1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989 Stephen Deering 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Stephen Deering of Stanford University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 36 */ 37 38 /* 39 * IP multicast forwarding procedures 40 * 41 * Written by David Waitzman, BBN Labs, August 1988. 42 * Modified by Steve Deering, Stanford, February 1989. 43 * Modified by Mark J. Steiglitz, Stanford, May, 1991 44 * Modified by Van Jacobson, LBL, January 1993 45 * Modified by Ajit Thyagarajan, PARC, August 1993 46 * Modified by Bill Fenner, PARC, April 1995 47 * Modified by Ahmed Helmy, SGI, June 1996 48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 50 * Modified by Hitoshi Asaeda, WIDE, August 2000 51 * Modified by Pavlin Radoslavov, ICSI, October 2002 52 * Modified by Wojciech Macek, Semihalf, May 2021 53 * 54 * MROUTING Revision: 3.5 55 * and PIM-SMv2 and PIM-DM support, advanced API support, 56 * bandwidth metering and signaling 57 */ 58 59 /* 60 * TODO: Prefix functions with ipmf_. 61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol 62 * domain attachment (if_afdata) so we can track consumers of that service. 63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, 64 * move it to socket options. 65 * TODO: Cleanup LSRR removal further. 66 * TODO: Push RSVP stubs into raw_ip.c. 67 * TODO: Use bitstring.h for vif set. 68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. 69 * TODO: Sync ip6_mroute.c with this file. 70 */ 71 72 #include <sys/cdefs.h> 73 #include "opt_inet.h" 74 #include "opt_mrouting.h" 75 76 #define _PIM_VT 1 77 78 #include <sys/types.h> 79 #include <sys/param.h> 80 #include <sys/kernel.h> 81 #include <sys/stddef.h> 82 #include <sys/condvar.h> 83 #include <sys/eventhandler.h> 84 #include <sys/lock.h> 85 #include <sys/kthread.h> 86 #include <sys/ktr.h> 87 #include <sys/malloc.h> 88 #include <sys/mbuf.h> 89 #include <sys/module.h> 90 #include <sys/priv.h> 91 #include <sys/protosw.h> 92 #include <sys/signalvar.h> 93 #include <sys/socket.h> 94 #include <sys/socketvar.h> 95 #include <sys/sockio.h> 96 #include <sys/sx.h> 97 #include <sys/sysctl.h> 98 #include <sys/syslog.h> 99 #include <sys/systm.h> 100 #include <sys/taskqueue.h> 101 #include <sys/time.h> 102 #include <sys/counter.h> 103 #include <machine/atomic.h> 104 105 #include <net/if.h> 106 #include <net/if_var.h> 107 #include <net/if_private.h> 108 #include <net/if_types.h> 109 #include <net/netisr.h> 110 #include <net/route.h> 111 #include <net/vnet.h> 112 113 #include <netinet/in.h> 114 #include <netinet/igmp.h> 115 #include <netinet/in_systm.h> 116 #include <netinet/in_var.h> 117 #include <netinet/ip.h> 118 #include <netinet/ip_encap.h> 119 #include <netinet/ip_mroute.h> 120 #include <netinet/ip_var.h> 121 #include <netinet/ip_options.h> 122 #include <netinet/pim.h> 123 #include <netinet/pim_var.h> 124 #include <netinet/udp.h> 125 126 #include <machine/in_cksum.h> 127 128 #ifndef KTR_IPMF 129 #define KTR_IPMF KTR_INET 130 #endif 131 132 #define VIFI_INVALID ((vifi_t) -1) 133 134 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); 135 136 /* 137 * Locking. We use two locks: one for the virtual interface table and 138 * one for the forwarding table. These locks may be nested in which case 139 * the VIF lock must always be taken first. Note that each lock is used 140 * to cover not only the specific data structure but also related data 141 * structures. 142 */ 143 144 static struct rwlock mrouter_lock; 145 #define MRW_RLOCK() rw_rlock(&mrouter_lock) 146 #define MRW_WLOCK() rw_wlock(&mrouter_lock) 147 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) 148 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) 149 #define MRW_UNLOCK() rw_unlock(&mrouter_lock) 150 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) 151 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) 152 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) 153 #define MRW_WOWNED() rw_wowned(&mrouter_lock) 154 #define MRW_LOCK_INIT() \ 155 rw_init(&mrouter_lock, "IPv4 multicast forwarding") 156 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) 157 158 static int ip_mrouter_cnt; /* # of vnets with active mrouters */ 159 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ 160 161 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); 162 VNET_PCPUSTAT_SYSINIT(mrtstat); 163 VNET_PCPUSTAT_SYSUNINIT(mrtstat); 164 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, 165 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " 166 "netinet/ip_mroute.h)"); 167 168 VNET_DEFINE_STATIC(u_long, mfchash); 169 #define V_mfchash VNET(mfchash) 170 #define MFCHASH(a, g) \ 171 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 172 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) 173 #define MFCHASHSIZE 256 174 175 static u_long mfchashsize = MFCHASHSIZE; /* Hash size */ 176 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN, 177 &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size"); 178 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ 179 #define V_nexpire VNET(nexpire) 180 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); 181 #define V_mfchashtbl VNET(mfchashtbl) 182 VNET_DEFINE_STATIC(struct taskqueue *, task_queue); 183 #define V_task_queue VNET(task_queue) 184 VNET_DEFINE_STATIC(struct task, task); 185 #define V_task VNET(task) 186 187 VNET_DEFINE_STATIC(vifi_t, numvifs); 188 #define V_numvifs VNET(numvifs) 189 VNET_DEFINE_STATIC(struct vif *, viftable); 190 #define V_viftable VNET(viftable) 191 192 static eventhandler_tag if_detach_event_tag = NULL; 193 194 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); 195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch) 196 197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); 198 #define V_buf_ring_mtx VNET(buf_ring_mtx) 199 200 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 201 #define UPCALL_EXPIRE 6 /* number of timeouts */ 202 203 /* 204 * Bandwidth meter variables and constants 205 */ 206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 207 208 /* 209 * Pending upcalls are stored in a ring which is flushed when 210 * full, or periodically 211 */ 212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); 213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch) 214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); 215 #define V_bw_upcalls_ring VNET(bw_upcalls_ring) 216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); 217 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) 218 219 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 220 221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); 222 VNET_PCPUSTAT_SYSINIT(pimstat); 223 VNET_PCPUSTAT_SYSUNINIT(pimstat); 224 225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 226 "PIM"); 227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, 228 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 229 230 static u_long pim_squelch_wholepkt = 0; 231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN, 232 &pim_squelch_wholepkt, 0, 233 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 234 235 static const struct encaptab *pim_encap_cookie; 236 static int pim_encapcheck(const struct mbuf *, int, int, void *); 237 static int pim_input(struct mbuf *, int, int, void *); 238 239 extern int in_mcast_loop; 240 241 static const struct encap_config ipv4_encap_cfg = { 242 .proto = IPPROTO_PIM, 243 .min_length = sizeof(struct ip) + PIM_MINLEN, 244 .exact_match = 8, 245 .check = pim_encapcheck, 246 .input = pim_input 247 }; 248 249 /* 250 * Note: the PIM Register encapsulation adds the following in front of a 251 * data packet: 252 * 253 * struct pim_encap_hdr { 254 * struct ip ip; 255 * struct pim_encap_pimhdr pim; 256 * } 257 * 258 */ 259 260 struct pim_encap_pimhdr { 261 struct pim pim; 262 uint32_t flags; 263 }; 264 #define PIM_ENCAP_TTL 64 265 266 static struct ip pim_encap_iphdr = { 267 #if BYTE_ORDER == LITTLE_ENDIAN 268 sizeof(struct ip) >> 2, 269 IPVERSION, 270 #else 271 IPVERSION, 272 sizeof(struct ip) >> 2, 273 #endif 274 0, /* tos */ 275 sizeof(struct ip), /* total length */ 276 0, /* id */ 277 0, /* frag offset */ 278 PIM_ENCAP_TTL, 279 IPPROTO_PIM, 280 0, /* checksum */ 281 }; 282 283 static struct pim_encap_pimhdr pim_encap_pimhdr = { 284 { 285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 286 0, /* reserved */ 287 0, /* checksum */ 288 }, 289 0 /* flags */ 290 }; 291 292 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; 293 #define V_reg_vif_num VNET(reg_vif_num) 294 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); 295 #define V_multicast_register_if VNET(multicast_register_if) 296 297 /* 298 * Private variables. 299 */ 300 301 static u_long X_ip_mcast_src(int); 302 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, 303 struct ip_moptions *); 304 static int X_ip_mrouter_done(void); 305 static int X_ip_mrouter_get(struct socket *, struct sockopt *); 306 static int X_ip_mrouter_set(struct socket *, struct sockopt *); 307 static int X_legal_vif_num(int); 308 static int X_mrt_ioctl(u_long, caddr_t, int); 309 310 static int add_bw_upcall(struct bw_upcall *); 311 static int add_mfc(struct mfcctl2 *); 312 static int add_vif(struct vifctl *); 313 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 314 static void bw_meter_geq_receive_packet(struct bw_meter *, int, 315 struct timeval *); 316 static void bw_upcalls_send(void); 317 static int del_bw_upcall(struct bw_upcall *); 318 static int del_mfc(struct mfcctl2 *); 319 static int del_vif(vifi_t); 320 static int del_vif_locked(vifi_t, struct ifnet **, struct ifnet **); 321 static void expire_bw_upcalls_send(void *); 322 static void expire_mfc(struct mfc *); 323 static void expire_upcalls(void *); 324 static void free_bw_list(struct bw_meter *); 325 static int get_sg_cnt(struct sioc_sg_req *); 326 static int get_vif_cnt(struct sioc_vif_req *); 327 static void if_detached_event(void *, struct ifnet *); 328 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 329 static int ip_mrouter_init(struct socket *, int); 330 static __inline struct mfc * 331 mfc_find(struct in_addr *, struct in_addr *); 332 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 333 static struct mbuf * 334 pim_register_prepare(struct ip *, struct mbuf *); 335 static int pim_register_send(struct ip *, struct vif *, 336 struct mbuf *, struct mfc *); 337 static int pim_register_send_rp(struct ip *, struct vif *, 338 struct mbuf *, struct mfc *); 339 static int pim_register_send_upcall(struct ip *, struct vif *, 340 struct mbuf *, struct mfc *); 341 static void send_packet(struct vif *, struct mbuf *); 342 static int set_api_config(uint32_t *); 343 static int set_assert(int); 344 static int socket_send(struct socket *, struct mbuf *, 345 struct sockaddr_in *); 346 347 /* 348 * Kernel multicast forwarding API capabilities and setup. 349 * If more API capabilities are added to the kernel, they should be 350 * recorded in `mrt_api_support'. 351 */ 352 #define MRT_API_VERSION 0x0305 353 354 static const int mrt_api_version = MRT_API_VERSION; 355 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 356 MRT_MFC_FLAGS_BORDER_VIF | 357 MRT_MFC_RP | 358 MRT_MFC_BW_UPCALL); 359 VNET_DEFINE_STATIC(uint32_t, mrt_api_config); 360 #define V_mrt_api_config VNET(mrt_api_config) 361 VNET_DEFINE_STATIC(int, pim_assert_enabled); 362 #define V_pim_assert_enabled VNET(pim_assert_enabled) 363 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ 364 365 /* 366 * Find a route for a given origin IP address and multicast group address. 367 * Statistics must be updated by the caller. 368 */ 369 static __inline struct mfc * 370 mfc_find(struct in_addr *o, struct in_addr *g) 371 { 372 struct mfc *rt; 373 374 /* 375 * Might be called both RLOCK and WLOCK. 376 * Check if any, it's caller responsibility 377 * to choose correct option. 378 */ 379 MRW_LOCK_ASSERT(); 380 381 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 382 if (in_hosteq(rt->mfc_origin, *o) && 383 in_hosteq(rt->mfc_mcastgrp, *g) && 384 buf_ring_empty(rt->mfc_stall_ring)) 385 break; 386 } 387 388 return (rt); 389 } 390 391 static __inline struct mfc * 392 mfc_alloc(void) 393 { 394 struct mfc *rt; 395 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); 396 if (rt == NULL) 397 return rt; 398 399 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, 400 M_NOWAIT, &V_buf_ring_mtx); 401 if (rt->mfc_stall_ring == NULL) { 402 free(rt, M_MRTABLE); 403 return NULL; 404 } 405 406 return rt; 407 } 408 409 /* 410 * Handle MRT setsockopt commands to modify the multicast forwarding tables. 411 */ 412 static int 413 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 414 { 415 int error, optval; 416 vifi_t vifi; 417 struct vifctl vifc; 418 struct mfcctl2 mfc; 419 struct bw_upcall bw_upcall; 420 uint32_t i; 421 422 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 423 return EPERM; 424 425 error = 0; 426 switch (sopt->sopt_name) { 427 case MRT_INIT: 428 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 429 if (error) 430 break; 431 error = ip_mrouter_init(so, optval); 432 break; 433 case MRT_DONE: 434 error = ip_mrouter_done(); 435 break; 436 case MRT_ADD_VIF: 437 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 438 if (error) 439 break; 440 error = add_vif(&vifc); 441 break; 442 case MRT_DEL_VIF: 443 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 444 if (error) 445 break; 446 error = del_vif(vifi); 447 break; 448 case MRT_ADD_MFC: 449 case MRT_DEL_MFC: 450 /* 451 * select data size depending on API version. 452 */ 453 if (sopt->sopt_name == MRT_ADD_MFC && 454 V_mrt_api_config & MRT_API_FLAGS_ALL) { 455 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 456 sizeof(struct mfcctl2)); 457 } else { 458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 459 sizeof(struct mfcctl)); 460 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 461 sizeof(mfc) - sizeof(struct mfcctl)); 462 } 463 if (error) 464 break; 465 if (sopt->sopt_name == MRT_ADD_MFC) 466 error = add_mfc(&mfc); 467 else 468 error = del_mfc(&mfc); 469 break; 470 471 case MRT_ASSERT: 472 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 473 if (error) 474 break; 475 set_assert(optval); 476 break; 477 478 case MRT_API_CONFIG: 479 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 480 if (!error) 481 error = set_api_config(&i); 482 if (!error) 483 error = sooptcopyout(sopt, &i, sizeof i); 484 break; 485 486 case MRT_ADD_BW_UPCALL: 487 case MRT_DEL_BW_UPCALL: 488 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 489 sizeof bw_upcall); 490 if (error) 491 break; 492 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 493 error = add_bw_upcall(&bw_upcall); 494 else 495 error = del_bw_upcall(&bw_upcall); 496 break; 497 498 default: 499 error = EOPNOTSUPP; 500 break; 501 } 502 return error; 503 } 504 505 /* 506 * Handle MRT getsockopt commands 507 */ 508 static int 509 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 510 { 511 int error; 512 513 switch (sopt->sopt_name) { 514 case MRT_VERSION: 515 error = sooptcopyout(sopt, &mrt_api_version, 516 sizeof mrt_api_version); 517 break; 518 case MRT_ASSERT: 519 error = sooptcopyout(sopt, &V_pim_assert_enabled, 520 sizeof V_pim_assert_enabled); 521 break; 522 case MRT_API_SUPPORT: 523 error = sooptcopyout(sopt, &mrt_api_support, 524 sizeof mrt_api_support); 525 break; 526 case MRT_API_CONFIG: 527 error = sooptcopyout(sopt, &V_mrt_api_config, 528 sizeof V_mrt_api_config); 529 break; 530 default: 531 error = EOPNOTSUPP; 532 break; 533 } 534 return error; 535 } 536 537 /* 538 * Handle ioctl commands to obtain information from the cache 539 */ 540 static int 541 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) 542 { 543 int error; 544 545 /* 546 * Currently the only function calling this ioctl routine is rtioctl_fib(). 547 * Typically, only root can create the raw socket in order to execute 548 * this ioctl method, however the request might be coming from a prison 549 */ 550 error = priv_check(curthread, PRIV_NETINET_MROUTE); 551 if (error) 552 return (error); 553 switch (cmd) { 554 case (SIOCGETVIFCNT): 555 error = get_vif_cnt((struct sioc_vif_req *)data); 556 break; 557 558 case (SIOCGETSGCNT): 559 error = get_sg_cnt((struct sioc_sg_req *)data); 560 break; 561 562 default: 563 error = EINVAL; 564 break; 565 } 566 return error; 567 } 568 569 /* 570 * returns the packet, byte, rpf-failure count for the source group provided 571 */ 572 static int 573 get_sg_cnt(struct sioc_sg_req *req) 574 { 575 struct mfc *rt; 576 577 MRW_RLOCK(); 578 rt = mfc_find(&req->src, &req->grp); 579 if (rt == NULL) { 580 MRW_RUNLOCK(); 581 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 582 return EADDRNOTAVAIL; 583 } 584 req->pktcnt = rt->mfc_pkt_cnt; 585 req->bytecnt = rt->mfc_byte_cnt; 586 req->wrong_if = rt->mfc_wrong_if; 587 MRW_RUNLOCK(); 588 return 0; 589 } 590 591 /* 592 * returns the input and output packet and byte counts on the vif provided 593 */ 594 static int 595 get_vif_cnt(struct sioc_vif_req *req) 596 { 597 vifi_t vifi = req->vifi; 598 599 MRW_RLOCK(); 600 if (vifi >= V_numvifs) { 601 MRW_RUNLOCK(); 602 return EINVAL; 603 } 604 605 mtx_lock_spin(&V_viftable[vifi].v_spin); 606 req->icount = V_viftable[vifi].v_pkt_in; 607 req->ocount = V_viftable[vifi].v_pkt_out; 608 req->ibytes = V_viftable[vifi].v_bytes_in; 609 req->obytes = V_viftable[vifi].v_bytes_out; 610 mtx_unlock_spin(&V_viftable[vifi].v_spin); 611 MRW_RUNLOCK(); 612 613 return 0; 614 } 615 616 static void 617 if_detached_event(void *arg __unused, struct ifnet *ifp) 618 { 619 vifi_t vifi; 620 u_long i, vifi_cnt = 0; 621 struct ifnet *free_ptr, *multi_leave; 622 623 MRW_WLOCK(); 624 625 if (V_ip_mrouter == NULL) { 626 MRW_WUNLOCK(); 627 return; 628 } 629 630 /* 631 * Tear down multicast forwarder state associated with this ifnet. 632 * 1. Walk the vif list, matching vifs against this ifnet. 633 * 2. Walk the multicast forwarding cache (mfc) looking for 634 * inner matches with this vif's index. 635 * 3. Expire any matching multicast forwarding cache entries. 636 * 4. Free vif state. This should disable ALLMULTI on the interface. 637 */ 638 restart: 639 for (vifi = 0; vifi < V_numvifs; vifi++) { 640 if (V_viftable[vifi].v_ifp != ifp) 641 continue; 642 for (i = 0; i < mfchashsize; i++) { 643 struct mfc *rt, *nrt; 644 645 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 646 if (rt->mfc_parent == vifi) { 647 expire_mfc(rt); 648 } 649 } 650 } 651 del_vif_locked(vifi, &multi_leave, &free_ptr); 652 if (free_ptr != NULL) 653 vifi_cnt++; 654 if (multi_leave) { 655 MRW_WUNLOCK(); 656 if_allmulti(multi_leave, 0); 657 MRW_WLOCK(); 658 goto restart; 659 } 660 } 661 662 MRW_WUNLOCK(); 663 664 /* 665 * Free IFP. We don't have to use free_ptr here as it is the same 666 * that ifp. Perform free as many times as required in case 667 * refcount is greater than 1. 668 */ 669 for (i = 0; i < vifi_cnt; i++) 670 if_free(ifp); 671 } 672 673 static void 674 ip_mrouter_upcall_thread(void *arg, int pending __unused) 675 { 676 CURVNET_SET((struct vnet *) arg); 677 678 MRW_WLOCK(); 679 bw_upcalls_send(); 680 MRW_WUNLOCK(); 681 682 CURVNET_RESTORE(); 683 } 684 685 /* 686 * Enable multicast forwarding. 687 */ 688 static int 689 ip_mrouter_init(struct socket *so, int version) 690 { 691 692 CTR2(KTR_IPMF, "%s: so %p", __func__, so); 693 694 if (version != 1) 695 return ENOPROTOOPT; 696 697 MRW_WLOCK(); 698 699 if (ip_mrouter_unloading) { 700 MRW_WUNLOCK(); 701 return ENOPROTOOPT; 702 } 703 704 if (V_ip_mrouter != NULL) { 705 MRW_WUNLOCK(); 706 return EADDRINUSE; 707 } 708 709 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, 710 HASH_NOWAIT); 711 if (V_mfchashtbl == NULL) { 712 MRW_WUNLOCK(); 713 return (ENOMEM); 714 } 715 716 /* Create upcall ring */ 717 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); 718 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, 719 M_NOWAIT, &V_bw_upcalls_ring_mtx); 720 if (!V_bw_upcalls_ring) { 721 MRW_WUNLOCK(); 722 return (ENOMEM); 723 } 724 725 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); 726 taskqueue_cancel(V_task_queue, &V_task, NULL); 727 taskqueue_unblock(V_task_queue); 728 729 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 730 curvnet); 731 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 732 curvnet); 733 734 V_ip_mrouter = so; 735 atomic_add_int(&ip_mrouter_cnt, 1); 736 737 /* This is a mutex required by buf_ring init, but not used internally */ 738 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); 739 740 MRW_WUNLOCK(); 741 742 CTR1(KTR_IPMF, "%s: done", __func__); 743 744 return 0; 745 } 746 747 /* 748 * Disable multicast forwarding. 749 */ 750 static int 751 X_ip_mrouter_done(void) 752 { 753 struct ifnet **ifps; 754 int nifp; 755 u_long i; 756 vifi_t vifi; 757 struct bw_upcall *bu; 758 759 if (V_ip_mrouter == NULL) 760 return (EINVAL); 761 762 /* 763 * Detach/disable hooks to the reset of the system. 764 */ 765 V_ip_mrouter = NULL; 766 atomic_subtract_int(&ip_mrouter_cnt, 1); 767 V_mrt_api_config = 0; 768 769 /* 770 * Wait for all epoch sections to complete to ensure 771 * V_ip_mrouter = NULL is visible to others. 772 */ 773 epoch_wait_preempt(net_epoch_preempt); 774 775 /* Stop and drain task queue */ 776 taskqueue_block(V_task_queue); 777 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { 778 taskqueue_drain(V_task_queue, &V_task); 779 } 780 781 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); 782 783 MRW_WLOCK(); 784 taskqueue_cancel(V_task_queue, &V_task, NULL); 785 786 /* Destroy upcall ring */ 787 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 788 free(bu, M_MRTABLE); 789 } 790 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); 791 mtx_destroy(&V_bw_upcalls_ring_mtx); 792 793 /* 794 * For each phyint in use, prepare to disable promiscuous reception 795 * of all IP multicasts. Defer the actual call until the lock is released; 796 * just record the list of interfaces while locked. Some interfaces use 797 * sx locks in their ioctl routines, which is not allowed while holding 798 * a non-sleepable lock. 799 */ 800 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); 801 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { 802 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && 803 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 804 ifps[nifp++] = V_viftable[vifi].v_ifp; 805 } 806 } 807 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); 808 V_numvifs = 0; 809 V_pim_assert_enabled = 0; 810 811 callout_stop(&V_expire_upcalls_ch); 812 callout_stop(&V_bw_upcalls_ch); 813 814 /* 815 * Free all multicast forwarding cache entries. 816 * Do not use hashdestroy(), as we must perform other cleanup. 817 */ 818 for (i = 0; i < mfchashsize; i++) { 819 struct mfc *rt, *nrt; 820 821 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 822 expire_mfc(rt); 823 } 824 } 825 free(V_mfchashtbl, M_MRTABLE); 826 V_mfchashtbl = NULL; 827 828 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); 829 830 V_reg_vif_num = VIFI_INVALID; 831 832 mtx_destroy(&V_buf_ring_mtx); 833 834 MRW_WUNLOCK(); 835 836 /* 837 * Now drop our claim on promiscuous multicast on the interfaces recorded 838 * above. This is safe to do now because ALLMULTI is reference counted. 839 */ 840 for (vifi = 0; vifi < nifp; vifi++) 841 if_allmulti(ifps[vifi], 0); 842 free(ifps, M_TEMP); 843 844 CTR1(KTR_IPMF, "%s: done", __func__); 845 846 return 0; 847 } 848 849 /* 850 * Set PIM assert processing global 851 */ 852 static int 853 set_assert(int i) 854 { 855 if ((i != 1) && (i != 0)) 856 return EINVAL; 857 858 V_pim_assert_enabled = i; 859 860 return 0; 861 } 862 863 /* 864 * Configure API capabilities 865 */ 866 int 867 set_api_config(uint32_t *apival) 868 { 869 u_long i; 870 871 /* 872 * We can set the API capabilities only if it is the first operation 873 * after MRT_INIT. I.e.: 874 * - there are no vifs installed 875 * - pim_assert is not enabled 876 * - the MFC table is empty 877 */ 878 if (V_numvifs > 0) { 879 *apival = 0; 880 return EPERM; 881 } 882 if (V_pim_assert_enabled) { 883 *apival = 0; 884 return EPERM; 885 } 886 887 MRW_RLOCK(); 888 889 for (i = 0; i < mfchashsize; i++) { 890 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { 891 MRW_RUNLOCK(); 892 *apival = 0; 893 return EPERM; 894 } 895 } 896 897 MRW_RUNLOCK(); 898 899 V_mrt_api_config = *apival & mrt_api_support; 900 *apival = V_mrt_api_config; 901 902 return 0; 903 } 904 905 /* 906 * Add a vif to the vif table 907 */ 908 static int 909 add_vif(struct vifctl *vifcp) 910 { 911 struct vif *vifp = V_viftable + vifcp->vifc_vifi; 912 struct sockaddr_in sin = {sizeof sin, AF_INET}; 913 struct ifaddr *ifa; 914 struct ifnet *ifp; 915 int error; 916 917 if (vifcp->vifc_vifi >= MAXVIFS) 918 return EINVAL; 919 /* rate limiting is no longer supported by this code */ 920 if (vifcp->vifc_rate_limit != 0) { 921 log(LOG_ERR, "rate limiting is no longer supported\n"); 922 return EINVAL; 923 } 924 925 if (in_nullhost(vifcp->vifc_lcl_addr)) 926 return EADDRNOTAVAIL; 927 928 /* Find the interface with an address in AF_INET family */ 929 if (vifcp->vifc_flags & VIFF_REGISTER) { 930 /* 931 * XXX: Because VIFF_REGISTER does not really need a valid 932 * local interface (e.g. it could be 127.0.0.2), we don't 933 * check its address. 934 */ 935 ifp = NULL; 936 } else { 937 struct epoch_tracker et; 938 939 sin.sin_addr = vifcp->vifc_lcl_addr; 940 NET_EPOCH_ENTER(et); 941 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 942 if (ifa == NULL) { 943 NET_EPOCH_EXIT(et); 944 return EADDRNOTAVAIL; 945 } 946 ifp = ifa->ifa_ifp; 947 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ 948 NET_EPOCH_EXIT(et); 949 } 950 951 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 952 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); 953 return EOPNOTSUPP; 954 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 955 ifp = V_multicast_register_if = if_alloc(IFT_LOOP); 956 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); 957 if (V_reg_vif_num == VIFI_INVALID) { 958 if_initname(V_multicast_register_if, "register_vif", 0); 959 V_reg_vif_num = vifcp->vifc_vifi; 960 } 961 } else { /* Make sure the interface supports multicast */ 962 if ((ifp->if_flags & IFF_MULTICAST) == 0) 963 return EOPNOTSUPP; 964 965 /* Enable promiscuous reception of all IP multicasts from the if */ 966 error = if_allmulti(ifp, 1); 967 if (error) 968 return error; 969 } 970 971 MRW_WLOCK(); 972 973 if (!in_nullhost(vifp->v_lcl_addr)) { 974 if (ifp) 975 V_multicast_register_if = NULL; 976 MRW_WUNLOCK(); 977 if (ifp) 978 if_free(ifp); 979 return EADDRINUSE; 980 } 981 982 vifp->v_flags = vifcp->vifc_flags; 983 vifp->v_threshold = vifcp->vifc_threshold; 984 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 985 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 986 vifp->v_ifp = ifp; 987 /* initialize per vif pkt counters */ 988 vifp->v_pkt_in = 0; 989 vifp->v_pkt_out = 0; 990 vifp->v_bytes_in = 0; 991 vifp->v_bytes_out = 0; 992 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); 993 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); 994 995 /* Adjust numvifs up if the vifi is higher than numvifs */ 996 if (V_numvifs <= vifcp->vifc_vifi) 997 V_numvifs = vifcp->vifc_vifi + 1; 998 999 MRW_WUNLOCK(); 1000 1001 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, 1002 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), 1003 (int)vifcp->vifc_threshold); 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * Delete a vif from the vif table 1010 */ 1011 static int 1012 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free) 1013 { 1014 struct vif *vifp; 1015 1016 *ifp_free = NULL; 1017 *ifp_multi_leave = NULL; 1018 1019 MRW_WLOCK_ASSERT(); 1020 1021 if (vifi >= V_numvifs) { 1022 return EINVAL; 1023 } 1024 vifp = &V_viftable[vifi]; 1025 if (in_nullhost(vifp->v_lcl_addr)) { 1026 return EADDRNOTAVAIL; 1027 } 1028 1029 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1030 *ifp_multi_leave = vifp->v_ifp; 1031 1032 if (vifp->v_flags & VIFF_REGISTER) { 1033 V_reg_vif_num = VIFI_INVALID; 1034 if (vifp->v_ifp) { 1035 if (vifp->v_ifp == V_multicast_register_if) 1036 V_multicast_register_if = NULL; 1037 *ifp_free = vifp->v_ifp; 1038 } 1039 } 1040 1041 mtx_destroy(&vifp->v_spin); 1042 1043 bzero((caddr_t)vifp, sizeof (*vifp)); 1044 1045 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); 1046 1047 /* Adjust numvifs down */ 1048 for (vifi = V_numvifs; vifi > 0; vifi--) 1049 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) 1050 break; 1051 V_numvifs = vifi; 1052 1053 return 0; 1054 } 1055 1056 static int 1057 del_vif(vifi_t vifi) 1058 { 1059 int cc; 1060 struct ifnet *free_ptr, *multi_leave; 1061 1062 MRW_WLOCK(); 1063 cc = del_vif_locked(vifi, &multi_leave, &free_ptr); 1064 MRW_WUNLOCK(); 1065 1066 if (multi_leave) 1067 if_allmulti(multi_leave, 0); 1068 if (free_ptr) { 1069 if_free(free_ptr); 1070 } 1071 1072 return cc; 1073 } 1074 1075 /* 1076 * update an mfc entry without resetting counters and S,G addresses. 1077 */ 1078 static void 1079 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1080 { 1081 int i; 1082 1083 rt->mfc_parent = mfccp->mfcc_parent; 1084 for (i = 0; i < V_numvifs; i++) { 1085 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1086 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & 1087 MRT_MFC_FLAGS_ALL; 1088 } 1089 /* set the RP address */ 1090 if (V_mrt_api_config & MRT_MFC_RP) 1091 rt->mfc_rp = mfccp->mfcc_rp; 1092 else 1093 rt->mfc_rp.s_addr = INADDR_ANY; 1094 } 1095 1096 /* 1097 * fully initialize an mfc entry from the parameter. 1098 */ 1099 static void 1100 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1101 { 1102 rt->mfc_origin = mfccp->mfcc_origin; 1103 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1104 1105 update_mfc_params(rt, mfccp); 1106 1107 /* initialize pkt counters per src-grp */ 1108 rt->mfc_pkt_cnt = 0; 1109 rt->mfc_byte_cnt = 0; 1110 rt->mfc_wrong_if = 0; 1111 timevalclear(&rt->mfc_last_assert); 1112 } 1113 1114 static void 1115 expire_mfc(struct mfc *rt) 1116 { 1117 struct rtdetq *rte; 1118 1119 MRW_WLOCK_ASSERT(); 1120 1121 free_bw_list(rt->mfc_bw_meter_leq); 1122 free_bw_list(rt->mfc_bw_meter_geq); 1123 1124 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1125 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1126 if (rte) { 1127 m_freem(rte->m); 1128 free(rte, M_MRTABLE); 1129 } 1130 } 1131 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); 1132 1133 LIST_REMOVE(rt, mfc_hash); 1134 free(rt, M_MRTABLE); 1135 } 1136 1137 /* 1138 * Add an mfc entry 1139 */ 1140 static int 1141 add_mfc(struct mfcctl2 *mfccp) 1142 { 1143 struct mfc *rt; 1144 struct rtdetq *rte; 1145 u_long hash = 0; 1146 u_short nstl; 1147 struct epoch_tracker et; 1148 1149 MRW_WLOCK(); 1150 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1151 1152 /* If an entry already exists, just update the fields */ 1153 if (rt) { 1154 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", 1155 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1156 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1157 mfccp->mfcc_parent); 1158 update_mfc_params(rt, mfccp); 1159 MRW_WUNLOCK(); 1160 return (0); 1161 } 1162 1163 /* 1164 * Find the entry for which the upcall was made and update 1165 */ 1166 nstl = 0; 1167 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1168 NET_EPOCH_ENTER(et); 1169 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1170 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1171 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1172 !buf_ring_empty(rt->mfc_stall_ring)) { 1173 CTR5(KTR_IPMF, 1174 "%s: add mfc orig 0x%08x group %lx parent %x qh %p", 1175 __func__, ntohl(mfccp->mfcc_origin.s_addr), 1176 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1177 mfccp->mfcc_parent, 1178 rt->mfc_stall_ring); 1179 if (nstl++) 1180 CTR1(KTR_IPMF, "%s: multiple matches", __func__); 1181 1182 init_mfc_params(rt, mfccp); 1183 rt->mfc_expire = 0; /* Don't clean this guy up */ 1184 V_nexpire[hash]--; 1185 1186 /* Free queued packets, but attempt to forward them first. */ 1187 while (!buf_ring_empty(rt->mfc_stall_ring)) { 1188 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); 1189 if (rte->ifp != NULL) 1190 ip_mdq(rte->m, rte->ifp, rt, -1); 1191 m_freem(rte->m); 1192 free(rte, M_MRTABLE); 1193 } 1194 } 1195 } 1196 NET_EPOCH_EXIT(et); 1197 1198 /* 1199 * It is possible that an entry is being inserted without an upcall 1200 */ 1201 if (nstl == 0) { 1202 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); 1203 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { 1204 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1205 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1206 init_mfc_params(rt, mfccp); 1207 if (rt->mfc_expire) 1208 V_nexpire[hash]--; 1209 rt->mfc_expire = 0; 1210 break; /* XXX */ 1211 } 1212 } 1213 1214 if (rt == NULL) { /* no upcall, so make a new entry */ 1215 rt = mfc_alloc(); 1216 if (rt == NULL) { 1217 MRW_WUNLOCK(); 1218 return (ENOBUFS); 1219 } 1220 1221 init_mfc_params(rt, mfccp); 1222 1223 rt->mfc_expire = 0; 1224 rt->mfc_bw_meter_leq = NULL; 1225 rt->mfc_bw_meter_geq = NULL; 1226 1227 /* insert new entry at head of hash chain */ 1228 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1229 } 1230 } 1231 1232 MRW_WUNLOCK(); 1233 1234 return (0); 1235 } 1236 1237 /* 1238 * Delete an mfc entry 1239 */ 1240 static int 1241 del_mfc(struct mfcctl2 *mfccp) 1242 { 1243 struct in_addr origin; 1244 struct in_addr mcastgrp; 1245 struct mfc *rt; 1246 1247 origin = mfccp->mfcc_origin; 1248 mcastgrp = mfccp->mfcc_mcastgrp; 1249 1250 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, 1251 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1252 1253 MRW_WLOCK(); 1254 1255 rt = mfc_find(&origin, &mcastgrp); 1256 if (rt == NULL) { 1257 MRW_WUNLOCK(); 1258 return EADDRNOTAVAIL; 1259 } 1260 1261 /* 1262 * free the bw_meter entries 1263 */ 1264 free_bw_list(rt->mfc_bw_meter_leq); 1265 rt->mfc_bw_meter_leq = NULL; 1266 free_bw_list(rt->mfc_bw_meter_geq); 1267 rt->mfc_bw_meter_geq = NULL; 1268 1269 LIST_REMOVE(rt, mfc_hash); 1270 free(rt, M_MRTABLE); 1271 1272 MRW_WUNLOCK(); 1273 1274 return (0); 1275 } 1276 1277 /* 1278 * Send a message to the routing daemon on the multicast routing socket. 1279 */ 1280 static int 1281 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1282 { 1283 if (s) { 1284 SOCKBUF_LOCK(&s->so_rcv); 1285 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1286 NULL) != 0) { 1287 sorwakeup_locked(s); 1288 return 0; 1289 } 1290 soroverflow_locked(s); 1291 } 1292 m_freem(mm); 1293 return -1; 1294 } 1295 1296 /* 1297 * IP multicast forwarding function. This function assumes that the packet 1298 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1299 * pointed to by "ifp", and the packet is to be relayed to other networks 1300 * that have members of the packet's destination IP multicast group. 1301 * 1302 * The packet is returned unscathed to the caller, unless it is 1303 * erroneous, in which case a non-zero return value tells the caller to 1304 * discard it. 1305 */ 1306 1307 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1308 1309 static int 1310 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1311 struct ip_moptions *imo) 1312 { 1313 struct mfc *rt; 1314 int error; 1315 vifi_t vifi; 1316 struct mbuf *mb0; 1317 struct rtdetq *rte; 1318 u_long hash; 1319 int hlen; 1320 1321 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", 1322 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); 1323 1324 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1325 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1326 /* 1327 * Packet arrived via a physical interface or 1328 * an encapsulated tunnel or a register_vif. 1329 */ 1330 } else { 1331 /* 1332 * Packet arrived through a source-route tunnel. 1333 * Source-route tunnels are no longer supported. 1334 */ 1335 return (1); 1336 } 1337 1338 /* 1339 * BEGIN: MCAST ROUTING HOT PATH 1340 */ 1341 MRW_RLOCK(); 1342 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { 1343 if (ip->ip_ttl < MAXTTL) 1344 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1345 error = ip_mdq(m, ifp, NULL, vifi); 1346 MRW_RUNLOCK(); 1347 return error; 1348 } 1349 1350 /* 1351 * Don't forward a packet with time-to-live of zero or one, 1352 * or a packet destined to a local-only group. 1353 */ 1354 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1355 MRW_RUNLOCK(); 1356 return 0; 1357 } 1358 1359 mfc_find_retry: 1360 /* 1361 * Determine forwarding vifs from the forwarding cache table 1362 */ 1363 MRTSTAT_INC(mrts_mfc_lookups); 1364 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1365 1366 /* Entry exists, so forward if necessary */ 1367 if (rt != NULL) { 1368 error = ip_mdq(m, ifp, rt, -1); 1369 /* Generic unlock here as we might release R or W lock */ 1370 MRW_UNLOCK(); 1371 return error; 1372 } 1373 1374 /* 1375 * END: MCAST ROUTING HOT PATH 1376 */ 1377 1378 /* Further processing must be done with WLOCK taken */ 1379 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { 1380 MRW_RUNLOCK(); 1381 MRW_WLOCK(); 1382 goto mfc_find_retry; 1383 } 1384 1385 /* 1386 * If we don't have a route for packet's origin, 1387 * Make a copy of the packet & send message to routing daemon 1388 */ 1389 hlen = ip->ip_hl << 2; 1390 1391 MRTSTAT_INC(mrts_mfc_misses); 1392 MRTSTAT_INC(mrts_no_route); 1393 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", 1394 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); 1395 1396 /* 1397 * Allocate mbufs early so that we don't do extra work if we are 1398 * just going to fail anyway. Make sure to pullup the header so 1399 * that other people can't step on it. 1400 */ 1401 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); 1402 if (rte == NULL) { 1403 MRW_WUNLOCK(); 1404 return ENOBUFS; 1405 } 1406 1407 mb0 = m_copypacket(m, M_NOWAIT); 1408 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) 1409 mb0 = m_pullup(mb0, hlen); 1410 if (mb0 == NULL) { 1411 free(rte, M_MRTABLE); 1412 MRW_WUNLOCK(); 1413 return ENOBUFS; 1414 } 1415 1416 /* is there an upcall waiting for this flow ? */ 1417 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1418 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) 1419 { 1420 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1421 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1422 !buf_ring_empty(rt->mfc_stall_ring)) 1423 break; 1424 } 1425 1426 if (rt == NULL) { 1427 int i; 1428 struct igmpmsg *im; 1429 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1430 struct mbuf *mm; 1431 1432 /* 1433 * Locate the vifi for the incoming interface for this packet. 1434 * If none found, drop packet. 1435 */ 1436 for (vifi = 0; vifi < V_numvifs && 1437 V_viftable[vifi].v_ifp != ifp; vifi++) 1438 ; 1439 if (vifi >= V_numvifs) /* vif not found, drop packet */ 1440 goto non_fatal; 1441 1442 /* no upcall, so make a new entry */ 1443 rt = mfc_alloc(); 1444 if (rt == NULL) 1445 goto fail; 1446 1447 /* Make a copy of the header to send to the user level process */ 1448 mm = m_copym(mb0, 0, hlen, M_NOWAIT); 1449 if (mm == NULL) 1450 goto fail1; 1451 1452 /* 1453 * Send message to routing daemon to install 1454 * a route into the kernel table 1455 */ 1456 1457 im = mtod(mm, struct igmpmsg*); 1458 im->im_msgtype = IGMPMSG_NOCACHE; 1459 im->im_mbz = 0; 1460 im->im_vif = vifi; 1461 1462 MRTSTAT_INC(mrts_upcalls); 1463 1464 k_igmpsrc.sin_addr = ip->ip_src; 1465 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1466 CTR0(KTR_IPMF, "ip_mforward: socket queue full"); 1467 MRTSTAT_INC(mrts_upq_sockfull); 1468 fail1: free(rt, M_MRTABLE); 1469 fail: free(rte, M_MRTABLE); 1470 m_freem(mb0); 1471 MRW_WUNLOCK(); 1472 return ENOBUFS; 1473 } 1474 1475 /* insert new entry at head of hash chain */ 1476 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1477 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1478 rt->mfc_expire = UPCALL_EXPIRE; 1479 V_nexpire[hash]++; 1480 for (i = 0; i < V_numvifs; i++) { 1481 rt->mfc_ttls[i] = 0; 1482 rt->mfc_flags[i] = 0; 1483 } 1484 rt->mfc_parent = -1; 1485 1486 /* clear the RP address */ 1487 rt->mfc_rp.s_addr = INADDR_ANY; 1488 rt->mfc_bw_meter_leq = NULL; 1489 rt->mfc_bw_meter_geq = NULL; 1490 1491 /* initialize pkt counters per src-grp */ 1492 rt->mfc_pkt_cnt = 0; 1493 rt->mfc_byte_cnt = 0; 1494 rt->mfc_wrong_if = 0; 1495 timevalclear(&rt->mfc_last_assert); 1496 1497 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1498 1499 /* Add RT to hashtable as it didn't exist before */ 1500 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); 1501 } else { 1502 /* determine if queue has overflowed */ 1503 if (buf_ring_full(rt->mfc_stall_ring)) { 1504 MRTSTAT_INC(mrts_upq_ovflw); 1505 non_fatal: free(rte, M_MRTABLE); 1506 m_freem(mb0); 1507 MRW_WUNLOCK(); 1508 return (0); 1509 } 1510 1511 buf_ring_enqueue(rt->mfc_stall_ring, rte); 1512 } 1513 1514 rte->m = mb0; 1515 rte->ifp = ifp; 1516 1517 MRW_WUNLOCK(); 1518 1519 return 0; 1520 } 1521 1522 /* 1523 * Clean up the cache entry if upcall is not serviced 1524 */ 1525 static void 1526 expire_upcalls(void *arg) 1527 { 1528 u_long i; 1529 1530 CURVNET_SET((struct vnet *) arg); 1531 1532 /*This callout is always run with MRW_WLOCK taken. */ 1533 1534 for (i = 0; i < mfchashsize; i++) { 1535 struct mfc *rt, *nrt; 1536 1537 if (V_nexpire[i] == 0) 1538 continue; 1539 1540 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { 1541 if (buf_ring_empty(rt->mfc_stall_ring)) 1542 continue; 1543 1544 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1545 continue; 1546 1547 MRTSTAT_INC(mrts_cache_cleanups); 1548 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, 1549 (u_long)ntohl(rt->mfc_origin.s_addr), 1550 (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); 1551 1552 expire_mfc(rt); 1553 } 1554 } 1555 1556 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, 1557 curvnet); 1558 1559 CURVNET_RESTORE(); 1560 } 1561 1562 /* 1563 * Packet forwarding routine once entry in the cache is made 1564 */ 1565 static int 1566 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1567 { 1568 struct ip *ip = mtod(m, struct ip *); 1569 vifi_t vifi; 1570 int plen = ntohs(ip->ip_len); 1571 1572 MRW_LOCK_ASSERT(); 1573 NET_EPOCH_ASSERT(); 1574 1575 /* 1576 * If xmt_vif is not -1, send on only the requested vif. 1577 * 1578 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1579 */ 1580 if (xmt_vif < V_numvifs) { 1581 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) 1582 pim_register_send(ip, V_viftable + xmt_vif, m, rt); 1583 else 1584 phyint_send(ip, V_viftable + xmt_vif, m); 1585 return 1; 1586 } 1587 1588 /* 1589 * Don't forward if it didn't arrive from the parent vif for its origin. 1590 */ 1591 vifi = rt->mfc_parent; 1592 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { 1593 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", 1594 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); 1595 MRTSTAT_INC(mrts_wrong_if); 1596 ++rt->mfc_wrong_if; 1597 /* 1598 * If we are doing PIM assert processing, send a message 1599 * to the routing daemon. 1600 * 1601 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1602 * can complete the SPT switch, regardless of the type 1603 * of the iif (broadcast media, GRE tunnel, etc). 1604 */ 1605 if (V_pim_assert_enabled && (vifi < V_numvifs) && 1606 V_viftable[vifi].v_ifp) { 1607 if (ifp == V_multicast_register_if) 1608 PIMSTAT_INC(pims_rcv_registers_wrongiif); 1609 1610 /* Get vifi for the incoming packet */ 1611 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) 1612 ; 1613 if (vifi >= V_numvifs) 1614 return 0; /* The iif is not found: ignore the packet. */ 1615 1616 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1617 return 0; /* WRONGVIF disabled: ignore the packet */ 1618 1619 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { 1620 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1621 struct igmpmsg *im; 1622 int hlen = ip->ip_hl << 2; 1623 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); 1624 1625 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) 1626 mm = m_pullup(mm, hlen); 1627 if (mm == NULL) 1628 return ENOBUFS; 1629 1630 im = mtod(mm, struct igmpmsg *); 1631 im->im_msgtype = IGMPMSG_WRONGVIF; 1632 im->im_mbz = 0; 1633 im->im_vif = vifi; 1634 1635 MRTSTAT_INC(mrts_upcalls); 1636 1637 k_igmpsrc.sin_addr = im->im_src; 1638 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1639 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 1640 MRTSTAT_INC(mrts_upq_sockfull); 1641 return ENOBUFS; 1642 } 1643 } 1644 } 1645 return 0; 1646 } 1647 1648 /* If I sourced this packet, it counts as output, else it was input. */ 1649 mtx_lock_spin(&V_viftable[vifi].v_spin); 1650 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { 1651 V_viftable[vifi].v_pkt_out++; 1652 V_viftable[vifi].v_bytes_out += plen; 1653 } else { 1654 V_viftable[vifi].v_pkt_in++; 1655 V_viftable[vifi].v_bytes_in += plen; 1656 } 1657 mtx_unlock_spin(&V_viftable[vifi].v_spin); 1658 1659 rt->mfc_pkt_cnt++; 1660 rt->mfc_byte_cnt += plen; 1661 1662 /* 1663 * For each vif, decide if a copy of the packet should be forwarded. 1664 * Forward if: 1665 * - the ttl exceeds the vif's threshold 1666 * - there are group members downstream on interface 1667 */ 1668 for (vifi = 0; vifi < V_numvifs; vifi++) 1669 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1670 V_viftable[vifi].v_pkt_out++; 1671 V_viftable[vifi].v_bytes_out += plen; 1672 if (V_viftable[vifi].v_flags & VIFF_REGISTER) 1673 pim_register_send(ip, V_viftable + vifi, m, rt); 1674 else 1675 phyint_send(ip, V_viftable + vifi, m); 1676 } 1677 1678 /* 1679 * Perform upcall-related bw measuring. 1680 */ 1681 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { 1682 struct bw_meter *x; 1683 struct timeval now; 1684 1685 microtime(&now); 1686 /* Process meters for Greater-or-EQual case */ 1687 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) 1688 bw_meter_geq_receive_packet(x, plen, &now); 1689 1690 /* Process meters for Lower-or-EQual case */ 1691 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { 1692 /* 1693 * Record that a packet is received. 1694 * Spin lock has to be taken as callout context 1695 * (expire_bw_meter_leq) might modify these fields 1696 * as well 1697 */ 1698 mtx_lock_spin(&x->bm_spin); 1699 x->bm_measured.b_packets++; 1700 x->bm_measured.b_bytes += plen; 1701 mtx_unlock_spin(&x->bm_spin); 1702 } 1703 } 1704 1705 return 0; 1706 } 1707 1708 /* 1709 * Check if a vif number is legal/ok. This is used by in_mcast.c. 1710 */ 1711 static int 1712 X_legal_vif_num(int vif) 1713 { 1714 int ret; 1715 1716 ret = 0; 1717 if (vif < 0) 1718 return (ret); 1719 1720 MRW_RLOCK(); 1721 if (vif < V_numvifs) 1722 ret = 1; 1723 MRW_RUNLOCK(); 1724 1725 return (ret); 1726 } 1727 1728 /* 1729 * Return the local address used by this vif 1730 */ 1731 static u_long 1732 X_ip_mcast_src(int vifi) 1733 { 1734 in_addr_t addr; 1735 1736 addr = INADDR_ANY; 1737 if (vifi < 0) 1738 return (addr); 1739 1740 MRW_RLOCK(); 1741 if (vifi < V_numvifs) 1742 addr = V_viftable[vifi].v_lcl_addr.s_addr; 1743 MRW_RUNLOCK(); 1744 1745 return (addr); 1746 } 1747 1748 static void 1749 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1750 { 1751 struct mbuf *mb_copy; 1752 int hlen = ip->ip_hl << 2; 1753 1754 MRW_LOCK_ASSERT(); 1755 1756 /* 1757 * Make a new reference to the packet; make sure that 1758 * the IP header is actually copied, not just referenced, 1759 * so that ip_output() only scribbles on the copy. 1760 */ 1761 mb_copy = m_copypacket(m, M_NOWAIT); 1762 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) 1763 mb_copy = m_pullup(mb_copy, hlen); 1764 if (mb_copy == NULL) 1765 return; 1766 1767 send_packet(vifp, mb_copy); 1768 } 1769 1770 static void 1771 send_packet(struct vif *vifp, struct mbuf *m) 1772 { 1773 struct ip_moptions imo; 1774 int error __unused; 1775 1776 MRW_LOCK_ASSERT(); 1777 NET_EPOCH_ASSERT(); 1778 1779 imo.imo_multicast_ifp = vifp->v_ifp; 1780 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1781 imo.imo_multicast_loop = !!in_mcast_loop; 1782 imo.imo_multicast_vif = -1; 1783 STAILQ_INIT(&imo.imo_head); 1784 1785 /* 1786 * Re-entrancy should not be a problem here, because 1787 * the packets that we send out and are looped back at us 1788 * should get rejected because they appear to come from 1789 * the loopback interface, thus preventing looping. 1790 */ 1791 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); 1792 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, 1793 (ptrdiff_t)(vifp - V_viftable), error); 1794 } 1795 1796 /* 1797 * Stubs for old RSVP socket shim implementation. 1798 */ 1799 1800 static int 1801 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) 1802 { 1803 1804 return (EOPNOTSUPP); 1805 } 1806 1807 static void 1808 X_ip_rsvp_force_done(struct socket *so __unused) 1809 { 1810 1811 } 1812 1813 static int 1814 X_rsvp_input(struct mbuf **mp, int *offp, int proto) 1815 { 1816 struct mbuf *m; 1817 1818 m = *mp; 1819 *mp = NULL; 1820 if (!V_rsvp_on) 1821 m_freem(m); 1822 return (IPPROTO_DONE); 1823 } 1824 1825 /* 1826 * Code for bandwidth monitors 1827 */ 1828 1829 /* 1830 * Define common interface for timeval-related methods 1831 */ 1832 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1833 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1834 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1835 1836 static uint32_t 1837 compute_bw_meter_flags(struct bw_upcall *req) 1838 { 1839 uint32_t flags = 0; 1840 1841 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1842 flags |= BW_METER_UNIT_PACKETS; 1843 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1844 flags |= BW_METER_UNIT_BYTES; 1845 if (req->bu_flags & BW_UPCALL_GEQ) 1846 flags |= BW_METER_GEQ; 1847 if (req->bu_flags & BW_UPCALL_LEQ) 1848 flags |= BW_METER_LEQ; 1849 1850 return flags; 1851 } 1852 1853 static void 1854 expire_bw_meter_leq(void *arg) 1855 { 1856 struct bw_meter *x = arg; 1857 struct timeval now; 1858 /* 1859 * INFO: 1860 * callout is always executed with MRW_WLOCK taken 1861 */ 1862 1863 CURVNET_SET((struct vnet *)x->arg); 1864 1865 microtime(&now); 1866 1867 /* 1868 * Test if we should deliver an upcall 1869 */ 1870 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 1871 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 1872 ((x->bm_flags & BW_METER_UNIT_BYTES) && 1873 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 1874 /* Prepare an upcall for delivery */ 1875 bw_meter_prepare_upcall(x, &now); 1876 } 1877 1878 /* Send all upcalls that are pending delivery */ 1879 taskqueue_enqueue(V_task_queue, &V_task); 1880 1881 /* Reset counters */ 1882 x->bm_start_time = now; 1883 /* Spin lock has to be taken as ip_forward context 1884 * might modify these fields as well 1885 */ 1886 mtx_lock_spin(&x->bm_spin); 1887 x->bm_measured.b_bytes = 0; 1888 x->bm_measured.b_packets = 0; 1889 mtx_unlock_spin(&x->bm_spin); 1890 1891 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); 1892 1893 CURVNET_RESTORE(); 1894 } 1895 1896 /* 1897 * Add a bw_meter entry 1898 */ 1899 static int 1900 add_bw_upcall(struct bw_upcall *req) 1901 { 1902 struct mfc *mfc; 1903 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1904 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1905 struct timeval now; 1906 struct bw_meter *x, **bwm_ptr; 1907 uint32_t flags; 1908 1909 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 1910 return EOPNOTSUPP; 1911 1912 /* Test if the flags are valid */ 1913 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 1914 return EINVAL; 1915 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 1916 return EINVAL; 1917 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 1918 return EINVAL; 1919 1920 /* Test if the threshold time interval is valid */ 1921 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 1922 return EINVAL; 1923 1924 flags = compute_bw_meter_flags(req); 1925 1926 /* 1927 * Find if we have already same bw_meter entry 1928 */ 1929 MRW_WLOCK(); 1930 mfc = mfc_find(&req->bu_src, &req->bu_dst); 1931 if (mfc == NULL) { 1932 MRW_WUNLOCK(); 1933 return EADDRNOTAVAIL; 1934 } 1935 1936 /* Choose an appropriate bw_meter list */ 1937 if (req->bu_flags & BW_UPCALL_GEQ) 1938 bwm_ptr = &mfc->mfc_bw_meter_geq; 1939 else 1940 bwm_ptr = &mfc->mfc_bw_meter_leq; 1941 1942 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { 1943 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 1944 &req->bu_threshold.b_time, ==)) 1945 && (x->bm_threshold.b_packets 1946 == req->bu_threshold.b_packets) 1947 && (x->bm_threshold.b_bytes 1948 == req->bu_threshold.b_bytes) 1949 && (x->bm_flags & BW_METER_USER_FLAGS) 1950 == flags) { 1951 MRW_WUNLOCK(); 1952 return 0; /* XXX Already installed */ 1953 } 1954 } 1955 1956 /* Allocate the new bw_meter entry */ 1957 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); 1958 if (x == NULL) { 1959 MRW_WUNLOCK(); 1960 return ENOBUFS; 1961 } 1962 1963 /* Set the new bw_meter entry */ 1964 x->bm_threshold.b_time = req->bu_threshold.b_time; 1965 microtime(&now); 1966 x->bm_start_time = now; 1967 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 1968 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 1969 x->bm_measured.b_packets = 0; 1970 x->bm_measured.b_bytes = 0; 1971 x->bm_flags = flags; 1972 x->bm_time_next = NULL; 1973 x->bm_mfc = mfc; 1974 x->arg = curvnet; 1975 sprintf(x->bm_spin_name, "BM spin %p", x); 1976 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); 1977 1978 /* For LEQ case create periodic callout */ 1979 if (req->bu_flags & BW_UPCALL_LEQ) { 1980 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); 1981 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), 1982 expire_bw_meter_leq, x); 1983 } 1984 1985 /* Add the new bw_meter entry to the front of entries for this MFC */ 1986 x->bm_mfc_next = *bwm_ptr; 1987 *bwm_ptr = x; 1988 1989 MRW_WUNLOCK(); 1990 1991 return 0; 1992 } 1993 1994 static void 1995 free_bw_list(struct bw_meter *list) 1996 { 1997 while (list != NULL) { 1998 struct bw_meter *x = list; 1999 2000 /* MRW_WLOCK must be held here */ 2001 if (x->bm_flags & BW_METER_LEQ) { 2002 callout_drain(&x->bm_meter_callout); 2003 mtx_destroy(&x->bm_spin); 2004 } 2005 2006 list = list->bm_mfc_next; 2007 free(x, M_BWMETER); 2008 } 2009 } 2010 2011 /* 2012 * Delete one or multiple bw_meter entries 2013 */ 2014 static int 2015 del_bw_upcall(struct bw_upcall *req) 2016 { 2017 struct mfc *mfc; 2018 struct bw_meter *x, **bwm_ptr; 2019 2020 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) 2021 return EOPNOTSUPP; 2022 2023 MRW_WLOCK(); 2024 2025 /* Find the corresponding MFC entry */ 2026 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2027 if (mfc == NULL) { 2028 MRW_WUNLOCK(); 2029 return EADDRNOTAVAIL; 2030 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2031 /* 2032 * Delete all bw_meter entries for this mfc 2033 */ 2034 struct bw_meter *list; 2035 2036 /* Free LEQ list */ 2037 list = mfc->mfc_bw_meter_leq; 2038 mfc->mfc_bw_meter_leq = NULL; 2039 free_bw_list(list); 2040 2041 /* Free GEQ list */ 2042 list = mfc->mfc_bw_meter_geq; 2043 mfc->mfc_bw_meter_geq = NULL; 2044 free_bw_list(list); 2045 MRW_WUNLOCK(); 2046 return 0; 2047 } else { /* Delete a single bw_meter entry */ 2048 struct bw_meter *prev; 2049 uint32_t flags = 0; 2050 2051 flags = compute_bw_meter_flags(req); 2052 2053 /* Choose an appropriate bw_meter list */ 2054 if (req->bu_flags & BW_UPCALL_GEQ) 2055 bwm_ptr = &mfc->mfc_bw_meter_geq; 2056 else 2057 bwm_ptr = &mfc->mfc_bw_meter_leq; 2058 2059 /* Find the bw_meter entry to delete */ 2060 for (prev = NULL, x = *bwm_ptr; x != NULL; 2061 prev = x, x = x->bm_mfc_next) { 2062 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && 2063 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2064 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2065 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2066 break; 2067 } 2068 if (x != NULL) { /* Delete entry from the list for this MFC */ 2069 if (prev != NULL) 2070 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2071 else 2072 *bwm_ptr = x->bm_mfc_next;/* new head of list */ 2073 2074 if (req->bu_flags & BW_UPCALL_LEQ) 2075 callout_stop(&x->bm_meter_callout); 2076 2077 MRW_WUNLOCK(); 2078 /* Free the bw_meter entry */ 2079 free(x, M_BWMETER); 2080 return 0; 2081 } else { 2082 MRW_WUNLOCK(); 2083 return EINVAL; 2084 } 2085 } 2086 __assert_unreachable(); 2087 } 2088 2089 /* 2090 * Perform bandwidth measurement processing that may result in an upcall 2091 */ 2092 static void 2093 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2094 { 2095 struct timeval delta; 2096 2097 MRW_LOCK_ASSERT(); 2098 2099 delta = *nowp; 2100 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2101 2102 /* 2103 * Processing for ">=" type of bw_meter entry. 2104 * bm_spin does not have to be hold here as in GEQ 2105 * case this is the only context accessing bm_measured. 2106 */ 2107 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2108 /* Reset the bw_meter entry */ 2109 x->bm_start_time = *nowp; 2110 x->bm_measured.b_packets = 0; 2111 x->bm_measured.b_bytes = 0; 2112 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2113 } 2114 2115 /* Record that a packet is received */ 2116 x->bm_measured.b_packets++; 2117 x->bm_measured.b_bytes += plen; 2118 2119 /* 2120 * Test if we should deliver an upcall 2121 */ 2122 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2123 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2124 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2125 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2126 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2127 /* Prepare an upcall for delivery */ 2128 bw_meter_prepare_upcall(x, nowp); 2129 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2130 } 2131 } 2132 } 2133 2134 /* 2135 * Prepare a bandwidth-related upcall 2136 */ 2137 static void 2138 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2139 { 2140 struct timeval delta; 2141 struct bw_upcall *u; 2142 2143 MRW_LOCK_ASSERT(); 2144 2145 /* 2146 * Compute the measured time interval 2147 */ 2148 delta = *nowp; 2149 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2150 2151 /* 2152 * Set the bw_upcall entry 2153 */ 2154 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); 2155 if (!u) { 2156 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); 2157 return; 2158 } 2159 u->bu_src = x->bm_mfc->mfc_origin; 2160 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2161 u->bu_threshold.b_time = x->bm_threshold.b_time; 2162 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2163 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2164 u->bu_measured.b_time = delta; 2165 u->bu_measured.b_packets = x->bm_measured.b_packets; 2166 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2167 u->bu_flags = 0; 2168 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2169 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2170 if (x->bm_flags & BW_METER_UNIT_BYTES) 2171 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2172 if (x->bm_flags & BW_METER_GEQ) 2173 u->bu_flags |= BW_UPCALL_GEQ; 2174 if (x->bm_flags & BW_METER_LEQ) 2175 u->bu_flags |= BW_UPCALL_LEQ; 2176 2177 if (buf_ring_enqueue(V_bw_upcalls_ring, u)) 2178 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); 2179 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { 2180 taskqueue_enqueue(V_task_queue, &V_task); 2181 } 2182 } 2183 /* 2184 * Send the pending bandwidth-related upcalls 2185 */ 2186 static void 2187 bw_upcalls_send(void) 2188 { 2189 struct mbuf *m; 2190 int len = 0; 2191 struct bw_upcall *bu; 2192 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2193 static struct igmpmsg igmpmsg = { 2194 0, /* unused1 */ 2195 0, /* unused2 */ 2196 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2197 0, /* im_mbz */ 2198 0, /* im_vif */ 2199 0, /* unused3 */ 2200 { 0 }, /* im_src */ 2201 { 0 } /* im_dst */ 2202 }; 2203 2204 MRW_LOCK_ASSERT(); 2205 2206 if (buf_ring_empty(V_bw_upcalls_ring)) 2207 return; 2208 2209 /* 2210 * Allocate a new mbuf, initialize it with the header and 2211 * the payload for the pending calls. 2212 */ 2213 m = m_gethdr(M_NOWAIT, MT_DATA); 2214 if (m == NULL) { 2215 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2216 return; 2217 } 2218 2219 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2220 len += sizeof(struct igmpmsg); 2221 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { 2222 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); 2223 len += sizeof(struct bw_upcall); 2224 free(bu, M_MRTABLE); 2225 } 2226 2227 /* 2228 * Send the upcalls 2229 * XXX do we need to set the address in k_igmpsrc ? 2230 */ 2231 MRTSTAT_INC(mrts_upcalls); 2232 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2233 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2234 MRTSTAT_INC(mrts_upq_sockfull); 2235 } 2236 } 2237 2238 /* 2239 * A periodic function for sending all upcalls that are pending delivery 2240 */ 2241 static void 2242 expire_bw_upcalls_send(void *arg) 2243 { 2244 CURVNET_SET((struct vnet *) arg); 2245 2246 /* This callout is run with MRW_RLOCK taken */ 2247 2248 bw_upcalls_send(); 2249 2250 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, 2251 curvnet); 2252 CURVNET_RESTORE(); 2253 } 2254 2255 /* 2256 * End of bandwidth monitoring code 2257 */ 2258 2259 /* 2260 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2261 * 2262 */ 2263 static int 2264 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2265 struct mfc *rt) 2266 { 2267 struct mbuf *mb_copy, *mm; 2268 2269 /* 2270 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2271 * rendezvous point was unspecified, and we were told not to. 2272 */ 2273 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && 2274 in_nullhost(rt->mfc_rp)) 2275 return 0; 2276 2277 mb_copy = pim_register_prepare(ip, m); 2278 if (mb_copy == NULL) 2279 return ENOBUFS; 2280 2281 /* 2282 * Send all the fragments. Note that the mbuf for each fragment 2283 * is freed by the sending machinery. 2284 */ 2285 for (mm = mb_copy; mm; mm = mb_copy) { 2286 mb_copy = mm->m_nextpkt; 2287 mm->m_nextpkt = 0; 2288 mm = m_pullup(mm, sizeof(struct ip)); 2289 if (mm != NULL) { 2290 ip = mtod(mm, struct ip *); 2291 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { 2292 pim_register_send_rp(ip, vifp, mm, rt); 2293 } else { 2294 pim_register_send_upcall(ip, vifp, mm, rt); 2295 } 2296 } 2297 } 2298 2299 return 0; 2300 } 2301 2302 /* 2303 * Return a copy of the data packet that is ready for PIM Register 2304 * encapsulation. 2305 * XXX: Note that in the returned copy the IP header is a valid one. 2306 */ 2307 static struct mbuf * 2308 pim_register_prepare(struct ip *ip, struct mbuf *m) 2309 { 2310 struct mbuf *mb_copy = NULL; 2311 int mtu; 2312 2313 /* Take care of delayed checksums */ 2314 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2315 in_delayed_cksum(m); 2316 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2317 } 2318 2319 /* 2320 * Copy the old packet & pullup its IP header into the 2321 * new mbuf so we can modify it. 2322 */ 2323 mb_copy = m_copypacket(m, M_NOWAIT); 2324 if (mb_copy == NULL) 2325 return NULL; 2326 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2327 if (mb_copy == NULL) 2328 return NULL; 2329 2330 /* take care of the TTL */ 2331 ip = mtod(mb_copy, struct ip *); 2332 --ip->ip_ttl; 2333 2334 /* Compute the MTU after the PIM Register encapsulation */ 2335 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2336 2337 if (ntohs(ip->ip_len) <= mtu) { 2338 /* Turn the IP header into a valid one */ 2339 ip->ip_sum = 0; 2340 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2341 } else { 2342 /* Fragment the packet */ 2343 mb_copy->m_pkthdr.csum_flags |= CSUM_IP; 2344 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { 2345 m_freem(mb_copy); 2346 return NULL; 2347 } 2348 } 2349 return mb_copy; 2350 } 2351 2352 /* 2353 * Send an upcall with the data packet to the user-level process. 2354 */ 2355 static int 2356 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2357 struct mbuf *mb_copy, struct mfc *rt) 2358 { 2359 struct mbuf *mb_first; 2360 int len = ntohs(ip->ip_len); 2361 struct igmpmsg *im; 2362 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2363 2364 MRW_LOCK_ASSERT(); 2365 2366 /* 2367 * Add a new mbuf with an upcall header 2368 */ 2369 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2370 if (mb_first == NULL) { 2371 m_freem(mb_copy); 2372 return ENOBUFS; 2373 } 2374 mb_first->m_data += max_linkhdr; 2375 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2376 mb_first->m_len = sizeof(struct igmpmsg); 2377 mb_first->m_next = mb_copy; 2378 2379 /* Send message to routing daemon */ 2380 im = mtod(mb_first, struct igmpmsg *); 2381 im->im_msgtype = IGMPMSG_WHOLEPKT; 2382 im->im_mbz = 0; 2383 im->im_vif = vifp - V_viftable; 2384 im->im_src = ip->ip_src; 2385 im->im_dst = ip->ip_dst; 2386 2387 k_igmpsrc.sin_addr = ip->ip_src; 2388 2389 MRTSTAT_INC(mrts_upcalls); 2390 2391 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2392 CTR1(KTR_IPMF, "%s: socket queue full", __func__); 2393 MRTSTAT_INC(mrts_upq_sockfull); 2394 return ENOBUFS; 2395 } 2396 2397 /* Keep statistics */ 2398 PIMSTAT_INC(pims_snd_registers_msgs); 2399 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2400 2401 return 0; 2402 } 2403 2404 /* 2405 * Encapsulate the data packet in PIM Register message and send it to the RP. 2406 */ 2407 static int 2408 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2409 struct mfc *rt) 2410 { 2411 struct mbuf *mb_first; 2412 struct ip *ip_outer; 2413 struct pim_encap_pimhdr *pimhdr; 2414 int len = ntohs(ip->ip_len); 2415 vifi_t vifi = rt->mfc_parent; 2416 2417 MRW_LOCK_ASSERT(); 2418 2419 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { 2420 m_freem(mb_copy); 2421 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2422 } 2423 2424 /* 2425 * Add a new mbuf with the encapsulating header 2426 */ 2427 mb_first = m_gethdr(M_NOWAIT, MT_DATA); 2428 if (mb_first == NULL) { 2429 m_freem(mb_copy); 2430 return ENOBUFS; 2431 } 2432 mb_first->m_data += max_linkhdr; 2433 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2434 mb_first->m_next = mb_copy; 2435 2436 mb_first->m_pkthdr.len = len + mb_first->m_len; 2437 2438 /* 2439 * Fill in the encapsulating IP and PIM header 2440 */ 2441 ip_outer = mtod(mb_first, struct ip *); 2442 *ip_outer = pim_encap_iphdr; 2443 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 2444 sizeof(pim_encap_pimhdr)); 2445 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; 2446 ip_outer->ip_dst = rt->mfc_rp; 2447 /* 2448 * Copy the inner header TOS to the outer header, and take care of the 2449 * IP_DF bit. 2450 */ 2451 ip_outer->ip_tos = ip->ip_tos; 2452 if (ip->ip_off & htons(IP_DF)) 2453 ip_outer->ip_off |= htons(IP_DF); 2454 ip_fillid(ip_outer); 2455 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2456 + sizeof(pim_encap_iphdr)); 2457 *pimhdr = pim_encap_pimhdr; 2458 /* If the iif crosses a border, set the Border-bit */ 2459 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) 2460 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2461 2462 mb_first->m_data += sizeof(pim_encap_iphdr); 2463 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2464 mb_first->m_data -= sizeof(pim_encap_iphdr); 2465 2466 send_packet(vifp, mb_first); 2467 2468 /* Keep statistics */ 2469 PIMSTAT_INC(pims_snd_registers_msgs); 2470 PIMSTAT_ADD(pims_snd_registers_bytes, len); 2471 2472 return 0; 2473 } 2474 2475 /* 2476 * pim_encapcheck() is called by the encap4_input() path at runtime to 2477 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2478 * into the kernel. 2479 */ 2480 static int 2481 pim_encapcheck(const struct mbuf *m __unused, int off __unused, 2482 int proto __unused, void *arg __unused) 2483 { 2484 2485 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2486 return (8); /* claim the datagram. */ 2487 } 2488 2489 /* 2490 * PIM-SMv2 and PIM-DM messages processing. 2491 * Receives and verifies the PIM control messages, and passes them 2492 * up to the listening socket, using rip_input(). 2493 * The only message with special processing is the PIM_REGISTER message 2494 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2495 * is passed to if_simloop(). 2496 */ 2497 static int 2498 pim_input(struct mbuf *m, int off, int proto, void *arg __unused) 2499 { 2500 struct ip *ip = mtod(m, struct ip *); 2501 struct pim *pim; 2502 int iphlen = off; 2503 int minlen; 2504 int datalen = ntohs(ip->ip_len) - iphlen; 2505 int ip_tos; 2506 2507 /* Keep statistics */ 2508 PIMSTAT_INC(pims_rcv_total_msgs); 2509 PIMSTAT_ADD(pims_rcv_total_bytes, datalen); 2510 2511 /* 2512 * Validate lengths 2513 */ 2514 if (datalen < PIM_MINLEN) { 2515 PIMSTAT_INC(pims_rcv_tooshort); 2516 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", 2517 __func__, datalen, ntohl(ip->ip_src.s_addr)); 2518 m_freem(m); 2519 return (IPPROTO_DONE); 2520 } 2521 2522 /* 2523 * If the packet is at least as big as a REGISTER, go agead 2524 * and grab the PIM REGISTER header size, to avoid another 2525 * possible m_pullup() later. 2526 * 2527 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2528 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2529 */ 2530 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2531 /* 2532 * Get the IP and PIM headers in contiguous memory, and 2533 * possibly the PIM REGISTER header. 2534 */ 2535 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { 2536 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); 2537 return (IPPROTO_DONE); 2538 } 2539 2540 /* m_pullup() may have given us a new mbuf so reset ip. */ 2541 ip = mtod(m, struct ip *); 2542 ip_tos = ip->ip_tos; 2543 2544 /* adjust mbuf to point to the PIM header */ 2545 m->m_data += iphlen; 2546 m->m_len -= iphlen; 2547 pim = mtod(m, struct pim *); 2548 2549 /* 2550 * Validate checksum. If PIM REGISTER, exclude the data packet. 2551 * 2552 * XXX: some older PIMv2 implementations don't make this distinction, 2553 * so for compatibility reason perform the checksum over part of the 2554 * message, and if error, then over the whole message. 2555 */ 2556 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2557 /* do nothing, checksum okay */ 2558 } else if (in_cksum(m, datalen)) { 2559 PIMSTAT_INC(pims_rcv_badsum); 2560 CTR1(KTR_IPMF, "%s: invalid checksum", __func__); 2561 m_freem(m); 2562 return (IPPROTO_DONE); 2563 } 2564 2565 /* PIM version check */ 2566 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2567 PIMSTAT_INC(pims_rcv_badversion); 2568 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, 2569 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); 2570 m_freem(m); 2571 return (IPPROTO_DONE); 2572 } 2573 2574 /* restore mbuf back to the outer IP */ 2575 m->m_data -= iphlen; 2576 m->m_len += iphlen; 2577 2578 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2579 /* 2580 * Since this is a REGISTER, we'll make a copy of the register 2581 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2582 * routing daemon. 2583 */ 2584 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2585 struct mbuf *mcp; 2586 struct ip *encap_ip; 2587 u_int32_t *reghdr; 2588 struct ifnet *vifp; 2589 2590 MRW_RLOCK(); 2591 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { 2592 MRW_RUNLOCK(); 2593 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, 2594 (int)V_reg_vif_num); 2595 m_freem(m); 2596 return (IPPROTO_DONE); 2597 } 2598 /* XXX need refcnt? */ 2599 vifp = V_viftable[V_reg_vif_num].v_ifp; 2600 MRW_RUNLOCK(); 2601 2602 /* 2603 * Validate length 2604 */ 2605 if (datalen < PIM_REG_MINLEN) { 2606 PIMSTAT_INC(pims_rcv_tooshort); 2607 PIMSTAT_INC(pims_rcv_badregisters); 2608 CTR1(KTR_IPMF, "%s: register packet size too small", __func__); 2609 m_freem(m); 2610 return (IPPROTO_DONE); 2611 } 2612 2613 reghdr = (u_int32_t *)(pim + 1); 2614 encap_ip = (struct ip *)(reghdr + 1); 2615 2616 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", 2617 __func__, ntohl(encap_ip->ip_src.s_addr), 2618 ntohs(encap_ip->ip_len)); 2619 2620 /* verify the version number of the inner packet */ 2621 if (encap_ip->ip_v != IPVERSION) { 2622 PIMSTAT_INC(pims_rcv_badregisters); 2623 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); 2624 m_freem(m); 2625 return (IPPROTO_DONE); 2626 } 2627 2628 /* verify the inner packet is destined to a mcast group */ 2629 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2630 PIMSTAT_INC(pims_rcv_badregisters); 2631 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, 2632 ntohl(encap_ip->ip_dst.s_addr)); 2633 m_freem(m); 2634 return (IPPROTO_DONE); 2635 } 2636 2637 /* If a NULL_REGISTER, pass it to the daemon */ 2638 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2639 goto pim_input_to_daemon; 2640 2641 /* 2642 * Copy the TOS from the outer IP header to the inner IP header. 2643 */ 2644 if (encap_ip->ip_tos != ip_tos) { 2645 /* Outer TOS -> inner TOS */ 2646 encap_ip->ip_tos = ip_tos; 2647 /* Recompute the inner header checksum. Sigh... */ 2648 2649 /* adjust mbuf to point to the inner IP header */ 2650 m->m_data += (iphlen + PIM_MINLEN); 2651 m->m_len -= (iphlen + PIM_MINLEN); 2652 2653 encap_ip->ip_sum = 0; 2654 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2655 2656 /* restore mbuf to point back to the outer IP header */ 2657 m->m_data -= (iphlen + PIM_MINLEN); 2658 m->m_len += (iphlen + PIM_MINLEN); 2659 } 2660 2661 /* 2662 * Decapsulate the inner IP packet and loopback to forward it 2663 * as a normal multicast packet. Also, make a copy of the 2664 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2665 * to pass to the daemon later, so it can take the appropriate 2666 * actions (e.g., send back PIM_REGISTER_STOP). 2667 * XXX: here m->m_data points to the outer IP header. 2668 */ 2669 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); 2670 if (mcp == NULL) { 2671 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); 2672 m_freem(m); 2673 return (IPPROTO_DONE); 2674 } 2675 2676 /* Keep statistics */ 2677 /* XXX: registers_bytes include only the encap. mcast pkt */ 2678 PIMSTAT_INC(pims_rcv_registers_msgs); 2679 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); 2680 2681 /* 2682 * forward the inner ip packet; point m_data at the inner ip. 2683 */ 2684 m_adj(m, iphlen + PIM_MINLEN); 2685 2686 CTR4(KTR_IPMF, 2687 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", 2688 __func__, 2689 (u_long)ntohl(encap_ip->ip_src.s_addr), 2690 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2691 (int)V_reg_vif_num); 2692 2693 /* NB: vifp was collected above; can it change on us? */ 2694 if_simloop(vifp, m, dst.sin_family, 0); 2695 2696 /* prepare the register head to send to the mrouting daemon */ 2697 m = mcp; 2698 } 2699 2700 pim_input_to_daemon: 2701 /* 2702 * Pass the PIM message up to the daemon; if it is a Register message, 2703 * pass the 'head' only up to the daemon. This includes the 2704 * outer IP header, PIM header, PIM-Register header and the 2705 * inner IP header. 2706 * XXX: the outer IP header pkt size of a Register is not adjust to 2707 * reflect the fact that the inner multicast data is truncated. 2708 */ 2709 return (rip_input(&m, &off, proto)); 2710 } 2711 2712 static int 2713 sysctl_mfctable(SYSCTL_HANDLER_ARGS) 2714 { 2715 struct mfc *rt; 2716 int error, i; 2717 2718 if (req->newptr) 2719 return (EPERM); 2720 if (V_mfchashtbl == NULL) /* XXX unlocked */ 2721 return (0); 2722 error = sysctl_wire_old_buffer(req, 0); 2723 if (error) 2724 return (error); 2725 2726 MRW_RLOCK(); 2727 for (i = 0; i < mfchashsize; i++) { 2728 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { 2729 error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); 2730 if (error) 2731 goto out_locked; 2732 } 2733 } 2734 out_locked: 2735 MRW_RUNLOCK(); 2736 return (error); 2737 } 2738 2739 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, 2740 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, 2741 "IPv4 Multicast Forwarding Table " 2742 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); 2743 2744 static int 2745 sysctl_viflist(SYSCTL_HANDLER_ARGS) 2746 { 2747 int error, i; 2748 2749 if (req->newptr) 2750 return (EPERM); 2751 if (V_viftable == NULL) /* XXX unlocked */ 2752 return (0); 2753 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); 2754 if (error) 2755 return (error); 2756 2757 MRW_RLOCK(); 2758 /* Copy out user-visible portion of vif entry. */ 2759 for (i = 0; i < MAXVIFS; i++) { 2760 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); 2761 if (error) 2762 break; 2763 } 2764 MRW_RUNLOCK(); 2765 return (error); 2766 } 2767 2768 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, 2769 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 2770 sysctl_viflist, "S,vif[MAXVIFS]", 2771 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 2772 2773 static void 2774 vnet_mroute_init(const void *unused __unused) 2775 { 2776 2777 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); 2778 2779 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), 2780 M_MRTABLE, M_WAITOK|M_ZERO); 2781 2782 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); 2783 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); 2784 2785 /* Prepare taskqueue */ 2786 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, 2787 taskqueue_thread_enqueue, &V_task_queue); 2788 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); 2789 } 2790 2791 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, 2792 NULL); 2793 2794 static void 2795 vnet_mroute_uninit(const void *unused __unused) 2796 { 2797 2798 /* Taskqueue should be cancelled and drained before freeing */ 2799 taskqueue_free(V_task_queue); 2800 2801 free(V_viftable, M_MRTABLE); 2802 free(V_nexpire, M_MRTABLE); 2803 V_nexpire = NULL; 2804 } 2805 2806 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 2807 vnet_mroute_uninit, NULL); 2808 2809 static int 2810 ip_mroute_modevent(module_t mod, int type, void *unused) 2811 { 2812 2813 switch (type) { 2814 case MOD_LOAD: 2815 MRW_LOCK_INIT(); 2816 2817 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 2818 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 2819 if (if_detach_event_tag == NULL) { 2820 printf("ip_mroute: unable to register " 2821 "ifnet_departure_event handler\n"); 2822 MRW_LOCK_DESTROY(); 2823 return (EINVAL); 2824 } 2825 2826 if (!powerof2(mfchashsize)) { 2827 printf("WARNING: %s not a power of 2; using default\n", 2828 "net.inet.ip.mfchashsize"); 2829 mfchashsize = MFCHASHSIZE; 2830 } 2831 2832 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); 2833 2834 ip_mcast_src = X_ip_mcast_src; 2835 ip_mforward = X_ip_mforward; 2836 ip_mrouter_done = X_ip_mrouter_done; 2837 ip_mrouter_get = X_ip_mrouter_get; 2838 ip_mrouter_set = X_ip_mrouter_set; 2839 2840 ip_rsvp_force_done = X_ip_rsvp_force_done; 2841 ip_rsvp_vif = X_ip_rsvp_vif; 2842 2843 legal_vif_num = X_legal_vif_num; 2844 mrt_ioctl = X_mrt_ioctl; 2845 rsvp_input_p = X_rsvp_input; 2846 break; 2847 2848 case MOD_UNLOAD: 2849 /* 2850 * Typically module unload happens after the user-level 2851 * process has shutdown the kernel services (the check 2852 * below insures someone can't just yank the module out 2853 * from under a running process). But if the module is 2854 * just loaded and then unloaded w/o starting up a user 2855 * process we still need to cleanup. 2856 */ 2857 MRW_WLOCK(); 2858 if (ip_mrouter_cnt != 0) { 2859 MRW_WUNLOCK(); 2860 return (EINVAL); 2861 } 2862 ip_mrouter_unloading = 1; 2863 MRW_WUNLOCK(); 2864 2865 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 2866 2867 if (pim_encap_cookie) { 2868 ip_encap_detach(pim_encap_cookie); 2869 pim_encap_cookie = NULL; 2870 } 2871 2872 ip_mcast_src = NULL; 2873 ip_mforward = NULL; 2874 ip_mrouter_done = NULL; 2875 ip_mrouter_get = NULL; 2876 ip_mrouter_set = NULL; 2877 2878 ip_rsvp_force_done = NULL; 2879 ip_rsvp_vif = NULL; 2880 2881 legal_vif_num = NULL; 2882 mrt_ioctl = NULL; 2883 rsvp_input_p = NULL; 2884 2885 MRW_LOCK_DESTROY(); 2886 break; 2887 2888 default: 2889 return EOPNOTSUPP; 2890 } 2891 return 0; 2892 } 2893 2894 static moduledata_t ip_mroutemod = { 2895 "ip_mroute", 2896 ip_mroute_modevent, 2897 0 2898 }; 2899 2900 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); 2901