622 { 1623 int ret; 1624 1625 ret = 0; 1626 if (vif < 0) 1627 return (ret); 1628 1629 VIF_LOCK(); 1630 if (vif < V_numvifs) 1631 ret = 1; 1632 VIF_UNLOCK(); 1633 1634 return (ret); 1635 } 1636 1637 /* 1638 * Return the local address used by this vif 1639 */ 1640 static u_long 1641 X_ip_mcast_src(int vifi) 1642 { 1643 in_addr_t addr; 1644 1645 addr = INADDR_ANY; 1646 if (vifi < 0) 1647 return (addr); 1648 1649 VIF_LOCK(); 1650 if (vifi < V_numvifs) 1651 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1652 VIF_UNLOCK(); 1653 1654 return (addr); 1655 } 1656 1657 static void 1658 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1659 { 1660 struct mbuf *mb_copy; 1661 int hlen = ip->ip_hl << 2; 1662 1663 VIF_LOCK_ASSERT(); 1664 1665 /* 1666 * Make a new reference to the packet; make sure that 1667 * the IP header is actually copied, not just referenced, 1668 * so that ip_output() only scribbles on the copy. 1669 */ 1670 mb_copy = m_copypacket(m, M_NOWAIT); 1671 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1672 mb_copy = m_pullup(mb_copy, hlen); 1673 if (mb_copy == NULL) 1674 return; 1675 1676 send_packet(vifp, mb_copy); 1677 } 1678 1679 static void 1680 send_packet(struct vif *vifp, struct mbuf *m) 1681 { 1682 struct ip_moptions imo; 1683 int error __unused; 1684 1685 VIF_LOCK_ASSERT(); 1686 1687 imo.imo_multicast_ifp = vifp->v_ifp; 1688 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1689 imo.imo_multicast_loop = 1; 1690 imo.imo_multicast_vif = -1; 1691 STAILQ_INIT(&imo.imo_head); 1692 1693 /* 1694 * Re-entrancy should not be a problem here, because 1695 * the packets that we send out and are looped back at us 1696 * should get rejected because they appear to come from 1697 * the loopback interface, thus preventing looping. 1698 */ 1699 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1700 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1701 (ptrdiff_t)(vifp - V_viftable), error); 1702 } 1703 1704 /* 1705 * Stubs for old RSVP socket shim implementation. 1706 */ 1707 1708 static int 1709 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1710 { 1711 1712 return (EOPNOTSUPP); 1713 } 1714 1715 static void 1716 X_ip_rsvp_force_done(struct socket *so __unused) 1717 { 1718 1719 } 1720 1721 static int 1722 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1723 { 1724 struct mbuf *m; 1725 1726 m = *mp; 1727 *mp = NULL; 1728 if (!V_rsvp_on) 1729 m_freem(m); 1730 return (IPPROTO_DONE); 1731 } 1732 1733 /* 1734 * Code for bandwidth monitors 1735 */ 1736 1737 /* 1738 * Define common interface for timeval-related methods 1739 */ 1740 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1741 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1742 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1743 1744 static uint32_t 1745 compute_bw_meter_flags(struct bw_upcall *req) 1746 { 1747 uint32_t flags = 0; 1748 1749 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1750 flags |= BW_METER_UNIT_PACKETS; 1751 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1752 flags |= BW_METER_UNIT_BYTES; 1753 if (req->bu_flags & BW_UPCALL_GEQ) 1754 flags |= BW_METER_GEQ; 1755 if (req->bu_flags & BW_UPCALL_LEQ) 1756 flags |= BW_METER_LEQ; 1757 1758 return flags; 1759 } 1760 1761 /* 1762 * Add a bw_meter entry 1763 */ 1764 static int 1765 add_bw_upcall(struct bw_upcall *req) 1766 { 1767 struct mfc *mfc; 1768 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1769 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1770 struct timeval now; 1771 struct bw_meter *x; 1772 uint32_t flags; 1773 1774 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1775 return EOPNOTSUPP; 1776 1777 /* Test if the flags are valid */ 1778 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1779 return EINVAL; 1780 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1781 return EINVAL; 1782 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1783 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1784 return EINVAL; 1785 1786 /* Test if the threshold time interval is valid */ 1787 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1788 return EINVAL; 1789 1790 flags = compute_bw_meter_flags(req); 1791 1792 /* 1793 * Find if we have already same bw_meter entry 1794 */ 1795 MFC_LOCK(); 1796 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1797 if (mfc == NULL) { 1798 MFC_UNLOCK(); 1799 return EADDRNOTAVAIL; 1800 } 1801 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 1802 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1803 &req->bu_threshold.b_time, ==)) && 1804 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1805 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1806 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 1807 MFC_UNLOCK(); 1808 return 0; /* XXX Already installed */ 1809 } 1810 } 1811 1812 /* Allocate the new bw_meter entry */ 1813 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 1814 if (x == NULL) { 1815 MFC_UNLOCK(); 1816 return ENOBUFS; 1817 } 1818 1819 /* Set the new bw_meter entry */ 1820 x->bm_threshold.b_time = req->bu_threshold.b_time; 1821 microtime(&now); 1822 x->bm_start_time = now; 1823 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1824 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1825 x->bm_measured.b_packets = 0; 1826 x->bm_measured.b_bytes = 0; 1827 x->bm_flags = flags; 1828 x->bm_time_next = NULL; 1829 x->bm_time_hash = BW_METER_BUCKETS; 1830 1831 /* Add the new bw_meter entry to the front of entries for this MFC */ 1832 x->bm_mfc = mfc; 1833 x->bm_mfc_next = mfc->mfc_bw_meter; 1834 mfc->mfc_bw_meter = x; 1835 schedule_bw_meter(x, &now); 1836 MFC_UNLOCK(); 1837 1838 return 0; 1839 } 1840 1841 static void 1842 free_bw_list(struct bw_meter *list) 1843 { 1844 while (list != NULL) { 1845 struct bw_meter *x = list; 1846 1847 list = list->bm_mfc_next; 1848 unschedule_bw_meter(x); 1849 free(x, M_BWMETER); 1850 } 1851 } 1852 1853 /* 1854 * Delete one or multiple bw_meter entries 1855 */ 1856 static int 1857 del_bw_upcall(struct bw_upcall *req) 1858 { 1859 struct mfc *mfc; 1860 struct bw_meter *x; 1861 1862 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1863 return EOPNOTSUPP; 1864 1865 MFC_LOCK(); 1866 1867 /* Find the corresponding MFC entry */ 1868 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1869 if (mfc == NULL) { 1870 MFC_UNLOCK(); 1871 return EADDRNOTAVAIL; 1872 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 1873 /* 1874 * Delete all bw_meter entries for this mfc 1875 */ 1876 struct bw_meter *list; 1877 1878 list = mfc->mfc_bw_meter; 1879 mfc->mfc_bw_meter = NULL; 1880 free_bw_list(list); 1881 MFC_UNLOCK(); 1882 return 0; 1883 } else { /* Delete a single bw_meter entry */ 1884 struct bw_meter *prev; 1885 uint32_t flags = 0; 1886 1887 flags = compute_bw_meter_flags(req); 1888 1889 /* Find the bw_meter entry to delete */ 1890 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 1891 prev = x, x = x->bm_mfc_next) { 1892 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1893 &req->bu_threshold.b_time, ==)) && 1894 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 1895 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 1896 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 1897 break; 1898 } 1899 if (x != NULL) { /* Delete entry from the list for this MFC */ 1900 if (prev != NULL) 1901 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 1902 else 1903 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 1904 1905 unschedule_bw_meter(x); 1906 MFC_UNLOCK(); 1907 /* Free the bw_meter entry */ 1908 free(x, M_BWMETER); 1909 return 0; 1910 } else { 1911 MFC_UNLOCK(); 1912 return EINVAL; 1913 } 1914 } 1915 /* NOTREACHED */ 1916 } 1917 1918 /* 1919 * Perform bandwidth measurement processing that may result in an upcall 1920 */ 1921 static void 1922 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 1923 { 1924 struct timeval delta; 1925 1926 MFC_LOCK_ASSERT(); 1927 1928 delta = *nowp; 1929 BW_TIMEVALDECR(&delta, &x->bm_start_time); 1930 1931 if (x->bm_flags & BW_METER_GEQ) { 1932 /* 1933 * Processing for ">=" type of bw_meter entry 1934 */ 1935 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1936 /* Reset the bw_meter entry */ 1937 x->bm_start_time = *nowp; 1938 x->bm_measured.b_packets = 0; 1939 x->bm_measured.b_bytes = 0; 1940 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 1941 } 1942 1943 /* Record that a packet is received */ 1944 x->bm_measured.b_packets++; 1945 x->bm_measured.b_bytes += plen; 1946 1947 /* 1948 * Test if we should deliver an upcall 1949 */ 1950 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 1951 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1952 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 1953 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1954 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 1955 /* Prepare an upcall for delivery */ 1956 bw_meter_prepare_upcall(x, nowp); 1957 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 1958 } 1959 } 1960 } else if (x->bm_flags & BW_METER_LEQ) { 1961 /* 1962 * Processing for "<=" type of bw_meter entry 1963 */ 1964 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 1965 /* 1966 * We are behind time with the multicast forwarding table 1967 * scanning for "<=" type of bw_meter entries, so test now 1968 * if we should deliver an upcall. 1969 */ 1970 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1971 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1972 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1973 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1974 /* Prepare an upcall for delivery */ 1975 bw_meter_prepare_upcall(x, nowp); 1976 } 1977 /* Reschedule the bw_meter entry */ 1978 unschedule_bw_meter(x); 1979 schedule_bw_meter(x, nowp); 1980 } 1981 1982 /* Record that a packet is received */ 1983 x->bm_measured.b_packets++; 1984 x->bm_measured.b_bytes += plen; 1985 1986 /* 1987 * Test if we should restart the measuring interval 1988 */ 1989 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 1990 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 1991 (x->bm_flags & BW_METER_UNIT_BYTES && 1992 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 1993 /* Don't restart the measuring interval */ 1994 } else { 1995 /* Do restart the measuring interval */ 1996 /* 1997 * XXX: note that we don't unschedule and schedule, because this 1998 * might be too much overhead per packet. Instead, when we process 1999 * all entries for a given timer hash bin, we check whether it is 2000 * really a timeout. If not, we reschedule at that time. 2001 */ 2002 x->bm_start_time = *nowp; 2003 x->bm_measured.b_packets = 0; 2004 x->bm_measured.b_bytes = 0; 2005 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2006 } 2007 } 2008 } 2009 2010 /* 2011 * Prepare a bandwidth-related upcall 2012 */ 2013 static void 2014 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2015 { 2016 struct timeval delta; 2017 struct bw_upcall *u; 2018 2019 MFC_LOCK_ASSERT(); 2020 2021 /* 2022 * Compute the measured time interval 2023 */ 2024 delta = *nowp; 2025 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2026 2027 /* 2028 * If there are too many pending upcalls, deliver them now 2029 */ 2030 if (V_bw_upcalls_n >= BW_UPCALLS_MAX) 2031 bw_upcalls_send(); 2032 2033 /* 2034 * Set the bw_upcall entry 2035 */ 2036 u = &V_bw_upcalls[V_bw_upcalls_n++]; 2037 u->bu_src = x->bm_mfc->mfc_origin; 2038 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2039 u->bu_threshold.b_time = x->bm_threshold.b_time; 2040 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2041 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2042 u->bu_measured.b_time = delta; 2043 u->bu_measured.b_packets = x->bm_measured.b_packets; 2044 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2045 u->bu_flags = 0; 2046 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2047 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2048 if (x->bm_flags & BW_METER_UNIT_BYTES) 2049 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2050 if (x->bm_flags & BW_METER_GEQ) 2051 u->bu_flags |= BW_UPCALL_GEQ; 2052 if (x->bm_flags & BW_METER_LEQ) 2053 u->bu_flags |= BW_UPCALL_LEQ; 2054 } 2055 2056 /* 2057 * Send the pending bandwidth-related upcalls 2058 */ 2059 static void 2060 bw_upcalls_send(void) 2061 { 2062 struct mbuf *m; 2063 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]); 2064 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2065 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2066 0, /* unused2 */ 2067 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2068 0, /* im_mbz */ 2069 0, /* im_vif */ 2070 0, /* unused3 */ 2071 { 0 }, /* im_src */ 2072 { 0 } }; /* im_dst */ 2073 2074 MFC_LOCK_ASSERT(); 2075 2076 if (V_bw_upcalls_n == 0) 2077 return; /* No pending upcalls */ 2078 2079 V_bw_upcalls_n = 0; 2080 2081 /* 2082 * Allocate a new mbuf, initialize it with the header and 2083 * the payload for the pending calls. 2084 */ 2085 m = m_gethdr(M_NOWAIT, MT_DATA); 2086 if (m == NULL) { 2087 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2088 return; 2089 } 2090 2091 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2092 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]); 2093 2094 /* 2095 * Send the upcalls 2096 * XXX do we need to set the address in k_igmpsrc ? 2097 */ 2098 MRTSTAT_INC(mrts_upcalls); 2099 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2100 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2101 MRTSTAT_INC(mrts_upq_sockfull); 2102 } 2103 } 2104 2105 /* 2106 * Compute the timeout hash value for the bw_meter entries 2107 */ 2108 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2109 do { \ 2110 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2111 \ 2112 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2113 (hash) = next_timeval.tv_sec; \ 2114 if (next_timeval.tv_usec) \ 2115 (hash)++; /* XXX: make sure we don't timeout early */ \ 2116 (hash) %= BW_METER_BUCKETS; \ 2117 } while (0) 2118 2119 /* 2120 * Schedule a timer to process periodically bw_meter entry of type "<=" 2121 * by linking the entry in the proper hash bucket. 2122 */ 2123 static void 2124 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2125 { 2126 int time_hash; 2127 2128 MFC_LOCK_ASSERT(); 2129 2130 if (!(x->bm_flags & BW_METER_LEQ)) 2131 return; /* XXX: we schedule timers only for "<=" entries */ 2132 2133 /* 2134 * Reset the bw_meter entry 2135 */ 2136 x->bm_start_time = *nowp; 2137 x->bm_measured.b_packets = 0; 2138 x->bm_measured.b_bytes = 0; 2139 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2140 2141 /* 2142 * Compute the timeout hash value and insert the entry 2143 */ 2144 BW_METER_TIMEHASH(x, time_hash); 2145 x->bm_time_next = V_bw_meter_timers[time_hash]; 2146 V_bw_meter_timers[time_hash] = x; 2147 x->bm_time_hash = time_hash; 2148 } 2149 2150 /* 2151 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2152 * by removing the entry from the proper hash bucket. 2153 */ 2154 static void 2155 unschedule_bw_meter(struct bw_meter *x) 2156 { 2157 int time_hash; 2158 struct bw_meter *prev, *tmp; 2159 2160 MFC_LOCK_ASSERT(); 2161 2162 if (!(x->bm_flags & BW_METER_LEQ)) 2163 return; /* XXX: we schedule timers only for "<=" entries */ 2164 2165 /* 2166 * Compute the timeout hash value and delete the entry 2167 */ 2168 time_hash = x->bm_time_hash; 2169 if (time_hash >= BW_METER_BUCKETS) 2170 return; /* Entry was not scheduled */ 2171 2172 for (prev = NULL, tmp = V_bw_meter_timers[time_hash]; 2173 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2174 if (tmp == x) 2175 break; 2176 2177 if (tmp == NULL) 2178 panic("unschedule_bw_meter: bw_meter entry not found"); 2179 2180 if (prev != NULL) 2181 prev->bm_time_next = x->bm_time_next; 2182 else 2183 V_bw_meter_timers[time_hash] = x->bm_time_next; 2184 2185 x->bm_time_next = NULL; 2186 x->bm_time_hash = BW_METER_BUCKETS; 2187 } 2188 2189 2190 /* 2191 * Process all "<=" type of bw_meter that should be processed now, 2192 * and for each entry prepare an upcall if necessary. Each processed 2193 * entry is rescheduled again for the (periodic) processing. 2194 * 2195 * This is run periodically (once per second normally). On each round, 2196 * all the potentially matching entries are in the hash slot that we are 2197 * looking at. 2198 */ 2199 static void 2200 bw_meter_process() 2201 { 2202 uint32_t loops; 2203 int i; 2204 struct timeval now, process_endtime; 2205 2206 microtime(&now); 2207 if (V_last_tv_sec == now.tv_sec) 2208 return; /* nothing to do */ 2209 2210 loops = now.tv_sec - V_last_tv_sec; 2211 V_last_tv_sec = now.tv_sec; 2212 if (loops > BW_METER_BUCKETS) 2213 loops = BW_METER_BUCKETS; 2214 2215 MFC_LOCK(); 2216 /* 2217 * Process all bins of bw_meter entries from the one after the last 2218 * processed to the current one. On entry, i points to the last bucket 2219 * visited, so we need to increment i at the beginning of the loop. 2220 */ 2221 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2222 struct bw_meter *x, *tmp_list; 2223 2224 if (++i >= BW_METER_BUCKETS) 2225 i = 0; 2226 2227 /* Disconnect the list of bw_meter entries from the bin */ 2228 tmp_list = V_bw_meter_timers[i]; 2229 V_bw_meter_timers[i] = NULL; 2230 2231 /* Process the list of bw_meter entries */ 2232 while (tmp_list != NULL) { 2233 x = tmp_list; 2234 tmp_list = tmp_list->bm_time_next; 2235 2236 /* Test if the time interval is over */ 2237 process_endtime = x->bm_start_time; 2238 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2239 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2240 /* Not yet: reschedule, but don't reset */ 2241 int time_hash; 2242 2243 BW_METER_TIMEHASH(x, time_hash); 2244 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2245 /* 2246 * XXX: somehow the bin processing is a bit ahead of time. 2247 * Put the entry in the next bin. 2248 */ 2249 if (++time_hash >= BW_METER_BUCKETS) 2250 time_hash = 0; 2251 } 2252 x->bm_time_next = V_bw_meter_timers[time_hash]; 2253 V_bw_meter_timers[time_hash] = x; 2254 x->bm_time_hash = time_hash; 2255 2256 continue; 2257 } 2258 2259 /* 2260 * Test if we should deliver an upcall 2261 */ 2262 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2263 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2264 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2265 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2266 /* Prepare an upcall for delivery */ 2267 bw_meter_prepare_upcall(x, &now); 2268 } 2269 2270 /* 2271 * Reschedule for next processing 2272 */ 2273 schedule_bw_meter(x, &now); 2274 } 2275 } 2276 2277 /* Send all upcalls that are pending delivery */ 2278 bw_upcalls_send(); 2279 2280 MFC_UNLOCK(); 2281 } 2282 2283 /* 2284 * A periodic function for sending all upcalls that are pending delivery 2285 */ 2286 static void 2287 expire_bw_upcalls_send(void *arg) 2288 { 2289 CURVNET_SET((struct vnet *) arg); 2290 2291 MFC_LOCK(); 2292 bw_upcalls_send(); 2293 MFC_UNLOCK(); 2294 2295 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2296 curvnet); 2297 CURVNET_RESTORE(); 2298 } 2299 2300 /* 2301 * A periodic function for periodic scanning of the multicast forwarding 2302 * table for processing all "<=" bw_meter entries. 2303 */ 2304 static void 2305 expire_bw_meter_process(void *arg) 2306 { 2307 CURVNET_SET((struct vnet *) arg); 2308 2309 if (V_mrt_api_config & MRT_MFC_BW_UPCALL) 2310 bw_meter_process(); 2311 2312 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, 2313 curvnet); 2314 CURVNET_RESTORE(); 2315 } 2316 2317 /* 2318 * End of bandwidth monitoring code 2319 */ 2320 2321 /* 2322 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2323 * 2324 */ 2325 static int 2326 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2327 struct mfc *rt) 2328 { 2329 struct mbuf *mb_copy, *mm; 2330 2331 /* 2332 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2333 * rendezvous point was unspecified, and we were told not to. 2334 */ 2335 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2336 in_nullhost(rt->mfc_rp)) 2337 return 0; 2338 2339 mb_copy = pim_register_prepare(ip, m); 2340 if (mb_copy == NULL) 2341 return ENOBUFS; 2342 2343 /* 2344 * Send all the fragments. Note that the mbuf for each fragment 2345 * is freed by the sending machinery. 2346 */ 2347 for (mm = mb_copy; mm; mm = mb_copy) { 2348 mb_copy = mm->m_nextpkt; 2349 mm->m_nextpkt = 0; 2350 mm = m_pullup(mm, sizeof(struct ip)); 2351 if (mm != NULL) { 2352 ip = mtod(mm, struct ip *); 2353 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2354 pim_register_send_rp(ip, vifp, mm, rt); 2355 } else { 2356 pim_register_send_upcall(ip, vifp, mm, rt); 2357 } 2358 } 2359 } 2360 2361 return 0; 2362 } 2363 2364 /* 2365 * Return a copy of the data packet that is ready for PIM Register 2366 * encapsulation. 2367 * XXX: Note that in the returned copy the IP header is a valid one. 2368 */ 2369 static struct mbuf * 2370 pim_register_prepare(struct ip *ip, struct mbuf *m) 2371 { 2372 struct mbuf *mb_copy = NULL; 2373 int mtu; 2374 2375 /* Take care of delayed checksums */ 2376 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2377 in_delayed_cksum(m); 2378 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2379 } 2380 2381 /* 2382 * Copy the old packet & pullup its IP header into the 2383 * new mbuf so we can modify it. 2384 */ 2385 mb_copy = m_copypacket(m, M_NOWAIT); 2386 if (mb_copy == NULL) 2387 return NULL; 2388 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2389 if (mb_copy == NULL) 2390 return NULL; 2391 2392 /* take care of the TTL */ 2393 ip = mtod(mb_copy, struct ip *); 2394 --ip->ip_ttl; 2395 2396 /* Compute the MTU after the PIM Register encapsulation */ 2397 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2398 2399 if (ntohs(ip->ip_len) <= mtu) { 2400 /* Turn the IP header into a valid one */ 2401 ip->ip_sum = 0; 2402 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2403 } else { 2404 /* Fragment the packet */ 2405 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2406 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2407 m_freem(mb_copy); 2408 return NULL; 2409 } 2410 } 2411 return mb_copy; 2412 } 2413 2414 /* 2415 * Send an upcall with the data packet to the user-level process. 2416 */ 2417 static int 2418 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2419 struct mbuf *mb_copy, struct mfc *rt) 2420 { 2421 struct mbuf *mb_first; 2422 int len = ntohs(ip->ip_len); 2423 struct igmpmsg *im; 2424 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2425 2426 VIF_LOCK_ASSERT(); 2427 2428 /* 2429 * Add a new mbuf with an upcall header 2430 */ 2431 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2432 if (mb_first == NULL) { 2433 m_freem(mb_copy); 2434 return ENOBUFS; 2435 } 2436 mb_first->m_data += max_linkhdr; 2437 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2438 mb_first->m_len = sizeof(struct igmpmsg); 2439 mb_first->m_next = mb_copy; 2440 2441 /* Send message to routing daemon */ 2442 im = mtod(mb_first, struct igmpmsg *); 2443 im->im_msgtype = IGMPMSG_WHOLEPKT; 2444 im->im_mbz = 0; 2445 im->im_vif = vifp - V_viftable; 2446 im->im_src = ip->ip_src; 2447 im->im_dst = ip->ip_dst; 2448 2449 k_igmpsrc.sin_addr = ip->ip_src; 2450 2451 MRTSTAT_INC(mrts_upcalls); 2452 2453 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2454 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2455 MRTSTAT_INC(mrts_upq_sockfull); 2456 return ENOBUFS; 2457 } 2458 2459 /* Keep statistics */ 2460 PIMSTAT_INC(pims_snd_registers_msgs); 2461 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2462 2463 return 0; 2464 } 2465 2466 /* 2467 * Encapsulate the data packet in PIM Register message and send it to the RP. 2468 */ 2469 static int 2470 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2471 struct mfc *rt) 2472 { 2473 struct mbuf *mb_first; 2474 struct ip *ip_outer; 2475 struct pim_encap_pimhdr *pimhdr; 2476 int len = ntohs(ip->ip_len); 2477 vifi_t vifi = rt->mfc_parent; 2478 2479 VIF_LOCK_ASSERT(); 2480 2481 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2482 m_freem(mb_copy); 2483 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2484 } 2485 2486 /* 2487 * Add a new mbuf with the encapsulating header 2488 */ 2489 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2490 if (mb_first == NULL) { 2491 m_freem(mb_copy); 2492 return ENOBUFS; 2493 } 2494 mb_first->m_data += max_linkhdr; 2495 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2496 mb_first->m_next = mb_copy; 2497 2498 mb_first->m_pkthdr.len = len + mb_first->m_len; 2499 2500 /* 2501 * Fill in the encapsulating IP and PIM header 2502 */ 2503 ip_outer = mtod(mb_first, struct ip *); 2504 *ip_outer = pim_encap_iphdr; 2505 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2506 sizeof(pim_encap_pimhdr)); 2507 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2508 ip_outer->ip_dst = rt->mfc_rp; 2509 /* 2510 * Copy the inner header TOS to the outer header, and take care of the 2511 * IP_DF bit. 2512 */ 2513 ip_outer->ip_tos = ip->ip_tos; 2514 if (ip->ip_off & htons(IP_DF)) 2515 ip_outer->ip_off |= htons(IP_DF); 2516 ip_fillid(ip_outer); 2517 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2518 + sizeof(pim_encap_iphdr)); 2519 *pimhdr = pim_encap_pimhdr; 2520 /* If the iif crosses a border, set the Border-bit */ 2521 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2522 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2523 2524 mb_first->m_data += sizeof(pim_encap_iphdr); 2525 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2526 mb_first->m_data -= sizeof(pim_encap_iphdr); 2527 2528 send_packet(vifp, mb_first); 2529 2530 /* Keep statistics */ 2531 PIMSTAT_INC(pims_snd_registers_msgs); 2532 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2533 2534 return 0; 2535 } 2536 2537 /* 2538 * pim_encapcheck() is called by the encap4_input() path at runtime to 2539 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2540 * into the kernel. 2541 */ 2542 static int 2543 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2544 int proto __unused, void *arg __unused) 2545 { 2546 2547 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2548 return (8); /* claim the datagram. */ 2549 } 2550 2551 /* 2552 * PIM-SMv2 and PIM-DM messages processing. 2553 * Receives and verifies the PIM control messages, and passes them 2554 * up to the listening socket, using rip_input(). 2555 * The only message with special processing is the PIM_REGISTER message 2556 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2557 * is passed to if_simloop(). 2558 */ 2559 static int 2560 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2561 { 2562 struct ip *ip = mtod(m, struct ip *); 2563 struct pim *pim; 2564 int iphlen = off; 2565 int minlen; 2566 int datalen = ntohs(ip->ip_len) - iphlen; 2567 int ip_tos; 2568 2569 /* Keep statistics */ 2570 PIMSTAT_INC(pims_rcv_total_msgs); 2571 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2572 2573 /* 2574 * Validate lengths 2575 */ 2576 if (datalen < PIM_MINLEN) { 2577 PIMSTAT_INC(pims_rcv_tooshort); 2578 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2579 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2580 m_freem(m); 2581 return (IPPROTO_DONE); 2582 } 2583 2584 /* 2585 * If the packet is at least as big as a REGISTER, go agead 2586 * and grab the PIM REGISTER header size, to avoid another 2587 * possible m_pullup() later. 2588 * 2589 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2590 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2591 */ 2592 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2593 /* 2594 * Get the IP and PIM headers in contiguous memory, and 2595 * possibly the PIM REGISTER header. 2596 */ 2597 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2598 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2599 return (IPPROTO_DONE); 2600 } 2601 2602 /* m_pullup() may have given us a new mbuf so reset ip. */ 2603 ip = mtod(m, struct ip *); 2604 ip_tos = ip->ip_tos; 2605 2606 /* adjust mbuf to point to the PIM header */ 2607 m->m_data += iphlen; 2608 m->m_len -= iphlen; 2609 pim = mtod(m, struct pim *); 2610 2611 /* 2612 * Validate checksum. If PIM REGISTER, exclude the data packet. 2613 * 2614 * XXX: some older PIMv2 implementations don't make this distinction, 2615 * so for compatibility reason perform the checksum over part of the 2616 * message, and if error, then over the whole message. 2617 */ 2618 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2619 /* do nothing, checksum okay */ 2620 } else if (in_cksum(m, datalen)) { 2621 PIMSTAT_INC(pims_rcv_badsum); 2622 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2623 m_freem(m); 2624 return (IPPROTO_DONE); 2625 } 2626 2627 /* PIM version check */ 2628 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2629 PIMSTAT_INC(pims_rcv_badversion); 2630 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2631 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2632 m_freem(m); 2633 return (IPPROTO_DONE); 2634 } 2635 2636 /* restore mbuf back to the outer IP */ 2637 m->m_data -= iphlen; 2638 m->m_len += iphlen; 2639 2640 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2641 /* 2642 * Since this is a REGISTER, we'll make a copy of the register 2643 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2644 * routing daemon. 2645 */ 2646 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2647 struct mbuf *mcp; 2648 struct ip *encap_ip; 2649 u_int32_t *reghdr; 2650 struct ifnet *vifp; 2651 2652 VIF_LOCK(); 2653 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2654 VIF_UNLOCK(); 2655 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2656 (int)V_reg_vif_num); 2657 m_freem(m); 2658 return (IPPROTO_DONE); 2659 } 2660 /* XXX need refcnt? */ 2661 vifp = V_viftable[V_reg_vif_num].v_ifp; 2662 VIF_UNLOCK(); 2663 2664 /* 2665 * Validate length 2666 */ 2667 if (datalen < PIM_REG_MINLEN) { 2668 PIMSTAT_INC(pims_rcv_tooshort); 2669 PIMSTAT_INC(pims_rcv_badregisters); 2670 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2671 m_freem(m); 2672 return (IPPROTO_DONE); 2673 } 2674 2675 reghdr = (u_int32_t *)(pim + 1); 2676 encap_ip = (struct ip *)(reghdr + 1); 2677 2678 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2679 __func__, ntohl(encap_ip->ip_src.s_addr), 2680 ntohs(encap_ip->ip_len)); 2681 2682 /* verify the version number of the inner packet */ 2683 if (encap_ip->ip_v != IPVERSION) { 2684 PIMSTAT_INC(pims_rcv_badregisters); 2685 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2686 m_freem(m); 2687 return (IPPROTO_DONE); 2688 } 2689 2690 /* verify the inner packet is destined to a mcast group */ 2691 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2692 PIMSTAT_INC(pims_rcv_badregisters); 2693 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2694 ntohl(encap_ip->ip_dst.s_addr)); 2695 m_freem(m); 2696 return (IPPROTO_DONE); 2697 } 2698 2699 /* If a NULL_REGISTER, pass it to the daemon */ 2700 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2701 goto pim_input_to_daemon; 2702 2703 /* 2704 * Copy the TOS from the outer IP header to the inner IP header. 2705 */ 2706 if (encap_ip->ip_tos != ip_tos) { 2707 /* Outer TOS -> inner TOS */ 2708 encap_ip->ip_tos = ip_tos; 2709 /* Recompute the inner header checksum. Sigh... */ 2710 2711 /* adjust mbuf to point to the inner IP header */ 2712 m->m_data += (iphlen + PIM_MINLEN); 2713 m->m_len -= (iphlen + PIM_MINLEN); 2714 2715 encap_ip->ip_sum = 0; 2716 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2717 2718 /* restore mbuf to point back to the outer IP header */ 2719 m->m_data -= (iphlen + PIM_MINLEN); 2720 m->m_len += (iphlen + PIM_MINLEN); 2721 } 2722 2723 /* 2724 * Decapsulate the inner IP packet and loopback to forward it 2725 * as a normal multicast packet. Also, make a copy of the 2726 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2727 * to pass to the daemon later, so it can take the appropriate 2728 * actions (e.g., send back PIM_REGISTER_STOP). 2729 * XXX: here m->m_data points to the outer IP header. 2730 */ 2731 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2732 if (mcp == NULL) { 2733 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2734 m_freem(m); 2735 return (IPPROTO_DONE); 2736 } 2737 2738 /* Keep statistics */ 2739 /* XXX: registers_bytes include only the encap. mcast pkt */ 2740 PIMSTAT_INC(pims_rcv_registers_msgs); 2741 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2742 2743 /* 2744 * forward the inner ip packet; point m_data at the inner ip. 2745 */ 2746 m_adj(m, iphlen + PIM_MINLEN); 2747 2748 CTR4(KTR_IPMF, 2749 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2750 __func__, 2751 (u_long)ntohl(encap_ip->ip_src.s_addr), 2752 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2753 (int)V_reg_vif_num); 2754 2755 /* NB: vifp was collected above; can it change on us? */ 2756 if_simloop(vifp, m, dst.sin_family, 0); 2757 2758 /* prepare the register head to send to the mrouting daemon */ 2759 m = mcp; 2760 } 2761 2762 pim_input_to_daemon: 2763 /* 2764 * Pass the PIM message up to the daemon; if it is a Register message, 2765 * pass the 'head' only up to the daemon. This includes the 2766 * outer IP header, PIM header, PIM-Register header and the 2767 * inner IP header. 2768 * XXX: the outer IP header pkt size of a Register is not adjust to 2769 * reflect the fact that the inner multicast data is truncated. 2770 */ 2771 return (rip_input(&m, &off, proto)); 2772 } 2773 2774 static int 2775 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2776 { 2777 struct mfc *rt; 2778 int error, i; 2779 2780 if (req->newptr) 2781 return (EPERM); 2782 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2783 return (0); 2784 error = sysctl_wire_old_buffer(req, 0); 2785 if (error) 2786 return (error); 2787 2788 MFC_LOCK(); 2789 for (i = 0; i < mfchashsize; i++) { 2790 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2791 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2792 if (error) 2793 goto out_locked; 2794 } 2795 } 2796 out_locked: 2797 MFC_UNLOCK(); 2798 return (error); 2799 } 2800 2801 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 2802 sysctl_mfctable, "IPv4 Multicast Forwarding Table " 2803 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2804 2805 static void 2806 vnet_mroute_init(const void *unused __unused) 2807 { 2808 2809 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2810 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers)); 2811 callout_init(&V_expire_upcalls_ch, 1); 2812 callout_init(&V_bw_upcalls_ch, 1); 2813 callout_init(&V_bw_meter_ch, 1); 2814 } 2815 2816 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2817 NULL); 2818 2819 static void 2820 vnet_mroute_uninit(const void *unused __unused) 2821 { 2822 2823 free(V_nexpire, M_MRTABLE); 2824 V_nexpire = NULL; 2825 } 2826 2827 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2828 vnet_mroute_uninit, NULL); 2829 2830 static int 2831 ip_mroute_modevent(module_t mod, int type, void *unused) 2832 { 2833 2834 switch (type) { 2835 case MOD_LOAD: 2836 MROUTER_LOCK_INIT(); 2837 2838 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2839 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2840 if (if_detach_event_tag == NULL) { 2841 printf("ip_mroute: unable to register " 2842 "ifnet_departure_event handler\n"); 2843 MROUTER_LOCK_DESTROY(); 2844 return (EINVAL); 2845 } 2846 2847 MFC_LOCK_INIT(); 2848 VIF_LOCK_INIT(); 2849 2850 mfchashsize = MFCHASHSIZE; 2851 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && 2852 !powerof2(mfchashsize)) { 2853 printf("WARNING: %s not a power of 2; using default\n", 2854 "net.inet.ip.mfchashsize"); 2855 mfchashsize = MFCHASHSIZE; 2856 } 2857 2858 pim_squelch_wholepkt = 0; 2859 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 2860 &pim_squelch_wholepkt); 2861 2862 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2863 if (pim_encap_cookie == NULL) { 2864 printf("ip_mroute: unable to attach pim encap\n"); 2865 VIF_LOCK_DESTROY(); 2866 MFC_LOCK_DESTROY(); 2867 MROUTER_LOCK_DESTROY(); 2868 return (EINVAL); 2869 } 2870 2871 ip_mcast_src = X_ip_mcast_src; 2872 ip_mforward = X_ip_mforward; 2873 ip_mrouter_done = X_ip_mrouter_done; 2874 ip_mrouter_get = X_ip_mrouter_get; 2875 ip_mrouter_set = X_ip_mrouter_set; 2876 2877 ip_rsvp_force_done = X_ip_rsvp_force_done; 2878 ip_rsvp_vif = X_ip_rsvp_vif; 2879 2880 legal_vif_num = X_legal_vif_num; 2881 mrt_ioctl = X_mrt_ioctl; 2882 rsvp_input_p = X_rsvp_input; 2883 break; 2884 2885 case MOD_UNLOAD: 2886 /* 2887 * Typically module unload happens after the user-level 2888 * process has shutdown the kernel services (the check 2889 * below insures someone can't just yank the module out 2890 * from under a running process). But if the module is 2891 * just loaded and then unloaded w/o starting up a user 2892 * process we still need to cleanup. 2893 */ 2894 MROUTER_LOCK(); 2895 if (ip_mrouter_cnt != 0) { 2896 MROUTER_UNLOCK(); 2897 return (EINVAL); 2898 } 2899 ip_mrouter_unloading = 1; 2900 MROUTER_UNLOCK(); 2901 2902 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2903 2904 if (pim_encap_cookie) { 2905 ip_encap_detach(pim_encap_cookie); 2906 pim_encap_cookie = NULL; 2907 } 2908 2909 ip_mcast_src = NULL; 2910 ip_mforward = NULL; 2911 ip_mrouter_done = NULL; 2912 ip_mrouter_get = NULL; 2913 ip_mrouter_set = NULL; 2914 2915 ip_rsvp_force_done = NULL; 2916 ip_rsvp_vif = NULL; 2917 2918 legal_vif_num = NULL; 2919 mrt_ioctl = NULL; 2920 rsvp_input_p = NULL; 2921 2922 VIF_LOCK_DESTROY(); 2923 MFC_LOCK_DESTROY(); 2924 MROUTER_LOCK_DESTROY(); 2925 break; 2926 2927 default: 2928 return EOPNOTSUPP; 2929 } 2930 return 0; 2931 } 2932 2933 static moduledata_t ip_mroutemod = { 2934 "ip_mroute", 2935 ip_mroute_modevent, 2936 0 2937 }; 2938 2939 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2940