1 /*- 2 * Copyright (c) 1989 Stephen Deering 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Stephen Deering of Stanford University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 34 */ 35 36 /* 37 * IP multicast forwarding procedures 38 * 39 * Written by David Waitzman, BBN Labs, August 1988. 40 * Modified by Steve Deering, Stanford, February 1989. 41 * Modified by Mark J. Steiglitz, Stanford, May, 1991 42 * Modified by Van Jacobson, LBL, January 1993 43 * Modified by Ajit Thyagarajan, PARC, August 1993 44 * Modified by Bill Fenner, PARC, April 1995 45 * Modified by Ahmed Helmy, SGI, June 1996 46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 48 * Modified by Hitoshi Asaeda, WIDE, August 2000 49 * Modified by Pavlin Radoslavov, ICSI, October 2002 50 * 51 * MROUTING Revision: 3.5 52 * and PIM-SMv2 and PIM-DM support, advanced API support, 53 * bandwidth metering and signaling 54 */ 55 56 #include <sys/cdefs.h> 57 __FBSDID("$FreeBSD$"); 58 59 #include "opt_inet.h" 60 #include "opt_inet6.h" 61 #include "opt_mac.h" 62 #include "opt_mrouting.h" 63 64 #define _PIM_VT 1 65 66 #include <sys/param.h> 67 #include <sys/kernel.h> 68 #include <sys/lock.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/module.h> 72 #include <sys/priv.h> 73 #include <sys/protosw.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/sx.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/systm.h> 82 #include <sys/time.h> 83 #include <sys/vimage.h> 84 #include <net/if.h> 85 #include <net/netisr.h> 86 #include <net/route.h> 87 #include <netinet/in.h> 88 #include <netinet/igmp.h> 89 #include <netinet/in_systm.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip.h> 92 #include <netinet/ip_encap.h> 93 #include <netinet/ip_mroute.h> 94 #include <netinet/ip_var.h> 95 #include <netinet/ip_options.h> 96 #include <netinet/pim.h> 97 #include <netinet/pim_var.h> 98 #include <netinet/udp.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet6/ip6_mroute.h> 103 #include <netinet6/ip6_var.h> 104 #endif 105 #include <machine/in_cksum.h> 106 107 #include <security/mac/mac_framework.h> 108 109 /* 110 * Control debugging code for rsvp and multicast routing code. 111 * Can only set them with the debugger. 112 */ 113 static u_int rsvpdebug; /* non-zero enables debugging */ 114 115 static u_int mrtdebug; /* any set of the flags below */ 116 #define DEBUG_MFC 0x02 117 #define DEBUG_FORWARD 0x04 118 #define DEBUG_EXPIRE 0x08 119 #define DEBUG_XMIT 0x10 120 #define DEBUG_PIM 0x20 121 122 #define VIFI_INVALID ((vifi_t) -1) 123 124 #define M_HASCL(m) ((m)->m_flags & M_EXT) 125 126 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); 127 128 /* 129 * Locking. We use two locks: one for the virtual interface table and 130 * one for the forwarding table. These locks may be nested in which case 131 * the VIF lock must always be taken first. Note that each lock is used 132 * to cover not only the specific data structure but also related data 133 * structures. It may be better to add more fine-grained locking later; 134 * it's not clear how performance-critical this code is. 135 * 136 * XXX: This module could particularly benefit from being cleaned 137 * up to use the <sys/queue.h> macros. 138 * 139 */ 140 141 static struct mrtstat mrtstat; 142 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, 143 &mrtstat, mrtstat, 144 "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)"); 145 146 static struct mfc *mfctable[MFCTBLSIZ]; 147 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, 148 &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]", 149 "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)"); 150 151 static struct mtx mrouter_mtx; 152 #define MROUTER_LOCK() mtx_lock(&mrouter_mtx) 153 #define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx) 154 #define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED) 155 #define MROUTER_LOCK_INIT() \ 156 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF) 157 #define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx) 158 159 static struct mtx mfc_mtx; 160 #define MFC_LOCK() mtx_lock(&mfc_mtx) 161 #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) 162 #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) 163 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF) 164 #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) 165 166 static struct vif viftable[MAXVIFS]; 167 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, 168 &viftable, sizeof(viftable), "S,vif[MAXVIFS]", 169 "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); 170 171 static struct mtx vif_mtx; 172 #define VIF_LOCK() mtx_lock(&vif_mtx) 173 #define VIF_UNLOCK() mtx_unlock(&vif_mtx) 174 #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) 175 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF) 176 #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) 177 178 static u_char nexpire[MFCTBLSIZ]; 179 180 static eventhandler_tag if_detach_event_tag = NULL; 181 182 static struct callout expire_upcalls_ch; 183 184 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 185 #define UPCALL_EXPIRE 6 /* number of timeouts */ 186 187 #define ENCAP_TTL 64 188 189 /* 190 * Bandwidth meter variables and constants 191 */ 192 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); 193 /* 194 * Pending timeouts are stored in a hash table, the key being the 195 * expiration time. Periodically, the entries are analysed and processed. 196 */ 197 #define BW_METER_BUCKETS 1024 198 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 199 static struct callout bw_meter_ch; 200 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 201 202 /* 203 * Pending upcalls are stored in a vector which is flushed when 204 * full, or periodically 205 */ 206 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 207 static u_int bw_upcalls_n; /* # of pending upcalls */ 208 static struct callout bw_upcalls_ch; 209 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 210 211 static struct pimstat pimstat; 212 213 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM"); 214 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, 215 &pimstat, pimstat, 216 "PIM Statistics (struct pimstat, netinet/pim_var.h)"); 217 218 static u_long pim_squelch_wholepkt = 0; 219 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, 220 &pim_squelch_wholepkt, 0, 221 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); 222 223 extern struct domain inetdomain; 224 struct protosw in_pim_protosw = { 225 .pr_type = SOCK_RAW, 226 .pr_domain = &inetdomain, 227 .pr_protocol = IPPROTO_PIM, 228 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR, 229 .pr_input = pim_input, 230 .pr_output = (pr_output_t*)rip_output, 231 .pr_ctloutput = rip_ctloutput, 232 .pr_usrreqs = &rip_usrreqs 233 }; 234 static const struct encaptab *pim_encap_cookie; 235 236 #ifdef INET6 237 /* ip6_mroute.c glue */ 238 extern struct in6_protosw in6_pim_protosw; 239 static const struct encaptab *pim6_encap_cookie; 240 241 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *); 242 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *); 243 extern int X_ip6_mrouter_done(void); 244 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *); 245 extern int X_mrt6_ioctl(int, caddr_t); 246 #endif 247 248 static int pim_encapcheck(const struct mbuf *, int, int, void *); 249 250 /* 251 * Note: the PIM Register encapsulation adds the following in front of a 252 * data packet: 253 * 254 * struct pim_encap_hdr { 255 * struct ip ip; 256 * struct pim_encap_pimhdr pim; 257 * } 258 * 259 */ 260 261 struct pim_encap_pimhdr { 262 struct pim pim; 263 uint32_t flags; 264 }; 265 266 static struct ip pim_encap_iphdr = { 267 #if BYTE_ORDER == LITTLE_ENDIAN 268 sizeof(struct ip) >> 2, 269 IPVERSION, 270 #else 271 IPVERSION, 272 sizeof(struct ip) >> 2, 273 #endif 274 0, /* tos */ 275 sizeof(struct ip), /* total length */ 276 0, /* id */ 277 0, /* frag offset */ 278 ENCAP_TTL, 279 IPPROTO_PIM, 280 0, /* checksum */ 281 }; 282 283 static struct pim_encap_pimhdr pim_encap_pimhdr = { 284 { 285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 286 0, /* reserved */ 287 0, /* checksum */ 288 }, 289 0 /* flags */ 290 }; 291 292 static struct ifnet multicast_register_if; 293 static vifi_t reg_vif_num = VIFI_INVALID; 294 295 /* 296 * Private variables. 297 */ 298 static vifi_t numvifs; 299 300 static u_long X_ip_mcast_src(int vifi); 301 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, 302 struct mbuf *m, struct ip_moptions *imo); 303 static int X_ip_mrouter_done(void); 304 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m); 305 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m); 306 static int X_legal_vif_num(int vif); 307 static int X_mrt_ioctl(int cmd, caddr_t data, int fibnum); 308 309 static int get_sg_cnt(struct sioc_sg_req *); 310 static int get_vif_cnt(struct sioc_vif_req *); 311 static void if_detached_event(void *arg __unused, struct ifnet *); 312 static int ip_mrouter_init(struct socket *, int); 313 static int add_vif(struct vifctl *); 314 static int del_vif_locked(vifi_t); 315 static int del_vif(vifi_t); 316 static int add_mfc(struct mfcctl2 *); 317 static int del_mfc(struct mfcctl2 *); 318 static int set_api_config(uint32_t *); /* chose API capabilities */ 319 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 320 static int set_assert(int); 321 static void expire_upcalls(void *); 322 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 323 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 324 static void send_packet(struct vif *, struct mbuf *); 325 326 /* 327 * Bandwidth monitoring 328 */ 329 static void free_bw_list(struct bw_meter *list); 330 static int add_bw_upcall(struct bw_upcall *); 331 static int del_bw_upcall(struct bw_upcall *); 332 static void bw_meter_receive_packet(struct bw_meter *x, int plen, 333 struct timeval *nowp); 334 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp); 335 static void bw_upcalls_send(void); 336 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp); 337 static void unschedule_bw_meter(struct bw_meter *x); 338 static void bw_meter_process(void); 339 static void expire_bw_upcalls_send(void *); 340 static void expire_bw_meter_process(void *); 341 342 static int pim_register_send(struct ip *, struct vif *, 343 struct mbuf *, struct mfc *); 344 static int pim_register_send_rp(struct ip *, struct vif *, 345 struct mbuf *, struct mfc *); 346 static int pim_register_send_upcall(struct ip *, struct vif *, 347 struct mbuf *, struct mfc *); 348 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 349 350 /* 351 * whether or not special PIM assert processing is enabled. 352 */ 353 static int pim_assert; 354 /* 355 * Rate limit for assert notification messages, in usec 356 */ 357 #define ASSERT_MSG_TIME 3000000 358 359 /* 360 * Kernel multicast routing API capabilities and setup. 361 * If more API capabilities are added to the kernel, they should be 362 * recorded in `mrt_api_support'. 363 */ 364 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 365 MRT_MFC_FLAGS_BORDER_VIF | 366 MRT_MFC_RP | 367 MRT_MFC_BW_UPCALL); 368 static uint32_t mrt_api_config = 0; 369 370 /* 371 * Hash function for a source, group entry 372 */ 373 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ 374 ((g) >> 20) ^ ((g) >> 10) ^ (g)) 375 376 /* 377 * Find a route for a given origin IP address and Multicast group address 378 * Statistics are updated by the caller if needed 379 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 380 */ 381 static struct mfc * 382 mfc_find(in_addr_t o, in_addr_t g) 383 { 384 struct mfc *rt; 385 386 MFC_LOCK_ASSERT(); 387 388 for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next) 389 if ((rt->mfc_origin.s_addr == o) && 390 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL)) 391 break; 392 return rt; 393 } 394 395 /* 396 * Macros to compute elapsed time efficiently 397 * Borrowed from Van Jacobson's scheduling code 398 */ 399 #define TV_DELTA(a, b, delta) { \ 400 int xxs; \ 401 delta = (a).tv_usec - (b).tv_usec; \ 402 if ((xxs = (a).tv_sec - (b).tv_sec)) { \ 403 switch (xxs) { \ 404 case 2: \ 405 delta += 1000000; \ 406 /* FALLTHROUGH */ \ 407 case 1: \ 408 delta += 1000000; \ 409 break; \ 410 default: \ 411 delta += (1000000 * xxs); \ 412 } \ 413 } \ 414 } 415 416 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ 417 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) 418 419 /* 420 * Handle MRT setsockopt commands to modify the multicast routing tables. 421 */ 422 static int 423 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) 424 { 425 int error, optval; 426 vifi_t vifi; 427 struct vifctl vifc; 428 struct mfcctl2 mfc; 429 struct bw_upcall bw_upcall; 430 uint32_t i; 431 432 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) 433 return EPERM; 434 435 error = 0; 436 switch (sopt->sopt_name) { 437 case MRT_INIT: 438 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 439 if (error) 440 break; 441 error = ip_mrouter_init(so, optval); 442 break; 443 444 case MRT_DONE: 445 error = ip_mrouter_done(); 446 break; 447 448 case MRT_ADD_VIF: 449 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); 450 if (error) 451 break; 452 error = add_vif(&vifc); 453 break; 454 455 case MRT_DEL_VIF: 456 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 457 if (error) 458 break; 459 error = del_vif(vifi); 460 break; 461 462 case MRT_ADD_MFC: 463 case MRT_DEL_MFC: 464 /* 465 * select data size depending on API version. 466 */ 467 if (sopt->sopt_name == MRT_ADD_MFC && 468 mrt_api_config & MRT_API_FLAGS_ALL) { 469 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), 470 sizeof(struct mfcctl2)); 471 } else { 472 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), 473 sizeof(struct mfcctl)); 474 bzero((caddr_t)&mfc + sizeof(struct mfcctl), 475 sizeof(mfc) - sizeof(struct mfcctl)); 476 } 477 if (error) 478 break; 479 if (sopt->sopt_name == MRT_ADD_MFC) 480 error = add_mfc(&mfc); 481 else 482 error = del_mfc(&mfc); 483 break; 484 485 case MRT_ASSERT: 486 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); 487 if (error) 488 break; 489 set_assert(optval); 490 break; 491 492 case MRT_API_CONFIG: 493 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 494 if (!error) 495 error = set_api_config(&i); 496 if (!error) 497 error = sooptcopyout(sopt, &i, sizeof i); 498 break; 499 500 case MRT_ADD_BW_UPCALL: 501 case MRT_DEL_BW_UPCALL: 502 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, 503 sizeof bw_upcall); 504 if (error) 505 break; 506 if (sopt->sopt_name == MRT_ADD_BW_UPCALL) 507 error = add_bw_upcall(&bw_upcall); 508 else 509 error = del_bw_upcall(&bw_upcall); 510 break; 511 512 default: 513 error = EOPNOTSUPP; 514 break; 515 } 516 return error; 517 } 518 519 /* 520 * Handle MRT getsockopt commands 521 */ 522 static int 523 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) 524 { 525 int error; 526 static int version = 0x0305; /* !!! why is this here? XXX */ 527 528 switch (sopt->sopt_name) { 529 case MRT_VERSION: 530 error = sooptcopyout(sopt, &version, sizeof version); 531 break; 532 533 case MRT_ASSERT: 534 error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); 535 break; 536 537 case MRT_API_SUPPORT: 538 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); 539 break; 540 541 case MRT_API_CONFIG: 542 error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); 543 break; 544 545 default: 546 error = EOPNOTSUPP; 547 break; 548 } 549 return error; 550 } 551 552 /* 553 * Handle ioctl commands to obtain information from the cache 554 */ 555 static int 556 X_mrt_ioctl(int cmd, caddr_t data, int fibnum) 557 { 558 int error = 0; 559 560 /* 561 * Currently the only function calling this ioctl routine is rtioctl(). 562 * Typically, only root can create the raw socket in order to execute 563 * this ioctl method, however the request might be coming from a prison 564 */ 565 error = priv_check(curthread, PRIV_NETINET_MROUTE); 566 if (error) 567 return (error); 568 switch (cmd) { 569 case (SIOCGETVIFCNT): 570 error = get_vif_cnt((struct sioc_vif_req *)data); 571 break; 572 573 case (SIOCGETSGCNT): 574 error = get_sg_cnt((struct sioc_sg_req *)data); 575 break; 576 577 default: 578 error = EINVAL; 579 break; 580 } 581 return error; 582 } 583 584 /* 585 * returns the packet, byte, rpf-failure count for the source group provided 586 */ 587 static int 588 get_sg_cnt(struct sioc_sg_req *req) 589 { 590 struct mfc *rt; 591 592 MFC_LOCK(); 593 rt = mfc_find(req->src.s_addr, req->grp.s_addr); 594 if (rt == NULL) { 595 MFC_UNLOCK(); 596 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 597 return EADDRNOTAVAIL; 598 } 599 req->pktcnt = rt->mfc_pkt_cnt; 600 req->bytecnt = rt->mfc_byte_cnt; 601 req->wrong_if = rt->mfc_wrong_if; 602 MFC_UNLOCK(); 603 return 0; 604 } 605 606 /* 607 * returns the input and output packet and byte counts on the vif provided 608 */ 609 static int 610 get_vif_cnt(struct sioc_vif_req *req) 611 { 612 vifi_t vifi = req->vifi; 613 614 VIF_LOCK(); 615 if (vifi >= numvifs) { 616 VIF_UNLOCK(); 617 return EINVAL; 618 } 619 620 req->icount = viftable[vifi].v_pkt_in; 621 req->ocount = viftable[vifi].v_pkt_out; 622 req->ibytes = viftable[vifi].v_bytes_in; 623 req->obytes = viftable[vifi].v_bytes_out; 624 VIF_UNLOCK(); 625 626 return 0; 627 } 628 629 static void 630 ip_mrouter_reset(void) 631 { 632 bzero((caddr_t)mfctable, sizeof(mfctable)); 633 bzero((caddr_t)nexpire, sizeof(nexpire)); 634 635 pim_assert = 0; 636 mrt_api_config = 0; 637 638 callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE); 639 640 bw_upcalls_n = 0; 641 bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); 642 callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE); 643 callout_init(&bw_meter_ch, CALLOUT_MPSAFE); 644 } 645 646 static void 647 if_detached_event(void *arg __unused, struct ifnet *ifp) 648 { 649 vifi_t vifi; 650 int i; 651 struct mfc *mfc; 652 struct mfc *nmfc; 653 struct mfc **ppmfc; /* Pointer to previous node's next-pointer */ 654 struct rtdetq *pq; 655 struct rtdetq *npq; 656 657 MROUTER_LOCK(); 658 if (V_ip_mrouter == NULL) { 659 MROUTER_UNLOCK(); 660 } 661 662 /* 663 * Tear down multicast forwarder state associated with this ifnet. 664 * 1. Walk the vif list, matching vifs against this ifnet. 665 * 2. Walk the multicast forwarding cache (mfc) looking for 666 * inner matches with this vif's index. 667 * 3. Free any pending mbufs for this mfc. 668 * 4. Free the associated mfc entry and state associated with this vif. 669 * Be very careful about unlinking from a singly-linked list whose 670 * "head node" is a pointer in a simple array. 671 * 5. Free vif state. This should disable ALLMULTI on the interface. 672 */ 673 VIF_LOCK(); 674 MFC_LOCK(); 675 for (vifi = 0; vifi < numvifs; vifi++) { 676 if (viftable[vifi].v_ifp != ifp) 677 continue; 678 for (i = 0; i < MFCTBLSIZ; i++) { 679 ppmfc = &mfctable[i]; 680 for (mfc = mfctable[i]; mfc != NULL; ) { 681 nmfc = mfc->mfc_next; 682 if (mfc->mfc_parent == vifi) { 683 for (pq = mfc->mfc_stall; pq != NULL; ) { 684 npq = pq->next; 685 m_freem(pq->m); 686 free(pq, M_MRTABLE); 687 pq = npq; 688 } 689 free_bw_list(mfc->mfc_bw_meter); 690 free(mfc, M_MRTABLE); 691 *ppmfc = nmfc; 692 } else { 693 ppmfc = &mfc->mfc_next; 694 } 695 mfc = nmfc; 696 } 697 } 698 del_vif_locked(vifi); 699 } 700 MFC_UNLOCK(); 701 VIF_UNLOCK(); 702 703 MROUTER_UNLOCK(); 704 } 705 706 /* 707 * Enable multicast routing 708 */ 709 static int 710 ip_mrouter_init(struct socket *so, int version) 711 { 712 if (mrtdebug) 713 log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 714 so->so_type, so->so_proto->pr_protocol); 715 716 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) 717 return EOPNOTSUPP; 718 719 if (version != 1) 720 return ENOPROTOOPT; 721 722 MROUTER_LOCK(); 723 724 if (V_ip_mrouter != NULL) { 725 MROUTER_UNLOCK(); 726 return EADDRINUSE; 727 } 728 729 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 730 if_detached_event, NULL, EVENTHANDLER_PRI_ANY); 731 if (if_detach_event_tag == NULL) { 732 MROUTER_UNLOCK(); 733 return (ENOMEM); 734 } 735 736 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 737 738 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 739 expire_bw_upcalls_send, NULL); 740 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 741 742 V_ip_mrouter = so; 743 744 MROUTER_UNLOCK(); 745 746 if (mrtdebug) 747 log(LOG_DEBUG, "ip_mrouter_init\n"); 748 749 return 0; 750 } 751 752 /* 753 * Disable multicast routing 754 */ 755 static int 756 X_ip_mrouter_done(void) 757 { 758 vifi_t vifi; 759 int i; 760 struct ifnet *ifp; 761 struct ifreq ifr; 762 struct mfc *rt; 763 struct rtdetq *rte; 764 765 MROUTER_LOCK(); 766 767 if (V_ip_mrouter == NULL) { 768 MROUTER_UNLOCK(); 769 return EINVAL; 770 } 771 772 /* 773 * Detach/disable hooks to the reset of the system. 774 */ 775 V_ip_mrouter = NULL; 776 mrt_api_config = 0; 777 778 VIF_LOCK(); 779 /* 780 * For each phyint in use, disable promiscuous reception of all IP 781 * multicasts. 782 */ 783 for (vifi = 0; vifi < numvifs; vifi++) { 784 if (viftable[vifi].v_lcl_addr.s_addr != 0 && 785 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { 786 struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); 787 788 so->sin_len = sizeof(struct sockaddr_in); 789 so->sin_family = AF_INET; 790 so->sin_addr.s_addr = INADDR_ANY; 791 ifp = viftable[vifi].v_ifp; 792 if_allmulti(ifp, 0); 793 } 794 } 795 bzero((caddr_t)viftable, sizeof(viftable)); 796 numvifs = 0; 797 pim_assert = 0; 798 VIF_UNLOCK(); 799 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); 800 801 /* 802 * Free all multicast forwarding cache entries. 803 */ 804 callout_stop(&expire_upcalls_ch); 805 callout_stop(&bw_upcalls_ch); 806 callout_stop(&bw_meter_ch); 807 808 MFC_LOCK(); 809 for (i = 0; i < MFCTBLSIZ; i++) { 810 for (rt = mfctable[i]; rt != NULL; ) { 811 struct mfc *nr = rt->mfc_next; 812 813 for (rte = rt->mfc_stall; rte != NULL; ) { 814 struct rtdetq *n = rte->next; 815 816 m_freem(rte->m); 817 free(rte, M_MRTABLE); 818 rte = n; 819 } 820 free_bw_list(rt->mfc_bw_meter); 821 free(rt, M_MRTABLE); 822 rt = nr; 823 } 824 } 825 bzero((caddr_t)mfctable, sizeof(mfctable)); 826 bzero((caddr_t)nexpire, sizeof(nexpire)); 827 bw_upcalls_n = 0; 828 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 829 MFC_UNLOCK(); 830 831 reg_vif_num = VIFI_INVALID; 832 833 MROUTER_UNLOCK(); 834 835 if (mrtdebug) 836 log(LOG_DEBUG, "ip_mrouter_done\n"); 837 838 return 0; 839 } 840 841 /* 842 * Set PIM assert processing global 843 */ 844 static int 845 set_assert(int i) 846 { 847 if ((i != 1) && (i != 0)) 848 return EINVAL; 849 850 pim_assert = i; 851 852 return 0; 853 } 854 855 /* 856 * Configure API capabilities 857 */ 858 int 859 set_api_config(uint32_t *apival) 860 { 861 int i; 862 863 /* 864 * We can set the API capabilities only if it is the first operation 865 * after MRT_INIT. I.e.: 866 * - there are no vifs installed 867 * - pim_assert is not enabled 868 * - the MFC table is empty 869 */ 870 if (numvifs > 0) { 871 *apival = 0; 872 return EPERM; 873 } 874 if (pim_assert) { 875 *apival = 0; 876 return EPERM; 877 } 878 for (i = 0; i < MFCTBLSIZ; i++) { 879 if (mfctable[i] != NULL) { 880 *apival = 0; 881 return EPERM; 882 } 883 } 884 885 mrt_api_config = *apival & mrt_api_support; 886 *apival = mrt_api_config; 887 888 return 0; 889 } 890 891 /* 892 * Add a vif to the vif table 893 */ 894 static int 895 add_vif(struct vifctl *vifcp) 896 { 897 struct vif *vifp = viftable + vifcp->vifc_vifi; 898 struct sockaddr_in sin = {sizeof sin, AF_INET}; 899 struct ifaddr *ifa; 900 struct ifnet *ifp; 901 int error; 902 903 VIF_LOCK(); 904 if (vifcp->vifc_vifi >= MAXVIFS) { 905 VIF_UNLOCK(); 906 return EINVAL; 907 } 908 /* rate limiting is no longer supported by this code */ 909 if (vifcp->vifc_rate_limit != 0) { 910 log(LOG_ERR, "rate limiting is no longer supported\n"); 911 VIF_UNLOCK(); 912 return EINVAL; 913 } 914 if (vifp->v_lcl_addr.s_addr != INADDR_ANY) { 915 VIF_UNLOCK(); 916 return EADDRINUSE; 917 } 918 if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) { 919 VIF_UNLOCK(); 920 return EADDRNOTAVAIL; 921 } 922 923 /* Find the interface with an address in AF_INET family */ 924 if (vifcp->vifc_flags & VIFF_REGISTER) { 925 /* 926 * XXX: Because VIFF_REGISTER does not really need a valid 927 * local interface (e.g. it could be 127.0.0.2), we don't 928 * check its address. 929 */ 930 ifp = NULL; 931 } else { 932 sin.sin_addr = vifcp->vifc_lcl_addr; 933 ifa = ifa_ifwithaddr((struct sockaddr *)&sin); 934 if (ifa == NULL) { 935 VIF_UNLOCK(); 936 return EADDRNOTAVAIL; 937 } 938 ifp = ifa->ifa_ifp; 939 } 940 941 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { 942 log(LOG_ERR, "tunnels are no longer supported\n"); 943 VIF_UNLOCK(); 944 return EOPNOTSUPP; 945 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 946 ifp = &multicast_register_if; 947 if (mrtdebug) 948 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 949 (void *)&multicast_register_if); 950 if (reg_vif_num == VIFI_INVALID) { 951 if_initname(&multicast_register_if, "register_vif", 0); 952 multicast_register_if.if_flags = IFF_LOOPBACK; 953 reg_vif_num = vifcp->vifc_vifi; 954 } 955 } else { /* Make sure the interface supports multicast */ 956 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 957 VIF_UNLOCK(); 958 return EOPNOTSUPP; 959 } 960 961 /* Enable promiscuous reception of all IP multicasts from the if */ 962 error = if_allmulti(ifp, 1); 963 if (error) { 964 VIF_UNLOCK(); 965 return error; 966 } 967 } 968 969 vifp->v_flags = vifcp->vifc_flags; 970 vifp->v_threshold = vifcp->vifc_threshold; 971 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 972 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 973 vifp->v_ifp = ifp; 974 vifp->v_rsvp_on = 0; 975 vifp->v_rsvpd = NULL; 976 /* initialize per vif pkt counters */ 977 vifp->v_pkt_in = 0; 978 vifp->v_pkt_out = 0; 979 vifp->v_bytes_in = 0; 980 vifp->v_bytes_out = 0; 981 bzero(&vifp->v_route, sizeof(vifp->v_route)); 982 983 /* Adjust numvifs up if the vifi is higher than numvifs */ 984 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; 985 986 VIF_UNLOCK(); 987 988 if (mrtdebug) 989 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n", 990 vifcp->vifc_vifi, 991 (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), 992 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 993 (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), 994 vifcp->vifc_threshold); 995 996 return 0; 997 } 998 999 /* 1000 * Delete a vif from the vif table 1001 */ 1002 static int 1003 del_vif_locked(vifi_t vifi) 1004 { 1005 struct vif *vifp; 1006 1007 VIF_LOCK_ASSERT(); 1008 1009 if (vifi >= numvifs) { 1010 return EINVAL; 1011 } 1012 vifp = &viftable[vifi]; 1013 if (vifp->v_lcl_addr.s_addr == INADDR_ANY) { 1014 return EADDRNOTAVAIL; 1015 } 1016 1017 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) 1018 if_allmulti(vifp->v_ifp, 0); 1019 1020 if (vifp->v_flags & VIFF_REGISTER) 1021 reg_vif_num = VIFI_INVALID; 1022 1023 bzero((caddr_t)vifp, sizeof (*vifp)); 1024 1025 if (mrtdebug) 1026 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); 1027 1028 /* Adjust numvifs down */ 1029 for (vifi = numvifs; vifi > 0; vifi--) 1030 if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY) 1031 break; 1032 numvifs = vifi; 1033 1034 return 0; 1035 } 1036 1037 static int 1038 del_vif(vifi_t vifi) 1039 { 1040 int cc; 1041 1042 VIF_LOCK(); 1043 cc = del_vif_locked(vifi); 1044 VIF_UNLOCK(); 1045 1046 return cc; 1047 } 1048 1049 /* 1050 * update an mfc entry without resetting counters and S,G addresses. 1051 */ 1052 static void 1053 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1054 { 1055 int i; 1056 1057 rt->mfc_parent = mfccp->mfcc_parent; 1058 for (i = 0; i < numvifs; i++) { 1059 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1060 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1061 MRT_MFC_FLAGS_ALL; 1062 } 1063 /* set the RP address */ 1064 if (mrt_api_config & MRT_MFC_RP) 1065 rt->mfc_rp = mfccp->mfcc_rp; 1066 else 1067 rt->mfc_rp.s_addr = INADDR_ANY; 1068 } 1069 1070 /* 1071 * fully initialize an mfc entry from the parameter. 1072 */ 1073 static void 1074 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1075 { 1076 rt->mfc_origin = mfccp->mfcc_origin; 1077 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1078 1079 update_mfc_params(rt, mfccp); 1080 1081 /* initialize pkt counters per src-grp */ 1082 rt->mfc_pkt_cnt = 0; 1083 rt->mfc_byte_cnt = 0; 1084 rt->mfc_wrong_if = 0; 1085 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; 1086 } 1087 1088 1089 /* 1090 * Add an mfc entry 1091 */ 1092 static int 1093 add_mfc(struct mfcctl2 *mfccp) 1094 { 1095 struct mfc *rt; 1096 u_long hash; 1097 struct rtdetq *rte; 1098 u_short nstl; 1099 1100 VIF_LOCK(); 1101 MFC_LOCK(); 1102 1103 rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1104 1105 /* If an entry already exists, just update the fields */ 1106 if (rt) { 1107 if (mrtdebug & DEBUG_MFC) 1108 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", 1109 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1110 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1111 mfccp->mfcc_parent); 1112 1113 update_mfc_params(rt, mfccp); 1114 MFC_UNLOCK(); 1115 VIF_UNLOCK(); 1116 return 0; 1117 } 1118 1119 /* 1120 * Find the entry for which the upcall was made and update 1121 */ 1122 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); 1123 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { 1124 1125 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1126 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && 1127 (rt->mfc_stall != NULL)) { 1128 1129 if (nstl++) 1130 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", 1131 "multiple kernel entries", 1132 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1133 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1134 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1135 1136 if (mrtdebug & DEBUG_MFC) 1137 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", 1138 (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1139 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1140 mfccp->mfcc_parent, (void *)rt->mfc_stall); 1141 1142 init_mfc_params(rt, mfccp); 1143 1144 rt->mfc_expire = 0; /* Don't clean this guy up */ 1145 nexpire[hash]--; 1146 1147 /* free packets Qed at the end of this entry */ 1148 for (rte = rt->mfc_stall; rte != NULL; ) { 1149 struct rtdetq *n = rte->next; 1150 1151 ip_mdq(rte->m, rte->ifp, rt, -1); 1152 m_freem(rte->m); 1153 free(rte, M_MRTABLE); 1154 rte = n; 1155 } 1156 rt->mfc_stall = NULL; 1157 } 1158 } 1159 1160 /* 1161 * It is possible that an entry is being inserted without an upcall 1162 */ 1163 if (nstl == 0) { 1164 if (mrtdebug & DEBUG_MFC) 1165 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", 1166 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), 1167 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), 1168 mfccp->mfcc_parent); 1169 1170 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { 1171 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && 1172 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { 1173 init_mfc_params(rt, mfccp); 1174 if (rt->mfc_expire) 1175 nexpire[hash]--; 1176 rt->mfc_expire = 0; 1177 break; /* XXX */ 1178 } 1179 } 1180 if (rt == NULL) { /* no upcall, so make a new entry */ 1181 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1182 if (rt == NULL) { 1183 MFC_UNLOCK(); 1184 VIF_UNLOCK(); 1185 return ENOBUFS; 1186 } 1187 1188 init_mfc_params(rt, mfccp); 1189 rt->mfc_expire = 0; 1190 rt->mfc_stall = NULL; 1191 1192 rt->mfc_bw_meter = NULL; 1193 /* insert new entry at head of hash chain */ 1194 rt->mfc_next = mfctable[hash]; 1195 mfctable[hash] = rt; 1196 } 1197 } 1198 MFC_UNLOCK(); 1199 VIF_UNLOCK(); 1200 return 0; 1201 } 1202 1203 /* 1204 * Delete an mfc entry 1205 */ 1206 static int 1207 del_mfc(struct mfcctl2 *mfccp) 1208 { 1209 struct in_addr origin; 1210 struct in_addr mcastgrp; 1211 struct mfc *rt; 1212 struct mfc **nptr; 1213 u_long hash; 1214 struct bw_meter *list; 1215 1216 origin = mfccp->mfcc_origin; 1217 mcastgrp = mfccp->mfcc_mcastgrp; 1218 1219 if (mrtdebug & DEBUG_MFC) 1220 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", 1221 (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); 1222 1223 MFC_LOCK(); 1224 1225 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); 1226 for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next) 1227 if (origin.s_addr == rt->mfc_origin.s_addr && 1228 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && 1229 rt->mfc_stall == NULL) 1230 break; 1231 if (rt == NULL) { 1232 MFC_UNLOCK(); 1233 return EADDRNOTAVAIL; 1234 } 1235 1236 *nptr = rt->mfc_next; 1237 1238 /* 1239 * free the bw_meter entries 1240 */ 1241 list = rt->mfc_bw_meter; 1242 rt->mfc_bw_meter = NULL; 1243 1244 free(rt, M_MRTABLE); 1245 1246 free_bw_list(list); 1247 1248 MFC_UNLOCK(); 1249 1250 return 0; 1251 } 1252 1253 /* 1254 * Send a message to the routing daemon on the multicast routing socket 1255 */ 1256 static int 1257 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1258 { 1259 if (s) { 1260 SOCKBUF_LOCK(&s->so_rcv); 1261 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, 1262 NULL) != 0) { 1263 sorwakeup_locked(s); 1264 return 0; 1265 } 1266 SOCKBUF_UNLOCK(&s->so_rcv); 1267 } 1268 m_freem(mm); 1269 return -1; 1270 } 1271 1272 /* 1273 * IP multicast forwarding function. This function assumes that the packet 1274 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1275 * pointed to by "ifp", and the packet is to be relayed to other networks 1276 * that have members of the packet's destination IP multicast group. 1277 * 1278 * The packet is returned unscathed to the caller, unless it is 1279 * erroneous, in which case a non-zero return value tells the caller to 1280 * discard it. 1281 */ 1282 1283 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1284 1285 static int 1286 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, 1287 struct ip_moptions *imo) 1288 { 1289 struct mfc *rt; 1290 int error; 1291 vifi_t vifi; 1292 1293 if (mrtdebug & DEBUG_FORWARD) 1294 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", 1295 (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), 1296 (void *)ifp); 1297 1298 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || 1299 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { 1300 /* 1301 * Packet arrived via a physical interface or 1302 * an encapsulated tunnel or a register_vif. 1303 */ 1304 } else { 1305 /* 1306 * Packet arrived through a source-route tunnel. 1307 * Source-route tunnels are no longer supported. 1308 */ 1309 static int last_log; 1310 if (last_log != time_uptime) { 1311 last_log = time_uptime; 1312 log(LOG_ERR, 1313 "ip_mforward: received source-routed packet from %lx\n", 1314 (u_long)ntohl(ip->ip_src.s_addr)); 1315 } 1316 return 1; 1317 } 1318 1319 VIF_LOCK(); 1320 MFC_LOCK(); 1321 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1322 if (ip->ip_ttl < MAXTTL) 1323 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1324 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1325 struct vif *vifp = viftable + vifi; 1326 1327 printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n", 1328 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr), 1329 vifi, 1330 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1331 vifp->v_ifp->if_xname); 1332 } 1333 error = ip_mdq(m, ifp, NULL, vifi); 1334 MFC_UNLOCK(); 1335 VIF_UNLOCK(); 1336 return error; 1337 } 1338 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1339 printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", 1340 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr)); 1341 if (!imo) 1342 printf("In fact, no options were specified at all\n"); 1343 } 1344 1345 /* 1346 * Don't forward a packet with time-to-live of zero or one, 1347 * or a packet destined to a local-only group. 1348 */ 1349 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { 1350 MFC_UNLOCK(); 1351 VIF_UNLOCK(); 1352 return 0; 1353 } 1354 1355 /* 1356 * Determine forwarding vifs from the forwarding cache table 1357 */ 1358 ++mrtstat.mrts_mfc_lookups; 1359 rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1360 1361 /* Entry exists, so forward if necessary */ 1362 if (rt != NULL) { 1363 error = ip_mdq(m, ifp, rt, -1); 1364 MFC_UNLOCK(); 1365 VIF_UNLOCK(); 1366 return error; 1367 } else { 1368 /* 1369 * If we don't have a route for packet's origin, 1370 * Make a copy of the packet & send message to routing daemon 1371 */ 1372 1373 struct mbuf *mb0; 1374 struct rtdetq *rte; 1375 u_long hash; 1376 int hlen = ip->ip_hl << 2; 1377 1378 ++mrtstat.mrts_mfc_misses; 1379 1380 mrtstat.mrts_no_route++; 1381 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1382 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", 1383 (u_long)ntohl(ip->ip_src.s_addr), 1384 (u_long)ntohl(ip->ip_dst.s_addr)); 1385 1386 /* 1387 * Allocate mbufs early so that we don't do extra work if we are 1388 * just going to fail anyway. Make sure to pullup the header so 1389 * that other people can't step on it. 1390 */ 1391 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); 1392 if (rte == NULL) { 1393 MFC_UNLOCK(); 1394 VIF_UNLOCK(); 1395 return ENOBUFS; 1396 } 1397 mb0 = m_copypacket(m, M_DONTWAIT); 1398 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) 1399 mb0 = m_pullup(mb0, hlen); 1400 if (mb0 == NULL) { 1401 free(rte, M_MRTABLE); 1402 MFC_UNLOCK(); 1403 VIF_UNLOCK(); 1404 return ENOBUFS; 1405 } 1406 1407 /* is there an upcall waiting for this flow ? */ 1408 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); 1409 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { 1410 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && 1411 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && 1412 (rt->mfc_stall != NULL)) 1413 break; 1414 } 1415 1416 if (rt == NULL) { 1417 int i; 1418 struct igmpmsg *im; 1419 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1420 struct mbuf *mm; 1421 1422 /* 1423 * Locate the vifi for the incoming interface for this packet. 1424 * If none found, drop packet. 1425 */ 1426 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1427 ; 1428 if (vifi >= numvifs) /* vif not found, drop packet */ 1429 goto non_fatal; 1430 1431 /* no upcall, so make a new entry */ 1432 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); 1433 if (rt == NULL) 1434 goto fail; 1435 /* Make a copy of the header to send to the user level process */ 1436 mm = m_copy(mb0, 0, hlen); 1437 if (mm == NULL) 1438 goto fail1; 1439 1440 /* 1441 * Send message to routing daemon to install 1442 * a route into the kernel table 1443 */ 1444 1445 im = mtod(mm, struct igmpmsg *); 1446 im->im_msgtype = IGMPMSG_NOCACHE; 1447 im->im_mbz = 0; 1448 im->im_vif = vifi; 1449 1450 mrtstat.mrts_upcalls++; 1451 1452 k_igmpsrc.sin_addr = ip->ip_src; 1453 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1454 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); 1455 ++mrtstat.mrts_upq_sockfull; 1456 fail1: 1457 free(rt, M_MRTABLE); 1458 fail: 1459 free(rte, M_MRTABLE); 1460 m_freem(mb0); 1461 MFC_UNLOCK(); 1462 VIF_UNLOCK(); 1463 return ENOBUFS; 1464 } 1465 1466 /* insert new entry at head of hash chain */ 1467 rt->mfc_origin.s_addr = ip->ip_src.s_addr; 1468 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; 1469 rt->mfc_expire = UPCALL_EXPIRE; 1470 nexpire[hash]++; 1471 for (i = 0; i < numvifs; i++) { 1472 rt->mfc_ttls[i] = 0; 1473 rt->mfc_flags[i] = 0; 1474 } 1475 rt->mfc_parent = -1; 1476 1477 rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */ 1478 1479 rt->mfc_bw_meter = NULL; 1480 1481 /* link into table */ 1482 rt->mfc_next = mfctable[hash]; 1483 mfctable[hash] = rt; 1484 rt->mfc_stall = rte; 1485 1486 } else { 1487 /* determine if q has overflowed */ 1488 int npkts = 0; 1489 struct rtdetq **p; 1490 1491 /* 1492 * XXX ouch! we need to append to the list, but we 1493 * only have a pointer to the front, so we have to 1494 * scan the entire list every time. 1495 */ 1496 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1497 npkts++; 1498 1499 if (npkts > MAX_UPQ) { 1500 mrtstat.mrts_upq_ovflw++; 1501 non_fatal: 1502 free(rte, M_MRTABLE); 1503 m_freem(mb0); 1504 MFC_UNLOCK(); 1505 VIF_UNLOCK(); 1506 return 0; 1507 } 1508 1509 /* Add this entry to the end of the queue */ 1510 *p = rte; 1511 } 1512 1513 rte->m = mb0; 1514 rte->ifp = ifp; 1515 rte->next = NULL; 1516 1517 MFC_UNLOCK(); 1518 VIF_UNLOCK(); 1519 1520 return 0; 1521 } 1522 } 1523 1524 /* 1525 * Clean up the cache entry if upcall is not serviced 1526 */ 1527 static void 1528 expire_upcalls(void *unused) 1529 { 1530 struct rtdetq *rte; 1531 struct mfc *mfc, **nptr; 1532 int i; 1533 1534 MFC_LOCK(); 1535 for (i = 0; i < MFCTBLSIZ; i++) { 1536 if (nexpire[i] == 0) 1537 continue; 1538 nptr = &mfctable[i]; 1539 for (mfc = *nptr; mfc != NULL; mfc = *nptr) { 1540 /* 1541 * Skip real cache entries 1542 * Make sure it wasn't marked to not expire (shouldn't happen) 1543 * If it expires now 1544 */ 1545 if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && 1546 --mfc->mfc_expire == 0) { 1547 if (mrtdebug & DEBUG_EXPIRE) 1548 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", 1549 (u_long)ntohl(mfc->mfc_origin.s_addr), 1550 (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); 1551 /* 1552 * drop all the packets 1553 * free the mbuf with the pkt, if, timing info 1554 */ 1555 for (rte = mfc->mfc_stall; rte; ) { 1556 struct rtdetq *n = rte->next; 1557 1558 m_freem(rte->m); 1559 free(rte, M_MRTABLE); 1560 rte = n; 1561 } 1562 ++mrtstat.mrts_cache_cleanups; 1563 nexpire[i]--; 1564 1565 /* 1566 * free the bw_meter entries 1567 */ 1568 while (mfc->mfc_bw_meter != NULL) { 1569 struct bw_meter *x = mfc->mfc_bw_meter; 1570 1571 mfc->mfc_bw_meter = x->bm_mfc_next; 1572 free(x, M_BWMETER); 1573 } 1574 1575 *nptr = mfc->mfc_next; 1576 free(mfc, M_MRTABLE); 1577 } else { 1578 nptr = &mfc->mfc_next; 1579 } 1580 } 1581 } 1582 MFC_UNLOCK(); 1583 1584 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); 1585 } 1586 1587 /* 1588 * Packet forwarding routine once entry in the cache is made 1589 */ 1590 static int 1591 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1592 { 1593 struct ip *ip = mtod(m, struct ip *); 1594 vifi_t vifi; 1595 int plen = ip->ip_len; 1596 1597 VIF_LOCK_ASSERT(); 1598 1599 /* 1600 * If xmt_vif is not -1, send on only the requested vif. 1601 * 1602 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) 1603 */ 1604 if (xmt_vif < numvifs) { 1605 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1606 pim_register_send(ip, viftable + xmt_vif, m, rt); 1607 else 1608 phyint_send(ip, viftable + xmt_vif, m); 1609 return 1; 1610 } 1611 1612 /* 1613 * Don't forward if it didn't arrive from the parent vif for its origin. 1614 */ 1615 vifi = rt->mfc_parent; 1616 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1617 /* came in the wrong interface */ 1618 if (mrtdebug & DEBUG_FORWARD) 1619 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1620 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); 1621 ++mrtstat.mrts_wrong_if; 1622 ++rt->mfc_wrong_if; 1623 /* 1624 * If we are doing PIM assert processing, send a message 1625 * to the routing daemon. 1626 * 1627 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1628 * can complete the SPT switch, regardless of the type 1629 * of the iif (broadcast media, GRE tunnel, etc). 1630 */ 1631 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1632 struct timeval now; 1633 u_long delta; 1634 1635 if (ifp == &multicast_register_if) 1636 pimstat.pims_rcv_registers_wrongiif++; 1637 1638 /* Get vifi for the incoming packet */ 1639 for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) 1640 ; 1641 if (vifi >= numvifs) 1642 return 0; /* The iif is not found: ignore the packet. */ 1643 1644 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) 1645 return 0; /* WRONGVIF disabled: ignore the packet */ 1646 1647 GET_TIME(now); 1648 1649 TV_DELTA(now, rt->mfc_last_assert, delta); 1650 1651 if (delta > ASSERT_MSG_TIME) { 1652 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 1653 struct igmpmsg *im; 1654 int hlen = ip->ip_hl << 2; 1655 struct mbuf *mm = m_copy(m, 0, hlen); 1656 1657 if (mm && (M_HASCL(mm) || mm->m_len < hlen)) 1658 mm = m_pullup(mm, hlen); 1659 if (mm == NULL) 1660 return ENOBUFS; 1661 1662 rt->mfc_last_assert = now; 1663 1664 im = mtod(mm, struct igmpmsg *); 1665 im->im_msgtype = IGMPMSG_WRONGVIF; 1666 im->im_mbz = 0; 1667 im->im_vif = vifi; 1668 1669 mrtstat.mrts_upcalls++; 1670 1671 k_igmpsrc.sin_addr = im->im_src; 1672 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { 1673 log(LOG_WARNING, 1674 "ip_mforward: ip_mrouter socket queue full\n"); 1675 ++mrtstat.mrts_upq_sockfull; 1676 return ENOBUFS; 1677 } 1678 } 1679 } 1680 return 0; 1681 } 1682 1683 /* If I sourced this packet, it counts as output, else it was input. */ 1684 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { 1685 viftable[vifi].v_pkt_out++; 1686 viftable[vifi].v_bytes_out += plen; 1687 } else { 1688 viftable[vifi].v_pkt_in++; 1689 viftable[vifi].v_bytes_in += plen; 1690 } 1691 rt->mfc_pkt_cnt++; 1692 rt->mfc_byte_cnt += plen; 1693 1694 /* 1695 * For each vif, decide if a copy of the packet should be forwarded. 1696 * Forward if: 1697 * - the ttl exceeds the vif's threshold 1698 * - there are group members downstream on interface 1699 */ 1700 for (vifi = 0; vifi < numvifs; vifi++) 1701 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1702 viftable[vifi].v_pkt_out++; 1703 viftable[vifi].v_bytes_out += plen; 1704 if (viftable[vifi].v_flags & VIFF_REGISTER) 1705 pim_register_send(ip, viftable + vifi, m, rt); 1706 else 1707 phyint_send(ip, viftable + vifi, m); 1708 } 1709 1710 /* 1711 * Perform upcall-related bw measuring. 1712 */ 1713 if (rt->mfc_bw_meter != NULL) { 1714 struct bw_meter *x; 1715 struct timeval now; 1716 1717 GET_TIME(now); 1718 MFC_LOCK_ASSERT(); 1719 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1720 bw_meter_receive_packet(x, plen, &now); 1721 } 1722 1723 return 0; 1724 } 1725 1726 /* 1727 * check if a vif number is legal/ok. This is used by ip_output. 1728 */ 1729 static int 1730 X_legal_vif_num(int vif) 1731 { 1732 /* XXX unlocked, matter? */ 1733 return (vif >= 0 && vif < numvifs); 1734 } 1735 1736 /* 1737 * Return the local address used by this vif 1738 */ 1739 static u_long 1740 X_ip_mcast_src(int vifi) 1741 { 1742 /* XXX unlocked, matter? */ 1743 if (vifi >= 0 && vifi < numvifs) 1744 return viftable[vifi].v_lcl_addr.s_addr; 1745 else 1746 return INADDR_ANY; 1747 } 1748 1749 static void 1750 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1751 { 1752 struct mbuf *mb_copy; 1753 int hlen = ip->ip_hl << 2; 1754 1755 VIF_LOCK_ASSERT(); 1756 1757 /* 1758 * Make a new reference to the packet; make sure that 1759 * the IP header is actually copied, not just referenced, 1760 * so that ip_output() only scribbles on the copy. 1761 */ 1762 mb_copy = m_copypacket(m, M_DONTWAIT); 1763 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) 1764 mb_copy = m_pullup(mb_copy, hlen); 1765 if (mb_copy == NULL) 1766 return; 1767 1768 send_packet(vifp, mb_copy); 1769 } 1770 1771 static void 1772 send_packet(struct vif *vifp, struct mbuf *m) 1773 { 1774 struct ip_moptions imo; 1775 struct in_multi *imm[2]; 1776 int error; 1777 1778 VIF_LOCK_ASSERT(); 1779 1780 imo.imo_multicast_ifp = vifp->v_ifp; 1781 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 1782 imo.imo_multicast_loop = 1; 1783 imo.imo_multicast_vif = -1; 1784 imo.imo_num_memberships = 0; 1785 imo.imo_max_memberships = 2; 1786 imo.imo_membership = &imm[0]; 1787 1788 /* 1789 * Re-entrancy should not be a problem here, because 1790 * the packets that we send out and are looped back at us 1791 * should get rejected because they appear to come from 1792 * the loopback interface, thus preventing looping. 1793 */ 1794 error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL); 1795 if (mrtdebug & DEBUG_XMIT) { 1796 log(LOG_DEBUG, "phyint_send on vif %td err %d\n", 1797 vifp - viftable, error); 1798 } 1799 } 1800 1801 static int 1802 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt) 1803 { 1804 int error, vifi; 1805 1806 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 1807 return EOPNOTSUPP; 1808 1809 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); 1810 if (error) 1811 return error; 1812 1813 VIF_LOCK(); 1814 1815 if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */ 1816 VIF_UNLOCK(); 1817 return EADDRNOTAVAIL; 1818 } 1819 1820 if (sopt->sopt_name == IP_RSVP_VIF_ON) { 1821 /* Check if socket is available. */ 1822 if (viftable[vifi].v_rsvpd != NULL) { 1823 VIF_UNLOCK(); 1824 return EADDRINUSE; 1825 } 1826 1827 viftable[vifi].v_rsvpd = so; 1828 /* This may seem silly, but we need to be sure we don't over-increment 1829 * the RSVP counter, in case something slips up. 1830 */ 1831 if (!viftable[vifi].v_rsvp_on) { 1832 viftable[vifi].v_rsvp_on = 1; 1833 V_rsvp_on++; 1834 } 1835 } else { /* must be VIF_OFF */ 1836 /* 1837 * XXX as an additional consistency check, one could make sure 1838 * that viftable[vifi].v_rsvpd == so, otherwise passing so as 1839 * first parameter is pretty useless. 1840 */ 1841 viftable[vifi].v_rsvpd = NULL; 1842 /* 1843 * This may seem silly, but we need to be sure we don't over-decrement 1844 * the RSVP counter, in case something slips up. 1845 */ 1846 if (viftable[vifi].v_rsvp_on) { 1847 viftable[vifi].v_rsvp_on = 0; 1848 V_rsvp_on--; 1849 } 1850 } 1851 VIF_UNLOCK(); 1852 return 0; 1853 } 1854 1855 static void 1856 X_ip_rsvp_force_done(struct socket *so) 1857 { 1858 int vifi; 1859 1860 /* Don't bother if it is not the right type of socket. */ 1861 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) 1862 return; 1863 1864 VIF_LOCK(); 1865 1866 /* The socket may be attached to more than one vif...this 1867 * is perfectly legal. 1868 */ 1869 for (vifi = 0; vifi < numvifs; vifi++) { 1870 if (viftable[vifi].v_rsvpd == so) { 1871 viftable[vifi].v_rsvpd = NULL; 1872 /* This may seem silly, but we need to be sure we don't 1873 * over-decrement the RSVP counter, in case something slips up. 1874 */ 1875 if (viftable[vifi].v_rsvp_on) { 1876 viftable[vifi].v_rsvp_on = 0; 1877 V_rsvp_on--; 1878 } 1879 } 1880 } 1881 1882 VIF_UNLOCK(); 1883 } 1884 1885 static void 1886 X_rsvp_input(struct mbuf *m, int off) 1887 { 1888 int vifi; 1889 struct ip *ip = mtod(m, struct ip *); 1890 struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; 1891 struct ifnet *ifp; 1892 1893 if (rsvpdebug) 1894 printf("rsvp_input: rsvp_on %d\n", V_rsvp_on); 1895 1896 /* Can still get packets with rsvp_on = 0 if there is a local member 1897 * of the group to which the RSVP packet is addressed. But in this 1898 * case we want to throw the packet away. 1899 */ 1900 if (!V_rsvp_on) { 1901 m_freem(m); 1902 return; 1903 } 1904 1905 if (rsvpdebug) 1906 printf("rsvp_input: check vifs\n"); 1907 1908 #ifdef DIAGNOSTIC 1909 M_ASSERTPKTHDR(m); 1910 #endif 1911 1912 ifp = m->m_pkthdr.rcvif; 1913 1914 VIF_LOCK(); 1915 /* Find which vif the packet arrived on. */ 1916 for (vifi = 0; vifi < numvifs; vifi++) 1917 if (viftable[vifi].v_ifp == ifp) 1918 break; 1919 1920 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) { 1921 /* 1922 * Drop the lock here to avoid holding it across rip_input. 1923 * This could make rsvpdebug printfs wrong. If you care, 1924 * record the state of stuff before dropping the lock. 1925 */ 1926 VIF_UNLOCK(); 1927 /* 1928 * If the old-style non-vif-associated socket is set, 1929 * then use it. Otherwise, drop packet since there 1930 * is no specific socket for this vif. 1931 */ 1932 if (V_ip_rsvpd != NULL) { 1933 if (rsvpdebug) 1934 printf("rsvp_input: Sending packet up old-style socket\n"); 1935 rip_input(m, off); /* xxx */ 1936 } else { 1937 if (rsvpdebug && vifi == numvifs) 1938 printf("rsvp_input: Can't find vif for packet.\n"); 1939 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL) 1940 printf("rsvp_input: No socket defined for vif %d\n",vifi); 1941 m_freem(m); 1942 } 1943 return; 1944 } 1945 rsvp_src.sin_addr = ip->ip_src; 1946 1947 if (rsvpdebug && m) 1948 printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", 1949 m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); 1950 1951 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { 1952 if (rsvpdebug) 1953 printf("rsvp_input: Failed to append to socket\n"); 1954 } else { 1955 if (rsvpdebug) 1956 printf("rsvp_input: send packet up\n"); 1957 } 1958 VIF_UNLOCK(); 1959 } 1960 1961 /* 1962 * Code for bandwidth monitors 1963 */ 1964 1965 /* 1966 * Define common interface for timeval-related methods 1967 */ 1968 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) 1969 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) 1970 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) 1971 1972 static uint32_t 1973 compute_bw_meter_flags(struct bw_upcall *req) 1974 { 1975 uint32_t flags = 0; 1976 1977 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 1978 flags |= BW_METER_UNIT_PACKETS; 1979 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 1980 flags |= BW_METER_UNIT_BYTES; 1981 if (req->bu_flags & BW_UPCALL_GEQ) 1982 flags |= BW_METER_GEQ; 1983 if (req->bu_flags & BW_UPCALL_LEQ) 1984 flags |= BW_METER_LEQ; 1985 1986 return flags; 1987 } 1988 1989 /* 1990 * Add a bw_meter entry 1991 */ 1992 static int 1993 add_bw_upcall(struct bw_upcall *req) 1994 { 1995 struct mfc *mfc; 1996 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 1997 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 1998 struct timeval now; 1999 struct bw_meter *x; 2000 uint32_t flags; 2001 2002 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2003 return EOPNOTSUPP; 2004 2005 /* Test if the flags are valid */ 2006 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2007 return EINVAL; 2008 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2009 return EINVAL; 2010 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2011 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2012 return EINVAL; 2013 2014 /* Test if the threshold time interval is valid */ 2015 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2016 return EINVAL; 2017 2018 flags = compute_bw_meter_flags(req); 2019 2020 /* 2021 * Find if we have already same bw_meter entry 2022 */ 2023 MFC_LOCK(); 2024 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2025 if (mfc == NULL) { 2026 MFC_UNLOCK(); 2027 return EADDRNOTAVAIL; 2028 } 2029 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2030 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2031 &req->bu_threshold.b_time, ==)) && 2032 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2033 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2034 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2035 MFC_UNLOCK(); 2036 return 0; /* XXX Already installed */ 2037 } 2038 } 2039 2040 /* Allocate the new bw_meter entry */ 2041 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2042 if (x == NULL) { 2043 MFC_UNLOCK(); 2044 return ENOBUFS; 2045 } 2046 2047 /* Set the new bw_meter entry */ 2048 x->bm_threshold.b_time = req->bu_threshold.b_time; 2049 GET_TIME(now); 2050 x->bm_start_time = now; 2051 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2052 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2053 x->bm_measured.b_packets = 0; 2054 x->bm_measured.b_bytes = 0; 2055 x->bm_flags = flags; 2056 x->bm_time_next = NULL; 2057 x->bm_time_hash = BW_METER_BUCKETS; 2058 2059 /* Add the new bw_meter entry to the front of entries for this MFC */ 2060 x->bm_mfc = mfc; 2061 x->bm_mfc_next = mfc->mfc_bw_meter; 2062 mfc->mfc_bw_meter = x; 2063 schedule_bw_meter(x, &now); 2064 MFC_UNLOCK(); 2065 2066 return 0; 2067 } 2068 2069 static void 2070 free_bw_list(struct bw_meter *list) 2071 { 2072 while (list != NULL) { 2073 struct bw_meter *x = list; 2074 2075 list = list->bm_mfc_next; 2076 unschedule_bw_meter(x); 2077 free(x, M_BWMETER); 2078 } 2079 } 2080 2081 /* 2082 * Delete one or multiple bw_meter entries 2083 */ 2084 static int 2085 del_bw_upcall(struct bw_upcall *req) 2086 { 2087 struct mfc *mfc; 2088 struct bw_meter *x; 2089 2090 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2091 return EOPNOTSUPP; 2092 2093 MFC_LOCK(); 2094 /* Find the corresponding MFC entry */ 2095 mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); 2096 if (mfc == NULL) { 2097 MFC_UNLOCK(); 2098 return EADDRNOTAVAIL; 2099 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2100 /* 2101 * Delete all bw_meter entries for this mfc 2102 */ 2103 struct bw_meter *list; 2104 2105 list = mfc->mfc_bw_meter; 2106 mfc->mfc_bw_meter = NULL; 2107 free_bw_list(list); 2108 MFC_UNLOCK(); 2109 return 0; 2110 } else { /* Delete a single bw_meter entry */ 2111 struct bw_meter *prev; 2112 uint32_t flags = 0; 2113 2114 flags = compute_bw_meter_flags(req); 2115 2116 /* Find the bw_meter entry to delete */ 2117 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2118 prev = x, x = x->bm_mfc_next) { 2119 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2120 &req->bu_threshold.b_time, ==)) && 2121 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2122 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2123 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2124 break; 2125 } 2126 if (x != NULL) { /* Delete entry from the list for this MFC */ 2127 if (prev != NULL) 2128 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2129 else 2130 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2131 2132 unschedule_bw_meter(x); 2133 MFC_UNLOCK(); 2134 /* Free the bw_meter entry */ 2135 free(x, M_BWMETER); 2136 return 0; 2137 } else { 2138 MFC_UNLOCK(); 2139 return EINVAL; 2140 } 2141 } 2142 /* NOTREACHED */ 2143 } 2144 2145 /* 2146 * Perform bandwidth measurement processing that may result in an upcall 2147 */ 2148 static void 2149 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2150 { 2151 struct timeval delta; 2152 2153 MFC_LOCK_ASSERT(); 2154 2155 delta = *nowp; 2156 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2157 2158 if (x->bm_flags & BW_METER_GEQ) { 2159 /* 2160 * Processing for ">=" type of bw_meter entry 2161 */ 2162 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2163 /* Reset the bw_meter entry */ 2164 x->bm_start_time = *nowp; 2165 x->bm_measured.b_packets = 0; 2166 x->bm_measured.b_bytes = 0; 2167 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2168 } 2169 2170 /* Record that a packet is received */ 2171 x->bm_measured.b_packets++; 2172 x->bm_measured.b_bytes += plen; 2173 2174 /* 2175 * Test if we should deliver an upcall 2176 */ 2177 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2178 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2179 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2180 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2181 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2182 /* Prepare an upcall for delivery */ 2183 bw_meter_prepare_upcall(x, nowp); 2184 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2185 } 2186 } 2187 } else if (x->bm_flags & BW_METER_LEQ) { 2188 /* 2189 * Processing for "<=" type of bw_meter entry 2190 */ 2191 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2192 /* 2193 * We are behind time with the multicast forwarding table 2194 * scanning for "<=" type of bw_meter entries, so test now 2195 * if we should deliver an upcall. 2196 */ 2197 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2198 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2199 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2200 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2201 /* Prepare an upcall for delivery */ 2202 bw_meter_prepare_upcall(x, nowp); 2203 } 2204 /* Reschedule the bw_meter entry */ 2205 unschedule_bw_meter(x); 2206 schedule_bw_meter(x, nowp); 2207 } 2208 2209 /* Record that a packet is received */ 2210 x->bm_measured.b_packets++; 2211 x->bm_measured.b_bytes += plen; 2212 2213 /* 2214 * Test if we should restart the measuring interval 2215 */ 2216 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2217 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2218 (x->bm_flags & BW_METER_UNIT_BYTES && 2219 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2220 /* Don't restart the measuring interval */ 2221 } else { 2222 /* Do restart the measuring interval */ 2223 /* 2224 * XXX: note that we don't unschedule and schedule, because this 2225 * might be too much overhead per packet. Instead, when we process 2226 * all entries for a given timer hash bin, we check whether it is 2227 * really a timeout. If not, we reschedule at that time. 2228 */ 2229 x->bm_start_time = *nowp; 2230 x->bm_measured.b_packets = 0; 2231 x->bm_measured.b_bytes = 0; 2232 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2233 } 2234 } 2235 } 2236 2237 /* 2238 * Prepare a bandwidth-related upcall 2239 */ 2240 static void 2241 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2242 { 2243 struct timeval delta; 2244 struct bw_upcall *u; 2245 2246 MFC_LOCK_ASSERT(); 2247 2248 /* 2249 * Compute the measured time interval 2250 */ 2251 delta = *nowp; 2252 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2253 2254 /* 2255 * If there are too many pending upcalls, deliver them now 2256 */ 2257 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2258 bw_upcalls_send(); 2259 2260 /* 2261 * Set the bw_upcall entry 2262 */ 2263 u = &bw_upcalls[bw_upcalls_n++]; 2264 u->bu_src = x->bm_mfc->mfc_origin; 2265 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2266 u->bu_threshold.b_time = x->bm_threshold.b_time; 2267 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2268 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2269 u->bu_measured.b_time = delta; 2270 u->bu_measured.b_packets = x->bm_measured.b_packets; 2271 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2272 u->bu_flags = 0; 2273 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2274 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2275 if (x->bm_flags & BW_METER_UNIT_BYTES) 2276 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2277 if (x->bm_flags & BW_METER_GEQ) 2278 u->bu_flags |= BW_UPCALL_GEQ; 2279 if (x->bm_flags & BW_METER_LEQ) 2280 u->bu_flags |= BW_UPCALL_LEQ; 2281 } 2282 2283 /* 2284 * Send the pending bandwidth-related upcalls 2285 */ 2286 static void 2287 bw_upcalls_send(void) 2288 { 2289 struct mbuf *m; 2290 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2291 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2292 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2293 0, /* unused2 */ 2294 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2295 0, /* im_mbz */ 2296 0, /* im_vif */ 2297 0, /* unused3 */ 2298 { 0 }, /* im_src */ 2299 { 0 } }; /* im_dst */ 2300 2301 MFC_LOCK_ASSERT(); 2302 2303 if (bw_upcalls_n == 0) 2304 return; /* No pending upcalls */ 2305 2306 bw_upcalls_n = 0; 2307 2308 /* 2309 * Allocate a new mbuf, initialize it with the header and 2310 * the payload for the pending calls. 2311 */ 2312 MGETHDR(m, M_DONTWAIT, MT_DATA); 2313 if (m == NULL) { 2314 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2315 return; 2316 } 2317 2318 m->m_len = m->m_pkthdr.len = 0; 2319 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2320 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2321 2322 /* 2323 * Send the upcalls 2324 * XXX do we need to set the address in k_igmpsrc ? 2325 */ 2326 mrtstat.mrts_upcalls++; 2327 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { 2328 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2329 ++mrtstat.mrts_upq_sockfull; 2330 } 2331 } 2332 2333 /* 2334 * Compute the timeout hash value for the bw_meter entries 2335 */ 2336 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2337 do { \ 2338 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2339 \ 2340 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2341 (hash) = next_timeval.tv_sec; \ 2342 if (next_timeval.tv_usec) \ 2343 (hash)++; /* XXX: make sure we don't timeout early */ \ 2344 (hash) %= BW_METER_BUCKETS; \ 2345 } while (0) 2346 2347 /* 2348 * Schedule a timer to process periodically bw_meter entry of type "<=" 2349 * by linking the entry in the proper hash bucket. 2350 */ 2351 static void 2352 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2353 { 2354 int time_hash; 2355 2356 MFC_LOCK_ASSERT(); 2357 2358 if (!(x->bm_flags & BW_METER_LEQ)) 2359 return; /* XXX: we schedule timers only for "<=" entries */ 2360 2361 /* 2362 * Reset the bw_meter entry 2363 */ 2364 x->bm_start_time = *nowp; 2365 x->bm_measured.b_packets = 0; 2366 x->bm_measured.b_bytes = 0; 2367 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2368 2369 /* 2370 * Compute the timeout hash value and insert the entry 2371 */ 2372 BW_METER_TIMEHASH(x, time_hash); 2373 x->bm_time_next = bw_meter_timers[time_hash]; 2374 bw_meter_timers[time_hash] = x; 2375 x->bm_time_hash = time_hash; 2376 } 2377 2378 /* 2379 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2380 * by removing the entry from the proper hash bucket. 2381 */ 2382 static void 2383 unschedule_bw_meter(struct bw_meter *x) 2384 { 2385 int time_hash; 2386 struct bw_meter *prev, *tmp; 2387 2388 MFC_LOCK_ASSERT(); 2389 2390 if (!(x->bm_flags & BW_METER_LEQ)) 2391 return; /* XXX: we schedule timers only for "<=" entries */ 2392 2393 /* 2394 * Compute the timeout hash value and delete the entry 2395 */ 2396 time_hash = x->bm_time_hash; 2397 if (time_hash >= BW_METER_BUCKETS) 2398 return; /* Entry was not scheduled */ 2399 2400 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2401 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2402 if (tmp == x) 2403 break; 2404 2405 if (tmp == NULL) 2406 panic("unschedule_bw_meter: bw_meter entry not found"); 2407 2408 if (prev != NULL) 2409 prev->bm_time_next = x->bm_time_next; 2410 else 2411 bw_meter_timers[time_hash] = x->bm_time_next; 2412 2413 x->bm_time_next = NULL; 2414 x->bm_time_hash = BW_METER_BUCKETS; 2415 } 2416 2417 2418 /* 2419 * Process all "<=" type of bw_meter that should be processed now, 2420 * and for each entry prepare an upcall if necessary. Each processed 2421 * entry is rescheduled again for the (periodic) processing. 2422 * 2423 * This is run periodically (once per second normally). On each round, 2424 * all the potentially matching entries are in the hash slot that we are 2425 * looking at. 2426 */ 2427 static void 2428 bw_meter_process() 2429 { 2430 static uint32_t last_tv_sec; /* last time we processed this */ 2431 2432 uint32_t loops; 2433 int i; 2434 struct timeval now, process_endtime; 2435 2436 GET_TIME(now); 2437 if (last_tv_sec == now.tv_sec) 2438 return; /* nothing to do */ 2439 2440 loops = now.tv_sec - last_tv_sec; 2441 last_tv_sec = now.tv_sec; 2442 if (loops > BW_METER_BUCKETS) 2443 loops = BW_METER_BUCKETS; 2444 2445 MFC_LOCK(); 2446 /* 2447 * Process all bins of bw_meter entries from the one after the last 2448 * processed to the current one. On entry, i points to the last bucket 2449 * visited, so we need to increment i at the beginning of the loop. 2450 */ 2451 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2452 struct bw_meter *x, *tmp_list; 2453 2454 if (++i >= BW_METER_BUCKETS) 2455 i = 0; 2456 2457 /* Disconnect the list of bw_meter entries from the bin */ 2458 tmp_list = bw_meter_timers[i]; 2459 bw_meter_timers[i] = NULL; 2460 2461 /* Process the list of bw_meter entries */ 2462 while (tmp_list != NULL) { 2463 x = tmp_list; 2464 tmp_list = tmp_list->bm_time_next; 2465 2466 /* Test if the time interval is over */ 2467 process_endtime = x->bm_start_time; 2468 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2469 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2470 /* Not yet: reschedule, but don't reset */ 2471 int time_hash; 2472 2473 BW_METER_TIMEHASH(x, time_hash); 2474 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2475 /* 2476 * XXX: somehow the bin processing is a bit ahead of time. 2477 * Put the entry in the next bin. 2478 */ 2479 if (++time_hash >= BW_METER_BUCKETS) 2480 time_hash = 0; 2481 } 2482 x->bm_time_next = bw_meter_timers[time_hash]; 2483 bw_meter_timers[time_hash] = x; 2484 x->bm_time_hash = time_hash; 2485 2486 continue; 2487 } 2488 2489 /* 2490 * Test if we should deliver an upcall 2491 */ 2492 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2493 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2494 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2495 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2496 /* Prepare an upcall for delivery */ 2497 bw_meter_prepare_upcall(x, &now); 2498 } 2499 2500 /* 2501 * Reschedule for next processing 2502 */ 2503 schedule_bw_meter(x, &now); 2504 } 2505 } 2506 2507 /* Send all upcalls that are pending delivery */ 2508 bw_upcalls_send(); 2509 2510 MFC_UNLOCK(); 2511 } 2512 2513 /* 2514 * A periodic function for sending all upcalls that are pending delivery 2515 */ 2516 static void 2517 expire_bw_upcalls_send(void *unused) 2518 { 2519 MFC_LOCK(); 2520 bw_upcalls_send(); 2521 MFC_UNLOCK(); 2522 2523 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2524 expire_bw_upcalls_send, NULL); 2525 } 2526 2527 /* 2528 * A periodic function for periodic scanning of the multicast forwarding 2529 * table for processing all "<=" bw_meter entries. 2530 */ 2531 static void 2532 expire_bw_meter_process(void *unused) 2533 { 2534 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2535 bw_meter_process(); 2536 2537 callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); 2538 } 2539 2540 /* 2541 * End of bandwidth monitoring code 2542 */ 2543 2544 /* 2545 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2546 * 2547 */ 2548 static int 2549 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, 2550 struct mfc *rt) 2551 { 2552 struct mbuf *mb_copy, *mm; 2553 2554 if (mrtdebug & DEBUG_PIM) 2555 log(LOG_DEBUG, "pim_register_send: "); 2556 2557 /* 2558 * Do not send IGMP_WHOLEPKT notifications to userland, if the 2559 * rendezvous point was unspecified, and we were told not to. 2560 */ 2561 if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) && 2562 (rt->mfc_rp.s_addr == INADDR_ANY)) 2563 return 0; 2564 2565 mb_copy = pim_register_prepare(ip, m); 2566 if (mb_copy == NULL) 2567 return ENOBUFS; 2568 2569 /* 2570 * Send all the fragments. Note that the mbuf for each fragment 2571 * is freed by the sending machinery. 2572 */ 2573 for (mm = mb_copy; mm; mm = mb_copy) { 2574 mb_copy = mm->m_nextpkt; 2575 mm->m_nextpkt = 0; 2576 mm = m_pullup(mm, sizeof(struct ip)); 2577 if (mm != NULL) { 2578 ip = mtod(mm, struct ip *); 2579 if ((mrt_api_config & MRT_MFC_RP) && 2580 (rt->mfc_rp.s_addr != INADDR_ANY)) { 2581 pim_register_send_rp(ip, vifp, mm, rt); 2582 } else { 2583 pim_register_send_upcall(ip, vifp, mm, rt); 2584 } 2585 } 2586 } 2587 2588 return 0; 2589 } 2590 2591 /* 2592 * Return a copy of the data packet that is ready for PIM Register 2593 * encapsulation. 2594 * XXX: Note that in the returned copy the IP header is a valid one. 2595 */ 2596 static struct mbuf * 2597 pim_register_prepare(struct ip *ip, struct mbuf *m) 2598 { 2599 struct mbuf *mb_copy = NULL; 2600 int mtu; 2601 2602 /* Take care of delayed checksums */ 2603 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2604 in_delayed_cksum(m); 2605 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2606 } 2607 2608 /* 2609 * Copy the old packet & pullup its IP header into the 2610 * new mbuf so we can modify it. 2611 */ 2612 mb_copy = m_copypacket(m, M_DONTWAIT); 2613 if (mb_copy == NULL) 2614 return NULL; 2615 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 2616 if (mb_copy == NULL) 2617 return NULL; 2618 2619 /* take care of the TTL */ 2620 ip = mtod(mb_copy, struct ip *); 2621 --ip->ip_ttl; 2622 2623 /* Compute the MTU after the PIM Register encapsulation */ 2624 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 2625 2626 if (ip->ip_len <= mtu) { 2627 /* Turn the IP header into a valid one */ 2628 ip->ip_len = htons(ip->ip_len); 2629 ip->ip_off = htons(ip->ip_off); 2630 ip->ip_sum = 0; 2631 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2632 } else { 2633 /* Fragment the packet */ 2634 if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { 2635 m_freem(mb_copy); 2636 return NULL; 2637 } 2638 } 2639 return mb_copy; 2640 } 2641 2642 /* 2643 * Send an upcall with the data packet to the user-level process. 2644 */ 2645 static int 2646 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 2647 struct mbuf *mb_copy, struct mfc *rt) 2648 { 2649 struct mbuf *mb_first; 2650 int len = ntohs(ip->ip_len); 2651 struct igmpmsg *im; 2652 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2653 2654 VIF_LOCK_ASSERT(); 2655 2656 /* 2657 * Add a new mbuf with an upcall header 2658 */ 2659 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2660 if (mb_first == NULL) { 2661 m_freem(mb_copy); 2662 return ENOBUFS; 2663 } 2664 mb_first->m_data += max_linkhdr; 2665 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 2666 mb_first->m_len = sizeof(struct igmpmsg); 2667 mb_first->m_next = mb_copy; 2668 2669 /* Send message to routing daemon */ 2670 im = mtod(mb_first, struct igmpmsg *); 2671 im->im_msgtype = IGMPMSG_WHOLEPKT; 2672 im->im_mbz = 0; 2673 im->im_vif = vifp - viftable; 2674 im->im_src = ip->ip_src; 2675 im->im_dst = ip->ip_dst; 2676 2677 k_igmpsrc.sin_addr = ip->ip_src; 2678 2679 mrtstat.mrts_upcalls++; 2680 2681 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { 2682 if (mrtdebug & DEBUG_PIM) 2683 log(LOG_WARNING, 2684 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 2685 ++mrtstat.mrts_upq_sockfull; 2686 return ENOBUFS; 2687 } 2688 2689 /* Keep statistics */ 2690 pimstat.pims_snd_registers_msgs++; 2691 pimstat.pims_snd_registers_bytes += len; 2692 2693 return 0; 2694 } 2695 2696 /* 2697 * Encapsulate the data packet in PIM Register message and send it to the RP. 2698 */ 2699 static int 2700 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, 2701 struct mfc *rt) 2702 { 2703 struct mbuf *mb_first; 2704 struct ip *ip_outer; 2705 struct pim_encap_pimhdr *pimhdr; 2706 int len = ntohs(ip->ip_len); 2707 vifi_t vifi = rt->mfc_parent; 2708 2709 VIF_LOCK_ASSERT(); 2710 2711 if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) { 2712 m_freem(mb_copy); 2713 return EADDRNOTAVAIL; /* The iif vif is invalid */ 2714 } 2715 2716 /* 2717 * Add a new mbuf with the encapsulating header 2718 */ 2719 MGETHDR(mb_first, M_DONTWAIT, MT_DATA); 2720 if (mb_first == NULL) { 2721 m_freem(mb_copy); 2722 return ENOBUFS; 2723 } 2724 mb_first->m_data += max_linkhdr; 2725 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2726 mb_first->m_next = mb_copy; 2727 2728 mb_first->m_pkthdr.len = len + mb_first->m_len; 2729 2730 /* 2731 * Fill in the encapsulating IP and PIM header 2732 */ 2733 ip_outer = mtod(mb_first, struct ip *); 2734 *ip_outer = pim_encap_iphdr; 2735 ip_outer->ip_id = ip_newid(); 2736 ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 2737 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 2738 ip_outer->ip_dst = rt->mfc_rp; 2739 /* 2740 * Copy the inner header TOS to the outer header, and take care of the 2741 * IP_DF bit. 2742 */ 2743 ip_outer->ip_tos = ip->ip_tos; 2744 if (ntohs(ip->ip_off) & IP_DF) 2745 ip_outer->ip_off |= IP_DF; 2746 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 2747 + sizeof(pim_encap_iphdr)); 2748 *pimhdr = pim_encap_pimhdr; 2749 /* If the iif crosses a border, set the Border-bit */ 2750 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 2751 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 2752 2753 mb_first->m_data += sizeof(pim_encap_iphdr); 2754 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 2755 mb_first->m_data -= sizeof(pim_encap_iphdr); 2756 2757 send_packet(vifp, mb_first); 2758 2759 /* Keep statistics */ 2760 pimstat.pims_snd_registers_msgs++; 2761 pimstat.pims_snd_registers_bytes += len; 2762 2763 return 0; 2764 } 2765 2766 /* 2767 * pim_encapcheck() is called by the encap[46]_input() path at runtime to 2768 * determine if a packet is for PIM; allowing PIM to be dynamically loaded 2769 * into the kernel. 2770 */ 2771 static int 2772 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg) 2773 { 2774 2775 #ifdef DIAGNOSTIC 2776 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); 2777 #endif 2778 if (proto != IPPROTO_PIM) 2779 return 0; /* not for us; reject the datagram. */ 2780 2781 return 64; /* claim the datagram. */ 2782 } 2783 2784 /* 2785 * PIM-SMv2 and PIM-DM messages processing. 2786 * Receives and verifies the PIM control messages, and passes them 2787 * up to the listening socket, using rip_input(). 2788 * The only message with special processing is the PIM_REGISTER message 2789 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 2790 * is passed to if_simloop(). 2791 */ 2792 void 2793 pim_input(struct mbuf *m, int off) 2794 { 2795 struct ip *ip = mtod(m, struct ip *); 2796 struct pim *pim; 2797 int minlen; 2798 int datalen = ip->ip_len; 2799 int ip_tos; 2800 int iphlen = off; 2801 2802 /* Keep statistics */ 2803 pimstat.pims_rcv_total_msgs++; 2804 pimstat.pims_rcv_total_bytes += datalen; 2805 2806 /* 2807 * Validate lengths 2808 */ 2809 if (datalen < PIM_MINLEN) { 2810 pimstat.pims_rcv_tooshort++; 2811 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 2812 datalen, (u_long)ip->ip_src.s_addr); 2813 m_freem(m); 2814 return; 2815 } 2816 2817 /* 2818 * If the packet is at least as big as a REGISTER, go agead 2819 * and grab the PIM REGISTER header size, to avoid another 2820 * possible m_pullup() later. 2821 * 2822 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 2823 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 2824 */ 2825 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 2826 /* 2827 * Get the IP and PIM headers in contiguous memory, and 2828 * possibly the PIM REGISTER header. 2829 */ 2830 if ((m->m_flags & M_EXT || m->m_len < minlen) && 2831 (m = m_pullup(m, minlen)) == 0) { 2832 log(LOG_ERR, "pim_input: m_pullup failure\n"); 2833 return; 2834 } 2835 /* m_pullup() may have given us a new mbuf so reset ip. */ 2836 ip = mtod(m, struct ip *); 2837 ip_tos = ip->ip_tos; 2838 2839 /* adjust mbuf to point to the PIM header */ 2840 m->m_data += iphlen; 2841 m->m_len -= iphlen; 2842 pim = mtod(m, struct pim *); 2843 2844 /* 2845 * Validate checksum. If PIM REGISTER, exclude the data packet. 2846 * 2847 * XXX: some older PIMv2 implementations don't make this distinction, 2848 * so for compatibility reason perform the checksum over part of the 2849 * message, and if error, then over the whole message. 2850 */ 2851 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 2852 /* do nothing, checksum okay */ 2853 } else if (in_cksum(m, datalen)) { 2854 pimstat.pims_rcv_badsum++; 2855 if (mrtdebug & DEBUG_PIM) 2856 log(LOG_DEBUG, "pim_input: invalid checksum"); 2857 m_freem(m); 2858 return; 2859 } 2860 2861 /* PIM version check */ 2862 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 2863 pimstat.pims_rcv_badversion++; 2864 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 2865 PIM_VT_V(pim->pim_vt), PIM_VERSION); 2866 m_freem(m); 2867 return; 2868 } 2869 2870 /* restore mbuf back to the outer IP */ 2871 m->m_data -= iphlen; 2872 m->m_len += iphlen; 2873 2874 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 2875 /* 2876 * Since this is a REGISTER, we'll make a copy of the register 2877 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 2878 * routing daemon. 2879 */ 2880 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 2881 struct mbuf *mcp; 2882 struct ip *encap_ip; 2883 u_int32_t *reghdr; 2884 struct ifnet *vifp; 2885 2886 VIF_LOCK(); 2887 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 2888 VIF_UNLOCK(); 2889 if (mrtdebug & DEBUG_PIM) 2890 log(LOG_DEBUG, 2891 "pim_input: register vif not set: %d\n", reg_vif_num); 2892 m_freem(m); 2893 return; 2894 } 2895 /* XXX need refcnt? */ 2896 vifp = viftable[reg_vif_num].v_ifp; 2897 VIF_UNLOCK(); 2898 2899 /* 2900 * Validate length 2901 */ 2902 if (datalen < PIM_REG_MINLEN) { 2903 pimstat.pims_rcv_tooshort++; 2904 pimstat.pims_rcv_badregisters++; 2905 log(LOG_ERR, 2906 "pim_input: register packet size too small %d from %lx\n", 2907 datalen, (u_long)ip->ip_src.s_addr); 2908 m_freem(m); 2909 return; 2910 } 2911 2912 reghdr = (u_int32_t *)(pim + 1); 2913 encap_ip = (struct ip *)(reghdr + 1); 2914 2915 if (mrtdebug & DEBUG_PIM) { 2916 log(LOG_DEBUG, 2917 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 2918 (u_long)ntohl(encap_ip->ip_src.s_addr), 2919 (u_long)ntohl(encap_ip->ip_dst.s_addr), 2920 ntohs(encap_ip->ip_len)); 2921 } 2922 2923 /* verify the version number of the inner packet */ 2924 if (encap_ip->ip_v != IPVERSION) { 2925 pimstat.pims_rcv_badregisters++; 2926 if (mrtdebug & DEBUG_PIM) { 2927 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 2928 "of the inner packet\n", encap_ip->ip_v); 2929 } 2930 m_freem(m); 2931 return; 2932 } 2933 2934 /* verify the inner packet is destined to a mcast group */ 2935 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { 2936 pimstat.pims_rcv_badregisters++; 2937 if (mrtdebug & DEBUG_PIM) 2938 log(LOG_DEBUG, 2939 "pim_input: inner packet of register is not " 2940 "multicast %lx\n", 2941 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 2942 m_freem(m); 2943 return; 2944 } 2945 2946 /* If a NULL_REGISTER, pass it to the daemon */ 2947 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 2948 goto pim_input_to_daemon; 2949 2950 /* 2951 * Copy the TOS from the outer IP header to the inner IP header. 2952 */ 2953 if (encap_ip->ip_tos != ip_tos) { 2954 /* Outer TOS -> inner TOS */ 2955 encap_ip->ip_tos = ip_tos; 2956 /* Recompute the inner header checksum. Sigh... */ 2957 2958 /* adjust mbuf to point to the inner IP header */ 2959 m->m_data += (iphlen + PIM_MINLEN); 2960 m->m_len -= (iphlen + PIM_MINLEN); 2961 2962 encap_ip->ip_sum = 0; 2963 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 2964 2965 /* restore mbuf to point back to the outer IP header */ 2966 m->m_data -= (iphlen + PIM_MINLEN); 2967 m->m_len += (iphlen + PIM_MINLEN); 2968 } 2969 2970 /* 2971 * Decapsulate the inner IP packet and loopback to forward it 2972 * as a normal multicast packet. Also, make a copy of the 2973 * outer_iphdr + pimhdr + reghdr + encap_iphdr 2974 * to pass to the daemon later, so it can take the appropriate 2975 * actions (e.g., send back PIM_REGISTER_STOP). 2976 * XXX: here m->m_data points to the outer IP header. 2977 */ 2978 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 2979 if (mcp == NULL) { 2980 log(LOG_ERR, 2981 "pim_input: pim register: could not copy register head\n"); 2982 m_freem(m); 2983 return; 2984 } 2985 2986 /* Keep statistics */ 2987 /* XXX: registers_bytes include only the encap. mcast pkt */ 2988 pimstat.pims_rcv_registers_msgs++; 2989 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 2990 2991 /* 2992 * forward the inner ip packet; point m_data at the inner ip. 2993 */ 2994 m_adj(m, iphlen + PIM_MINLEN); 2995 2996 if (mrtdebug & DEBUG_PIM) { 2997 log(LOG_DEBUG, 2998 "pim_input: forwarding decapsulated register: " 2999 "src %lx, dst %lx, vif %d\n", 3000 (u_long)ntohl(encap_ip->ip_src.s_addr), 3001 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3002 reg_vif_num); 3003 } 3004 /* NB: vifp was collected above; can it change on us? */ 3005 if_simloop(vifp, m, dst.sin_family, 0); 3006 3007 /* prepare the register head to send to the mrouting daemon */ 3008 m = mcp; 3009 } 3010 3011 pim_input_to_daemon: 3012 /* 3013 * Pass the PIM message up to the daemon; if it is a Register message, 3014 * pass the 'head' only up to the daemon. This includes the 3015 * outer IP header, PIM header, PIM-Register header and the 3016 * inner IP header. 3017 * XXX: the outer IP header pkt size of a Register is not adjust to 3018 * reflect the fact that the inner multicast data is truncated. 3019 */ 3020 rip_input(m, iphlen); 3021 3022 return; 3023 } 3024 3025 /* 3026 * XXX: This is common code for dealing with initialization for both 3027 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup. 3028 */ 3029 static int 3030 ip_mroute_modevent(module_t mod, int type, void *unused) 3031 { 3032 switch (type) { 3033 case MOD_LOAD: 3034 MROUTER_LOCK_INIT(); 3035 MFC_LOCK_INIT(); 3036 VIF_LOCK_INIT(); 3037 ip_mrouter_reset(); 3038 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", 3039 &pim_squelch_wholepkt); 3040 3041 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM, 3042 pim_encapcheck, &in_pim_protosw, NULL); 3043 if (pim_encap_cookie == NULL) { 3044 printf("ip_mroute: unable to attach pim encap\n"); 3045 VIF_LOCK_DESTROY(); 3046 MFC_LOCK_DESTROY(); 3047 MROUTER_LOCK_DESTROY(); 3048 return (EINVAL); 3049 } 3050 3051 #ifdef INET6 3052 pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM, 3053 pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL); 3054 if (pim6_encap_cookie == NULL) { 3055 printf("ip_mroute: unable to attach pim6 encap\n"); 3056 if (pim_encap_cookie) { 3057 encap_detach(pim_encap_cookie); 3058 pim_encap_cookie = NULL; 3059 } 3060 VIF_LOCK_DESTROY(); 3061 MFC_LOCK_DESTROY(); 3062 MROUTER_LOCK_DESTROY(); 3063 return (EINVAL); 3064 } 3065 #endif 3066 3067 ip_mcast_src = X_ip_mcast_src; 3068 ip_mforward = X_ip_mforward; 3069 ip_mrouter_done = X_ip_mrouter_done; 3070 ip_mrouter_get = X_ip_mrouter_get; 3071 ip_mrouter_set = X_ip_mrouter_set; 3072 3073 #ifdef INET6 3074 ip6_mforward = X_ip6_mforward; 3075 ip6_mrouter_done = X_ip6_mrouter_done; 3076 ip6_mrouter_get = X_ip6_mrouter_get; 3077 ip6_mrouter_set = X_ip6_mrouter_set; 3078 mrt6_ioctl = X_mrt6_ioctl; 3079 #endif 3080 3081 ip_rsvp_force_done = X_ip_rsvp_force_done; 3082 ip_rsvp_vif = X_ip_rsvp_vif; 3083 3084 legal_vif_num = X_legal_vif_num; 3085 mrt_ioctl = X_mrt_ioctl; 3086 rsvp_input_p = X_rsvp_input; 3087 break; 3088 3089 case MOD_UNLOAD: 3090 /* 3091 * Typically module unload happens after the user-level 3092 * process has shutdown the kernel services (the check 3093 * below insures someone can't just yank the module out 3094 * from under a running process). But if the module is 3095 * just loaded and then unloaded w/o starting up a user 3096 * process we still need to cleanup. 3097 */ 3098 if (V_ip_mrouter 3099 #ifdef INET6 3100 || ip6_mrouter 3101 #endif 3102 ) 3103 return EINVAL; 3104 3105 #ifdef INET6 3106 if (pim6_encap_cookie) { 3107 encap_detach(pim6_encap_cookie); 3108 pim6_encap_cookie = NULL; 3109 } 3110 X_ip6_mrouter_done(); 3111 ip6_mforward = NULL; 3112 ip6_mrouter_done = NULL; 3113 ip6_mrouter_get = NULL; 3114 ip6_mrouter_set = NULL; 3115 mrt6_ioctl = NULL; 3116 #endif 3117 3118 if (pim_encap_cookie) { 3119 encap_detach(pim_encap_cookie); 3120 pim_encap_cookie = NULL; 3121 } 3122 X_ip_mrouter_done(); 3123 ip_mcast_src = NULL; 3124 ip_mforward = NULL; 3125 ip_mrouter_done = NULL; 3126 ip_mrouter_get = NULL; 3127 ip_mrouter_set = NULL; 3128 3129 ip_rsvp_force_done = NULL; 3130 ip_rsvp_vif = NULL; 3131 3132 legal_vif_num = NULL; 3133 mrt_ioctl = NULL; 3134 rsvp_input_p = NULL; 3135 3136 VIF_LOCK_DESTROY(); 3137 MFC_LOCK_DESTROY(); 3138 MROUTER_LOCK_DESTROY(); 3139 break; 3140 3141 default: 3142 return EOPNOTSUPP; 3143 } 3144 return 0; 3145 } 3146 3147 static moduledata_t ip_mroutemod = { 3148 "ip_mroute", 3149 ip_mroute_modevent, 3150 0 3151 }; 3152 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY); 3153